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In modern pathology, digitized images of histological sections are routinely used

in defining phenotypes and characteristics for different areas of the tissue. Digital

images are created from stained histological slides by specialized scanners and are

further analyzed with a computer. Traditionally this type of digital pathology anal-

ysis is limited to analyzing the tissue section in local patches or in the sub-sampled

section level. We propose a novel approach derived from methodology in precision

digital pathology and network analysis to study the single-cell level local neigh-

borhoods of the tissue while preserving spatial information in the form of network

connections. We show that our tool can successfully be used in advanced and precise

assessment of local properties combining multiple stainings and further apply this

method to a multi-stained histological mouse aortic root dataset.

Keywords: precision digital pathology, digital pathology, network analysis, deep

learning, quantitative histology.
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1 Introduction

Digital pathology concerns the examination and analysis of digitized histological

tissue sections. As in traditional pathology, small tissue samples are first embedded

in formalin or they are frozen, which enables cutting the tissue in thin sections.

These thin sections are then embedded in glass slides that can be examined with

a microscope. The digitized images are derived by imaging the glass slides with a

specialized scanner, resulting in digital whole slide images (WSI) that are of high

pixel resolution. The high resolution (and thus file size) commonly limits the analysis

of these images in either local patch level preceded by tiling the image into small

sub-sections or in global section level which requires sub-sampling the original image.

Usually, the different local patterns of interest in the image are differentiated

with different histological stainings. A common staining composed of hematoxylin

and eosin (later H&E), for example, colors the cell organelles with shades of blue

and red based on whether the organelle is basophilic or acidophilic, respectively[1].

Commonly, H&E is combined with immunohistochemical (IHC) stainings which can

be produced to describe the binding of specific antigens. The local tissue properties

highlighted by the different stainings are then used in further analysis, for example

in detecting cancerous regions in the tissue.

Depending on the research objective, the analysis process may be aided by vari-

ous computational approaches. Machine learning, especially that of which considers

the use of deep neural networks and cluster computing, has enabled the automation

of routine histological analysis tasks, for example the detection of cancerous regions

in constantly increasing precision with at times even outperforming pathologists

[2][3][4][5].

By studying the tissue histology with traditional digital pathology approaches,

the spatial distribution of cells across the tissue is often ignored. This distribution

entails a biological and practical significance and is far from being uniform. Relative

cell locations alternate between denser and more sparse regions which correspond to

different biological phenomenon and thus different importance regarding the research

objective. For example, cell signaling and interactions can be closely related to the

proximity of the cells involved if being contact-dependent or paracrine types of

signaling[6].

The natural way of modeling the spatial cell distribution and interactions would

be to present the cells as parts of a network. Modeling the cells this way would

resemble the biological circumstances in the tissue in a greater precision than the

traditional approach. Further, this kind of a model would open many novel subjects

of research: the increasing amount of organized digital information related to social
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networks as a result of the growing social media industry has resulted in advances of

network analysis utilizing deep learning methods, such as [7] and [8]. These advances

include for example the prediction of node properties, e.g. social influence from a

social network[9]. In biological context, this could mean for example predicting the

relative importance of local tissue areas related to a disease.

By combining methodology from deep learning based precision digital pathology

and network analysis, we propose a novel method for analyzing single-cell level local

neighborhoods in digital histological images utilizing multiple histological stainings.

Our method is based on a five-stage spatial analysis pipeline which utilizes various

machine learning and image analysis algorithms. It creates a network model for sin-

gle cells spanning multiple histological stainings and can be used in precision digital

pathology analysis in defining local environments for different objects of interest.

Not easily seen with the human eye, the network of neighboring cells may reveal

novel properties of the tissue and reveal important similarities between different tis-

sue regions when combined with features extracted with different histological and

other imaging methods.

We demonstrate the performance of our tool in a dataset consisting of 3 different

sections of the root of the aorta of Mus Musculus, each stained with 4 different

stainings, totaling in 12 images. The dataset contains information about macrophage

locations across the root of the aorta, which in the case of the dataset, are used in

studying the early development of coronary artery disease (CAD). We show that our

tool can be successfully used in precise data exploration and in discovering novel

local properties of tissues.

This type single-cell analysis in imaging, even when the cell locations are to

be approximated, could also be used together with other single-cell and/or spatial

analyses. If, for example, combined with spatial transcriptomics methods[10][11],

running our pipeline could work as an external validation step.
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2 Literature review

This chapter provides a more comprehensive and general theoretical background

for the methodology used in developing the spatial analysis pipeline. We look at

the history and trends of machine learning and image analysis technologies related

to digital histopathology, their practical implementation and future directions. A

more detailed overview of the various methods and algorithms used in the proposed

pipeline is provided later in Chapter 3.

2.1 Machine learning

Our pipeline relies heavily on multiple image analysis algorithms which are in many

cases powered by machine learning. In biomedical research, the development and

application of computer aided image analysis dates back to at least the sixties[12].

The simultaneous increase in available computing power and the development of

special scanners capable of whole slide imaging has enabled various novel research

opportunities. To understand the core components of the rather complex task of

our pipeline, we need to look at the underlying trends that have enabled the success

of machine learning in biomedical image analysis.

The term machine learning was popularized by Arthur Samuels in the late

50’s[13]. A machine is said to learn if instead of being explicitly programmed to

perform better in a certain task, it improves its performance in said task by expe-

rience. This definition was formalized by Tom Mitchell[14]. Machine learning has

been applied successfully to multitude of problems. From natural language process-

ing to enhancing audio, it has shown repeatedly to be able to solve problems that

are difficult to show with an explicit algorithm.

2.1.1 Various types of machine learning problems

The term supervised learning refers to a subset of machine learning problems that

have a collection of predefined independent variables, or inputs, that are used in

predicting the values of outputs (dependent variables)[15]. The input variable selec-

tion and the measurement of the input variable is a crucial component in machine

learning. If the goal is to recognize handwritten digits from grayscale images, an

optimal input dataset would be a one that contains large amounts of examples from

all of the digits. It is also important that the there are roughly equal amount of

examples of all of the digits, resulting in a balanced dataset.

In contrast, in unsupervised learning there are no predefined sets of matching

inputs and outputs. The goal in this type of machine learning is to infer relevant
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properties of some distribution without supervision[15]. Often the goal is to find

some kind of clustering in the input dataset and find a meaningful way of catego-

rizing the data into different groups[15]. An example of an unsupervised learning

would be topic modeling, where the goal is to divide an uncategorized set of input

texts into a more abstract groups based on an inferred topic of the texts. In an un-

supervised learning model, the topics are not predefined. An example of this kind of

topic modeling would be the popular topic modeling algorithm called Latent dirich-

let allocation[16]. In this thesis, we are mostly concerned with supervised learning

problems. Therefore, the various types of unsupervised learning methods are not

discussed in detail.

