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Dr. J.Jesús Toscano Chávez
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Abstract

The following investigation has been performed within the Lorentz and CPT violating Standard Model

Extension, an effective field theory that sets a quite general framework to quantify, at relatively low ener-

gies, effects to be expected from a higher energy formulation incorporating violation of Lorentz invariance.

The discussion has been restricted to couplings occurring in the Yukawa sector of the renormalizable part

of the Standard Model Extension studying the contributions to anomalous magnetic moment (AMM) and

electric dipole moment (EDM) of charged leptons and nucleons which are invariant under Lorentz particle

transformations, these effects are calculated and discussed. In a perturbative approach, treating Lorentz

violating quadratic lepton couplings as two point insertions in Feynman diagrams, explicit expressions of

leading contributions are derived and upper bounds on Lorentz violation coefficients from current data

of AMMs and EMDs are estimated. For the lepton analysis, two scenarios involving these coefficients are

examined. The scenario of two point insertions preserving lepton flavor, the bound on the electron EDM

yields limits as stringent as 10−27, whereas muon and tau lepton have bounds as restrictive as 10−14 and

10−5, respectively. A scenario defined by the assumption that Lorentz violating Yukawa couplings are

Hermitian leads to less stringent bounds provided by the muon AMM, which is as restrictive as 10−14.

We also estimate contributions of Lorentz violating parameters of quarks, at first order, by analyzing the

AMM and EDM of nucleons; bounds as stringent as 10−12 have been established for this case.
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Introduction

Lorentz symmetry has been an essential part of all fundamental theories of nature since its discovery

in 1905 [1–3]. It becomes extremely important when the regime of validity of these theories extends to

high and relativistic energies. Lorentz symmetry is thus an integral part of the two pillars of modern

physics: the Standard Model (SM) of particle physics and General Relativity. Of course, the recognition

of the significance of Lorentz symmetry stems from Einstein’s insights, which resulted in a radical shift

in our understanding of space and time, as summarized in his theories of special and general relativity [4,5].

Lorentz transformations are mathematical operations used to connect physical observations made

in reference frames that have relative velocities and different orientations between them, i.e. inertial

reference frames. These operations are referred to as boosts and rotations. Rotations, of course, account

for changes in angle between reference frames, whereas boosts connect a frame that moves with a

constant velocity with respect to another frame. Lorentz symmetry states that physical laws should

appear the same in all inertial reference frames.

A Lorentz transformation can be defined as one that leaves the spacetime interval ds2 = dxµdx
µ invari-

ant (the Einstein summation convention is employed). For a four vector like xµ, a Lorentz transformation

is implemented by a matrix Λµ
ν , which transforms xµ to a new reference frame: xµ → x

′µ = Λµ
νx

ν . If

ds2 is invariant, then the defining property of a Lorentz transformation becomes

gµνΛ
µ
αΛ

ν
β = gαβ, (1)

where gµν is the Minkowski metric.

At low energies, effects of Lorentz and CPT symmetry violation can be described in a model

independent way by the so called Standard Model Extension (SME), which is an effective field theory

that contains General Relativity and the SM [6, 7], the last one is the theory that remains our best

theoretical description of fundamental physics nowadays [8]. Lorentz symmetry is considered a low

energy manifestation of an underlying theory operating at some very high energy scale, perhaps of the

order of the Planck mass (Mp ≈ 1019GeV [9]). Invariance under spacetime and gauge transformations

have received much attention in model building. While Lorentz symmetry is a conventional assumption

in beyond SM contexts, Planck scale physical formulations, such as string theory and non commutative
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viii Introduction

field theory, can spontaneously break it [10–14]. This yields Lorentz non conserving physical phenomena

which may manifest as tiny measurable effects at current experimental sensitivity. Some theories related

to quantum gravity suggest that Lorentz symmetry invariance (LI) may not be exact and breaks down

at high energies [15].

Lorentz violation (LV) has not been ever observed, but there is a catalog of SME coefficients

constraints updated every year [16]. We do not know which place is the best to introduce this kind of

new physics, it seems to be suitable to follow an effective Lagrangian approach [10, 17], distinguished

for being model independent. Decades ago, an effective Lagrangian description of Lorentz symmetry

non conservation known as the Lorentz and CPT violating SM extension was formulated [18, 19].

The SME induces unconventional phenomena such as vacuum birefringence [20, 21], vacuum Čerenkov

radiation [22, 27], oscillations of massless neutrinos [28–31], exotic electromagnetic properties of SM

particles [32, 33], and violations of standard theorems of Quantum Field Theory [34, 35]. One charac-

teristic of the SME is that dynamic variables and gauge symmetry group are the same as those of the

SM, the key element being a large set of coefficients characterized by fully contracted spacetime indices

within Lagrangian terms and which transform as tensors under observer Lorentz transformations [18,19].

However, these tensor coefficients, which define preferred directions in spacetime, are invariant under

particle Lorentz transformations, so they do not preserve Lorentz symmetry.

The SME Lorentz violating Lagrangian terms are classified into two categories, according to whether

they are power counting renormalizable or not [35–40]. The full set of renormalizable SME terms define

the so called minimal SME (mSME). The bound estimations of mSME coefficients have become the main

objective of the present phenomenological investigation about Lorentz violation effects on the AMMs,

aA, and EDMs, dA, of charged leptons lA, with A = e, µ, τ labeling lepton flavors. It is important

to emphasize that external fermion lines are always taken to preserve lepton flavor. As a result, our

calculations of SME contributions to AMMs and EDMs only include diagonal electromagnetic moments.

We consider the general Lorentz violating extension of the minimal SU(3)× SU(2)×U(1) SM using

CPT even terms. We will focus on a Yukawa sector extended by renormalizable Lorentz violating

interactions which have gauge structure. Lorentz violation from these interactions is introduced in

the Feynman diagrams through electromagnetic vertexes with two and three point insertions and

contributions to electromagnetic form factors are generated by one loop Feynman diagrams with virtual

Higgs or Z bosons and photon lines. The last one dominates over the others. The current AMMs and

EDMs experimental data reports are employed to estimate upper bounds on mSME coefficients.

Two scenarios are considered for the analysis: in the first one, those mSME parameters given by

lepton flavor non conserving two point insertions, inside the loop, are assumed to be quite small in

comparison to those that preserve the virtual lepton flavor, leaving optimal conditions to bound Lorentz

violation coefficients of order 10−27 from the EDM of the electron, and limits as restrictive as 10−14 and
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10−5 if constraints on the muon and the tau lepton electromagnetic moments are considered, respectively.

Another scenario, considering the assumption that Yukawa like related couplings are Hermitian, also

gives rise to bounds on mSME coefficients. In this scenario, the analysis of mSME contributions and

their comparison with current experimental bounds on electromagnetic moments of charged leptons

determine upper limits on the impact of Lorentz violating coefficients as stringent as 10−15, which,

specifically, are imposed by the AMM of the muon. In this scenario, mSME contributions to EDM absent.

Other analyses we include are related to the electromagnetic moments (EMMs) of nucleons. First,

we compute the electromagnetic contributions of the quarks and use specific relationships to calculate

the proton AMM and neutron EDM. High sensitivity measurements of these proton and neutron EMMs

then yield constraints on SME coefficients, with bounds as restrictive as 10−12.

The following is the structure of the thesis. In Chapter 1, the Lorentz and CPT symmetry violation

theories are presented, as well as the observer and particle Lorentz transformations and the experimental

test for LI violation. The second chapter discusses SME, with focus on the renormalizable extension,

the theoretical framework required for the phenomenological calculation is discussed, and an analytical

calculation of the electromagnetic vertex AµlAlA at one loop is performed. In Chapter 3, there are

numerical estimates and a discussion of the results. The Lorentz violation in nucleon electromagnetic

moments is examined in Chapter 4. Finally, in Chapter 5, there is a summary and conclusions.
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Chapter 1

Lorentz and CPT symmetry

The concept of symmetry is one of the most important elements in physics, as it is closely related to the

conservation of quantities such as charge, energy, momentum, and so on. However, the question of when

symmetry is broken is also of great importance. For example, the breaking of electroweak symmetry

gives rise to the mass of SM particles.

Albert Einstein was the first physicist to use the concept of Lorentz symmetry to describe the

behavior of the universe. He assumed that special relativity is governed by Lorentz Symmetry and

postulated that the laws of physics are the same for all inertial observers. An inertial observer can

be anyone, who has a system of calibrated clocks and rulers, located in a non accelerated reference

frame with respect to an inertial frame. When these kinds of observers move relative to each other,

the measurements of time and length intervals are different of each other. The generalization of these

differences is described by a set of equations called Lorentz transformations.

Spacetime symmetries have a particularly fundamental weight in physics, there are two types.

The Lorentz transformations are well-known continuous spacetime symmetries that include global

translations in space and time as well as boosts and rotations. CPT involves the discrete space- and

time-inversions, P , T and the charge conjugation operation on the fields, C. C can be associated with

the exchange of particles and antiparticles, P with the reflection of all three spatial coordinate (e.g.,

~r → −~r) and T with the inversion of the time coordinates (e.g., t→ −t). Lorentz and CPT symmetries

are closely related, a fact of great importance for experimental studies of spacetime symmetries.

In order to interpret and study the symmetry properties of a model, it is crucial to consider the correct

type of transformation. In physics, coordinate transformations are generally inappropriate, because

coordinates, while used to describe observables and relationships to each other, are merely a labeling

of spacetime points that is largely arbitrary and without actual physical meaning. In other words, a

physical phenomenon should be independent of the chosen coordinate system and observer. Coordinate

independence is also called observer invariance. In contrast, the study of how transformed dynamical

1



CHAPTER 1. LORENTZ AND CPT SYMMETRY

1.1. OBSERVER AND PARTICLE LORENTZ TRANSFORMATIONS

variables continue to satisfy the same equation is of greater importance. This case corresponds to the

actual experimental situation where measurements are compared before and after the transformation of

the device (not the observer). Such types of physical transformations are called particle transformations.

In this context, the CPT transformation of the coordinate system is not sufficient to study the properties

of a particular model, since the transformations must be applied according to transformation of the

experimental setup.

Invariance under Lorentz and CPT symmetry is a fundamental part of quantum field theory and

General Relativity. This is the main reason why physicists have been unwilling to consider violations

of these symmetries. There are two reasons to consider the possibility that Lorentz symmetry is not

an exact symmetry of nature [41]. On the theoretical side, there are theories of quantum gravity that

include violation of Lorentz invariance as a possible effect, for example, non commutative geometry [42],

String theory [43], loop quantum gravity [44], theories with emergent gauge bosons [45,46], and emergent

gravity [47]. On the experimental and phenomenological side, effective field theories of low energy

with violation of Lorentz invariance have been studied. The Lorentz symmetry violation effects can

be estimated using phenomenology and compared with the experiments in order to constrain the LV

parameters. For example, the so called SME has attracted much interest to test Lorentz and CPT

symmetries. This model contains all possible terms in which the SM fields are coupled in a Lorentz

covariant manner to constant tensor coefficients. The value of these coefficients can in principle be

measured or bound by experiments or phenomenological results, which is the goal of this work.

CPT invariance is a topic closely related to Lorentz invariance. The CPT theorem [48] states that

any Lorentz invariant local quantum field theory with Hermitian Hamiltonian must have CPT symmetry.

In contrast, it can be shown [49] that any unitary interacting theory violating CPT necessarily violates

Lorentz invariance. This means that we cannot have CPT violation without Lorentz symmetry violation,

but violation of Lorentz invariance while preserving CPT symmetry is a possibility.

1.1 Observer and particle Lorentz transformations

Physics must be described in a coordinate independent manner. That is, if an experiment has a

predetermined outcome, any two observers should arrive at the same conclusion. In other words,

whether or not Lorentz invariance is violated, nature should not be concerned with the observer or the

coordinates used to describe a physical process. As a result, the SME Lagrangian, and thus all physical

observables that can be derived from it, is observer Lorentz invariant. This is what we mean by observer

Lorentz transformations: they are simply changes in coordinates.

