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 
Abstract— Objective:  ECG recordings often suffer from a 
set of artifacts with varying types, severities, and durations, 
and this makes an accurate diagnosis by machines or 
medical doctors difficult and unreliable.  Numerous studies 
have proposed ECG denoising; however, they naturally fail 
to restore the actual ECG signal corrupted with such 
artifacts due to their simple and naive noise model. In this 
pilot study, we propose a novel approach for blind ECG 
restoration using cycle-consistent generative adversarial 
networks (Cycle-GANs) where the quality of the signal can 
be improved to a clinical level ECG regardless of the type 
and severity of the artifacts corrupting the signal. Methods: 
To further boost the restoration performance, we propose 
1D operational Cycle-GANs with the generative neuron 
model. Results: The proposed approach has been evaluated 
extensively using one of the largest benchmark ECG 
datasets from the China Physiological Signal Challenge 
(CPSC-2020) with more than one million beats. Besides the 
quantitative and qualitative evaluations, a group of 
cardiologists performed medical evaluations to validate the 
quality and usability of the restored ECG, especially for an 
accurate arrhythmia diagnosis. Significance: As a pioneer 
study in ECG restoration, the corrupted ECG signals can 
be restored to clinical level quality. Conclusion: By means 
of the proposed ECG restoration, the ECG diagnosis 
accuracy and performance can significantly improve.  
  

Index Terms— Generative Adversarial Networks, 
Convolutional Neural Networks, Operational Neural Networks, 
ECG Restoration 

I. INTRODUCTION 

olter or wearable ECG monitoring has been increasingly 
used to monitor heart activity for 12 to 48 hours or even 
longer periods. The extended period of recording time is 

beneficial for observing sporadic cardiac arrhythmias which 
would not be possible to diagnose in a shorter time. Doctors 
recommend patients to avoid sudden movements and high-
impact workouts such as running while recording. Even if 
patients avoid those movements, during their daily routine 
motion-related slip of the sensor or other interference can 
induce severe artifacts such as baseline wander, signal cuts, 
motion artifacts, diminished QRS amplitude, noise, and other 
interferences. Some typical examples of such corrupted ECG 
recordings from the benchmark China Physiological Signal 

 
. 

Challenge (CPSC-2020) dataset [1] are shown in Figure 1. As 
can be seen in the figure, the severity of such blended artifacts 
makes some of the ECG signals undiagnosable by machines or 
even experienced doctors. 

 
Figure 1 Four 10-second segments from the CPSC-2020 dataset. 
Arrows with different colors show some typical artifacts. 
 

Even though noise is just one of the artifact types corrupting 
the ECG signal, numerous studies in the literature address this 
as the sole denoising problem, and many of which assumed a 
certain type of (e.g., additive Gaussian) noise independent from 
the signal. To date, several DSP methods from statistical filters 
or transform-domain denoising [2]-[5] to recent denoising 
techniques by deep learning have been proposed for ECG 
denoising. Chiang et al. [6] proposed a denoising autoencoder 
architecture using a fully convolutional network which can be 
applied to reconstruct the clean data from its noisy version. A 
13-layer autoencoder model was applied to MIT-BIH 
Arrhythmia and Noise Stress datasets corrupted with additive 
Gaussian noise, yielding around 16%, 14%, and 11% SNR (dB) 
improvements corresponding to the input -1 dB, 3dB, and 7 dB 
SNR values, respectively. Hamad et al. [7] developed a deep 
learning autoencoder to denoise ECG signals from the discrete 
wavelet transform coefficients of the ECG signal. The proposed 
system consists of two stages which are isolating the 
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approximation and thresholding the subband coefficients that 
will then be used as input to a 14-layer autoencoder to 
reconstruct a clean signal. They obtained a 6.26 dB SNR 
improvement on the MIT-BIH Arrhythmia database corrupted 
with additive Gaussian noise. In [8], a deep recurrent neural 
network (DRNN) model which is a specific hybrid of DRNN 
and denoising AE is applied to denoising of ECG signal. Both 
real and synthetic data are used to get improved performance. 
A new ECG denoising framework based on the generative 
adversarial network (GAN) is proposed in [9]. For adversarial 
training of the generative model, both the clean and noisy ECG 
samples (additive Gaussian noise) from the MIT-BIH 
Arrhythmia database are used. The improved performance of 
the proposed system over the existing framework is 
demonstrated through testing over multiple noise conditions for 
5 and 10 dB SNR levels.  