Supervised machine learning problems can further be categorized in two general

groups: there are regression problems and classification problems. These groups

vary by the nature of the output variables[15]. For example, the digit classification

problem introduced earlier is a classification problem where each input training

example is assigned a qualitative class (a digit). If the problem was inversed in a

way that instead of recognizing handwritten digits, we wanted to train a machine

learning model to produce these digits, we would have a regression problem. In

that case, the output measurement is a quantitative variable and there is a way of

measuring how realistic the machine-created digits are[15].

2.1.2 Common challenges in machine learning

There are various types of machine learning problems, ranging from simple to com-

plex. The problems vary in difficulty, and there are multitude ways of attempting

to solve these problems, as machine learning is mostly about approximations in con-

trast with finding an exact solution to a problem. Almost all of these problems have

got a few common challenges that need to be addressed.

Problems considering the data

Every real-world dataset comes with a degree of uncertainty in them. Image datasets

may contain unclear images, categorical datasets may contain outliers, time series

datasets may contain temporal noise and so on. Even the annotations of the dataset

may contain mistakes in the first place. Further, as stated earlier, an optimal dataset

is balanced. For example, if in a multiclass classification problem, 90% of the in-

put data belong to a single class, the problem becomes more challenging. Various

methods exist to address these challenges: this is referred as data cleaning and data

preprocessing [17].
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Model selection

As there are various types of machine learning problems, there are also a multitude

of ways to solve them. A comprehensive review of machine learning algorithms and

their use cases is beyond the scope of this thesis. There are, however, a few general

factors that contribute to the suitability of a given model to a particular task.

Firstly, machine learning models vary by complexity. A more complex model

may have a larger computational cost when compared to a simple model, but they

may also perform better in the given task. Usually, an increase of complexity also

means a decrease in interpretability. For example, in the case of tree-based machine

learning models, a single decision tree is easily interpretable. This means that we

can easily see the factors that contributed to a decision made by the model. A more

complex tree-based model, in contrast, needs an external way of interpretation. Still,

we can calculate relative feature importances from a more complex random forest

model which illustrate the relative importances of the input variables used in making

a decision[15].

Secondly, in choosing a model, we have to address the bias-variance trade-off.

A model with a small bias will produce correct results on average, but may have

a large variance in its predictions. This, among other challenges, is also generally

linked to model complexity[15].

Generality of the solution

A key challenge in machine learning is the generality of the proposed machine learn-

ing application. In other words, does the distribution that the model learned from

the training data accurately resemble the “true distribution“ that we want the model

to learn? To test the generality of the model, an input dataset is often divided to

training dataset and testing dataset. The model is trained using the training data

and evaluated using the testing data. Note that even after the train-test split, we

still have to assume that the input data correctly resembles the true distribution we

want the model to learn. When a machine learning model performs well with the

input data but does not generalize, it is overfitted [18].

2.1.3 Deep learning

Machine learning remains a rapidly progressing field of research. The recent growth

and progress of machine learning can be attributed to increase in computing power,

data storage capability and data availability. Modern smartphone and smartphone-

related service business models are almost always at least partly based on data

collection as smartphones (and for example, services on the cloud infrastructure)

enable individualized data collection and simultaneous market for machine learning
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based individualized services[19]. Many of these services utilize a specific subcate-

gory of machine learning that has gained a lot of attention during the recent years:

deep learning.

When compared to many traditional machine learning methods that require care-

ful, context-specific feature engineering, deep learning has the advantage of learning

the relevant features from the data itself. This process is described with the term

representation learning [20]. A deep neural network creates complex representations

of the original input data through a series of simple non-linear operations in so-called

neurons, which enable learning abstractions of complex functions[21]. A single neu-

ron has an activation, a weight that is analogous to the strength of the signal (the

activation is multiplied by the weight) for the given neuron, and a bias that is anal-

ogous to being a threshold that needs to be exceeded for the neuron to “fire“ (or to

contribute to the total sum of signals for the consecutive neuron). These definitions

are obviously highly simplified and incomplete - a thorough explanation is beyond

the scope of this literature review. The terms neuron, activation, weight and bias

are however core concepts in deep learning and they are used later in the text.

In the case of a simple classifier, the neurons are stacked in consecutive layers

that can be thought of advancing in abstraction: the first layer is given the raw

input data (although, as stated in [20], this data is often pre-processed in various

ways), the second layer a slightly more complex representation of the input data,

leading to the highest form of abstraction in the output layer (i.e. the different

output classes). All of the layers that are not input or output layers are called

hidden layers. The consecutive representations of the layers are learned in parallel

utilizing an algorithm called backpropagation[22].

Backpropagation, in simplified terms, works by averaging the most relevant pro-

posed differences in the weights and biases of all of the neurons for all of the train-

ing examples (although, as this is computationally expensive, a randomized set of

mini-batches is often used instead) defined by a cost function. These changes are

analogous to moving in a direction towards some local minimum in the gradient of

the cost function (with the mini-batches, the direction is an approximate one).

The cost function should accurately describe what we want the network to learn.

A simple classifier, that is given 10 input variables and 3 output classes, can be

trained by calculating a mean squared error of the output vector given by the network

and a vector where all of the wrong classes have a zero value and the right class

has a one. Backpropagation, by trying to minimize the cost function, then slowly

changes the parameters of the neural network until a local minimum is reached. The

definition of a relevant cost function is therefore a key component in successfully

training a neural network[22].
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2.1.4 Convolutional neural networks

Deep neural networks excel in many machine learning tasks. A classifier like the one

described in the previous paragraph still has a relatively simple task (from a purely

computational perspective) to perform. With neural networks, the computational

load quickly increases when images are used as an input. Computerized image data

is commonly represented as a two-dimensional matrix of values. Depending on the

representation, a colorized image may be constructed as a matrix of values pointing

to a color palette indices or, for example, a series of matrices corresponding to the

red, blue and green channels (RGB). The channels can then be combined to represent

all the colors in the range allowed by the number of bits used in storing the color

values. In an RGB image, the smallest units of the image (that is, pixels) have

a location somewhere in the matrix and 3 values corresponding to the 3 channels.