Passive (observer) Lorentz transformation should be contrasted with active (particle) Lorentz trans-

formation. When we talk about the breakdown of Lorentz invariance, we actually mean the breakdown

2



CHAPTER 1. LORENTZ AND CPT SYMMETRY

1.1. OBSERVER AND PARTICLE LORENTZ TRANSFORMATIONS

of active Lorentz transformation invariance. The SME Lagrangian introduces the breakdown of Lorentz

invariance via tensor coefficients coupled to operators built out of SM fields. Here is an example:

L = icµνψ̄γ
µ∂νψ, (1.1)

where cµν is the Lorentz violating coefficient. All Lorentz violating coefficients in the SME can be viewed

as constant valued background fields. When using an observer Lorentz transformation, all quantities,

including background fields, are transformed. In the case of Eq. (1.1), obtaining

icµνψ̄γ
µ∂νψ → Λ ρ

µ Λ σ
ν Λµ

λΛ
ν
κicρσψ̄γ

λ∂κψ = icµνψ̄γ
µ∂νψ, (1.2)

where Λ σ
ν represents a Lorentz transformation, for which Eq. (1) holds by definition. As a result, that all

Lorentz indices are contracted implies observer Lorentz invariance. When building the SME, one demands

that all the terms in the Lagrangian are invariant under observer Lorentz transformations, which trans-

lates into the fact that all Lorentz indices should be contracted. A particle Lorentz transformation,

on the other hand, transforms all quantities except the background fields, giving the following

icµν ψ̄γ
µ∂νψ → Λµ

λΛ
ν
κicµνψ̄γ

λ∂κψ. (1.3)

This corresponds to physically boosting or rotating the experiment with respect to the background.

This occurs, for example, when the Earth moves through space and the experiment moves with it. As

seen from the laboratory frame, the values of cµν will change as the Earth rotates. These values will

thus oscillate with the frequency rotation of the Earth (or proportional to that frequency).

According to the previous explanation, there is an example, illustrating two ways to perform Lorentz

transformations over the magnetic moment ~µ of some particle:

Figure 1.1: Magnetic moment, ~µ, of a particle. Observer and particle transformation. LI symmetry

occurs.

The rotation of the reference system is represented by observer transformation (the coordinates are

transformed). Passive transformation is the term used to refer to it. This type of invariance has nothing

to do with physics. A particle transformation, on the other hand, represents a rotation of the particle;

this is known as active transformation, and it actually changes the physical position of the particle. The

3
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1.2. EFFECTIVE FIELD THEORY WITH LORENTZ VIOLATION SYMMETRY

physical symmetry of the system is represented by invariance with respect to these transformations.

Both transformations are inversely related in the vacuum, when LI occurs, which means that rotating

the reference system by theta is equivalent to rotating the particle by −theta, as we can deduce from

Fig. (1.1).

Figure 1.2: Magnetic moment, ~µ, of a particle with background field. Observer and particle transforma-

tion

Figure (1.2) illustrates that in the presence of a background field ~B, the system is invariant under

observer transformations. For example, if we focus in the interaction U = −~µ · ~B, we observe that

it remains invariant under coordinate transformation, leaving the interaction rotationally invariant.

When a particle transformation is performed, however, the system is physically distinguishable from its

transformed version because of the existence of the background field can be inferred from the experiment.

We can deduce that the field ~B breaks the symmetry by specifying a preferred direction.

For example, the following Lorentz violating SME terms

LLV = −aµψ̄γµψ − bµψ̄γ
µγ5ψ − 1

4
(kf )µνλσF

µνFλσ, (1.4)

are built from SM fields that have been properly contracted with coefficients to form observer scalars.

These coefficients act as background fields, producing observable effects that can be investigated in

experiments [50–52].

1.2 Effective field theory with Lorentz violation symmetry

The SME [53] is an effective field theory satisfying: i) General Relativity and the Standard Model, ii)

scalar terms obtained by the contraction of operators for the violation of Lorentz symmetry with tensor

coefficients, and iii) possible additional requirements such as gauge invariance and renormalizability.

In principle, the SME includes terms of arbitrary mass dimension, but the requirement of renormal-

izability focuses on terms of dimension four, which is called the minimal SME. The mSME has a finite

number of Lorentz invariance violation parameters, while the number of these parameters in the full

4
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1.3. LORENTZ INVARIANCE VIOLATION EXPERIMENTAL TESTS

SME is essentially unbounded.

The considerations stated by Kostelecký in Ref. [54] can be summarized to motivate the employment

of the SME instead of some of the other approaches to Lorentz violation. He claims that a method for

investigating the loss of Lorentz symmetry should

• Observer coordinate independence: Any event should be independent of the observer Lorentz trans-

formation, i.e. it is not about the coordinates of the observer, it must to describe the same physical

situation.

• Realism: The theory must incorporate known physics while allowing for the parametrization of the

effects of the Lorentz symmetry violation.

• Generality: The framework should be as general as possible.

1.3 Lorentz invariance violation experimental tests

It is important to remember that there is no single best test of Lorentz symmetry. It is possible for

one type of particle in the SM to have interactions that violate Lorentz symmetry while other particles

may not violate LI at all, an exhaustive investigation of Lorentz violation requires a large number of

experiments to probe every particle sector. The current limits on Lorentz violating effects are derived

from both terrestrial and astrophysical experiments [55].

1.3.1 Terrestrial constraints

Photons are used in the most famous tests of Lorentz symmetry, the Michelson-Morley experiments [56].

A light beam is divided into two beams that travel perpendicularly to each other, which are reflected by

mirrors, and are then recombined to form an interference pattern. The produced pattern is determined

by the different lengths of the two paths. As the interferometer is rotated, the researchers look for a

change in this pattern. Because it is sensitive to any dependence of the speed of light or direction in

space, this effectively serves as a test of Lorentz symmetry. Kennedy-Thorndike experiments, which use

an interferometer that is fixed in the laboratory, are closely related to Michelson-Morley experiments.

Researchers are looking for a change in the interference pattern over time as a result of the Earth’s

motion around the Sun. Because it is sensitive to any variation of the speed of light, this serves as a

test of Lorentz symmetry. Rotation invariance is investigated in Michelson-Morley experiments looking

for anisotropy in the speed of light, whereas boost invariance is investigated in Kennedy-Thorndike

experiments [57].

Nature has proven to be LI to a very high degree. Therefore, looking for deviations from this sym-

metry at low energies, described by the renormalizable terms in EFT based approach, requires very high

precision, and hence Earth based experiments. Among the most relevant experiments, we can find:

5
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• In 2003, John Lipa and colleagues described the findings of an experiment designed to look for

spacetime anisotropy terms that could exist as a result of Lorentz violations. They use a simple

configuration consisting of a pair of cylindrical microwave cavity resonators operating in radial

modes with their axes aligned in the east-west direction and optimally at 45 degrees from the

Earth’s axis. Because of the radial nature of the resonators, this apparatus will have a different

sensitivity to the coefficients of the Lorentz violating terms than an optical cavity experiment [58].

• Achim Peters and colleagues compared the resonant frequencies of two orthogonal resonators made

of crystalline sapphire. They presented the results of the most sensitive Michelson-Morley style

frequency comparison experiment performed to date. They used a year of data to set new bounds

on the nine possible rotational and boost isotropies of the speed of light, with the results expressed

as constraints on coefficients of the SME, finding no significant violations of Lorentz symmetry [59].

• Peter Wolf and colleagues at the Observatoire de Paris compared the frequencies of a cryogenic

sapphire oscillator and a hydrogen maser to set new constraints on a possible violation of Lorentz

invariance. The difference in the sensitivities of the crystal and the hydrogen maser would provide

a Lorentz violating signal in this case. These experiments demonstrated that for a variety of

different SME parameters in the photon sector, any violation of Lorentz symmetry must be less

than 1 part in 1011 [60].

• A Penning trap is a combination of static magnetic and electric fields that can keep a charged

particle localized within the trap for extremely long periods of time [61]. A trapped particle can

move in a variety of directions. The cyclotron motion in a magnetic field and Larmor precession

due to spin are the two motions relevant for Lorentz violation tests. The ratio of the recession

frequency ωs to the cyclotron frequency ωc is given by

ωs/ωc = g/2,

where g is the g-factor of the charged particle. The energy levels for fermions are given by

Es
n = nωc + sωs where n is an integer and s = ±1/2. For electron and positron, where g ≈ 2,

the state (n, s = −1/2) is almost degenerate with the state (n − 1, s = +1/2). The degeneracy

breaking is caused solely by the electron’s AMM and is commonly denoted by ωa = ωs − ωc. By

introducing a small oscillating magnetic field into the trap, it is possible to induce transitions

between these nearly degenerate energy states and determine the value of ωa very precisely. The

primary application of ωa measurements is that they provide a very precise value of g − 2. These

measurements, however, provide good tests of CPT and Lorentz invariance because of their

precision.”

6
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1.3. LORENTZ INVARIANCE VIOLATION EXPERIMENTAL TESTS

• For clock comparison experiments, two atomic transition frequencies are usually placed at some

point in space. As the clocks move, they pick out different Lorentz violating tensor components

in the minimal SME, resulting in a sidereal drift between the two clocks. The difference in clock

frequencies can be measured over long periods of time, yielding extremely high precision limits

on the amount of drift and thus the mSME parameters. It should be noted that this method

is only feasible if the clocks are made of different materials or have different orientations. The

best overall limit comes from a 3He/129Xe maser system in the neutron sector of the mSME.

In the experiment, the frequencies of helium and xenon masers operating within the same cavity

are compared. The energy level corrections in these atoms are highly sensitive to how the

neutrons within the nuclei are oriented with respect to the background SME coefficients. As the

Earth rotates, these orientations change, and the small difference between the helium and xenon

frequencies changes with time. Clock comparison experiments, in other words, constrain protons

and neutrons’ parameters [62, 63].

• Experiments with a spin polarized torsion pendulum provided the tightest bounds on Lorentz

violation for the electron. This device is made up of a torus of alternating magnetic materials

chosen in such a way that the torus has a massive net spin aligned electron spins, but produces no

magnetic field. As a result, it can be used to measure anomalous spin couplings in the absence of

the usual magnetic dipole effects. The pendulum is suspended from a rotating turntable, causing

the collective motion of the electron spins in relation to the background SME coefficients to

produce a small but detectable torque. Using this experiment, Adelberger and Heckel achieved

Lorentz violation sensitivities for the electron of one part in 1029 [64].

• Muon experiments open up a new window into the lepton sector of the mSME. If the mSME

coefficients are to be small, there must be some small energy scale suppressing the Lorentz violating

coefficients. There are only a few small scales available, namely particle masses or a symmetry

breaking scale. If we assume the scale is particle mass, then muon based experiments would have a

signal at least 102 times larger than equivalent electron experiments due to the larger mass of the

muon. Of course, because muons are unstable, experiments are inherently more difficult [65].

The muon sector is constrained by two primary experiments. To begin, muonium spin transitions

(µ+e−) . Despite the fact that muonium is a muon electron system, the muon sector of the mSME

can be isolated by immersing the muonium to a strong magnetic field and looking for a specific

frequency resonance that corresponds to muon spin flips. The sidereal variation of this transition

frequency is then tracked, resulting in a Lorentz violation symmetry coefficient limit of the order

≈ 10−22mµ [65].

The second muon experiment that yields strong limits is the µ−/µ+ g − 2 test [66–68]. In this

7
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study, relativistic µ− (or µ+) are injected into a storage ring and allowed to decay. The deposit

rate of the decay products along the detector is sensitive to the evolution of the muon’s spin, which

is a function of g− 2 for the muon. Lorentz violation alters this evolution equation, and thus these

types of g−2 experiments can constrain the mSME. The muon g−2 experiment yields two types of

bounds: a direct comparison between the g−2 factors for µ− and µ+, which limits the CPT violat-

ing coefficient < 10−22, and the analysis of sidereal variations involving only one of the µ− and µ+

at the current sensitivity in [68] could bound the CPT violating coefficient at the level of 10−25 [66].

• Because the constraints on various parameters of the mSME are so tight, considering loop effects

can yield interesting indirect constraints on unmeasured sectors. Such an approach is taken in,

which considers loop corrections to mSME coefficients caused by Lorentz violation in the Higgs

sector. There are four parameters in the Higgs sector of the mSME that have been bounded. Three

of them come from the birefringence constraints on photon propagation, the constraint on all the

coefficients are of order 10−16. The other can be derived from the cyclotron frequencies of hydrogen

ions and antiprotons and is of order 10−13 [69].

1.3.2 Astrophysical observations

Some alternatives to laboratory based experiments make use of light emitted by distant astrophysical

sources. Because light travels across vast areas of space, these experiments have much higher precision

than the previous ones. The long propagation time can magnify any minor differences in the properties

of light, such as wavelength or polarization, caused by Lorentz violation.

• Roman Jackiw and colleagues investigated the experimental limits of Maxwell theory modification,

which also involves a mass parameter pα but respects gauge invariance, rather, Lorentz invariance

is violated. The modification entails inserting a Chern-Simons term into the Maxwell-Lagrange

density. They investigate the observational effects of the Cherm-Simons term as a parametrization

of Lorentz invariance violation, demonstrating that SME parameters that violated CPT symmetry

could be tested with a precision of 10−42 in measurements of light from distant galaxies [70].