It is straightforward to develop such supervised ML-based 
denoising solutions when a clean ECG signal is corrupted by 
artificial (additive) noise with a fixed type and variance, and 
then turn this as a regression problem by using noisy/clean 
signal as the input/output of the network, which will eventually 
learn to suppress the noise. However, such denoising solutions 
obviously will fail to restore any actual ECG signal corrupted 
with a blend of artifacts, as typical samples shown in Fig 1.  
Even only for the “denoising” purpose, assuming an additive 
and independent noise model with a fixed noise variance is far 
from being realistic. As can be seen in the ECG segment at the 
1st row in Fig 1, the noise level may vary in a short time, and it 
may neither be additive nor independent from the signal. 
Therefore, in this study, we address this problem as a blind 
restoration approach thus avoiding any prior assumption over 
the artifact types and severities. We neither turn it to be a 
supervised regression problem since one cannot have the 
corrupted and clean ECG signal at the same time in reality 
unless the artifacts are artificially created. That is why, for 
training, we want to use the real corrupted signals with any 
blend of artifacts, and the network should be able to restore the 
clean signal while preserving the main characteristics of the 
ECG patterns. The proposed approach learns to perform 
transformations between the “clean” (e.g., close to the clinical 

ECG quality) and the “corrupted” ECG segments using 1D 
convolutional and operational Cycle-GANs.  

Since its first introduction in 2014, GANs [19] and their 
variations brought a new perspective to the machine learning 
communities with their superiority in different image synthesis 
problems. Cycle-Consistent Adversarial Networks (Cycle-
GANs) [20] are developed and used for image-to-image 
translation on unpaired datasets. To accomplish the 
aforementioned objective, in this study, we first selected 
batches of clean and corrupted ECG segments from the CPSC-
2020 dataset. Then, we adapted the 1D version of Cycle-GANs 
that can learn to transform the ECG signals (segments) from 
different batches as the baseline method. The Cycle-GANs can 
preserve major “patterns” of the corrupted ECG segment 
transformed to the “other” category, the clean segment.  
Therefore, the main ECG characteristics (e.g., the interval and 
timing of R-peaks, QRS waveform of ECG beats, etc.) will still 
be preserved whilst the quality will be improved. To further 
boost the restoration performance and reduce the complexity, 
operational Cycle-GANs are proposed in this study. Derived 
from Generalized Operational Perceptrons [10]-[15],   
Operational Neural Networks (ONNs) [16]-[18], and their new 
variants, Self-Organized Operational Neural Networks (Self-
ONNs) [21], [22], [30]-[32], are heterogeneous network models 
with a non-linear neuron model. Self-ONNs are heterogeneous 
network models with a non-linear neuron model which have 
shown superior diversity and increased learning capabilities. 
Recently, Self-ONNs have been shown to outperform their 
predecessors, CNNs, in many regression and classification 
tasks. To reflect this superiority in ECG restoration, the 
convolutional layers/neurons of the native 1D Cycle-GANs are 
replaced by operational/generative layers/neurons of the Self-
ONNs. Once a 1D operational Cycle-GAN is trained over the 
batches, the generator Self-ONN trained for the “corrupted” to 
“clean” ECG segment transformation can then be used for the 
ECG restoration. The performance is evaluated over the SCPC-
2020 dataset quantitatively by the performance comparisons 
using the benchmark peak detectors, Pan and Tompkins [23] 
and Hamilton [24], qualitatively (visually), and also by the 
medical doctors for arrhythmia diagnosis.  

 
Figure 2: Depiction of the 1D nodal operations with the 1D kernels of the ith neuron of CNN (left), ONN (middle), and Self-ONN (right).  
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We can enlist the novel and significant contributions of this 
study as follows: 

1- This is a pioneer study where ECG restoration is addressed 
as a “blind” approach thus avoiding any prior assumption such 
as certain artifact types and severities. 

2- This is the first study where 1D Cycle-GANs are proposed 
in a biomedical signal restoration application. To the best of our 
knowledge, this is actually the first study where 1D Cycle-
GANs have ever been used for a 1D signal processing 
application.  

3- A novel GAN type, operational GANs, are proposed in 
this study which outperform the conventional (convolutional) 
model even with a reduced network complexity. 

4- The proposed method has also been tested over the largest 
ECG benchmark dataset, SPSC-2020 with more than one 
million beats. Both the peak-labeled dataset, our results and the 
source code are now publicly shared with the research 
community.  

The rest of the paper is organized as follows: a brief outline 
of 1D Self-ONNs and the proposed approach with the 
operational Cycle-GANs are introduced in Section II. The 
results are presented in Section III. Finally, Section IV 
concludes the paper and suggests topics for future research. 

II. PROPOSED APPROACH 

In this section, we first briefly summarize Self-ONNs and their 
main properties. Then we introduce the proposed approach by 
1-D Self Operational Cycle GANs for ECG restoration. 

A. 1D Self-Organized Operational Neural Networks 

In this section, we introduce the main network characteristics 
of 1D Self-ONNs1 with the formulation of forward propagation. 
Figure 2 shows 1D nodal operations of a CNN, ONN with fixed 
(static) nodal operators, and Self-ONN with generative neuron 
which can have any arbitrary nodal function, 𝚿, (including 
possibly standard types such as linear and harmonic functions) 
for each kernel element of each connection. Obviously, Self-
ONN has the potential to achieve greater operational diversity 
and flexibility, allowing any nodal operator function to be 
formed without the use of an operator set library or a prior 
search process to select the best nodal operator. 