Therefore, even a simple 32×32 RGB image has got 32×32×3 = 3072 input values

(and if the image is given as a whole to the network, 3072 input neurons). This

often renders the use of fully connected neural networks (FCN) impractical because

of the computational cost.

Even though there has previously been various computationally efficient solutions

(compared to FCNs) for neural network image analysis, the most commonly used

solutions nowadays rely on convolutional neural networks, or CNNs. Modern CNNs

are originally based on the research of LeCun et al., where a neural network was

successfully trained to classify handwritten ZIP postal codes[23]. A convolutional

neural network has filters, defined by width, height and the number of channels

(or the depth) that slide across the previous representation of the input data (the

first being the original input image) and thus processing only a small spatial subset

of the input data at one time. This creates feature representations of increasing

complexity through the network. The parameters of the filters (or kernels) are

learned through backpropagation[23]. The convolutional layers are used together

with fully connected layers to provide, for example in the case of a digit recognition

problem, the final 10 output neurons that represent the digits 0-9. Many recent

successful medical image analysis applications rely on CNNs[24].

2.1.5 Machine learning with Python

In practice, most machine learning applications require processing large amounts of

data, which is then analyzed in algorithms of varying computational complexity. At

the same time, iteration is often necessary in the construction and development of

a machine learning pipeline. Therefore, a language like Python that is a high-level

language suitable for quick prototyping but is often used with more efficient program-

ming language (C/C++) library bindings is a natural choice for machine learning
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development. Some common Python machine learning libraries are Scikit-learn[25]

for general machine learning development and TensorFlow[26] and PyTorch[27] for

deep learning development. Both of TensorFlow and PyTorch depend on a highly

optimized multidimensional array computing libraries. In both of the implemen-

tations, the libraries are written to take advantage of the modern GPU systems

capable of highly parallelized and efficient computing[26][27]. In our pipeline, we

use both Scikit-learn and TensorFlow (through the Keras API) in different pipeline

components.

The main challenge in using Python for machine learning development is that

pure Python is not built for the type of computing that the computationally in-

tensive machine learning applications require. For example, its global interpreter

lock prohibits true multithreading (even though there are ways to circumvent this

limitation)[27]. The popularity of Python among developers is largely due to its

user-friendliness and relatively easy learning curve. In a development task like the

pipeline introduced in this thesis, the researcher(s) already need domain-specific

knowledge in machine learning and digital pathology: expertise in efficient comput-

ing is yet another domain to learn.

2.2 Digital pathology

To even consider applying any computerized quantitative operation on histological

images, there needs to be a way of representing tissue sections in a digital format.

Traditionally, histopathological analysis was conducted by observing tissue sections

in glass slides through a microscope. However, the development of a WSI scanner,

first described in 1999[28], enabled the digitization of histological images.

A WSI scanner consists of light source, slide stage, objective lenses and a cam-

era[29]. The capturing of the tissue images is done in parts: the scanner captures

either tiles or lines of the whole tissue section that are then digitally connected to

each other. Depending on the scanner, the imaging may be fluorescent, brightfield

or multispectral. Fluorescent imaging can be used in detecting special fluorescently

labeled slides, while the brightfield imaging corresponds to the standard brightfield

microscopy. Multispectral imaging can be applied to both of the imaging method,

and it is used in capturing spectral information of the light[29].

The scanners also vary in their focusing strategies and possible levels of magnifi-

cation as well as performance[29]. Depending on the scanner and the specifications

of the scanning (such as magnification and color bit depth), the resulting images

also vary in file size. Generally, for viewing and interpreting H&E or IHC stained

(the stainings are described in detail in Chapter 3) images, X20 magnification will

result in an appropriate resolution[29].

Many of the resulting digitized images contain a large amount of information.
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This proposes challenges in the processing and storage of these images. The images

are often compressed and require specialized programs for viewing and manipulation.

Besides compression, limiting the resolution or the scope of view when viewing the

images can be used as a means to ease the processing of large WSI images[29].

The resolution of the WSI images is often described by the micrometers per pixel

ratio. A typical ratio for an X40 WSI image would be 0.25µm
pixel

, which may result in a

file size of over 1GB for a single WSI image[29]. A typical format for storing these

large is images is the JPEG2000 format. JPEG2000 is a popular lossy compression

method, which means that information is lost when an image is compressed using

this specification[30]. The format, however, has other potential benefits, as it enables

random access in the image meaning that a block of the image can be decoded for

viewing without having to decode the whole area of the image[30].

2.2.1 Applications of digital pathology

The digitization of histological images (in addition to machine learning applications)

has various benefits. When stored digitally, the images can be shared between ex-

perts around the world, which enables remote diagnostics, or telepathology. His-

torically, the general adoption of telepathology has been slow due to limitations in

bandwidth and storage capabilities[29]. When combined with the latest technolo-

gies, telepathology offers various possibilities. A famous study by Google researchers

combined augmented reality technology and machine learning to produce a real-time

diagnosis through a microscope[31].

Another interesting application of the digitization of histological images is the

3D reconstruction of the original tissue. The 3D reconstructions are composed of

consecutive histological images in a process called registration, that is also applied in

this thesis. Registration considers various translations and modifications performed

to the images in order to align them on top of each other for the 3D reconstruction.

Various algorithms exist for registering the images[32]. They vary by complexity,

number of tunable parameters and the modifications that they perform to the im-

ages. The algorithms may use affine transforms, deformable or elastic transforms or

some combination of these methods. As the WSI images that are used in registra-

tion are large, the registration process is often time-consuming, especially because

it is often an iterative one[32].

The resulting 3D reconstructions obtained from the registration of the images

have multiple use cases. While the reconstructions themselves provide a novel view

for histopathological analysis and can be used as is in education, they are not limited

to direct computer examination. The reconstructions may be used together with,

for example, virtual reality and 3D printing technologies. While the current obvious

applications may be limited to educational purposes, these technologies provide a
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promising new perspective in digital pathology[33][34].

2.2.2 Image analysis

A core task in analyzing histological images is the segmentation of cells and nuclei

from an image. There exists various algorithms for this task, ranging from a simple

intensity thresholding to a deep neural network. The applicability of an algorithm

depends at least on the data and available computational resources[35]. If an image

contains only relatively uniformly colored cells with clear boundaries, a successful cell

segmentation can likely be performed even with a simple, deterministic algorithm.

However, the input images may contain many unwanted regions and artifacts that

interfere with the detection. Further, the cells and the nuclei are far from being

uniformly shaped and colored[35]. A general algorithm capable of detecting nuclei

from any staining is extremely difficult to write, as the input data will contain large

amounts of variance. In this thesis, we rely on a solution introduced in [36] as our

dataset contains images with multiple histological stainings. Even for a deep neural

network, the task proves to be difficult, as discussed later.