• Kostelecký and Matthew Mewes investigate the implications of the SME for light properties,

focusing on the CPT even coefficients for Lorentz violation in the photon sector. They use

spectropolarimetry of cosmological sources to obtain Lorentz violation bounds comparable to the

best current limits in the fermion sector, with a sensitivity of one part in 1032. By analyzing

infrared, visible, and ultraviolet light from distant galaxies, they investigated a Lorentz violating

effect that causes the polarization of light to change depending on its wavelength [71].

• In SME with mass dimension five operators, odd in CPT , particles with opposite helicity have

slightly different group velocities, implying that the polarization vector of a linearly polarized

8



CHAPTER 1. LORENTZ AND CPT SYMMETRY

1.3. LORENTZ INVARIANCE VIOLATION EXPERIMENTAL TESTS

wave rotates differently for different photon energies during wave propagation; this phenomenon

is known as vacuum birefringence. This effect disrupts the amount of polarization in the wave

over long distances. The technique has been used to study a variety of astronomical sources

such as Gamma-ray Bursts (GRBs) and Pulsar Wind Nebulae (PWNe). This method produced

the strongest constraint on ξ, indicating the strength of the Lorentz violation, in the order of

10−10 [72, 73].

• The extra terms in the SME approach can be thought of as extra mass terms, which is why LI

violation (LIV) corrections are necessary for threshold processes. Lorentz violation symmetry in

efective field theory introduces a rich phenomenology related to threshold reactions, and threshold

theorems can be generalized [74, 75]. The various aspects investigated in threshold reaction

experiments are as follows:

- A shift in the energy threshold of existing reactions, which leads to higher thresholds.

– The possibility of a pair production reaction with unequal emitted momenta.

– The viability of new, normally forbidden, reactions.

• Because LIV affects synchrotron radiation, effective constraints can be derived by comparing

observed and expected synchrotron spectra from astrophysical sources. This technique enables the

application of strong constraints to mass dimension four and five LIV operators. With observations

of the Crab Nebula, constraints on the lepton sector have been obtained. They compare the data

from multiwavelength observations to a complete and self consistent computation of the Crab

Nebula’s broad band spectrum. They cast constraints on the lepton Lorentz Violation parameters

of order 10−5 with a 95% confidence level [76–80].

• Electromagnetic Čerenkov radiation in ponderable media has been extensively studied since its

discovery in the early 1930s [81, 82]. It occurs when the velocity of a massive charged particle

exceeds the phase velocity of light in a medium, rendering the particle unstable to Čerenkov light

radiation. In the presence of Lorentz violation, the vacuum acts as a refractive medium for particles

whose properties are controlled by the Lorentz violation coefficients [83]. Under these conditions, a

particle traveling faster than the speed of light in a vacuum can produce vacuum Čerenkov radiation,

which continues until the particle loses enough energy to slow down to less than the speed of light.

The observation of high energy particles of various species limits the existence of vacuum Čerenkov

radiation and, as a result, limits certain Lorentz violation coefficients in the matter sector [84–89].

Čerenkov radiation is only possible for superluminal particles, which usually occur for only one

coefficient sign, so any single coefficient constraint is normally one sided. The best fit of Lorentz

violation coefficient is of the order 10−23 [90].

9



CHAPTER 1. LORENTZ AND CPT SYMMETRY

1.4. STANDARD MODEL EXTENSION

1.4 Standard Model Extension

The SME is a low energy effective description of particle physics that incorporates Lorentz violation.

The model can be defined as the SM lagrangian plus all additional Lorentz and CPT violating terms

involving fields that maintain invariance under observer Lorentz transformations. This invariance ensures

that the physics is unaffected by the choice of coordinates. The SME Lagrangian is thus constructed

from conventional SM fields, as well as coefficients that characterize the Lorentz violation, which can be

viewed as originating from vacuum expectation values of Lorentz tensors in an underlying fundamental

theory. The requirements of the derivation impose various constraints on the possible structures of both

parts (coefficients and fields). Taken together, these requirements impose significant constraints on the

form of terms in the SME. Because the usual SM agrees well with experiment, the additional terms must

be small [91].

The coupling coefficient part contains spacetime indices that reflect the properties of the relevant

nonzero expectation values from the fundamental theory under observer Lorentz transformations.

Although the coupling coefficient is complex, it is constrained by the requirement that the Lagrangian

is Hermitian. We will assume that these coefficients are position independent. This implies that the

violation is limited to the Lorentz symmetry rather than the full Poincaré symmetry. The preceding

supposition has several experimentally useful consequences, including the conservation of energy and

momentum. We focus on the renormalizable sector of the theory because it is expected to dominate

physics at low energies. Non renormalizable terms, on the other hand, are known to play a significant

role at higher energies [92].

Terms of the T µ1,...,µnOµ1,...,µn
(x) form are included in the SME. The Lorentz n-tensors Oµ1,...,µn

(x)

are assumed to be SM field dependent and covariantly transform under both particle and observer

Lorentz transformations; however, the constants T µ1,...,µn covariantly transform under only observer

Lorentz transformations [12, 13, 18, 19].

We adhere to the same conventions and notations as in Ref. [19], where the complete mSME La-

grangian was first presented. The Lagrangian is constructed from the SM fields. The left and right

handed lepton and quark multiplets are denoted by

LA =





νa

lA





L

, RA = (lA)R,

QA =





ua

dA





L

, UA = (uA)R, DA = (dA)R, (1.5)

where A labels the flavor of the leptons: lA ≡ (e, µ, τ), νA ≡ (νe, νµ, ντ ), uA ≡ (u, c, t) and dA ≡ (d, s, b).

As customary, we define left handed and right handed fields

10
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ψL ≡ 1

2
(1− γ5)ψ, ψR ≡ 1

2
(1 + γ5)ψ. (1.6)

The complete lagrangian for the Lorentz breaking SME can be decomposed into a sum of terms: SM

+ terms with LIV. We first provide the lagrangian terms in the SU(3)× SU(2)× U(1) SM. The lepton

and quark parts are given by

LSM
lepton = iL̄Aγ

µDµLA + iR̄Aγ
µDµRA, (1.7a)

LSM
quark = iQ̄Aγ

µDµQA + iŪAγ
µDµUA + iD̄Aγ

µDµDA, (1.7b)

where Dµ is the usual covariant derivative. The Higgs Lagrangian is

LSM
Higgs = (Dµφ)

†Dµφ+ µ2φ†φ− λ

3!
(φ†φ)2. (1.7c)

The gauge part of the SM lagrangian is

LSM
gauge = −1

2
Tr(GµνG

µν)− 1

2
Tr(WµνW

µν)− 1

4
BµνB

µν , (1.7d)

here, Gµν , Wµν and Bµν are the SU(3), SU(2) and U(1) gauge fields, respectively. All about Yukawa

terms, responsible for generating the fermion masses, is shown in the next section.

We will now look at the Lorentz violating portion of the mSME Lagrangian. The lepton and quark

parts are given by

LLV
lepton = L̄A[i(cL)

AB
µν γ

µDν − (aL)
AB
µ γµ]LB + R̄A[i(cR)

AB
µν γ

µDν − (aR)
AB
µ γµ]RB , (1.8a)

LLV
quark = Q̄A[i(cQ)

AB
µν γ

µDν − (aQ)
AB
µ γµ]QB + ŪA[i(cU )

AB
µν γ

µDν − (aU )
AB
µ γµ]UB

+ D̄A[i(cD)AB
µν γ

µDν − (aD)AB
µ γµ]DB, (1.8b)

in these equations, the various Lorentz violating couplings coefficients cµν and aµ, are understood to be

Hermitian in generation space. The c parameters are CPT even and dimensionless and a parameters

are CPT odd and have mass dimension one. The c parameters can be assumed to be traceless over the

spacetime indices (i.e. gµνc
µν = 0). A non zero trace does not contribute to Lorentz violation and can

be absorbed by a standard field normalization.

The following terms can be written for the Higgs part of the Lagrangian:

LLV
Higgs =

[

1

2
(kφφ)

µν(Dµφ)
†Dνφ+ h.c.

]

− 1

2
(kφB)

µνφ†φBµν

− 1

2
(kφW )µνφ†Wµνφ+ [i(kφ)

µφ†Dµφ+ h.c.] . (1.8c)

11



CHAPTER 1. LORENTZ AND CPT SYMMETRY

1.5. LORENTZ VIOLATING YUKAWA SECTOR: RENORMALIZABLE EXTENSION

Due to the hermiticity of the Lagrangian, the dimensionless coefficient kφφ is real and symmetric,

whereas the other coefficients have dimension of mass and must be real and antisymmetric. The only

CPT odd parameter is kφ, which has mass dimensions and can be any arbitrary complex number.

The gauge sector has both CPT even and CPT odd contributions. The CPT even ones are

LLV
gauge = −1

2
(kG)κλµνTr(G

κλGµν)− 1

2
(kW )κλµνTr(W

κλWµν)− 1

4
(kB)κλµνB

κλBµν , (1.8d)

All of the parameters in this equation are dimensionless and real. They possess Riemann tensor

symmetries and a vanishing double trace (since it does not violate Lorentz symmetry). The CPT odd

terms are excluded because they cause instabilities in the minimal theory. They are all associated with

negative energy contributions, and one of them would directly generate a linear instability in the potential.

It is important to remember that not all the parameters in the mSME are observable in all physical

processes. This is demonstrated at the Lagrangian level by the fact that some parameters can be

removed from the Lagrangian via field redefinition. The removable parameters cannot appear in physical

observables because the physics should be invariant under such field redefinition. A field redefinition

must include the associated coupling coefficient in order to eliminate a Lorentz breaking term. When

derivative couplings are involved, field redefinition may also include spacetime position variables.

Ref. [93] contains an in depth discussion of this topic.

Linear phase redefinition and linear normalization redefinition are two processes that we have found

to be particularly useful. Some terms involving the coefficients aL,R,Q,U,D, for example, can be eliminated

using position dependent field phase redefinition, as described in Ref. [18]. Another example is terms

involving the coefficients cL,R,Q,U,D, some of which can be absorbed via field normalization redefinition.

The Lorentz violating Yukawa terms are studied in the following section.

1.5 Lorentz violating Yukawa sector: renormalizable extension

Because the mSME is an effective field theory that parametrizes heavy physics at SM energy scales, its

Lagrangian terms are solely defined in terms of the fields of such a low energy description. Lorentz non

conserving interactions are introduced in all SM sectors in this context, among which we consider La-

grangian terms from the Yukawa sector for the phenomenological objectives of the present investigation.

For the time being, SU(3)C × SU(2)L × UY (1) gauge symmetry is assumed and then spontaneously

broken using the Brout-Englert-Higgs mechanism [94–96] as usual, in order to define the full set of mass

eigenfields within the theory governed by the electromagnetic gauge group [97–101]. This procedure has

an impact on Lorentz violating interactions, which calls for a discussion of the resulting terms of the

mSME Yukawa sector.
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The renormalizable version of the SME is given by

LSME
R = LSM +∆LR, (1.9)

where LSM denotes the SM Lagrangian. ∆LR, containing all power counting renormalizable inter-

actions, is the sum of the terms with the form T µ1,...,µnOµ1,...,µn
(x), where Oµ1,...,µn

(x) represents

SU(3)C ×SU(2)L×UY (1) invariant operators of the SME, and T µ1,...,µn are constant background fields.

This section focuses on the CPT even renormalizable extension of the leptonic Yukawa sector that

induces lepton flavor violation (LFV) via the Higgs boson, given by [7]

LSME
Yukawa =− (YL)

ABL̄AφRB − 1

2
(HL)

AB

µν L̄Aφσ
µνRB

− (YU )
ABQ̄Aφ

cUB − 1

2
(HU )

AB

µν Q̄Aφ
cσµνUB

− (YD)ABQ̄AφDB − 1

2
(HD)AB

µν Q̄Aφσ
µνDB + h.c. , (1.10)

where φ is the Higgs doublet with its conjugate φc. (YL)
AB, (YU )

AB and (YD)AB are the SM Yukawa

matrices, which are complex valued matrices in general and not necessarily symmetric or Hermitian. LA

and RA are the SM SU(2)L left handed lepton doublet and right handed lepton singlet respectively. QA

is the right handed quark doublet, whereas UA and DA are the u and d type right handed quark singlets.

