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Abstract. Label noise is a primary point of interest for safety concerns
in previous works as it affects the robustness of a machine learning system
by a considerable amount. This paper studies the sensitivity of object
detection loss functions to label noise in bounding box detection tasks.
Although label noise has been widely studied in the classification context,
less attention is paid to its effect on object detection. We characterize
different types of label noise and concentrate on the most common type
of annotation error, which is missing labels. We simulate missing labels
by deliberately removing bounding boxes at training time and study its
effect on different deep learning object detection architectures and their
loss functions. Our primary focus is on comparing two particular loss
functions: cross-entropy loss and focal loss. We also experiment on the
effect of different focal loss hyperparameter values with varying amounts
of noise in the datasets and discover that even up to 50% missing la-
bels can be tolerated with an appropriate selection of hyperparameters.
The results suggest that focal loss is more sensitive to label noise, but
increasing the gamma value can boost its robustness.

Keywords: Safe AI · Deep Neural Networks · Label Noise · Image La-
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1 Introduction

The growing success of deep neural network algorithms in solving challenging
tasks resulted in a surge of interest from the safety-critical applications domain.
As stated by recent works, one of the major issues of using such an algorithm in
line with safety standards is the effects of label noise on the output [1–3].

Earlier object detection pipelines consisted of manually engineered feature
extraction together with relatively simple classifiers [4,5]. These systems required
a human to label the different objects for training, and the labeling was done



on the crop level. Although this approach had its challenges, such as mining
negative examples, its behavior is still reasonably well understood due to relying
on a straightforward method.

More recently, the success of convolutional neural networks (CNN) and deep
learning [6] has transformed the domain of object detection. These approaches
outperform traditional techniques by a large margin but are also more data-
hungry at the same time [7–9]. The tedious task of manual labeling of enormous
datasets means there will be faults in the process inevitably.

Popular large object detection datasets include MS COCO [10], PASCAL
VOC [11], and OpenImages [12], containing millions of examples with quality
annotations. The ground truth human annotations are gathered by crowdsourc-
ing, and elaborate reward and evaluation schemes guarantee high quality for
the annotations. However, apart from these large annotation campaigns, many
players, companies, and research groups routinely collect smaller datasets within
their application domains. In such cases, the quality of annotations is often com-
promised due to limited resources. Moreover, even standard benchmark sets are
not error-free, and the influence of erroneous annotations on the system’s safety
requires further study.

The presence of noise in the training dataset can have a severe impact on
the system’s performance. For example, in the video surveillance system, a good
detector would retain the same confidence, box coordinates, and class label over
time. On the other hand, a bad one will be flickering, where the confidence
fluctuates, the coordinates change, and even the class is mislabeled from frame
to frame.

Figure 1 shows the four most common annotation error categories found
in object detection datasets. These categories are (a) missing annotations (false
negatives), (b) extra annotations (false positives), (c) inaccurate bounding boxes
(which would result in low intersection over union (IoU)), and (d) incorrect class
labels. In our experience, the most common error type is the first one, where the
human annotator misses some target objects due to occlusions, small size, a
large number of objects, or simply unclear annotation instructions. The second
most frequent annotation error type is inaccurate bounding boxes, a very natural
error for a human, as it takes more time and effort to pay attention to detail in
every case. The two other types in Figure 1, completely incorrect annotations
and wrong labels, are probably easier for humans to avoid.

The loss functions being a significant differentiator in modern single-stage
detection pipelines and current challenges for annotation quality, inspired us to
study the effect of label noise in object detection with two popular loss functions.
Notably, in this paper, we focus on examining how cross-entropy loss (CE) and
focal loss functions (FL) handle noise in the form of missing labels. We focus on
these losses since the focal loss is commonly used but may suffer from missing
annotations because it puts higher weight on complex samples (hard negatives
and hard positives). Missing bounding boxes in the annotation appear as hard
negatives from the training point of view, and we wish to study their influence
on the resulting accuracy. The main contributions of this paper are:



• We characterize different types of noise present in object detection datasets.
• We provide empirical observations on training single-stage object detectors

with different loss functions and different hyperparameter settings.
• We suggest possible measures to boost the robustness of the object detector

with minimal changes in the network.

Fig. 1. Common types of label noise in object detection. (a) Missing label, the other
chair is not labeled. (b) Incorrect annotation. (c) Inaccurately drawn box, resulting
in low IoU. (d) Wrong classification label, humans instead of chairs. Image from the
Indoor dataset [13].

The remainder of this paper is structured as follows. Section 2 briefly summa-
rizes the related works followed by the review of object detection loss functions
in Section 3. In Section 4, we experimented with multiple scenarios on our hy-
pothesis and analyzed the obtained results. Finally, we conclude this paper with
our findings and future direction in Section 5.