The kernel elements of each generative neuron of a Self-
ONN perform any nonlinear transformation, 𝜓, the function of 
which can be expressed by the Taylor-series near the origin 
(𝑎 ൌ 0),  

𝜓ሺ𝑥ሻ ൌ  ෍
𝜓ሺ௡ሻሺ0ሻ

𝑛!

ஶ

௡ୀ଴

𝑥௡ (1) 

The  𝑄௧௛ order truncated approximation, formally known as the 
Taylor polynomial, takes the form of the following finite 
summation: 

𝜓ሺ𝑥ሻሺொሻ ൌ  ෍
𝜓ሺ௡ሻሺ0ሻ

𝑛!

ொ

௡ୀ଴

𝑥௡ (2) 

 
1 The optimized PyTorch implementation of 1D Self-ONNs is publicly 

shared in https://github.com/junaidmalik09/fastonn and also in   

The above formulation can approximate any function 𝜓ሺ𝑥ሻ near 
0. When the activation function bounds the neuron’s input 
feature maps in the vicinity of 0 (e.g., tanh), the formulation in 
(2) can be exploited to form a composite nodal operator where 

the power coefficients, 
టሺ೙ሻሺ଴ሻ

௡!
, can be the parameters of the 

network learned during training.  
It was shown in [21], [22], and [29] that the nodal operator 

of the kth generative neuron in the lth layer can take the following 
general form: 

𝜓௞
௟෪ ቀ𝑤௜௞

௟ሺொሻሺ𝑟ሻ, 𝑦௜
௟ିଵሺ𝑚 ൅ 𝑟ሻቁ

ൌ ෍ 𝑤௜௞
௟ሺொሻሺ𝑟, 𝑞ሻ ቀ𝑦௜

௟ିଵሺ𝑚 ൅ 𝑟ሻቁ
௤

ொ

௤ୀଵ

 
(3) 

Let 𝑥௜௞
௟ ∈  ℝெ be the contribution of the ith neuron’s at the 

ሺ𝑙 െ 1ሻ௧௛ layer to the input map of the 𝑙௧௛ layer. Therefore, it 
can be expressed as, 

𝑥ప௞
௟෪ ሺ𝑚ሻ ൌ ෍ ෍ 𝑤௜௞

௟ሺொሻሺ𝑟, 𝑞ሻ ቀ𝑦௜
௟ିଵሺ𝑚 ൅ 𝑟ሻቁ

௤
ொ

௤ୀଵ

௄ିଵ

௥ୀ଴

 (4) 

where 𝑦௜
௟ିଵ  ∈  ℝெ is the output map of the ith neuron’s at the 

ሺ𝑙 െ 1ሻ௧௛ layer, 𝑤௜௞
௟ሺொሻ is a learnable kernel of the network, 

which is a 𝐾 ൈ 𝑄 matrix, i.e., 𝑤௜௞
௟ሺொሻ ∈  ℝ௄ൈொ,  formed as,  

𝑤௜௞
௟ሺொሻሺ𝑟ሻ ൌ ሾ𝑤௜௞

௟ሺொሻሺ𝑟, 1ሻ, 𝑤௜௞
௟ሺொሻሺ𝑟, 2ሻ, … , 𝑤௜௞

௟ሺொሻሺ𝑄ሻሿ. By the 
commutativity of the summation operations in (4), one can 
alternatively write: 

𝑥ప௞
௟෪ ሺ𝑚ሻ ൌ ෍ ෍ 𝑤௜௞

௟ሺொሻሺ𝑟, 𝑞 െ 1ሻ𝑦௜
௟ିଵሺ𝑚 ൅ 𝑟ሻ௤

௄ିଵ

௥ୀ଴

ொ

௤ୀଵ

 (5) 

One can simplify this as follows: 

𝑥ప௞
௟෪ ൌ ෍ 𝐶𝑜𝑛𝑣1𝐷൫𝑤௜௞

௟ሺொሻ, ൫𝑦௜
௟ିଵ൯

௤
൯

ொ

௤ୀଵ

 (6) 

Hence, the formulation can be accomplished by applying Q 1D 
convolution operations. Finally, the output of this neuron can 
be formulated as follows: 

𝑥௞
௟ ൌ 𝑏௞

௟ ൅ ෍ 𝑥௜௞
௟

ே೗షభ

௜ୀ଴

 (7) 

where 𝑏௞
௟  is the bias associated with this neuron. The 0௧௛ 

order term, 𝑞 ൌ 0, the DC bias, is ignored as its additive effect 
can be compensated by the learnable bias parameter of the 
neuron. With the 𝑄 ൌ 1 setting, a generative neuron reduces 
back to a convolutional neuron.  

The raw-vectorized formulations of the forward propagation, 
and detailed formulations of the Back-Propagation (BP) 
training in raw-vectorized form can be found in [22] and [29].  