A,B label the fermion flavor and greek indices label the spacetime components. The dimensionless

matrices with entries (HL)
AB
µν , (HU )

AB
µν and (HD)AB

µν are antisymmetric in the Lorentz indices but

symmetric, although not necessarily Hermitian, in flavor space. According to Eq. (1.9), the left half of

LSME
Yukawa corresponds to SM terms, while the right half corresponds to Lorentz violating terms. These

last terms open up the possibility of flavor violation effects mediated by the Higgs bosson. In what

follows, we will only focus on the lepton sector; however, we can mention that in the quark sector, we

analyze the EMMs of neutron and proton [102].

Let’s analyze the spontaneous symmetry breaking. Changing the variable in unitary gauge to the Higgs

doublet, φ = φ0 + h, with φ0 =
(

0
v/

√
2

)

, and using it in Eq. (1.10), we get

LSME
Yukawa = − 1√

2
(v + H)

(

~̄
l′L Y

′
l
~l′R +

1

2
~̄
l′L (Hl)µν σ

µν ~l′R + h.c.

)

, (1.11)

where ~l′ = (e′, µ′, τ ′) is a vector in flavor space. Performing the change of bases from (~l′L, ~l′R) to the

mass eigenstate basis (~lL,~lR) via unitary transformations

~l′L = V †
L
~lL,

~l′R = V †
R
~lR, (1.12)
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where VL,R are the standard unitary matrices that connect the gauge and mass eigenfields bases of chiral

spinors. This transformation, as well known, diagonalize, at the same time, the mass terms and Higgs

lepton interactions in the SM, however, in this case, the Lorentz violating extension introduces non

diagonal couplings.

LSME
Yukawa = −

∑

A

(

mlA +
gmlA

2mw
H

)

l̄A lA − 1

2

∑

AB

(v + H) l̄A

(

Y AB
µν + Y BA∗

µν

2
+
Y AB
µν − Y BA∗

µν

2
γ5

)

σµν lB.

(1.13)

In the above expression Yµν = V †
LHµνVR. Despite the fact that the notation of matrices Yµν does

not explicitly indicate it, three types of fermions correspond to each of them, namely, Y L
µν , Y

D
µν , and Y

U
µν ,

which stand for charged leptons, u type quarks, and d type quarks, respectively.

Defining

V AB
µν =

Y AB
µν + Y BA∗

µν

2
,

AAB
µν =

Y AB
µν − Y BA∗

µν

2
, (1.14)

we get, from Eq. (1.13), the following expression

LSME
Yukawa = −

∑

A

(

mlA +
gmlA

2mw
H

)

l̄A lA − 1

2

∑

AB

(v + H) l̄A
(

V AB
µν −ABA∗

µν γ5
)

σµν lB. (1.15)

The aim of the previous process was to pass from the gauge basis to the mass eigenstates basis.

According to the definition of V AB
µν and AAB

µν , note from Eq. (1.14) that the matrix Vµν is Hermitian,

whereas matrix Aµν is antihermitian with respect to flavor space. Note, from Eq. (1.14) that Aµν

vanishes for Hermitian matrix Y , that is, if Y †
µν = Yµν , whereas the antiHermitian matrix condition

Y †
µν = −Yµν , eliminates Vαβ . On the other hand, matrices V AB and AAB, given in spacetime group,

are both antisymmetric, V AB
µν = −V AB

νµ and AAB
µν = −AAB

νµ , this is inherited from the antisymmetric

property of the Y AB matrix.

In the perturbative approach, used here, the Lorentz violating Yukawa couplings, from Eq.(1.15)

produce two types of physical couplings:

bililear insertion: − v

2
l̄A(V

AB
µν −ABA∗

µν γ5)σµν lB ,

trilinear vertex: − 1

2
Hl̄A(V

AB
µν −ABA∗

µν γ5)σµν lB ,

which leads to the bilinear coupling, with the vertex
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lA lB

= −iv
2
(V AB

µν −ABA*
µν γ5)σµν ,

and contains the LFV coupling of the Higgs boson HlAlB, whose vertex function is given by

H

lAlA

lB

= −i
2
(V AB

µν −ABA*
µν γ5)σµν .
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Chapter 2

One loop contributions to lepton

electromagnetic interactions

Under the assumption of Lorentz invariance, contributions to AMMs and EDMs are obtained from the

electromagnetic vertex parametrization AµlAlA given by ūA(p
′)ΓµuA(p) with uA the momentum space

Dirac spinors for the charge lepton lA with mass mA and Γµ being [103–105]

Γµ = ie

[

γµ(fA
V –fA

Aγ5)− σµνq
ν

(

i
fA
m

2mA
− fA

d

e
γ5

)]

, (2.1)

with on shell external fermions and off shell photon field. fA
V,A,m,d are the charge, anapole, magnetic

and electric dipole lepton form factors respectively. In general, all the form factors are functions of

squared transferred photon momentum q2 and lepton masses. The on shell photon case (q2 = 0) defines

the AMM and EDM by aA ≡ 2mA

e fA
m(q2 = 0) and dA ≡ fA

d (q2 = 0), respectively. Those terms are

necessarily originated at second order SME coefficient contributions because, in this way, all the Lorentz

indexes are fully contracted.

We calculate the contributions, at one loop, to the electromagnetic vertex AµlAlA from the Lorentz

violation Yukawa sector LSME
Yukawa, as shown in Eq. (1.15). The sectors of the lepton and the Higgs boson

produce couplings in the minimal SME CPT , which can also produce contributions to lepton electromag-

netic moments. In the case of the lepton Lagrangian terms, Eq. (1.8a), such contributions would come

from the antisymmetric parts of SME coefficients cµν , which can be removed from the theory by redefin-

ing spinor fields appropriately [106]. The contributions from the aforementioned Lorentz violating Higgs

sector, on the other hand, have a suppressing factor 1
m4

w
in comparison to the contributions calculated in

the present investigation, so we ignore them. Finally, keep in mind that, as part of an effective field the-

ory, the SME Lagrangian terms may not all be produced by the genuine fundamental physical description.

It is critical to note that the contributions to the general electromagnetic vertex AµlAlB are taken

into account, with lA and lB being equal. As explicitly demonstrated in Refs. [33, 34], the occurrence
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of Lorentz symmetry violation modifies electromagnetic interactions at the loop level, and the structure

of this interaction parametrization is expected to be richer with more types of terms than those in Eq.

(1.15), due to all free spacetime indexes, but AMMs and EDMs are still identified from the aforementioned

Lorentz preserving parametrization [103–105], which means that Lorentz violating background fields can

only be contracted with themselves. According to Eq. (1.14), because coefficients V AB
µν and AAB

µν are

antisymmetric in terms of spacetime indices, they are traceless in this sense. Consequently, any first

order contribution to AMMs and EDMs vanishes. However, nonzero Lorentz invariant contributions may

appear if diagrams at the second order in V AB
µν or AAB

µν are considered.

2.1 Contribution from Feynman diagrams

The contribution to the electromagnetic moment of the leptons lA, with A = e, µ, τ , defined in Eq. (2.1),

is produced by the sum of all Feynman diagrams in which either two point insertion appear, Fig. (2.1),

or two three point vertices or simultaneously one two point insertion and one three point vertex appear,

Fig. (2.2). Furthermore, we can see that the entire set of contributing diagrams consists of diagrams

with virtual lines for the Z boson, photon, and Higgs boson. These particles are depicted with a double

line inside the loop in Fig. (2.1), whereas the Higg boson virtual particle is the only possibility in Fig.

(2.2) due to the interactions depicted in Eq. (1.15). Because neutrinos are considered to be massless, no

couplings between them and the Higgs field occur, resulting in the absence of contributing diagrams with

virtual W boson lines.

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lA

lB

lA

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lB

lBlB

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lA

lB

lB

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lB

lA

lB

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lA

lA

lA

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lA

lA
lA

A ( )q

lA( )p Z, A, H lA( )p’

lA

lB

lB

lA

A ( )q

lA( )p

lB

Z, A, H lA( )p’

lA

lB

lA

A ( )q

lA( )p Z, A, H lA( )p’lB lA

lA lA

A ( )q

lA( )p Z, A, H lA( )p’lB

lA lA

lA

Figure 2.1: Feynman diagrams AµlAlA that contribute to magnetic and electric form factors, Lorentz-

noconservation effects enter only through bilinear insertions lAlB, where A = B or A 6= B. Z boson,

photon, or Higgs boson are represented by virtual double lines in loops.

It is important noting that both two point insertions and three point vertices generated by Eq.
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A ( )q

lA( )p

lBlB

H lA( )p’

A ( )q

lA( )p lB

lB

H lA( )p’

lB

A ( )q

lA( )p lB

lB

H lA( )p’

lB

A ( )q

lA( )p

lB

H lA( )p’

lA

lB

A ( )q

lA( )p
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H lA( )p’
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lA( )p
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A ( )q

lA( )p
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H lA( )p’

lA

lB

A ( )q

lA( )p lB lA( )p’

lA lA

H

A ( )q

lA( )p lB lA( )p’

lA lA

H

Figure 2.2: Feynman diagrams AµlAlA contributing to magnetic and electric form factors, with Lorentz

non conservation effects entering through both bilinear insertions lAlB and three point vertices HlAlB,

where either A = B or A 6= B. In order to exist, these diagrams must contain a virtual Higgs boson line.

(1.15) are flavor changing, which enlarges the number of contributing diagrams. However, it is worth

emphasizing that the initial and final particle flavors are always the same. We perform this calculation

in the unitary gauge. As a result, there are no diagrams with pseudo Goldstone bosons.

If we look closely at each diagram in Figs. (2.1) and (2.2), we can divide them into two groups:

1. Diagrams with lepton flavor change, inside the loop, due to the presence of anomalies, that is

A 6= B, which we call virtual lepton flavor change.

2. Diagrams in which there is no lepton flavor change due to the presence of the insertions, i.e. A = B,

which we refer to as virtual lepton flavor conservation.

All calculations were carried out using the (Passarino Veltman) PaVe tensor reduction method [107],

for which we used the Wolfram software Mathematica, as well as the packages FeynCalc [108] and Package-

X [109]. The presence of two point insertions in contributing Feynman diagrams introduces technical

complexities. The Lorentz violating coefficients broaden the set of Lorentz structures involved in the

loop contributions to AMMs and EDMs. The generated form factor expressions are also quite large.

Another practical complication arises from the fact that each bilinear insertion introduces an extra loop

denominator, so loop integrals involve multiple propagator denominators, for which calculation strategies

were developed and implemented.
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2.2 Dominant contributions to AMM and EDM

Two significant considerations must be made in order to calculate the electromagnetic vertex AµlAlA.

(1) Because virtual photon diagrams, shown in Fig. 2.1, are associated with infrared divergences (IR), we

propose a fictitious virtual photon mass, mγ [97–101]. This method will be emphasized in the following

paragraphs. (2) We take both external fermions on shell and keep the external photon field off shell,

that is q2 6= 0, only scalar PaVe functions can be obtained as a result of this.

With the preceding information in mind, all electromagnetic form factors are intricate functions

of the lepton mass, mA, and q2. As well as functions of Higgs boson, mH , Z boson, mZ and the fic-

titious virtual photonmγ masses, according to the corresponding diagram calculated from Figs. (2.1- 2.2).

The diagrams with virtual photon inside the loop make the most significant contributions to the EDMs

and AMMs (see Fig. 1). In general, the photon propagator introduces a factor 1/k2 (without accounting

for the fictitious mass), where k is the four momentum that will be integrated. However, the propagators

of the Z and Higgs bosons are 1/(k2 −m2
Z,H). The suppression of the Z and Higgs boson contributions

occurs later in the integration of the four momentum because it produces powers of the factor 1/mZ,H

and photon does not, enhancing its contribution. The difference in quantitative terms between such dom-

inant contributions and those resulting from other diagrams is at least ten orders of magnitude. While

all diagrams have been calculated and their contributions estimated, we will only focus on the contri-

butions due to the virtual photon propagator diagrams and ignore all other contributions in the following.

We only consider the three diagrams in Fig. 2.3 for the virtual photon line. These diagrams have

been identified as producing the leading contributions among the entire set of virtual photon diagrams,

and have Lorentz violating two point insertions in loop lines exclusively.

A(k)

Aµ(q)

lA(p) lA(p
′)

lB

lA

lB

lA

A(k)

Aµ(q)

lA(p) lA(p
′)

lA

lB

lA

lA

A(k)

Aµ(q)

lA(p) lA(p
′)

lA

lA

lB

lA

Figure 2.3: Feynman diagrams AµlAlA that produce the leading contribution.