2 Related Works

Willers [1] and Wozniak [2] both provide a list of safety concerns or goals related
to deep learning algorithms. In their works, label noise is mentioned as one of the
primary faults that can affect safety. It is suggested to have a labeling guideline to



mitigate the effect of this fault. However, even with a guideline, manually labeling
a large dataset is prone to noise, as discussed before. Thus, a proper approach
is required to deal with noisy datasets in deep learning systems. Zhang [14]
reviews problems related to the dataset, such as label noise, by surveying over
recent works. According to his work, using a robust loss function and reweighting
samples can help mitigate this issue.

Our topic of label noise in object detection is closely related to the topic of
label noise in image classification, which has been studied more: For image clas-
sification, Frenay and Verleysen [15] have proposed a taxonomy of different types
of noise, studied their consequences, and reviewed multiple techniques to clean
noise and have the algorithms be more noise-tolerant. Li et al. have proposed
BundleNet exploiting sample correlations by creating bundles of samples class-
by-class and treating them as independent inputs, which acts as a noise-robust
regularization mechanism [16]. Lee et al. have proposed CleanNet to detect noise
in the dataset and be used in tandem with a classifier network for better noise
tolerance [17].

Noise in object detection is different from classification because an image can
have any natural number of objects present, anywhere in the image. A label in
object detection is a box with a position, a size, and a class, which adds more
possibilities for noise. It is easier for a human annotator to identify that an
object in a picture is indeed a banana than correctly labeling dozens of bananas
in one image of a cafeteria. The tedious task of doing so might result in the human
annotator skipping some labels. Skipping a label causes label noise in the form of
a missing label. Moreover, the task is often ambiguous when dealing with objects
in a real-world image. Partially occluded objects, reflective surfaces, distance
to the camera, and overcrowded images become relevant consideration points
when labeling for object detection. These problems make the human annotator’s
role more prominent because more mental decisions are required. It also means
that there will be more variation in the annotations, as different humans make
different decisions.

Su et al. [18] have studied the overall process of annotation for object detec-
tion in a crowd-sourced manner. They first divided the task into three different
sub-tasks: (1.) draw a box, (2.) verify the quality of a drawn box, and (3.) verify
a box coverage on a single image. Different people do all these sub-tasks via
Amazon Mechanical Turk (AMT). They concluded that this method produces
good quality annotations.

Russakovsky et al. [19] have studied the human-in-the-loop annotation pro-
cess, where state-of-the-art object detection models are used to detect many of
the objects in the image. Then humans are used for detecting all the objects
that the models are unable to detect. This method is needed as no current ob-
ject detection system is perfect, yet, and their goal is to have every object in the
image annotated adequately. A properly annotated object should have a tightly
fitted box and not an arbitrary margin of non-object space in the annotation.
They conclude that their method of using humans and computer vision together
was better than using either alone.



3 Object Detection Loss Functions

Single-shot detection (SSD) [8] uses both regression loss for bounding box re-
gression and cross-entropy loss for classification. The cross-entropy loss for a
sample with ground truth one-hot-encoded labels y = (y1, y2, . . . , yC) and pre-
dicted class confidences ŷ = (ŷ1, ŷ2, . . . , ŷC) in a C-class classification problem
is defined as

CE(y, ŷ) = −
C∑
c=1

yc log(ŷc). (1)

The focal loss was extended by Lin et al. [20] to handle difficult samples
better. They show that this improvement can result in better accuracy com-
pared to the cross-entropy loss. The focal loss was designed to emphasize hard
positives. It is similar to cross-entropy loss but has a parameterized penalty fac-
tor γ > 0 weighing the influence of each sample based on its detection score.
More specifically, the focal loss for the C-class classification with ground truth
y = (y1, y2, . . . , yC) and predictions ŷ = (ŷ1, ŷ2, . . . , ŷC) is defined as

FL(y, ŷ) = −
C∑
c=1

αc(1− ŷc)γyc log(ŷc), (2)

with the balancing factor αc [20], which is equal to 0.75 for all c ∈ {1, . . . , C} in
all our experiments.

prob

loss

−(1− x)0log(x)

−(1− x)8log(x)

Fig. 2. Visualization of the focal loss function with different values for parameter γ =
0, 1, 2, . . . , 8. The probability of being the ground truth is on the horizontal axis, and
the loss is on the vertical axis. The higher the gamma value, the sharper the focus on
harder cases. With gamma equaling zero, the focal loss is the same as cross-entropy
loss.