2.2.3 Machine learning in digital pathology

The success of machine learning based image analysis has accelerated its adoption

to digital pathology. Machine learning has enabled the automation of even more ab-

stract tasks: not only are we able to robustly detect nuclei from the images - we can

also automate the detection of cancer in the same level as an expert pathologist[24].

Recently, machine learning applications have been used primarily either as an aid for

diagnosis and prognosis or identifying novel features about a disease[24]. Recall that

this resembles the distinction we made earlier between supervised and unsupervised

learning. In the case of supervised learning, we have matching inputs (WSI images)

and outputs (classes of healthy and cancerous samples). In unsupervised learning,

we want to find properties of the underlying distribution without supervision. In

this case, we want to identify novel properties from a disease.

For a machine learning model, the problems in digital pathology can be, in their

most simple form, binary classification problems (i.e. does the tissue in this image

contain cancer or not). A more complex problem would be the grading of a cancerous

tissue by Gleason grading[24], which resembles a multi-class classification problem.

The requirements of this kind of research, besides computational resources, include a

large, expertly annotated dataset. The availability of quality data is still considered

to be one of the key challenges needed to overcome for clinical adoption of machine

learning[37].
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2.2.4 Challenges in the clinical adoption of machine learning

The adoption of machine learning techniques into clinical use depends on various

factors. As stated earlier, quality of the data is a key limiting factor in machine

learning based digital pathology. As many of the state-of-the-art machine learning

solutions in digital pathology rely on deep neural networks, another problem arises:

interpretability[37]. Recall that machine learning models have degrees of complexity

which result in different degrees of interpretability of the models. A deep neural

network is a complex model that is, in general, hard to interpret. While there

exists some methods in interpreting the functionality of a deep neural network, its

learning still remains analogous to a black box. Visual attention maps can help in

determining some of the areas that the network uses as a base of making a decision,

but the core problem prevails: we cannot make sure that the network is learning

biologically relevant features from the data and not simply overfitting the model on

the available training data. After all, a model used in clinic should be a maximally

generalizable one.

For example, it has been shown that CNNs, when trained with histological im-

ages, have a varying performance when other parameters are modified in the research

setting. As stated earlier, the different WSI scanners may have slightly different fo-

cus strategies in the imaging process that may result in variation in the input data

across scanners. Different research settings provide also other types of variation

into the process, which results in data that may have systematic differences between

datasets collected in different institutions. While these differences may not be even

clearly visible for a human, the performance of a CNN may vary drastically across

these datasets[37]. To address this problem, it is proposed that the models need to

be properly validated using data from various sources and scanners before adopting

the models to the clinic[37].

Further, undesirable behavior of a machine learning model can be also achieved

intentionally. A model designed for clinical use can be trained with other intents

than purely the desire to provide better care and thus many undesirable biases

can be built into a machine learning model[38]. The adoption of machine learning

has already spiked controversy when implemented in other public affairs, such as

jurisdiction[38].

While there are many areas in healthcare that can lead to unethical practices,

machine learning proposes two key ethical challenges: transparency and responsi-

bility. The problem of building an unethical machine learning model is that the

unethical biases can not be easily verified: machine learning almost always intro-

duces a degree of opacity into the process. And even if a machine learning model

was somehow verified to be completely unbiased, it can still make mistakes. A large
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scale adoption of machine learning into the clinic would inevitably lead to a loss of

lives because of wrong predictions made by a machine learning model. In a tradi-

tional health care system, there are already strong ethical foundations in a case of

mistreatment, but this is not yet the case with machine learning[38]. When the goal

of implementing machine learning based clinical applications is to provide better

healthcare, the ethical side cannot be ignored.

2.2.5 Future trends of digital pathology and the relevance

of this thesis

As discussed in previous sections, digital pathology has enabled completely novel

research opportunities and perspectives, especially when combined with machine

learning. In this section, we look at the possible future trends in digital pathology

and a few approaches that have similar goals to the pipeline proposed in this thesis.

While the focus in this chapter has been mainly on the development of digital

pathology and machine learning, the collection and computational analysis of other

forms of biological data has also progressed in parallel. One of the key trends in the

future of digital pathology is its combination with other fields of biological research.

As a concrete example, histological images can be combined with various types

of other biological information. For example, combining histological images with

molecular (i.e. proteomic, transcriptomic) information can be used in understanding

the different microenvironments in the tissue[39].

The successful combination and utilization of the data from various sources is a

key challenge in the future of digital pathology (and more broadly, computational

biology). In a novel study[40], histological information was combined with machine

learning and spatial transcriptomics. Spatial transcriptomics in simplified terms,

refers to a novel technique with which spatial information can be coupled with gene

expression profiles. In other words, gene expression can be analyzed in spatial con-

text. In the study, deep learning technique based on convolutional neural networks

was used in predicting spatial gene expression from histological images stained with

the H&E stain[40]. Similar studies integrating previously independent biological

data sources are likely to be conducted in the future.

Combining other biological data with histological images will increase the preci-

sion with which we can analyze the different local environments found in the studied

tissue.As we gain more precise spatial information from other biological fields, the

demand for increasing precision in analyzing histological images increases as well.

The aim of the pipeline proposed in this thesis is to differentiate and model single

cell level regions from histological images using various image analysis and machine

learning techniques. In the future, the combination of increasingly precise histolog-
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ical image analysis and molecular information should increase our understanding of

the underlying biological conditions in a truly interdisciplinary way.
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3 Materials and methods

The pipeline can be divided roughly in five distinct phases: image registration, data

post-processing, cell area approximation, staining-specific local feature extraction

and assignment and network analysis. In Figure 3.1 the full analysis pipeline is

illustrated as a series of distinct operations. The dataset used here as a case example

is a mouse aorta root histological dataset that is described in detail in Section 3.1.