B. 1D Operational Cycle-GANs 

The general framework of our proposed ECG restoration 
scheme is shown in Figure 3. We follow a segment-based 

https://github.com/OzerCanDevecioglu/Blind-ECG-Restoration-by-
Operational-Cycle-GANs. 
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restoration scheme where each ECG segment has 10 seconds 
duration. With the sampling frequency of 400Hz, this 
corresponds to 𝑚 ൌ 4000  samples per segment. By visual 
evaluation, we have carefully selected the batches of 4000 clean 
and corrupted ECG segments to establish the training dataset. 
A segment is “clean” only when there is no visible sign of any 
artifact; otherwise, it is a “corrupted” segment. CPCS-2020 
dataset has supraventricular ectopy (S) and ventricular ectopy 
(V) type beats.  To ensure an unbiased training on the type and 
severity of the corruption, such corrupted segments with 

different (blend of) artifacts (e.g., different noise types/levels, 
baseline wander, cuts, QRS amplitude shrinkage, etc.) and with 
different severity levels are selected. In brief, the segment 
selection is performed to ensure that the trained GAN will learn 
to transform a “corrupted” segment to a “clean” segment 
regardless of, 1) its (arrhythmia) category (normal, S or V), 2) 
the patient (e.g., the ECG pattern of a particular patient), 3) 
artifact types, and 4) artifact severities. 

 
Figure 3: The proposed ECG restoration approach using operational Cycle-GANs.  

Once the training dataset is formed, we adapted the 1D 
version of Cycle-GANs that can learn to transform the ECG 
signals (segments) from different batches as the baseline 
method. As discussed earlier, Cycle-GANs can preserve the 
major characteristics of the signal when it is transformed to the 
“other” category. Therefore, one of the generators will learn to 
transform the corrupted ECG segments to their “clean” version 
whilst preserving the main ECG characteristics (e.g., the 
interval and timing of R-peaks, QRS waveform of an ECG beat, 
etc.). The most critical point is that the transformation of the 
arrhythmic beats should be unaltered (temporally or 
morphologically) besides the quality improvement. In other 
words, an arrhythmic beat in a corrupted segment should not be 
transformed to a normal beat. This is why the unbiased selection 
scheme for forming the training set is crucial. This is one of the 
critical evaluation criteria that will be assessed by a group of 
cardiologists. 

As a new-generation ANN model, Self-ONNs outperform 
conventional (deep) CNNs on many ML and CV tasks. To 
reflect this superiority in ECG restoration, the proposed 
approach for ECG restoration is to use Operational 1D Cycle-
GANs where the convolutional layers/neurons of native 1D 
Cycle-GANs (both the generator and discriminator) are 
replaced by the operational layers with generative neurons of 
the Self-ONNs. To reduce the complexity, Operational GANs 
have four times fewer neurons and around 5 times fewer 
network parameters than the baseline model. This will also 
allow us to perform comparative evaluations between CNNs 
and ONNs in the GAN domain for the first time. As shown in 

Fig 2, an ECG segment from each batch is randomly selected 
as the input pair for the Cycle-GAN. They are first linearly 
normalized into the range of [-1 1], as follows: 

𝑋ேሺ𝑖ሻ ൌ
2ሺ𝑋ሺ𝑖ሻ െ 𝑋୫୧୬ ሻ

𝑋௠௔௫ െ 𝑋௠௜௡
െ 1          (8)

where 𝑋ሺ𝑖ሻ is the original sample amplitude in the segment, 
𝑋ேሺ𝑖ሻ is the normalized segment, 𝑋௠௜௡ and 𝑋௠௔௫ are the 
minimum and maximum amplitudes within the segment, 
respectively. The proposed approach consists of two Self-ONN 
based models: Generator and Discriminator. As in [20], the 
proposed approach consists of two sets of generators and 
discriminators. While the generator “corrupted-to-clean” 
(GX2C) learns to transform a corrupted segment to a clean one, 
the aim of the generator “clean-to-corrupted” (GC2X) will learn 
the opposite and will be discarded after the training. Both 
corresponding discriminators, “corrupted” (DX) and clean 
(DC) aim to maximize the adversarial loss functions so as to 
generate more realistic transformations. The loss functions are 
expressed in Eqs. (9) and (10). 
 

𝐿𝑜𝑠𝑠௔ௗ௩ଵሺGX2C, 𝐷𝐶, 𝑋௑ሻ

ൌ
1
𝑚

෍ሺ1 െ 𝐷𝐶ሺ𝐺𝑋2𝐶ሺ𝑋௑ሺ𝑖ሻሻሻሻଶ

௠

௜ୀଵ
 

(9)

𝐿𝑜𝑠𝑠௔ௗ௩ଶሺ𝐺𝐶2𝑋, 𝐷𝑋, 𝑋஼ሻ

ൌ
1
𝑚

෍ሺ1 െ 𝐷𝑋ሺ𝐺𝐶2𝑋ሺ𝑋஼ሺ𝑖ሻሻሻሻଶ

௠

௜ୀଵ

(10)
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where 𝑋௑and 𝑋஼ are the corresponding corrupted and clean 
ECG segments, respectively. In order to improve the 
preservation of the ECG characteristics, unlike the traditional 
GANs, we further use the cycle-consistency loss as expressed 
in (11). 