Analytic expressions of triangle diagrams, written in the unitary gauge, have three propagator de-

nominators and are applicable to a wide range of models. However, using two point insertions in this

calculation produces expressions with up to five such denominators, which makes the analytic calculation

more difficult. To calculate the loop integrals, we use two methods: i) Using squared-mass derivatives,
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the number of propagator denominators, in loop integrals, is reduced to three. ii) The procedure, which

includes all propagators, requires the direct computation of four and five point PaVe scalar functions [107].

We verified that the results obtained by both strategies are identical.

2.2.1 Squared-mass derivatives procedure

We write the analytical expression of the first diagram (from left to right) of Fig. 2.3 using the Feynman

parametrization technique [97] as shown below

ΓAB

1µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N1µ(mA,mB)

[(k + p)2 −m2
A][(k + p)2 −m2

B][(k + p′)2 −m2
B][(k + p′)2 −m2

A][k
2 −m2

γ ]

=
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N1µ(mA,mB)

∆A(p)∆B(p)∆B(p′)∆A(p′)∆γ
, (2.2)

where ∆γ = k2 −m2
γ and ∆j(p) = (k + p)2 −m2

j . The mass of the initial and final lepton states is mA,

and mB corresponds to the mass of the lepton inside the loop. The indices A,B = e, µ, τ .

The following expression applies to the numerator N1µ(mA,mB)

N1µ(mA,mB) = −e
3v2

4
γν(/k + /p′ +mA)(V

AB
αβ +ABA∗

αβ γ5)σ
αβ(/k + /p′ +mB)

× γµ(/k + /p+mB)(V
AB
ρλ +ABA∗

ρλ γ5)σ
ρλ(/k + /p+mA)γν . (2.3)

Making use of the identity [97]

1

∆A(p)∆A(p′)
=

∫ 1

0

dx
1

[x∆A(p) + (1 − x)∆A(p′)]2
, (2.4)

as well as employing kinematical conditions for external leptons, p2 = p′2 = p · p′ = m2
A, we get

1

∆A(p)∆A(p′)
=

∫ 1

0

dx
1

[(k + l)2 −m2
A]

2
=

∂

∂m2
j

∫ 1

0

dx
1

∆j(l)

∣

∣

∣

∣

∣

m2

j = m2

A

(2.5)

where l = xp + (1 − x)p′. In this fashion, we can use twice Eq. 2.5 in the expression 2.2 to obtain a

shorter result

ΓAB

1µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk

∫ 1

0

∫ 1

0

dx dy
∂

∂m2
j

∂

∂m2
k

N1µ(mA,mB)

∆j(l)∆k(l′)∆γ

∣

∣

∣

∣

∣

m2

j = m2

A

m2

k
= m2

B

, (2.6)

in which l′ = yp+ (1 − y)p′ and l was defined previously.

The expression for the middle diagram in Fig. 2.3 is
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ΓAB

2µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N2µ(mA,mB)

[(k + p)2 −m2
A]

2[(k + p)2 −m2
B][(k + p′)2 −m2

A][k
2 −m2

γ ]

=
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N2µ(mA,mB)

∆2
A(p)∆B(p)∆A(p′)∆γ

, (2.7)

where

N2µ = −e
3v2

4
γν(/k + /p

′ +mA)γµ(/k + /p+mA)(V
AB

αβ +ABA*

αβ γ5)σ
αβ

× (/k + /p+mB)(V
AB

ρλ +ABA*

ρλ γ5)σ
ρλ(/k + /p+mA)γν . (2.8)

For this case, it is convenient to apply the derivative with respect to ∆A(p) on both sides of the

equation 2.4

−1

∆2
A(p)∆A(p′)

= (−2)

∫ 1

0

x

[x∆A(p) + (1 − x)∆A(p′)]3
, (2.9)

adding the same kinematical conditions mentioned previously for the denominator expression yields

1

∆2
A(p)∆A(p′)

= 2

∫ 1

0

dx
x

[(k + l)2 −m2
A]

3
=

∂2

∂(m2
j)

2

∫ 1

0

dx
x

∆j(l)

∣

∣

∣

∣

∣

m2

j = m2

A

. (2.10)

If we use Eq. 2.10 in Eq. 2.7, we reduce the number of denominators

ΓAB

2µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk

∫ 1

0

dx
∂2

∂(m2
j)

2

xN2µ(mA,mB)

∆j(l)∆B(p)∆γ

∣

∣

∣

∣

∣

m2
j = m2

A

. (2.11)

The third diagram (from left to right) in Fig. 2.3

ΓAB

3µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N3µ(mA,mB)

[(k + p′)2 −m2
A]

2[(k + p′)2 −m2
B][(k + p)2 −m2

A][k
2 −m2

γ ]

=
i

(4π)2
(2πµ)4−D

iπ

∫

dDk
N3µ(mA,mB)

∆2
A(p

′)∆B(p′)∆A(p)∆γ
, (2.12)

requires a similar procedure to the previous one. The difference is that we must derive both sides of Eq.

2.4 with respect to ∆A(p
′) and apply in the diagram expression, resulting in

ΓAB

3µ =
i

(4π)2
(2πµ)4−D

iπ

∫

dDk

∫ 1

0

dx
∂2

∂(m2
j)

2

(1− x)N3µ(mA,mB)

∆j(l)∆B(p′)∆γ

∣

∣

∣

∣

∣

m2

j = m2

A

, (2.13)

the expression for the numerator N3,µ(mA,mB) is

N3µ = −e
3v2

4
γν(/k + /p

′ +mA)(V
AB

αβ +ABA*

αβ γ5)σ
αβ(/k + /p′ +mB)

× (V AB

ρλ +ABA*

ρλ γ5)σ
ρλ(/k + /p′ +mA)γµ(/k + /p+mA)γν . (2.14)
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The total contribution is

ΓA
µ =

∑

B=e,µτ

(ΓAB

1µ + ΓAB

2µ + ΓAB

3µ ). (2.15)

Equations (2.6) - (2.13) cover all cases in which virtual lepton flavor is conserved and changed within

the loop. In these equations, loop integrals are regularized using the dimensional regularization

approach [97, 110], where µ is a quantity, with units of mass, introduced to correct amplitude mass

dimensions. The factors Njµ = Njµ(mA,mB), shown in Eqs. (2.3), (2.8) and (2.14), depending on the

charged lepton masses, are unaffected by squared mass derivatives.

The other method, which includes all propagators, requires evaluating all of the integrals shown in

the first parts of Eqs. (2.2 - 2.12). As previously stated, we obtain the same results as the derivatives

method; however, carrying all five propagator denominators increases the time required for calculation.

2.3 Electromagnetic form factors

Solving the corresponding loop integrals, using the Gordon identities and carrying out algebraic manip-

ulations, we write the total contributions as

ΓA
µ =

e

2mA
fA
mσµνq

ν + ifA
d σµνq

µγ5 + ... , (2.16)

where fA
m and fA

d are the magnetic and electric forms factors, respectively which depend on field masses,

squared photon momentum q2, and quadratic products of Lorentz tensor coefficients V AB
αβ and ABA*

αβ .

fm
A and fd

A, from Eq. (2.1), are invariant under particle Lorentz transformations. As a result, contri-

butions to the AMM and EDM of the charged lepton lA can be easily extracted from such coefficients.

That is, we will only consider terms that are invariant under Lorentz symmetry transformations and

proportional to σµνq
ν and σµνq

νγ5. In this way, the ellipsis in Eq. (2.16) represents the large set of

terms that involve violations of invariance under particle Lorentz transformations. These terms are

proportional to the components of the four momenta; pα, pβ, pρ and pλ, and the same with p′, We do

not take them into account because they are dependent on the reference system and are not part of

AMM and EDM.

The magnetic form factor is a function of the squared products V AB
αν V ABνβ , ABA*

αν ABAνβ∗, and the

electric form factor a is function of V AB
αν ABAνβ∗. For convenience, we define the 4× 4 matrix with entries

(κAB
1 ) β

α = V AB

αν V ABνβ , (2.17)

(κAB
2 ) β

α = ABA*
αν ABAνβ∗, (2.18)

(κAB
3 ) β

α = V AB

αν ABAνβ∗. (2.19)
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Counting the different complex matrices κAB
1 , we have: 1) κee1 , 2) κeµ1 , 3)κeτ1 , 4)κµe1 , 5)κµµ1 , 6)κµτ1 ,

7)κτe1 , 8)κτµ1 and 9)κττ1 , the same for κAB
2 and κAB

3 . There are 27 of the matrices. Because their entries

are complex, each matrix with spacetime indices has 32 parameters, for a total of 864 parameters. These

parameters are not independent because the kappa matrices have some properties that follow from the

V AB and AAB definition, shown in Eq. (1.14)

(κAB
1 ) β

α = V AB

αν V ABνβ = (−V AB

βν )(−V ABνα) = (κAB
1 ) α

β , (2.20)

(κAB
2 ) β

α = ABA*

αν ABAνβ∗ = (−ABA*

βν )(−ABAνα∗) = (κAB
2 ) α

β , (2.21)

(κAB
1 ) β

α = V AB

αν V ABνβ = V BA*

αν V BAνβ∗ = (κBA∗
1 ) β

α , (2.22)

(κAB
2 ) β

α = ABA*

αν ABAνβ∗ = (−AAB

αν )(−AABνβ) = (κBA∗
2 ) β

α , (2.23)

(κAB
3 ) β

α = V AB
αν ABAνβ∗ = V BA*

αν (−AABνβ) = −(κBA∗
3 ) β

α . (2.24)

We can deduce from Eqs. (2.22) and (2.23) that (κAB
j )αβ = Re(κAB

j ), for j = 1, 2 and

(κAB
3 )αβ = i Im(κAB

3 ). Because of the spacetime indices, the entire set of matrices consists of 27 ele-

ments, each with 16 real entries. Using cases (2.20) and (2.21), however, a further reduction occurs due to

symmetry in the space of matrix Lorentz representation for κj , where j = 1, 2, resulting in a matrix with

10 real entries. After these considerations, the number of parameters resulting from complex quantities are

Parameters (κAB
1 ) β

α (κAB
2 ) β

α (κAB
3 ) β

α

Number 9× 10 = 90 9× 10 = 90 9× 16 = 144

resulting 324 parameters. In this case, however, the Lorentz violating contributions to AMMs and

EDMs do not contain information on all these parameters. We will demonstrate below that all Lorentz

violating contributions from the Yukawa sector to AMM and EDM emerge as linear combinations of

traces trκAB
j = (κAB

j ) α
α , which are the quantities to be bound.

The total contribution for the lA lepton magnetic and electric form factors, fA
m and fA

d respectively,

come from the sum over those diagrams with virtual lepton flavor conserving, fAA
m,d, and those with virtual

lepton flavor change fAB
m,d, with A 6= B. That is

fA
m = fAA

m +
∑

B 6=A

fAB
m , (2.25)

fA
d = fAA

d +
∑

B 6=A

fAB

d . (2.26)

Every contribution to the electromagnetic form factors is a function of the Lorentz violating coefficients

squared product
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fAA

m = hAA

m,1 V
AA

αν V AAνα + hAA

m,2A
AA*

αν AAAνα∗, (2.27)

fAA

d = hAA

d,3 V
AA

αν AAAνα∗, (2.28)

fAB

m = hAB

m,1 V
AB

αν V ABνα + hAB

m,2A
BA*

αν ABAνα∗, (2.29)

fAB

d = hAB

d,3 V
AB

αν ABAνα∗, (2.30)

where all the hAA, Eqs. (2.27) and (2.28), are functions of mA, q
2,mγ , x, y. For these functions we will

use the mass derivatives method. The other scalar functions hAB, given in Eqs. (2.29) and (2.30), are

functions of mA,mB. For these functions we will use four and five point PaVe Functions. Due to the

invariance of electromagnetic form factors under Lorentz transformations, all Lorentz indices must be

contracted in the squared products of AAB and V AB.

According to the definitions shown in (2.17)-(2.19), observe the following

V AB

αν V ABνα = (κAB
1 ) α

α = trκAB

1 , (2.31)

ABA*

αν ABAνα∗ = (κAB
2 ) α

α = trκAB

2 , (2.32)

V AB
αν ABAνα∗ = (κAB

3 ) α
α = trκAB

3 . (2.33)

That is to say, all of the form factors are functions of the traces trκj with j = 1, 2, 3. The magnetic

form factor is expressed in terms of trκ1 and trκ2, whereas the electric form factor is expressed only in

terms of trκ3.

fAA

m = hAA

m,1 trκ
AA

1 + hAA

m,2 trκ
AA

2 , (2.34)

fAA
d = hAA

d,3 trκAA
3 , (2.35)

fAB

m = hAB

m,1 trκ
AB

1 + hAB

m,2 trκ
BA*

2 , (2.36)

fAB
d = hAB

d,3 trκAB
3 , (2.37)

where the symbol ”tr” denotes, as before, a trace operating on 4 × 4 matrices in the space of matrix

representations of Lorentz transformations. We will use the next two sections to go over the virtual

lepton flavor conservation and changing cases in greater detail.