3.1 Data

Frozen histological sections of the root of the aorta of Mus Musculus were digitized

with a slide scanner (Pannoramic 250 Flash). The dataset consists of sub-sampled

histological images stained with Movat staining and various immunohistochemical

stainings explained in detail in Table 3.1. The aspect ratio of the images was approx-

imately 1:1 with the average pixel resolution being circa 1890× 1890. The directory

structure of the dataset is specified in Figure 3.2. This dataset, originally used

in[41], contains information about type M1 and M2 macrophage locations across

the root of the aorta. Generally, macrophages are large leukocytes specializing in

digesting various type of pathogens in a process called phagocytosis. The two main

subgroups, M1 and M2, act as a pro-inflammatory pathogen eliminating cells and

cells associated with tissue repair and wound healing, respectively[42]. In the case of

this dataset, the macrophages were studied as an indicator of atherosclerotic plaque

related to coronary artery disease[41]. In addition to targeting macrophages, the

dataset contains sections stained with Movat staining, providing information about

the general tissue structure[43]. In detail, the Movat staining is described in Table

3.2. All of the macrophage-targeting IHC stainings used here contain hematoxylin

as a background or contrast stain (blue). The targets are colored brown.

3.2 Multi-stain image registration for preserving spatial fea-

tures

To preserve the spatial relations between consecutive histological section, the im-

ages need to be aligned with each other in process called registration. The ideal

way of doing this is to use an automatic algorithm, such as [44]. In practice, a

universal working registration algorithm is yet to be developed (this is discussed

in detail in Section 5.3.1), especially for a dataset containing multiple histological

stainings. As our case was particularly challenging for an automatic algorithm, we

resorted to manually registering the images with GNU Image Manipulation Soft-

ware (GIMP)[45]. In this case, the input images were small enough in terms of pixel
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Figure 3.1 The full pipeline in an abstract level. Single cell areas are approximated from
series of consecutive registered histological sections and local features are extracted from
these areas. This enables the use of network analysis methods to neighboring cells utilizing
local features from multiple stainings

resolution, which makes it possible to register the images manually.

Ideal manual registration is defined here as the maximum of supposed registra-

tion function Gr, that is a combination of moving, rotating and affinely transforming

the two input images X and Y such that we maximize the overlap between suppos-

edly continuous local tissue structures (Fl) and minimize the area in which one of

the input images contains tissue structures and the other one contains only back-

ground (Fb) while preserving a suitable degree k of local structural similarity (Fs)

in the context of similar structures (i.e. avoiding too extreme modifications of local

components). Fs therefore describes the process of observing local tissue compo-

nents of certain type (i.e. nuclei) and evaluating the possible modifications in the
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Staining specification

Name Description
Movat Standard general histological staining,

targets various cellular structures
Mac-3 IHC (immunohistochemical) staining, tar-

gets all macrophages
iNOS IHC staining, targets type M1

macrophages
MRC1 IHC staining, targets type M2

macrophages

Table 3.1 Dataset staining specification

Movat staining

Target Color
nuclei black to bluish-grey
cytoplasm red
elastic fibers red
collagen fibers yellow (coarse fibers red)
cartilage red or yellow
calcified cartilage sea green
osteoid red
mineralized bone yellow

Table 3.2 Movat staining specification

context of the phenotypes of these components (i.e. not making a modification that

stretches a nuclei to cover half of the tissue area) Without preserving a degree of

local contextual structural similarity, the registration would be a process of forcing

two images into a single shape. By maximizing local contextual structural similar-

ity, the images could only be moved and rotated (not stretched) as it would mean

that the size of some local structures would be altered. In reality we want to avoid

too extreme alterations for the input images while aiming for a maximally uniform

tissue shape. This process is described more formally in Equation 3.1 and further

illustrated in Figure 3.3.

maxGr(X, Y ) = maxFl(X, Y )−minFb(X, Y ) + k ×maxFs(X, Y ) (3.1)
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Figure 3.2 Structure of the dataset. The data consists of 3 section stacks (A, B and
C) which include 4 sections stained with 4 different stainings: Mac-3, iNOS, MRC1 and
Movat stainings (1-4) totaling in 12 images.

3.3 Approximating single cell areas from histological images

To model single cells as a network, the cell locations need to be defined. We define

an approximate cell area by detecting nuclei locations from a reference staining and

applying Voronoi decomposition to these locations. In detail, the process consists

of four steps:

1. Splitting the registered images from the previous step to tiles

2. Defining a reference staining (Movat) for cell segmentation

3. Detecting the nuclei from all of the images with a method based on [36] uti-

lizing domain adapted convolutional neural networks

4. Applying a Voronoi decomposition method for the detected nuclei such that a

cell area is defined as all of the points closest to a given nuclei

The registered images were split in to tiles sized 224× 224 pixels each or smaller

if the tile was near the border of the image and the original image could not be split

evenly to 224× 224 sized tiles. The tiling here was performed to limit the memory

consumption and does not affect the pipeline steps following this procedure. Further,

the resulting nuclei detected were mapped back to a matrix that has the original

image dimensions.

A reference staining is needed in the Voronoi approximation process as nuclei

locations from multiple images are to be combined inside approximated cell areas.
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Figure 3.3 Multi-stain registration: different images are aligned to each other with a
two-step process to preserve tissue-scale spatial features with maximum accuracy. The X,
Y and Z labels and their corresponding colors (red, green and blue, respectively) represent
the 3 dimensions of the Z-stack.

In other words, nuclei detected from the reference staining is used in forming the

approximated cell areas to which nuclei detected from other stainings are assigned

based on their location.

As in [36], the convolutional neural network was trained in a domain adaptation

step[46] with our dataset, e.g. the same data that was later used in predicting the cell

locations. Given baseline training input dataset Xb containing manually annotated

nuclei (target Yb), a convolutional neural network Cb is trained to output nuclei

annotations such that Cb(Xb) ≈ Yb. The iterative domain adaptation is performed

by training the baseline model with the dataset obtained by first predicting the

nuclei locations from a novel domain target dataset Xd, resulting in a set of new
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Figure 3.4 Cell area approximation. Input images (A) are first tiled into approxi-
mately equal tiles (B) that are then used as input for domain adaptation step (C), where
a pre-trained classifier is trained utilizing its own predictions. Using the domain adapted
classifier (D), nuclei locations are then predicted from the tiles (E). From these locations,
cell areas are approximated utilizing Voronoi approximation (F)

target data Yd = Cb(Xd) for a new domain adapted classifier Cd. This process

can be repeated iteratively. In our case, the model was trained with H&E stained

histological sections and we performed the domain adaptation step with all of our

images, having four different stainings.

After detecting the nuclei, Voronoi decomposition was performed for the nuclei

locations such that the locations of the detected nuclei were stored globally from all

of the tiles ensuring that the decomposition was applied to the whole tissue and not

to an area of a single tile. The whole cell area approximation process is presented

in Figure 3.4.
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3.4 Semi-automatic segmentation of staining-specific fea-

tures

The next step in the pipeline is to assign relevant features to the detected cells. In

our case, we used features that are directly derived from the staining colors. This is

done by annotating small areas of the tissue having the target color and performing

a machine learning based automatic segmentation. The resulting segmentation map

can be then directly applied to the detected cell locations.