𝐿𝑜𝑠𝑠௖௬௖ሺ𝐺𝑋2𝐶, 𝐺𝐶2𝑋, 𝑋௑, 𝑋஼ሻ

ൌ
1
𝑚

෍ ቂ𝐺𝐶2𝑋 ቀ𝐺𝑋2𝐶൫𝑋௑ሺ𝑖ሻ൯ቁ െ 𝑋௑ሺ𝑖ሻቃ

௠

௜ୀଵ

൅
1
𝑚

෍ ቂ𝐺𝑋2𝐶 ቀ𝐺𝐶2𝑋൫𝑋஼ሺ𝑖ሻ൯ቁ െ 𝑋஼ሺ𝑖ሻቃ

௠

௜ୀଵ

   

(11)

In addition to adversarial and cycle consistency losses, the 
identity loss as given in (12) is defined for reducing the level of 
variation if the class of the input sample is the same as the 
desired output. 

𝐿𝑜𝑠𝑠௜ௗ௘ሺ𝐺𝑋2𝐶, 𝐺𝐶2𝑋, 𝑋௑, 𝑋஼ሻ

ൌ
1
𝑚

෍ ቂቀ𝐺𝑋2𝐶൫𝑋஼ሺ𝑖ሻ൯ቁ െ 𝑋஼ሺ𝑖ሻቃ

௠

௜ୀଵ

൅
1
𝑚

෍ ቂቀ𝐺𝐶2𝑋൫𝑋௑ሺ𝑖ሻ൯ቁ  െ 𝑋௑ሺ𝑖ሻቃ

௠

௜ୀଵ

(12)

The objective of any Cycle-GAN training is to minimize the 
total loss in (13). 

𝐿𝑜𝑠𝑠௧௢௧௔௟ ൌ 𝐿𝑜𝑠𝑠௔ௗ௩ଵ ൅ 𝐿𝑜𝑠𝑠௔ௗ௩ଶ ൅  λ 𝐿𝑜𝑠𝑠௖௬௖

൅      𝛽 𝐿𝑜𝑠𝑠௜ௗ௘       (13)

The experimental setup and network parameters will be 
presented in the next section. 

 

III.  EXPERIMENTAL RESULTS 

In this section, the benchmark CPSC-2020 dataset will first 
be introduced. Then, the experimental setup used for the 
evaluation of the proposed ECG restoration approach will be 
presented. The comparative evaluations and the overall results 
of the experiments obtained over real Holter recordings will be 
presented in the following step. The quantitative, qualitative, 
and medical evaluations (by a group of cardiologists) are all 
performed. Additionally, the computational complexity of the 
proposed approach will be evaluated in detail. 

A. CPSC-2020 Dataset 

The China Physiological Signal Challenge 2020, (CPSC-
2020) dataset is not only one of the largest benchmark datasets 
with more than 1M beats, but it also presents natural Holter 
ECG recordings with actual artifacts discussed earlier and thus, 
it is ideal for evaluating the proposed approach. The dataset 
consists of 10 single-lead ECG recordings of 10 arrhythmia 
patients each of which has a duration of around 24 hours. The 
details of the dataset are presented in TABLE 1.  

 

TABLE 1 DATASET DETAILS 

PAT. 
NO 

AF 
PATIENT? 

DURATION 
(HOUR) 

NO. OF 
BEATS 

NO. OF 
V 

BEATS

NO. OF 
S 

BEATS

A01 No 25.89 109,062 0 24
A02 Yes 22.83 98,936 4,554 0
A03 Yes 24.7 137,249 382 0
A04 No 24.51 77,812 19,024 3,466
A05 No 23.57 94,614 1 25
A06 No 24.59 77,621 0 6
A07 No 23.11 73,325 15,150 3,481
A08 Yes 25.46 115,518 2,793 0
A09 No 25.84 88,229 2 1,462
A10 No 23.64 72,821 169 9,071

 

 
Figure 4: The Generator and Discriminator architectures of the proposed approach. 