In other words, the FL loss differs from the CE loss by the weight term (1−ŷc),
whose effect is to assign a higher weight for samples with low confidence (small



ŷc). γ affects the overall loss by lowering it; primarily well-classified samples
with high confidence yc for the most likely class c will have a negligible loss.
At the same time, more attention is paid to learning the more complicated
cases. Figure 2 demonstrates this scaling and aptly visualizes how the different γ
parameters change the ferocity of the focus on more complicated cases. However,
this loss weighting may have an adverse effect in the presence of label noise. The
missing annotations are viewed as hard positives (non-annotated targets found
by the model with a nonzero likelihood).

4 Experiments and Results

It was observed that sometimes in custom datasets, the focal loss seemed to
produce results that were not as good as the research suggested. The intuition
was formed that the weighting of complex cases, as performed by the focal loss
function, would be more sensitive to label noise. The reason is that if a label is
erroneous, to begin with, it is impossible to get right, so focusing on such a label
leads the model astray and misuses the model capacity.

The experiments consider two questions: (1) how does label noise affect the
two losses, and (2) how do models trained with different γ values tolerate label
noise. For both experiments, we study the performance with three datasets:
first with a small high-quality Indoor dataset, the second uses a large classical
PASCAL VOC dataset, which does contain some annotation errors natively, and
finally, with a single class FDDB dataset. Table 1 contains the characteristics of
these datasets.

In all our experiments, the single-stage object detection (SSD) with Mo-
bileNet v1 [21] backbone network is fine-tuned from MS COCO pre-trained
model for 100K training steps. We experimented only with the missing labels cat-
egory. So, the training dataset has a percentage of randomly missing annotation
boxes.

Table 1. Comparison of Indoor [13], PASCAL VOC 2012 [11] and FDDB [22] datasets
based on source, size, quality of annotation, and usages.

Indoor PASCAL VOC FDDB

Sample Source Indoor scenes Collected online Faces in the Wild
Image Count 2213 17125 2845
Amount of Instances 4500 40000 5171
Number of Classes 7 20 1
Usage Object detection Multi-purpose Face detection



4.1 Noise robustness of the two losses: CE vs. FL

In this experiment, we use six different noise levels: 0%, 10%, 20%, 30%, 40% or
50%, of missing labels. The dropping of the labels was done randomly, but both
networks were using the same training datasets. Also, the noisy datasets are con-
structed incrementally, i.e.,, the 20% noise had all the labels of the 10% dataset
dropped (+10% more), and so forth. The model with both the CE loss and the
FL loss with hyperparameter γ = 2 (as proposed in the original paper [20]) is
fine-tuned for 100K steps, and mAP@.50IoU (mean average precision with 0.5
IoU threshold) is used as a performance evaluation metric.

Indoor dataset— In the first set of experiments, we start training SSD
using pre-trained weight from the MS COCO dataset, where some classes overlap
between the datasets (chair, TV set, . . . ), while others do not (fire extinguisher).
The resulting accuracies are presented in Figure 3a; mAP@0.50 with the CE loss
and the FL loss. Moreover, we show the relative drop in mAP with respect to
noiseless labels in Figure 4. It seems that the accuracy resulting from the FL
loss objective function outperforms the CE loss for 10% – 20% noise levels. The
FL loss is more robust till the 30% noise level and maintains a higher mAP than
the CE loss. However, with the higher amount of label noise (> 30%), FL loss
accuracy plunged rapidly, falling behind the CE loss. For the extremely noisy
(i.e., 50%) training dataset, accuracy from FL loss is 2% lower than that of CE
loss.
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Fig. 3. Relationship between mAP (%) and different amount of noise levels on PASCAL
VOC, and FDBB datasets.

PASCAL VOC dataset— Next, we studied the noise sensitivity on the
PASCAL VOC [11] dataset. The network using the FL loss function performs
better than the alternative, but the accuracy with FL loss decreases more when
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Fig. 4. Relative decrease in mAP (%) with respect to the noise levels in Indoor, PAS-
CAL VOC, and FDDB datasets.

the noise level increases compared to CE loss. Without added noise, FL loss gives
10% higher mAP than CE loss. While the FL loss outperforms the CE loss in
detection performance, it has a higher rate of mAP decrease than the CE loss.
The difference in detection performance gets smaller by increasing label noise.
The drop in mAP from no added noise to 50% label noise is 20.12% in with FL
loss and 12.10% with CE loss.

FDDB dataset— Next, we studied the noise sensitivity on the high-quality
moderate-sized single class dataset, Face Detection Data Set and Benchmark
(FDDB)[22]. As shown in Figure 2c, the network using the FL loss function per-
forms better till the 30% noise label. Adding more noise to the training dataset
causes the accuracy to drop. The performance difference is smaller for lower
noise levels and gets more significant for the noisy cases. The drop in AP from
no added noise to 50% label noise is 18.28% in the FL loss case and 8.03% CE
loss case.