Staining-specific features were extracted from all of the images utilizing a semi-

automatic segmentation framework based on a Plotly/Dash[47] application titled

”Interactive Machine Learning: Image Segmentation”. The segmentation is based

on comparing the local features from small manually annotated regions to the whole

image utilizing a RandomForestClassifier in Python library Sci-Kit Learn[25]. In

contrast to the original random forest algorithm[48], this implementation averages

the prediction probabilities across classifiers instead of making a majority vote. The

segmentation step is illustrated in Figure 3.5.

The segmentation is performed by applying multiple Gaussian filters on the im-

age and varying the standard deviation (σ) parameter of the filter, as demonstrated

in Section 3.4.1, and, consequently, calculating the pixel intensity, edges utilizing

the Sobel operator[49] (Section 3.4.2) and Hessian matrix eigenvalues, similarly as

in [50] (Section 3.4.3) from the local area. The Hessian matrix eigenvalue analysis is

used in extracting the principal directions using which the local second order struc-

ture of the image can be decomposed[50]. Small manually annotated areas were

then used as input for the classifier[48] (Section 3.4.4). The segmentation for the

whole image was predicted from this data.

3.4.1 Gaussian blur

The Gaussian blur is performed by convolving the image with a Gaussian kernel

that is defined here (Equation 3.2), where x and y are the location parameters.

The source image is convolved with a Gaussian kernel multiple times by varying the

standard deviation (σ) parameter.

g(x, y) =
1

2πσ2
× e−x

2 + y2

2σ2

σ = 2a,

a ∈ {−1, 0, 1, 2, 3, 4}

(3.2)
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3.4.2 Sobel edge detection

Sobel edge detection is performed by convolving the source image with kernels spec-

ified in Equation 3.3.

Let A be the source image. We have

Gx =

+1 0 −1

+2 0 −2

+1 0 −1

 ∗ A
and

Gy =

+1 +2 +1

0 0 0

−1 −2 −1

 ∗ A
where * describes the convolution operation used in signal processing.

(3.3)

3.4.3 Texture analysis with eigenvalues of a Hessian matrix

The Hessian matrix is obtained by using signal processing convolution with a second

derivative of a Gaussian kernel in the r and c-directions, respectively, as described

in Equation 3.4.

H =

[
Hrr Hrc

Hrc Hcc

]
(3.4)

3.4.4 Random forest classifier

Random forest is an ensemble machine learning algorithm, that is constructed from a

set of decision trees. Given a set of features X, we sample the feature space randomly

with replacement such that we end up with multiple estimators (Equation 3.5)

h(X1)1, h(X2)2, . . . h(Xi)i,

X1, X2 . . . Xi ⊂ X
(3.5)

each of which ”sees” a different subset of features from X. The number of estimators

is noted with i. This random sampling is also performed in the depth direction: each

node n (or split) is performed with a different random subset of features (Equation

3.6):

n(X1)1 → n(X2)2 . . . n(Xj)j (3.6)
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Figure 3.5 Semi-automatic segmentation process. Small areas from the input images
(A) are annotated corresponding to the resulting classes. Varying Gaussian filters are
then applied to the local areas in the image (B). Three categories of features are extracted
from these filtered areas: gradient intensity from the Sobel operator (C), local pixel color
intensity (D) and texture analysis using eigenvalues from Hessian matrix applied to the
area (E). These features are then used as a training set for a random forest classifier (F)
that is then used to predict the annotated areas globally, resulting in a segmentation mask
(G).

where j is the maximum depth of the decision trees.

3.5 Interactive network exploration tool

To visualize the cell network containing the assigned features interactively, a web-

based data exploration tool was created. The purpose of the tool is enabling the

observation and manual analysis of the detected cells and their properties such that
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the cells are visualized in context of the original input data (i.e. the histological

section images).

An interactive network data exploration tool was constructed utilizing the Plotly

Python/Javascript framework[47]. The tool enables interactive observation of single

cell network features plotted on top of the original images. On each cell the sum

of staining specific features from all detected nuclei in the area was calculated an

assigned to a specific color according to its value. A screenshot explaining the

functionality of the tool is presented in Figure 3.6.

In detail, the computation and creation of the cell network is based on querying

an computationally effective index to k-dimensional set of points, as provided by the

Scipy Python package[51]. The original algorithm was described in [52]. This index

is used in calculating which of the cells are to be considered neighbors based on a

constant maximum distance. This constant value can be defined to either represent

an approximate maximum distance with which cells can interact based on the studied

biological phenomenon or simply some meaningful number that is able to separate

the dense and sparse regions in a meaningful way. The computationally intensive

calculations can be done beforehand and the interactive tool can be ”compiled” into

a static HTML file, resulting in client-side interactivity even though the tool handles

large amount of data. These files can be shared and opened with any modern web

browser, which makes co-operation easy between end users, even without complex

initial setups.

3.6 Network feature quantification for single cells

To quantify network features of cells, the following descriptors were calculated:

1. Local feature statistics across individual cells

2. Major local feature combinations in network

Local feature statistics are defined as the distribution of detected staining-specific

features per cell. In our test case, these features are very simple in nature and rep-

resent only the direct observations provided by the stainings (i.e. blue/purple colors

in hematoxylin-based stainings are detected as nuclei). These features are obviously

not limited to direct features inferred from staining colors. The features can be

manually annotated or they can be a combination of multiple local characteristics

in the images.

Local features are also visualized as a heatmap resembling their correlations

with each other. This information is provided here as an example of a summary-

level statistic that can be obtained from our pipeline, and a helpful validation for

manual observations obtained by exploring the cell network interactively.
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Figure 3.6 Interactive network data exploration tool. The tool enables interactive data
exploration by plotting different local features (A, dropdown menu from which to change
the feature plotted) on top of different stainings (B, menu to select staining) across all of
the sections (C, section changer). The network is plotted as a node/edge scatterplot with
node colors determined by the feature value (D, view of the tissue with the network plotted)

In addition and as a technical validation, error distribution statistics for Voronoi

approximation were calculated. Error distribution is defined as the Euclidean dis-

tance between the nuclei in the approximated cell area and the nucleus used in the

approximation, that is the nucleus that is nearest to all the points that define the

approximated cell.
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4 Results

The following results demonstrate the performance of our proposed pipeline in two

ways. Firstly, technical performance is determined by evaluating the nuclei detection

accuracy and the network approximation accuracy. Secondly, dataset-specific met-

rics related to the local features are calculated as an example of some the possible

capabilities of the method in quantitative summarization of used features.