B. Experimental Setup 

For both generators GX2C and GC2X of both baseline 
(convolutional) and operational Cycle-GANs, 10-layer U-Net 
configuration is used with 5 1-D convolutional/operational 
layers and 5 transposed convolutional/operational with skip 

connections. The kernel sizes are set as 5 except that the last 
transposed layer the kernel size 6 is used. The stride is set as 2 
for both convolutional/operational and transposed 
convolutional/operational layers. Both discriminators consist of 
6 operational layers with a kernel size of 4. The stride for layers 
is set as 2, 2, 2, 2, 1, and 2 respectively. As a loss function in 
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the Discriminator, MSE is computed between the discriminator 
output and label vectors both of which have dimension 30. The 
architectures for the generators and discriminators are shown in 
Figure 4. For all experiments, we employ a training scheme 
with a maximum of 1000 BP iterations with batch size 8. The 
Adam optimizer with the learning rate 10-5 is used for both 
generators and discriminators.  The loss weights λ and 𝛽 in (9) 
are set as 10 and 5. We implemented the proposed 1D Self ONN 
architectures using the FastONN library [25] based on Python 
[26] and PyTorch [27]. For the training dataset, 4000 clean and 
corrupted segments with a duration of 10 seconds (4000 
samples) are selected, and the segments from the rest of the data 
are used for testing and evaluation. 

C. Quantitative Evaluations over Peak Detection 

For quantitative evaluation, we use the landmark Hamilton 
[23], and Pan and Tompkins [24] peak detectors and evaluated 
the performance gain achieved by the proposed ECG 
restoration approach.  Commonly used performance metrics 
Precision (Pre), Sensitivity (Sen), F1-Score (F1), and the 
number of missed S and V arrhythmia beats are used to compare 
performance. The calculation of True Positives (TP), False 
Negatives (FN), and False Positives (FP) were taken within a 
tolerance of ±75 msec [28] of the truth peak location. Since this 
is an R-peak detection operation, True Negatives (TN) do not 
exist as a performance measure. The formulations for these 
performance metrics can be expressed as follows: 

 

𝑃𝑟𝑒 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
,   𝑆𝑒𝑛 ൌ

𝑇𝑃
𝑇𝑃 ൅ 𝐹𝑁

, 

 𝐹1 ൌ
2𝑃𝑟𝑒𝑆𝑒𝑛

𝑃𝑟𝑒 ൅ 𝑆𝑒𝑛
 

(14)

 TABLE 2 and TABLE 3  present peak detection performances 
of the landmark detectors over the original and restored ECG 
segments by the baseline and operational Cycle-GANs. Besides 
the baseline model, we also used a more complex Cycle-GAN 
(Cycle-GANx4) with four times more neurons and around 5 
times more network parameters than operational Cycle-GANs 
to evaluate the gain achieved at the expense of higher 
complexity. Finally, we present the peak detection results over 
the two-pass restoration by the Self-ONN generator (the output 
of GX2C is again restored by GX2C a second time).   

Both peak detection results clearly show that the peak 
detection errors (FP and FN) are both reduced over the restored 
ECG by the proposed approach without exception. When the 
same network configuration is used (with the same number of 
neurons), operational Cycle-GANs significantly outperform the 
baseline Cycle-GANs in all metrics. As expected, only when 
the number of neurons is increased by four times, the complex 
Cycle-GANx4 can achieve a slightly better performance in 
overall peak detection (around 0.3 – 0.4 % difference in F1); 
however, operational Cycle-GANs can still outperform the 
Cycle-GANx4 in the peak detection of the arrhythmia beats. In 
fact, the detection of the arrhythmia beats is the most important 
objective since peak detectors are commonly used as a pre-
processing step for the arrhythmia diagnosis by both medical 
doctors and machines. After the restoration by the operational 
Cycle-GANs, the number of missing V beats can be reduced by 
more than 40%. With an additional restoration pass by the 
operational Cycle-GANs (two-pass), this can be improved by 
more than 50% for the Pan and Tompkins peak detector.  

 

TABLE 2: PEAK DETECTION PERFORMANCE OF HAMILTON PEAK DETECTOR [24]. 

 
  

TP FN FP Recall Precision F1 S Missed V missed 

Original Signal 990647 35448 62985 96.52 93.68 94.97 393 6573 

CycleGAN 
(baseline)  

986712 39383 46072 96.22 95.24 95.66 440 6332 

CycleGANx4 992829 33266 35016 96.77 96.30  96.50 450 4370 

Operational 
CycleGAN(Q=3)  

992781 33314 42749 96.79 95.57 96.13 401 3407  

 Operational 
Cycle-GAN(Q=3)  

(two-pass) 

989865 36230 39880 96.53 95.84 96.13 445 2981 

 

TABLE 3: PEAK DETECTION PERFORMANCE OF PAN &TOMPKINS PEAK DETECTOR [23]. 