2.3.1 Virtual lepton flavor conserving case

In this section, we will only look at the squared mass derivative method; it is the same procedure as

explained in Section 2.2.1, but we must take A = B into account. In particular, we will use Eqs. (2.6 -

2.13). Keep in mind that the auxiliary mass mγ must be introduced into the propagator denominator.
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After integrating the analytical expressions of the three diagrams over the four momentum k and

taking the derivative twice with respect to squared-mass m2
j , the h

AA
m,1, h

AA
m,2 and hAA

d,3 functions are given

by

hAA

m,1 =− e3v2
(

47m2
A − 8q2

)

48π2mA (q2 − 4m2
A)

2
B1 +

e3Qfi3v2
(

10m2
A − q2

)

6π2mA (q2 − 4m2
A)

2
B2 −

11e3mAv
2

16π2 (q2 − 4m2
A)

2
B3

− e3mAv
2

8π2m2
A − 2π2q2

C1 +
e3v2

(

10m3
A −mAq

2
)

2π2 (q2 − 4m2
A)

2
C2 −

e3v2
(

124m3
A + 5mAq

2
)

24π2 (q2 − 4m2
A)

2
C3

+
3e3m3

Av
2

π2 (q2 − 4m2
A)

2
C4 −

e3v2
(

68m3
A − 29mAq

2
)

48π2 (4m2
A − q2)

D1 −
e3v2

(

68m3
A − 29mAq

2
)

96π2 (4m2
A − q2)

D2 +
e3v2

8π2m3
A

,

(2.38)

hAA

m,2 =
e3v2

(

47m2
A − 8q2

)

48π2mA (q2 − 4m2
A)

2
B1 −

e3v2
(

10m2
A − q2

)

6π2mA (q2 − 4m2
A)

2
B2 +

11e3mAv
2

16π2 (q2 − 4m2
A)

2
B3 −

5e3mAv
2

24π2 (4m2
A − q2)

C2

+
5e3mAv

2

48π2
D1 +

5e3mAv
2

96π2
D2 +

e3v2

16π2m3
A

, (2.39)

hAA

d,3 =
ie3v2mA

(

m2
A

(

8x2 − 4x(2y + 1) + 4y2 + 1
)

+ q2
(

4x4 − 8x3 + 4x2 + x(2y − 1)− y2
))

8π2(x− y)2 (4m2
A − q2) (m2

A + q2(x− 1)x)
c1

+
ie3v2(1− 2y)2mA

8π2(x− y)2 (4m2
A − q2)

c2 −
ie3v2mA

8π2m2
A − 2π2q2

c3 −
ie3v2(2x− 1)(2y − 1)mA

43π2(x− y)2 (4m2
A − q2)

c4

− ie3v2

8π2mA
c5 +

ie3v2(2x− 1)mA

(

4m2
A + q2(2x− 1)(2y − 1)

)

8π2(x− y) (4m2
A − q2)

d1 +
ie3v2mA

4π2
d2

− ie3v2(2y − 1)mA

(

4m2
A + q2(2x− 1)(2y − 1)

)

8π2(x − y) (4m2
A − q2)

d3 −
ie3v2

16π2m3
A

. (2.40)

The expressions for the PaVe scalar functions B1, B2, B3, C1, C2, C3, C4, D1 and D2 for the magnetic

form factor and c1, c2, c3, c4, c5, d1, d2 and d3 for the electric form factor are

B1 = B0

(

0,m2
A,m

2
A

)

,

B2 = B0

(

m2
A,m

2
A,mγ

2
)

,

B3 = B0

(

q2,m2
A,m

2
A

)

,

C1 = C0

(

0, 0, 0,m2
A,m

2
A,m

2
A

)

,

C2 = C0

(

0,m2
A,m

2
A,m

2
A,m

2
A,mγ

2
)

,

C3 = C0

(

0, q2, q2,m2
A,m

2
A,m

2
A

)

,

C4 = C0

(

m2
A,m

2
A, q

2,m2
A,mγ

2,m2
A

)

,

D1 = D0

(

0, 0, q2, q2, 0, q2,m2
A,m

2
A,m

2
A,m

2
A

)

,

D2 = D0

(

0, q2, 0, q2, q2, q2,m2
A,m

2
A,m

2
A,m

2
A

)

,
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c1 = C0

(

0,−q2x+ q2x2 +m2
A,−q2x+ q2x2 +m2

A,m
2
A,m

2
A,mγ

2
)

,

c2 = C0

(

0,−q2y + q2y2 +m2
A,−q2y + q2y2 +m2

A,m
2
A,m

2
A,mγ

2
)

,

c3 = C0

(

0, q2x2 − 2q2xy + q2y2, q2x2 − 2q2xy + q2y2,m2
A,m

2
A,m

2
A

)

,

c4 = C0

(

−q2x+ q2x2 +m2
A,−q2y + q2y2 +m2

A, q
2x2 − 2q2xy + q2y2,m2

A,mγ
2,m2

A

)

,

c5 = C0

(

0, 0, 0,m2
A,m

2
A,m

2
A

)

,

d1 = D0

(

0, 0,m2
A,−q2x+ q2x2 +m2

A, 0,m
2
A,m

2
A,m

2
A,m

2
A,mγ

2
)

,

d2 = D0

(

0,−q2x+ q2x2 +m2
A,m

2
A, q

2x2 − 2q2xy + q2y2,−q2x+ q2x2 +m2
A, q

2x2 − 2q2xy + q2y2,m2
A,m

2
A,mγ

2,m2
A

)

,

d3 = D0

(

−q2x+ q2x2 +m2
A,m

2
A, 0, q

2x2 − 2q2xy + q2y2, q2x2 − 2q2xy + q2y2,m2
A,m

2
A,mγ

2,m2
A,m

2
A

)

.

There are two key things to say. Because the expressions are shorter at this point, only the result after

applying the squared-mass derivative and evaluating m2
j = m2

A is shown. The expression before applying

the derivative has over two thousand terms, and it is impractical to show it. The other thing to notice

about the expressions (2.38) and (2.39) is that they are independent of x. This is because the loop

integrals of (2.11) and (2.13) are the same, but one has the factor x and the other 1− x. When we sum

both of them, the x factor vanishes.

After parametric integrals shown in (2.38) - (2.40) are carried out, and the on shell condition q2 → 0

which defines the AMM and EDM contributions and mγ → 0 are implemented, the resulting virtual

lepton flavor conserving expressions are

aAA

IR =
e3v2

4π2m2
A

tr

{

−κAA
1

(

∆IR + log
µ2

m2
A

)

+
3

8
(κAA

2 − 5κAA
1 )

}

, (2.41)

dAA

IR =
ie3v2

16π2m3
A

tr

{

−2κAA
3

(

∆IR + log
µ2

m2
A

)

+ 3κAA
3

}

. (2.42)

The presence of IR divergences in the EMMs is explicitly given by the factor ∆IR+log µ2

m2

A

and results

from the virtual photon inside the loop, so these quantities are not observables. However, we will discuss

in the next section how such divergences are expected to disappear from some cross section. Keeping this

in mind, we instead aim to estimate the effects of the finite parts of these quantities on some physical

observable, for which we omit the divergent terms in the following.

aAA
lA =

e3v2

4π2m2
A

tr

{

3

8
(κAA

2 − 5κAA
1 )

}

, (2.43)

dAA

lA =
ie3v2

16π2m3
A

3trκAA
3 . (2.44)
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On the other hand, UV divergences introduced by each contributing loop diagram lie exclusively

within two point scalar functions B0. Using the dimensional regularization approach [111], any scalar

function B0 can be written in form

B0 = ∆UV + (finite terms), (2.45)

where

∆UV =
1

ε
− γE + log

4π

µ2
, (2.46)

diverges as ε = 4 − D → 0 [112]. All B0 functions share the same UV-divergent term ∆UV , so any

difference of the form B
j
0 − Bk

0 , with B
j
0 and Bk

0 denoting different two point scalar functions, is free of

UV divergences. To make the preceding statement clearer, we rewrite hAA
d,1 and hAA

d,2 from the AMM as

follows

hAA
d,1 = f1(B1 − B2) + (f1 + f2)(B2 − B3) + (f1 + f2 + f3)B3, (2.47)

hAA

d,2 = g1(B1 − B2) + (g1 + g2)(B2 − B3) + (g1 + g2 + g3)B3, (2.48)

the scalar functions f1,2,3 and g1,2,3 are those, in Eqs. (2.38) and (2.39), that multiply the PaVe scalar

functions B1,2,3 respectively. We can easily verify that the final terms proportional to B3 are equal to

zero. This ensures that aAA is UV finite because we can express it in terms of the differences B1 − B2

and B2 − B3. The EDM, dAA is UV finite by its own because it is not a function of two point scalar

functions B0.

Infrared divergences

From a mathematical standpoint, we can see that IR divergences appear when a particle has no mass;

for example, the electron self energy expression is

∫

d4k

(2π4)
γµ

i(/q − /k +m)

(q − k)2 −m2 + iε
γµ

1

k2
, (2.49)

we can see that in the limit as k → 0 the integral goes to infinity.

Adding a regulator is a method for removing the IR divergence. In this case, we could, for example,

include a photon mass mγ [97–101]. When we introduce this fictitious photon mass, the singularity

vanishes

∫

d4k

(2π4)
γµ

i(/q − /k +m)

(q − k)2 −m2 + iε
γµ

1

k2 −m2
γ

. (2.50)
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This mass was added to make the loops finite, and it is an example of an IR regulator. The use

of IR regulators is manifested not through differences in Green’s functions at different scales (as with

UV regulators), but through the sum of different types of Green’s functions contributing to the same

observable at the same scale.

Because virtual photon diagrams, shown in Fig. (2.3), are associated with IR divergences, we propose

a fictitious photon mass, mγ too. A point worth noting is that diagrams with two point insertions on

a single virtual fermion line produce IR divergences, as shown in the last two diagrams in Fig. (2.3),

whereas an IR finite diagram has exactly one such insertion in the lepton propagators.

For a moment, consider in the context of the Lorentz invariant QED, the electromagnetic vertex

AµlAlA at one loop. The contributions from quantum electrodynamics to this vertex are parametrized as

= ie

[

γµF1(q
2) + iσµνq

ν F2(q
2)

2ml

]

. (2.51)

Whereas the electric form factor F1(q
2) involves both UV and IR divergences, the magnetic form

factor F2(q
2) is finite in both senses.

The IR divergences can be seen as arising from the incomplete consideration of all the factors in a

cross section. An arbitrary number of soft photons may exist in the final state. That is, IR divergences

are removed at the cross section level rather than directly from the amplitude of this contribution.

So, it can be shown that even though l+Al
−
A → l+Bl

−
B is IR divergent and so is l+Al

−
A → l+Bl

−
Bγ, their sum

is IR finite. For this, consider the QED contributions to the process l+Al
−
A → l+Bl

−
B , the amplitude can be

written as

M2→2 = Mtree
2→2 +Mloop

2→2, (2.52)

the first and second terms correspond to the tree level and loop contributions, respectively. We can

express the loop amplitude contribution in a more convenient way

Mloop
2→2 = MγlAlA

2→2 + ..., (2.53)

where the ellipsis represents the four missing relevant one-loop graphs in QED [101]. The vertex correc-

tion, MγlAlA
2→2 , is

MγlAlA
2→2 =

h

= + . (2.54)

29



CHAPTER 2. ONE LOOP CONTRIBUTIONS TO LEPTON ELECTROMAGNETIC

INTERACTIONS

2.3. ELECTROMAGNETIC FORM FACTORS

The second diagram in Eq. (2.54), representing the counterterm for the first one, is introduced as

part of the renormalization procedure.

Differential cross section contribution of interference terms

dσv = dσinterf
2→2 ∝

∑

spin

[

(

Mtree
2→2

)∗ MγlAlA
2→2 +Mtree

2→2

(

MγlAlA
2→2

)∗]

. (2.55)

where σv, the virtual cross section correction at order e6R, still exhibits IR divergences.