4.1 Nuclei detection accuracy

Nuclei detection accuracy was evaluated by predicting a confidence image from the

trained, domain adapted network for 10% of the data totaling in 65 image tiles.

The same tiles were manually annotated by approximately determining the area of

the nuclei. This results in a binary image where the value 0 represents background

and the value 1 represents nuclei. The confidence images, in turn, were thresholded

with multiple threshold values ranging from 0.1 to 0.5 that were determined exper-

imentally. Larger values resulted in a total loss of nuclei and smaller value were

visually confirmed to not be suitable for the task. Visually the threshold value 0.2

was determined to give the most realistic nuclei segmentations.

The evaluation of the binarized confidence and ground truth images was per-

formed by first calculating the centers of white “blobs“ in the images and then cal-

culating the distance between each of the blob between the confidence images and

ground truth images. Because a pixel-level detection accuracy is almost impossible

to attain, we allowed the centers of two blobs to be 10 pixels apart at maximum. As

exactly one detected nuclei should be paired with one that is manually annotated,

simply comparing nearest blobs would result in different scores depending on the

processing order, as noted in the original article[36]. This happens because the nu-

clei are “consumed“ when classified as either successful or non-successful detection.

While the random error produced this way is likely to be small, it can be fixed by

considering the pairing of detected and real nuclei as a form of an linear sum assign-

ment problem, to which there exists various computational solutions that work in

a deterministic way. The pairing in this case was performed with SciPy[51]. From

a set of pairs, a F1 score was calculated for each of the thresholds used to binarize

the confidence images. F1 score is defined to be the harmonic mean of precision

and recall, and can be calculated with the formula in Equation 4.1, where TP =

number of true positives, FP = number of false positives and FN = number of false

negatives.
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Nuclei detection accuracy

Threshold F1 score
0.1 0.57
0.2 0.57
0.3 0.56
0.4 0.52
0.5 0.48

Table 4.1 The nuclei detection accuracy. Nuclei detection was evaluated by manually
annotating nuclei in a subset of the used data. The confidence images outputted by the
detection network were thresholded with different threshold ranging from 0.1 to 0.5 and F1
scores were calculated for each of the threshold.

TP

TP + 1
2
× (FP + FN)

F1 score calculation formula.

TP = number of true positives

FP = number of false positives

FN = number of false negatives

(4.1)

All of the scores are presented in Table 4.1.

4.2 Network properties

The following statistics and visualizations describe the network of cells obtained from

the pipeline. As the sections A, B and C are not uniformly shaped and have slightly

varying features with each other, the results are presented individually. Depending

on the research setting, these features could be used in determining a difference

between different histological samples, for example.

4.2.1 Voronoi approximation

The difference between the nuclei locations in the reference staining and nearest

nuclei locations from other stainings is presented in Table 4.2 and in Figure 4.1. We

can see that the distributions are long tailed, as there are many cells with relatively

small approximation errors and then few cells with extremely large deviations in

location from the nearest reference staining cell. The mass of the distribution will

be at 0 as all of the nuclei are compared with one reference staining (i.e. the nuclei

in the reference staining are also compared to itself). The distribution, of course,
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Figure 4.1 Voronoi error in pixels distribution histogram. As all of the nuclei are
compared to one reference staining, the greatest peak of the values is in 0.

Voronoi approximation error distribution

Measure Value (pixels)
mean 24.1
std 39.6
min 0.0
25% 0.0
50% 12.5
75% 29.6
max 407.2

Table 4.2 The distribution statistics of the differences between detected nuclei from all
of the stainings and one reference staining is presented here.

will vary with the reference staining choice. In Figures 4.2, 4.3, 4.4, the log-

transformed error value corresponds to the size and color of the scatter plot node

such that the larger nodes represent larger approximation errors and smaller nodes

smaller errors. The Figures represents sections A, B and C, respectively.
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Figure 4.2 Voronoi error distribution for Section A. The error in pixels is scaled between
0 and 1 and log-transformed for visualization purposes (0 = smallest point, purple; 1 =
largest point, yellow). Both the color and size of the points are determined by the value.

4.2.2 Local feature distribution

Local features extracted from the stainings were assigned to each cell according to

its relative location. Figures 4.5, 4.6 and 4.7 represent the distributions for these

features for sections A, B and C, respectively. Note that because these features are

rather local and non-overlapping ones for other features than those derived from

hematoxylin included in all IHC stainings, there will be a peak in the distributions

at the value zero.

4.2.3 Local feature combinations

Local feature correlations for sections A, B and C are presented in Figures 4.8, 4.9

and 4.10, respectively. The correlations were obtained by comparing the different
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Figure 4.3 Voronoi error distribution for Section B. The error in pixels is scaled between
0 and 1 and log-transformed for visualization purposes (0 = smallest point, purple; 1 =
largest point, yellow). Both the color and size of the points are determined by the value.

features obtained with each other in a pairwise manner.
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Figure 4.4 Voronoi error distribution for Section C. The error in pixels is scaled between
0 and 1 and log-transformed for visualization purposes (0 = smallest point, purple; 1 =
largest point, yellow). Both the color and size of the points are determined by the value.
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Figure 4.5 Local features distribution for Section A

Figure 4.6 Local features distribution for Section B
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Figure 4.7 Local features distribution for Section C

Figure 4.8 Local features correlation for Section A
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Figure 4.9 Local features correlation for Section B

Figure 4.10 Local features correlation for Section C
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5 Discussion

5.1 Evaluating the performance of the pipeline against its

objective

The objective of this tool, the background of which is explained in Chapter 1, is to

provide an exploration framework that meets the following requirements:

1. The tool must enable the analysis of tissue properties in an approximately

single cell scale

2. The tool must enable combining features from multiple different histological

stainings

3. The tool must model the network-like properties of multiple cells

4. The tool must be straightforward and easy to use

We present here the evaluation of the method in above context:

1. The tool must enable the analysis of tissue properties in an ap-

proximately single cell scale The tool meets the requirement in principle, even

though true single cell segmentation is not obtained in three dimensions. Segment-

ing nuclei from consecutive sections results in a cylinder-shaped segmentations that

do not accurately resemble cells shapes in three dimensions. Other factors that

contribute to obtaining single cell analysis resolution are the base image resolution

of the dataset, which was rather poor in our test case, and the nuclei detection

accuracy. The nuclei detection step resulted in a rather poor evaluation F1 score,

partly likely due to the image resolution and partly due to the complexity of the

task. However, even considering these limitations, a rather good approximation of

the varying cell densities (and thus areas that are likely functionally different) across

the tissue is obtained. Therefore even in its current implementation, the tool enables

local micro-scale analysis of tissue properties. See Sections 4.1 and 5.3.2.