 
  

TP FN FP Recall Precision F1 S Missed V missed 

Original Signal 995494 30601 29458 97.04 97.11 97.05 317 4922 

CycleGAN 
(baseline) 

990395 35700 21613 96.58 97.87 97.22 363 4308 

CycleGANx4 997670 28425 15617 97.26 98.47 97.86 363 3323 

Operational 
CycleGAN(Q=3)  

995622 30473 19926 97.07 98.05 97.55 344 2809 

Operational 
Cycle-GAN(Q=3)  

(two-pass) 

992313 33782 17859 96.77 98.23 97.49 401 2864 
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D. Medical Evaluation 

There are two objectives of the medical evaluation: 
 To find out the best ECG signal for arrhythmia diagnosis 

with respect to the cardiologist’s perspective. 
 To find out whether ECG restoration causes loss of any 

arrhythmia beats or the creation of false arrhythmia beats. 
The first objective is not only to evaluate original vs. restored 
ECG for arrhythmia diagnosis, but it also serves the purpose to 
determine which restoration approach will be the most 
preferable by the cardiologists. The 2nd objective is especially 
critical for arrhythmia diagnosis since arrhythmia beats are 
usually rare and hence, they should not be removed, or no false 
arrhythmia beats should be created by the restoration method.  
 To accomplish these evaluation objectives, we randomly 
selected 2000 ECG segments from the test partition of the 
CPSC-2020 dataset and restored them using the four Cycle-
GAN methodologies (baseline, Cycle-GANx4, Operational and 
Operational two-pass). A group of cardiologists evaluated their 
outputs and compared them along with the original signal. Their 
responses are collected in a survey, and we got the following 
medical evaluation results: Among all doctors’ responses, the 
original and restored ECG signals are found as the best option 
for arrhythmia detection with 4.49 % and 95.51% of the time, 
respectively. This clearly shows that ECG restoration is indeed 
crucial for a better medical evaluation by doctors. Moreover, 
they have found only 0.04% of the time where an arrhythmia 
beat is restored as a normal beat and hence missed. No S beat 
was missed, and no false arrhythmia beat has ever been created 
by any of the restoration approaches. This fulfills the 2nd and 
the most critical objective.  
 Among the three ECG restoration approaches, Cycle-
GANx4, operational Cycle-GAN, and operational Cycle-GAN 
with two-pass, the doctors have found them the best for 
diagnosis 28.3 %, 6.9 %, and 64.8 % of the time, respectively. 
The most favored method is, therefore, operational Cycle-GAN 
with two-pass, as expected. This outcome is mainly due to the 
superior restoration quality achieved especially on the 
arrhythmia beats and the noise suppression level.  

E. Qualitative Evaluation 

For the qualitative (visual) evaluation,  Figure 5 and Figure 
6 show two original ECG segments from the records of patients 
2 and 7 in the CPSC-2020 dataset along with the three restored 
ECG segments by the Cycle-GANs (baseline Cycle-GAN 
output is omitted since other networks almost always 
outperform it). 17 more visual results are shown in the 
Appendix. In the figures, the beats annotated with green and 
yellow stars correspond to V and S type arrhythmia beats, 
respectively.  

The first and the foremost observation is that the quality of 
the restored ECG segments has significantly been improved 
compared to the original ECG segment regardless of the Cycle-
GAN type, e.g., the noise has been suppressed significantly or 
cleaned entirely, the baseline wander or fluctuations are 
removed, the QRS beat amplitudes are mostly enhanced, the 
abrupt signal cuts are removed, etc. The proposed restoration 
approaches succeed to create authentic QRS beats with the right 
timing with respect to their original counterparts. On the other 

hand, when the original ECG signal is sufficiently clean, it is 
kept intact after the restoration without any artificial variations 
or degradations. Moreover, the arrhythmia beats in the original 
ECG segment are restored as to the arrhythmia beats with the 
corresponding type. As discussed earlier, this is critical for 
arrhythmia diagnosis by both machines and cardiologists. 

A closer look at the figures reveals the fact that the best 
restoration has been performed by the operational Cycle-GANs 
with two-pass (on the bottom), i.e., the best noise suppression, 
QRS amplitude restoration, and the removal of baseline wander 
and cuts. This is in accordance with the medical evaluations by 
the cardiologists. An interesting observation worth mentioning 
in Figure 5 is that a possible V-beat was missed by the Chinese 
cardiologists due to the excess noise; however, after the 
restoration, it becomes quite straightforward to diagnose this 
arrhythmia (as shown in the figure with a green arrow). The 
opposite is also true; due to severe artifacts, the Chinese 
cardiologists mislabeled a V beat (marked with a green star) as 
shown in Figure 6 by the red arrow. Only after the restoration, 
did the cardiologists in this study confirm that it should not be 
a V beat or any beat at all. We present 17 more sample ECG 
segments and their restoration results in the Appendix (see: 
Figure 7 - Figure 23) and another 100 samples in [34]. Although 
the Cycle-GANx4 has a significantly higher number of learning 
units and complexity, operational Cycle-GANs usually 
outperform them, especially on QRS amplitude restoration 
(e.g., some R-peaks could not be restored fully by the Cycle-
GANx4 as shown in Figure 7 and Figure 8 with blue arrows).  
Similarly, in Figure 9, the cut is not restored by the Cycle-
GANx4 when compared with the restorations by the operational 
GANs (shown by a purple arrow). Finally, although quite rare, 
some restoration issues are shown in Figure 17 and Figure 18. 
In Figure 17, all GAN restorations fail for the two V-beats due 
to their very low amplitude. In fact, the cardiologists in this 
study also raise a concern about their validity. In Figure 18, the 
arrow on the left shows that all GANs over-correct a cut to be 
restored as a somewhat distorted ECG beat. The arrow on the 
right, however, shows a cut that probably coincides with an 
ECG beat (based on the timing). The Cycle-GANx4 removed it 
completely during restoration while the operational Cycle-
GANs restored an ECG beat instead. Once again, it is hard to 
decide whether it is indeed an ECG beat or not, and hence, this 
may be an over-correction or a valid restoration.  
 