σV =
e2R
8π2

σ0

(

− ln2
m2

γ

Q2
− 3 ln

m2
γ

Q2
− 7

2
+
π2

3

)

, (2.56)

σ0 = e4R/12πQ
2 and Q2 is the photon momentum entering the vertex. The squared logarithm is

characteristic of IR divergences and is called the Sudakov double logarithm.

As we will see, the resolution is such that a cross section is not an observable: only by including con-

tributions from the process with different final states can we find an observable that is independent ofmγ .

Next, we calculate the cross section for bremsstrahlung process, l+Al
−
A → γl+Al

−
A under the assumption

that the final state photon is soft. The tree level amplitude is expressed as Mtree
2→3 = MγlAlA

2→3 + ..., where

MγlAlA
2→3 =

h

+ . (2.57)

The corresponding differential cross section is

dσ2→3 = dσγlAlA
2→3 + ..., (2.58)

with

dσγlAlA
2→3 ∝

∑

spin

|MγlAlA
2→3 |2. (2.59)

Skipping details of the derivation [101], the real emission diagrams give,

σR =
e2R
8π2

σ0

(

ln2
m2

γ

Q2
+ 3 ln

m2
γ

Q2
+ 5− π2

3

)

, (2.60)

anticipating the IR divergence, the calculation was regulated with a photon mass.

We see that all IR divergent terms precisely cancel, from Eqs. (2.60) and (2.56) we are left with
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σR + σV =
3e2R
16π2

σ0. (2.61)

As a result, when we consider both the virtual contribution and the real emission, the IR divergences

cancel. It is also worth noting that the bremsstrahlung diagrams of Eq. (2.57) are created by inserting

the electromagnetic vertex only proportional to γµ in an external line of some tree level diagram

lAlA → lBlB. This is the same Dirac matrix that appears in the IR-divergent form factor F1(q
2) in Eq.

(2.51).

In the case of the mSME contributions considered for this study, IR divergences arise in the magnetic

and electric form factors proportional to 4× 4 matrices σµν and σµνγ5, respectively, defined in the space

of Dirac matrices. This means that such factors are not measurable. We argue that, similarly to the SM

Lorentz conserving case, such IR divergences should vanish at the cross section level, with the help of

bremsstrahlung diagrams containing Lorentz-violating bilinear insertions.

Analogously to the case explained before, consider the one loop Lorentz violating amplitude of lAlA →
lBlB, which, among the whole set of contributing Feynman diagrams, receives contributions from the IR

divergent sum

+ . (2.62)

The bremsstrahlung diagrams, which bear the effects of Lorentz invariance violation caused by SME

bilinear insertions, contribute to lAlA → γlBlB at the tree level:

+ . (2.63)

A soft photon final state is assumed as well. Both sums of diagrams (2.62) and (2.63) are IR divergent.

The part proportional to matrices σµν and σµνγ5 are expected to contribute to differential cross sections

that, when added together, should cancel out all IR divergences, yielding a finite total cross section. The

verification of this statement is the goal of a future ongoing investigation.
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2.3.2 Virtual lepton flavor changing case

In this case, we consider lepton flavor change within the loop, which meansmB 6= mA. We will concentrate

on the procedure that includes the five propagators and calculation of four- and five-point PaVe scalar

functions; this problem was solved using Package X. It is difficult to write all the terms that appear

when we make the loop integral; the magnetic form factor contains approximately 6,000 terms, while

the electric form factor contains approximately 4,000 terms; however, in general, they can be written as

follows.

fAB

m =wAB

m,1A1 + wAB

m,2A2 + wAB

m,3A3 + wAB

m,4B1 + wAB

m,5B2 + wAB

m,6B3 + wAB

m,7B4 + wAB

m,8B5

+ wAB

m,9C1 + wAB

m,10C2 + wAB

m,11C3 + wAB

m,12C4 + wAB

m,13C5 + wAB

m,14D1, (2.64)

fAB

d =wAB

d,1A1 + wAB

m,2A2 + wAB

m,3B1 + wAB

m,4B2 + wAB

m,5B3 + wAB

m,6B4 + wAB

m,7B5

+ wAB

m,8C1 + wAB

m,9C2 + wAB

m,10C3 + wAB

m,11C4 + wAB

m,12C5 + wAB

m,13D1, (2.65)

(2.66)

where

A1 = A0(m
2
A),

A2 = A0(m
2
B),

B1 = B0(q
2,m2

A,m
2
A),

B2 = B0(q
2,m2

B,m
2
B),

B3 = B0(q
2,m2

A,m
2
B),

B4 = B0(m
2
A,m

2
A,m

2
γ),

B5 = B0(m
2
A,m

2
B,m

2
γ),

C1 = C0(m
2
A,m

2
A, 0,m

2
A,m

2
γ ,m

2
A),

C2 = C0(0, q
2, q2,m2

A,m
2
A,m

2
A),

C3 = C0(m
2
A,m

2
A, q

2,m2
A,m

2
γ ,m

2
A),

C4 = C0(m
2
A,m

2
A, q

2,m2
B,m

2
γ ,m

2
B),

C5 = C0(m
2
A,m

2
A, q

2,m2
A,m

2
γ ,m

2
B)

D1 = D0(m
2
A,m

2
A, 0, q

2, q2,m2
A,m

2
A,m

2
γ ,m

2
A,m

2
A).

The scalar functions wAB
m,i = wAB

m,i(trκ
AB
1 , trκAB

2 ,mA,mB,mγ , q
2) with i = 1, ..., 14, and

wAB
d,j = (trκAB

3 ,mA,mB,mγ , q
2) with j = 1, ..., 13.
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After solving the PaVe scalar function, the AMM and EDM are

aAB =
e3v2

192π2m7
A(m

2
A −m2

B)
2
tr

{

(κAB
1 − κAB

2 )

(

34m8
A log

m2
A

m2
B

+ (m2
A −m2

B)
(

−13m4
Am

2
B + 18m2

Am
4
B

+2(−19m4
Am

2
B + 11m2

Am
4
B + 17m6

A − 9m6
B) log

m2
B

m2
B −m2

A

− 39m6
A

))

− 24m3
AmB(κ

AB

1 + κAB

2 )

(

m4
A log

m2
A

m2
B

+
(

m2
A −m2

B

)

(

2
(

m2
A −m2

B

)

log
m2

B

m2
B −m2

A

−m2
A

))}

, (2.67)

dAB =
ie3v2m3

B

4π2m4
A(m

2
A −m2

B)

(

log
m2

B

m2
B −m2

A

+
m2

A

2m2
B

(

∆IR + log
µ2

m2
A

))

trκAB

3 . (2.68)

The corresponding contributions to AMMs are free of both UV and IR divergences, whereas the

resulting EDMs turn out to be IR divergent. After removing such IR divergences, the virtual lepton

flavor changing contributions to AMMs and EDMs are expressed as

aAB

lA =
e3v2

192π2m7
A(m

2
A −m2

B)
2
tr

{

(κAB

1 − κAB

2 )

(

34m8
A log

m2
A

m2
B

+ (m2
A −m2

B)
(

−13m4
Am

2
B + 18m2

Am
4
B

+2(−19m4
Am

2
B + 11m2

Am
4
B + 17m6

A − 9m6
B) log

m2
B

m2
B −m2

A

− 39m6
A

))

− 24m3
AmB(κ

AB
1 + κAB

2 )

(

m4
A log

m2
A

m2
B

+
(

m2
A −m2

B

)

(

2
(

m2
A −m2

B

)

log
m2

B

m2
B −m2

A

−m2
A

))}

, (2.69)

dAB
lA =

ie3v2m3
B

4π2m4
A(m

2
A −m2

B)
log

m2
B

m2
B −m2

A

trκAB

3 . (2.70)

The resulting electromagnetic contributions come from the sum of the Eqs. (2.43)and (2.69) for the

AMM, and (2.44) plus (2.70) for the EDM. The total contributions can be organized as

aSME
lA =

2
∑

j=1

∑

B=e,µ,τ

aAB

j trκAB

j , (2.71)

dSME
lA =

∑

B=e,µ,τ

dAB
3 trκAB

3 . (2.72)
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Chapter 3

Estimations and discussion

The goal of this chapter is to estimate bounds on SME coefficients from the Yukawa sector given in

Eq. (1.15). In order to reduce the number of parameters, we consider scenarios defined by specific

assumptions on Lorentz non conserving coefficients, about which we will talk later.

The intrinsic magnetic moments of elementary particles, which gave rise to the concept of spin, are

subjected to quantum corrections known as AMMs [113]. The difference between the SM contribution

to the AMM of some fermion f , aSMf , and the best experimental measurement currently available, aexpf

is conventionally characterized by the quantity

∆af = aexpf − aSMf . (3.1)

These discrepancies being so tiny can be interpreted as suitable places to look for suppressed new

physics beyond the SM.

Anomalous magnetic moment bounds

• In the cases of the electron and the muon AMMs, the corresponding SM predictions have been

calculated and estimated with remarkable precision [114, 115] whereas experimental studies have

reached exceptional sensitivity [116–118].

For the electron AMM

∆ae = −1.06(082)× 10−12, (3.2)

has been reported [114].

For the muon case [115]
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∆aµ = 249(87)× 10−11. (3.3)

• The much less well known tau lepton AMM was investigated by the authors of Ref. [13], who

analyzed collider data and then determined model independent limits on new physics contributions

to this quantity.

− 0.007 < aNP
τ < 0.005 (3.4)

Electric dipole moment bounds

The EDMs of elementary particles have not been measured ever, so our best experimental knowledge

on the matter consists in bounds.

• The electron EDM de has particularly stringent limits. Experiments with Thallium atoms and

Ytterbium fluoride molecules yielded high sensitivities, resulting in upper bounds on |de| of order
10−27e · cm [119–121]. In addition, the ACME Collaboration reported an improved upper limit at

90% C.L. [122, 123]

|de| < 8.7× 10−29e · cm. (3.5)

• Three analyses aimed at the observation of the muon EDMwere performed and reported in Ref. [124]

by the Muon g−2 Collaboration. This group concluded that the lack of any signal yields the bound,

at 95 % C.L.

|dµ| < 1.8× 10−19e · cm. (3.6)

• An experimental investigation carried out by the Belle Collaboration searched for CP violation

induced by the tau lepton EDM, determining at 95% C.L. the limits [125]

− 2.2× 10−17e · cm < Re(dτ ) < 4.5× 10−17e · cm, (3.7)

− 2.5× 10−17e · cm < Im(dτ ) < 0.8× 10−17e · cm. (3.8)

We use Eqs. (2.71) and (2.72) in order to determine bounds.

3.1 Real and imaginary AMM and EDM

Following Ref. [126] we assume that matrices Vαβ and Aαβ are symmetric in flavor space. Remember

that these matrices are Hermitian and anti Hermitian, respectively, leading to the conclusion:

• Vαβ are real,
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• Aαβ are imaginary.

Therefore, according to the definitions shown in Eqs. (2.17)-(2.19)

• trκAB
1 and trκAB

2 are real,

• trκAB
3 is imaginary.

These properties are crucial because observing the structure of aAA
lA

and dAA
lA

, in Eqs. (2.43) and

(2.44), allows us to conclude that both virtual lepton flavor conserving contributions to EMMs are real.

This seems to be plausible because, in general, we can consider some kind of new physics generating

contributions to the magnetic and/or electric form factors of fermions. The resulting set of electromagnetic

form factors can be divided [104, 105] into the following categories:

• Diagonal electromagnetic form factors, in which external fermions coincide with each other,

AµfAfA. This is the case under consideration in this thesis.

• Transition electromagnetic form factors, characterized by different external fermions, AµfAfB.

If transitions between leptons and quarks are forbidden, each of these fermion types produces

nine magnetic moments and nine electric moments, with each set arranged as a 3 × 3 matrix. All

such matrices, whose diagonal entries are the diagonal moments and whose transition moments act

as nondiagonal components, are conventionally assumed to be Hermitian, which means that diagonal

moments are real but transition moments can be complex.

On the other hand, working with the vertex AµfAfA off shell may introduce thresholds beyond which

imaginary parts of diagonal moments may be induced. It turns out that, despite the fact that AMMs

and EDMs are on shell quantities, electromagnetic moments of unstable particles can have imaginary

parts. The authors of Ref. [127] argued that AMMs and EDMs are guaranteed to be real only when

calculated in the context of Lorentz conserving QED, and they suggested that ad hoc definitions of

these electromagnetic properties should be provided in more general situations. A two loop calculation

included in their discussion demonstrated that even the SM produces complex AMMs and EDMs.

Complex electromagnetic moments has also been mentioned in Refs. [128, 129].