2. The tool must enable combining features from multiple different

histological stainings This requirement can be considered to be satisfied - how-

ever, in an ideal case, the registration would be done with an automatic algorithm

as explained in Section 5.3.1. In Chapter 4, we demonstrate that the tool is able

to aggregate relevant local information from the dataset by plotting local feature

correlations and distributions in addition with the proposed tool itself. See Section

5.3.1.
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3. The tool must model the network-like properties of multiple cells

This requirement is met: the tool enables the analysis and observation of cells in

relation to their neighbors. The tool is also easily extensible for performing more

complex analyses to cell groups and clusters.

4. The tool must be straightforward and easy to use The end result can

be run in the browser and hosted on a static site provider, meaning it that it does

not require any complex server side setup. This makes using the tool easy. Further,

most of the pipeline steps are either highly automated or require interaction on a

level that does not require a lot of technical or biological knowledge. The most

complex of the pipeline steps is currently the registration step, as it is currently

performed manually.

5.2 Potential other applications and development

As demonstrated in earlier sections, our pipeline performs well with the dataset

used in this study and provides a good framework for analyzing local properties

from tissue histology across multiple stainings.

If complemented with additional data (for example signaling information that

is known to be proportional to the relative counterpart locations), the tool could

be used in modeling the signaling system and influence spatially across the tissue.

This information can of course be analyzed together with other spatial information

obtained from the tissue. Even if the nuclei detection step is only an approximate

one, the relative nuclei (and cell) density is likely to be a factor in these spatial

signaling systems.

5.3 Challenges and further improvements of the method

5.3.1 Evaluating registration performance

While there exists solid frameworks for analyzing the registration step performance[32],

universal case- and tissue-independent baseline metrics for assessing image registra-

tion success are still to be developed. As noted in Section 3.2, the evaluation criterion

are rather fuzzy, even though non-trivial. The registration step was first attempted

with a state-of-the-art algorithm similar to [44], resulting in an unpredictable and

too volatile results. The dimensionality of an already complex registration prob-

lem increases as the sections come from multiple stainings in contrast with having

just one. In the case of uniformly stained images, the automated tools are to per-

form considerably better, even though even then the registration parameter space

(depending on the algorithm) usually needs thorough exploration. While the tails
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of the Voronoi approximation error distribution could lead us to some conclusions

about registration performance, this type of indirect metric cannot be trusted as the

Voronoi error is also influenced by nuclei detection accuracy and the relative nuclei

locations across the sections.

It is however worth noting that using an automated algorithm for registration

does not automatically result in better registration performance (even if only evalu-

ated visually). If the best available metric is a qualitative one, manual registration

can outperform other methods as it is tries to satisfy the qualitative criteria directly.

The more crucial drawback of manual registration is that it requires more tedious

manual work and the results do vary across the person conducting this step.1

5.3.2 Upstream processing influence on downstream analy-

sis

The accuracy, both technical and biological, of our tool is heavily correlated with

the success of the registration and nuclei detection analysis steps. If the images

are not properly aligned with each other, correct spatial perspective is lost which

negatively affects the downstream analysis. Likewise, if the nuclei are not correctly

detected, accurate cell locations can not be defined and the spatial cell distribution

does not accurately model the correct biological distribution. However, small local

errors in detected nuclei locations will not, in the tissue level, result in large errors

in the spatial cell distribution model.

5.3.3 Optimizing the interactive data exploration tool

The processing of large histological images and a large cell network information is a

computationally heavy task, even if the computations for the analysis results can be

done beforehand. The computational performance can be drastically improved by

replacing browser-based technologies with those that are executed natively (with-

out an extra layer of the browser), as the interactivity requires mainly client-side

processing.

1An automated registration removes the work; as many of the algorithms resemble black boxes
and produce largely different outcomes with tiny parameter changes, the variation of outcomes is
not eliminated when using an algorithm.
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6 Conclusions

A novel framework was proposed in this thesis to analyze multi-stained histological

data in an approximate single cell level. The proposed method results in a network

analysis tool that can be successfully used in combining multi-dimensional informa-

tion in an intuitive way for tissue histology analysis. The method is a pipeline con-

sisting of image registration, data post-processing, cell area approximation, staining-

specific local feature extraction and assignment and network analysis, respectively,

and utilizes state-of-the-art machine learning and signal processing algorithms. The

modularity of the tool requires that the development process requires a rather broad

understanding in the different technical and biological concepts in each of the steps.

However, the modularity also makes it possible to develop the pipeline in parts

together with a larger group of experts.

We demonstrate the performance of the tool with a dataset containing multiple

different histological stainings and show that the framework enables user-friendly

data exploration with local spatial precision and also the calculation of more general

feature summaries easily. With additional data, the tool could be used together

with spatial transcriptomics or spatial cell signaling models. The key challenges

and future development targets of the tool include the computational optimization

of the data exploration tool and the improvement in performing and evaluating the

registration step.

The quantitative analysis of tissue histology is likely to develop towards a greater

spatial precision and automation as well as a greater integration with other novel

biological and technological innovations. In the future, it will thus be increasingly

relevant to be able to combine not only various biological information sources, but

also to recognize and apply new methodology from other rapidly developing fields

of research. While being a single step in this process, our tools aims to be on the

forefront in modern digital pathology analysis.
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APPENDIX A. Code

The code for this thesis can be found in these repositories:

• https://github.com/BioimageInformaticsTampere/mapcad-network (Net-

work analysis tool)

• https://github.com/BioimageInformaticsTampere/mapcad-segment (Inter-

active segmentation step)

• https://github.com/BioimageInformaticsTampere/NucleiDetection/tree/

refactor (Nuclei detection)

• https://github.com/BioimageInformaticsTampere/mapcad-nucdetect-utils

(Nuclei detection evaluation)

https://github.com/BioimageInformaticsTampere/mapcad-network
https://github.com/BioimageInformaticsTampere/mapcad-segment
https://github.com/BioimageInformaticsTampere/NucleiDetection/tree/refactor
https://github.com/BioimageInformaticsTampere/NucleiDetection/tree/refactor
https://github.com/BioimageInformaticsTampere/mapcad-nucdetect-utils
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