Overall, the two losses seem to have similar behavior with these datasets.
Compared to the FL loss, the CE loss is more robust to increased noise levels.
However, with the VOC dataset, even though the FL loss suffers more for extreme
cases, the overall performance remains higher than the CE loss at all points
shown in Figure 2b.

We speculate that the Indoor and FDDB are relatively easy compared to
VOC, containing fewer small (difficult) bounding boxes. Thus, as long as most
bounding boxes are in place, the FL loss equally weights the true targets and the
hard negatives produced by the missing labels. The more varied and challenging



nature of the PASCAL VOC dataset causes different noise tolerance behaviors
than the smaller datasets.

4.2 Effect of the gamma parameter (γ)

In our second set of experiments, we compare the robustness of the FL loss for
different values of the γ parameter. This time we only ran for three noise levels:
0%, 10%, and 50%. The gamma values tested were γ = 1, 2, . . . , 8. All the other
settings were kept the same as in the previous experiment.

Indoor dataset— The first experiment in this set uses the Indoor dataset;
results on this dataset are presented in Figure 5a. In this dataset, the 10% noise
detection performance is very close to the 0% noise. More interestingly, with
extremely high label noise (50%), the gamma value has a significant impact.
With γ = 0, the accuracy on the clean dataset (0% missing labels) is 18.52%
more than the extremely noisy dataset (50% missing labels). With γ = 8, the
clean dataset mAP is only 5.2% higher than the noisy dataset. The mAP curve
indicates that a higher γ value does not affect the clean dataset while it boosts
the performance in the presence of label noise.

0 5

0.80

0.85

0.90

0.95

m
AP

(a) Indoor

0 5
 Parameter γ

0.30

0.35

0.40

0.45

0.50

0.55
(b) PASCAL VOC

0 5

0.80

0.85

0.90

0.95

(c) FDDB

0% 
10% 
50% 

Fig. 5. Results on Indoor, PASCAL VOC and FDDB datasets with different gamma
values on 0%, 10% and 50% noise levels.

PASCAL VOC dataset— Next, we experiment on PASCAL VOC with
different γ values. The higher values of gamma can be used to offset the effect
of missing labels partially. Like the previous experiment, γ values in the range
4 – 6 have better performance.



FDDB dataset— Experiments result on FDDB with different γ values
is shown in Figure 5c. Results coincide with our previous experiments. With
γ = 0, the difference in performance between clean and extremely noisy datasets
is 18.90%. However, this difference gets smaller by increasing the γ value. With
γ = 8, a clean dataset is only 2% more accurate than a heavily noised dataset.

Generally, with an extreme amount of label noise, increasing the γ value
improves the detection results. Still, the exact γ value and the detection perfor-
mance are dependent on the dataset. This could indicate that maybe the sharp
concentration introduced by the higher γ values can offset the missing labels
in relatively easy datasets. Experiments on these datasets suggest that the ro-
bustness to label noise increases for larger γ values. In these cases, the model
essentially learns from the complex samples only (annotated targets detected
with low confidence and non-annotated targets detected with high confidence).

This is illustrated in Figure 6, which shows the FL loss curves for both
negative and positive examples. Due to the large γ value, the intermediate values
(ŷ ∈ [0.3, 0.7]) behave as a don’t care region, and the model does not learn from
samples falling into this zone. Since all learning is based on complex samples
(similarly to the support vector machine), it will be enough to push all objects
with annotations to the ”don’t care” region. On the other hand, all negative
samples (including missing annotations) can safely reside in this zone, and the
model essentially learns to ignore those.
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Fig. 6. Focal loss with γ = 8 for negative and positive samples with respect to model
prediction confidence.



5 Conclusion

In this work, we characterized different types of label noise present in object de-
tection datasets and explored the sensitivity of loss functions to them. With label
noise being a crucial factor in ensuring the safety of the machine learning algo-
rithm, we made sure to include experiments with large-scale real-world datasets.
More specifically, we experimented on three datasets with varying amounts of
label noise with cross-entropy and focal loss. Experiments suggest that focal loss
suffers more with high amounts of noise, falling behind the cross-entropy loss.
The second aspect studied is the effect of the hyperparameter γ on the sensitivity
to label noise. It was discovered that larger values of γ improve the robustness
to label noise such that extreme gamma values make the model indifferent to
the noise level.

For future work, it would be beneficial to run more varied experiments to
see how the label noise tolerance differs when training the network from scratch
and its effect on system safety. Another point to consider would be running ex-
periments with improved loss functions that are better suited for noisy datasets.
It is also possible to quantify the risk associated with mislabeling by taking a
statistical approach.

All relevant information, data, and codes are published open-access at https:
//github.com/adhikaribishwo/label_noise_on_object_detection.
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