F. Computational Complexity 

For computational complexity analysis, the network size, total 
number of parameters (PARs), and inference time (to restore an 
ECG segment) for each network configuration are computed 
and reported in Table 4. The detailed formulations of the PARs 
calculations for Self-ONNs can be found in [25]. All the 
experiments were carried out on a 2.2 GHz Intel Core i7 with 
16 GB of RAM and NVIDIA GeForce RTX 3080 graphic card. 
For the implementation of the Cycle-GANs and operational 
Cycle-GANs, Python with PyTorch library is used. Both the 
training and testing phases of the classifier were processed 
using GPU cores. As the inference time and PARs indicate, the 
operational Cycle-GAN is significantly faster and less complex 
than the Cycle-GANx4.   
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Figure 5: Sample ECG segment from Patient 2 and its corresponding GAN output signals.  

 
Figure 6: Sample ECG segment from Patient 7 and its corresponding GAN output signals. 
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TABLE 4 COMPUTATIONAL COMPLEXITY OF THE NETWORKS. 

 PARs (M) Inf. 
Time 

(msec) 

 
GX2C DX Total 

Baseline 0.260  0.175  0.873  0.14 
Cycle-GANx4  4.2  2.8  14  3.5 

Operational Cycle-
GAN 

0.781  0.544  2.7 0.32 

Operational Cycle-
GAN (two-pass) 

0.781  0.544  2.7 0.64 

 

IV. CONCLUSION 

The major problem of Holter and wearable ECG sensors is that 
the acquired ECG signal may severely be corrupted by a blend 
of artifacts, and this makes it too difficult, if not infeasible, to 
diagnose any heart abnormality by machines or humans. In this 
study, we propose a novel approach to restore the ECG signal 
to a clinical level quality regardless of the type or severity of 
the artifacts.  Therefore, we follow a different path from the 
prior works, which approached this as a “denoising” problem 
for additive (artificial) noise with a fixed type and power so that 
they could propose a supervised solution. Such common 
regression-based solutions are not useful in practice and that is 
why this study addressed this problem with a blind restoration 
approach without any prior assumption over the artifact types 
and severity. As the baseline method, we proposed 1D Cycle-
GANs, and to further boost the performance, we proposed 
operational Cycle-GANs. Once Cycle-GANs are trained over 
the clean and corrupted batches, the generator, 𝐺𝑋2𝐶, learns to 
transform the corrupted ECG segments to clean counterparts 
while preserving the ECG characteristics. The optimized 
PyTorch code and the labeled CPSC-2020 dataset are publicly 
shared in [33]. 
 The quantitative, qualitative, and medical evaluations 
performed over an extensive set of real Holter recordings 
demonstrate that the corrupted ECG can indeed be restored with 
a desired (clinical) quality level, which in turn improves the 
efficiency and accuracy of ECG diagnosis by machines and 
humans. In particular, the R-peak detection performances of the 
two landmark detectors have been significantly improved over 
the restored signal. During the medical evaluation, the 
cardiologists confirmed that the restored ECG signal is more 
useful for arrhythmia diagnosis 95.51% of the time. They 
further note that the restoration has almost no side effects on the 
arrhythmia beats, i.e., neither causing an arrhythmic beat to turn 
to a normal beat nor transforming a normal beat into an 
arrhythmic beat. Finally, besides the superior ECG quality 
achieved by the proposed restoration approach, the visual 
evaluation further demonstrated that the hidden/undetected 
arrhythmia events can possibly be diagnosed from the restored 
ECG. A similar conclusion can also be made on the significant 
peak detection performance gain of arrhythmia beats achieved 
after the restoration. Among all proposed restoration 
approaches by 1D Cycle-GANs, the novel operational Cycle-
GANs have a superior restoration performance and can even 
outperform a more complex counterpart with convolutional 

neurons. This is not surprising considering the superiority of 
Self-ONNs in many challenging ML and CV tasks over the 
(deep) CNN models [29]-[31]. 
 Despite the elegant restoration performance, we note that 
very occasionally some potential arrhythmia beats with very 
low amplitudes may not be distinguished from the background 
noise, and hence not restored. Moreover, few over-corrections 
were encountered yielding artificial beats. Such minority cases 
can be addressed by designing a cost function that incorporates 
the class information (normal, S, and V type beats). Finally, the 
depth and complexity of the operational Cycle-GANs can 
further be reduced while boosting the restoration performance 
by using the super neuron model recently proposed in [32].  
These will be the topics of our future research.  
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