From the explicit expressions provided in Eqs. (2.69) and (2.70) notice that Lorentz non conserving

contributions to charged lepton AMMs and EDMs could be complex, despite the fact that these

electromagnetic moments are not transition like, but rather diagonal moments, and given the fact that

they were calculated on shell. The presence of the logarithm log
m2

B

m2

B
−m2

A

causes this behavior, it is real

if mB > mA or imaginary if mA > mB. The graphs in Figs. (3.1) and (3.2) show how the real and

imaginary parts of coefficients aAB
1 , aAB

2 and dAB
3 behave, these are the scalar functions, in terms of

the virtual lepton mass mB, that multiply trκAB
1 , trκAB

2 , for AMM contribution, and trκAB
3 , for EDM

contribution, respectively. It is only shown for the case A = µ corresponding to external muons, but we

have made sure that an analogous behavior occurs if external leptons le and lτ are considered.
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In these graphs, short dashed curves (brown or purple) represent the real parts of coefficients aµBj ,

with j = 1, 2, 3, while long dashed plots (red or orange) depict imaginary parts of such quantities.

Horizontal solid lines represent the values aµBj = 0. Vertical solid lines are located at value of the muon

mass mµ, corresponding to a mB threshold. Near this line the factors aµBj are either complex or only

real or imaginary quantities.

Both graphs, of AMM, make it evident that the values of lB mass such that mB < mµ yield real and

imaginary contributions, whereas these contributions are only real as long as mB > mµ. In the case of

EDM, for mB < mµ the contribution has real and imaginary parts too, whereas the real part vanishes

for mB > mµ, but its imaginary part remains nonzero. Because the trace trκµB3 is purely imaginary, a

global imaginary factor from this trace should be sufficient to get things right.

In a general context, imaginary parts of one loop amplitudes, if present, usually emerge when some

external field is connected to loop lines corresponding to particles which together are lighter than the

external particle. In the case of the Lorentz violating theory considered in the present investigation, the

insertion of bilinear vertices connecting some external field line to a lighter virtual field line produces a

similar effect.

3.2 Textures

Consider the following 3× 3 matrices

χj =











χee
j χeµ

j χeτ
j

χµe
j χµµ

j χµτ
j

χτe
j χτµ

j χττ
j











≡











tr κeej trκeµj tr κeτj

tr κµej tr κµµj trκµτj

tr κτej tr κτµj tr κττj











. (3.9)

These matrices have nothing to do with transition electromagnetic moments, which have different

flavors for external fermions. They only correspond to diagonal electromagnetic moments and instead

characterize the terms of such quantities in which virtual lepton flavor is preserved or changed.

According to Eqs. (2.71) and (2.72), the contributions from Lorentz violation coefficients to the AMM

of leptons are

aSME
e =

2
∑

j=1

(aeej χ
ee
j + aeµj χeµ

j + aeτj χ
eτ
j ),

aSME
µ =

2
∑

j=1

(aµej χµe
j + aµµj χµµ

j + aµτj χµτ
j ),

aSME
τ =

2
∑

j=1

(aτej χ
τe
j + aτµj χτµ

j + aττj χττ
j ). (3.10)

The EDM are
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Figure 3.1: Factor of traces in muon AMM, aµBlµ , shown in Eq. (2.69), as function of the virtual lepton

mass mB. The upper graph displays aµB1 , the coefficient of trκµB1 , while aµB2 , the coefficient of trκµB2 is

shown in the lower graph.

dSME
e = aee3 χ

ee
3 + aeµ3 χeµ

3 + aeτ3 χ
eτ
3 ,

dSME
µ = aµe3 χµe

3 + aµµ3 χµµ
3 + aµτ3 χµτ

3 ,

dSME
τ = aτe3 χ

τe
3 + aτµ3 χτµ

3 + aττ3 χττ
3 . (3.11)
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Figure 3.2: Factor of trace in muon EDM, dµBlµ , shown in Eq. (2.70), as function of the virtual lepton

mass mB. The graph displays aµB3 , the coefficient of trκµB3 .

Notice that the first rows of matrices χ1, χ2 and χ3 comprise all the SME traces χeB
j = trκeBj neces-

sary to determine the electron AMM and EDM contribution. The same is true for the second and third

rows of the matrices χj , which determine the muon and tau AMMs and EDMs, respectively. Remem-

ber that matrices χ1, χ2 contribute to the AMMs, whereas χ3 contribute to the EDMs of the leptons le,µ,τ .

We demonstrate the following properties using equations (2.22)-(2.24)

χ†
1 = χ1, χ†

2 = χ2, (3.12)

χ†
3 = −χ3. (3.13)

That is, not of all the traces defining the entries of matrices χj are independent. Furthermore, the

previous assumption that V AB
αβ = V BA

αβ and AAB
αβ = ABA

αβ guarantees that χ1 and χ2 are symmetric and

real, whereas χ3 is symmetric and imaginary. Thus, each matrix χj is determined by six independent

parameters χAB
j . Since AMM contributions are given exclusively in terms of χ1 and χ2 these quantities

are determined by 6 × 2 = 12 real traces, whereas EDMs expressed only in terms if χ3 involve 6

independent traces in total.

With these definitions at hand, we can think about scenarios distinguished by matrix textures.
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3.2.1 Quasidiagonal textures

This scenario is defined by the assumption that the diagonal entries of matrices χj are by far dominant,

whereas off-diagonal components of such matrices are practically equal zero, that is χAB
j ≈ 0 for A 6= B.

Then, χj matrices look like

χj ≈











χee
j 0 0

0 χµµ
j 0

0 0 χττ
j ,











(3.14)

So, Eqs. (3.10) and (3.11) are expressed as

aSME
lA ≈ aAA

1 χAA
1 + aAA

2 χAA
2 , (3.15)

dSME
lA ≈ dAA

3 χAA

3 , (3.16)

the repeated flavor indices mean virtual lepton flavor conserving.

In this way we could determine a mSME contribution to AMM aSME
lA

only by two parameters,

(χAA
1 , χAA

2 ), whereas the mSME contribution EDM is given by only one, χAA
3 .

The parameter regions in (χAA
1 , χAA

2 ) space allowed by the current constraints from beyond-SM physics

on AMM are obtained using Eqs. (3.2 - 3.4) as follows

|aAA

1 χAA

1 + aAA

2 χAA

2 | < |∆alA |. (3.17)

Figures (3.3 - 3.5) display this allowed region for the case of SME contributions to the electron, muon

and tau AMM after choosing specific intervals for χ1 and χ2:

• For electron; |χe
1| < 0.73× 10−21 and |χe

2| < 1× 10−21.

• For muon; |χµ
1 | < 0.74× 10−13 and |χµ

2 | < 1× 10−13.

• For tau; |χτ
1 | < 0.5× 10−4 and |χτ

2 | < 1× 10−4.

Figure (3.3) shows that the Lorentz violation coefficient χee
1 is more restricted than χee

2 . For any

value of χee
2 , the trace χee

1 lies within a narrow interval of width ≈ 10.5189× 10−22. Moreover, as long

as Lorentz violation traces χee
2 of order . 10−21 are assumed, the value of χee

1 is more likely to be negative.

From (3.4) we can observe that the trace χµµ
1 lies within a narrow interval of width ≈ 10.63× 10−14

and traces χµµ
2 of order . 10−13 are assumed.

41



CHAPTER 3. ESTIMATIONS AND DISCUSSION

3.2. TEXTURES

-7.3× 10-�� 0 7.3×10
-��

-1.× 10
-��

0

1.×10
-��

χ�
e

χ
�e

Figure 3.3: The allowed region within the parameter space (χe
1, χ

e
2), for quasidegenerate texture, for

|χe
1| < 0.73× 10−21 and |χe

2| < 10−21. We have denoted χee
1 = χe

1
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Figure 3.4: The allowed region within the parameter space (χµ
1 , χ

µ
2 ), for quasidegenerate texture, for

|χµ
1 | < 0.74× 10−13 and |χµ

1 | < 10−13 . We have denoted χµµ
1 = χµ

1

We can deduce from (3.5) that the Lorentz violation coefficients χττ
1 are more restricted than χττ

2 as

the electron and muon cases, but note that the shadowed region is wider that the others, indicating that

χττ
1 is less suppressed than the other leptons.

The table (3.6) contains data for all the leptons. The first rows show the minimum (bottom) and
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Figure 3.5: The allowed region within the parameter space (χτ
1 , χ

τ
2), for quasidegenerate texture, for

|χτ
1 | < 0.5× 10−4 and |χτ

2 | < 10−4. We have denoted χττ
1 = χτ

1

maximum (top) values of χAA
2 with A = e, µ, τ , as shown in Figs. (3.3)-(3.5). The same rows include the

medium values of χAA
1 intervals within the graphs’ allowed regions, which are determined by the fixed

upper and lower χAA
2 parameters.

Bottom Top

χee
2 fixed −1× 10−21 +1× 10−21

⇒ χee
1 −2.01× 10−22 +2.01× 10−22

χµµ
2 fixed −1× 10−13 +1× 10−13

⇒ χµµ
1 −2.12× 10−14 +2.12× 10−14

χττ
2 fixed −1× 10−4 +1× 10−4

⇒ χττ
1 −1.96× 10−5 +1.96× 10−5

Table 3.6: Values of Lorentz-violation parameters χAA
1 and χAA

2 , with A = e, µ, τ , from lepton AMMs

constraints

The determination of the bounds in the case of lepton EDMs is simpler. From Eq. (3.16), each new

physics contribution to dSME
lA

is expressed in terms of only one trace. From the current limits on lepton

EDMs displayed in Eqs. (3.5)-(3.8) we get

|dAA
3 χAA

3 | < |dlA |. (3.18)

Using Eq. (3.18), the following bounds from Lorentz violating parameters are derived
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|χee
3 | < 5.58× 10−27, (3.19)

|χµµ
3 | < 1.02× 10−10, (3.20)

−5.95× 10−5 < −iχττ
3 < 1.21× 10−4. (3.21)

3.2.2 Hermitian matrices Yαβ

Consider a scenario in which Y †
αβ = Yαβ holds. This assumption, as previously stated, results in an

exact cancellation of Lorentz violating coefficients AAB
αβ while leaving nonzero factors V AB

αβ , as shown by

Eqs. (1.14). Under such circumstances, only the matrix χ1 remains nonzero, so the whole set of AMM

contributions is written in terms of six χ1 parameters, as we mention in section (3.2), whereas there are

no contributions to EDMs.

To analize the AMM contributions, we define

∆H
1 =

χeµ
1

χτe
1

, ∆H
2 =

χτe
1

χµτ
1

, (3.22)

in terms of which the new physics contributions, shown in Eqs. (3.10), are written as

aSME
e = aee1 χ

ee
1 + aeµ1 χeµ

1 + aeτ1 χ
eτ
1

= aee1 χ
ee
1 +

χτe
1

χµτ
1

(

aeµ1
χeµ
1

χτe
1

+ aeτ1

)

χµτ
1

= aee1 χ
ee
1 +∆H

2

(

aeµ1 ∆H
1 + aeτ1

)

χµτ
1 , (3.23)

aSME
µ = aµe1 χµe

1 + aµµ1 χµµ
1 + aµτ1 χµτ

1

= aµµ1 χµµ
1 +

(

aeµ1
χeµ
1

χτe
1

χτe
1

χµτ
1

+ aµτ1

)

χµτ
1

= aµµ1 χµµ
1 +

(

aeµ1 ∆H
1 ∆H

2 + aµτ1
)

χµτ
1 , (3.24)

aSME
τ = aτe1 χ

τe
1 + aτµ1 χτµ

1 + aττ1 χττ
1

= aττ1 χττ
1 +

(

aτe1
χτe
1

χµτ
1

+ aτµ1

)

χµτ
1

= aττ1 χττ
1 +

(

aτe1 ∆H
2 + aτµ1

)

χµτ
1 . (3.25)

Each contribution to any lepton flavor A is thus expressed in terms of four parameters: for any flavor

A, three such quantities are the factors ∆H
1 , ∆H

2 and the trace χµτ
1 , while the fourth parameter χAA

1 is

the only one that distinguishes the specific A flavor contribution.

The fact that Eqs. (3.23) - (3.25) share three Lorentz violation parameters helps us to determine

simultaneously the contributions aSME
e , aSME

µ and aSME
τ in terms of them. The way to proceed is
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assigning specific values to ∆H
1 and ∆H

2 and obtain the allowed regions in the spaces (χee
1 , χ

µτ
1 ),

(χµµ
1 , χµτ

1 ), (χττ
1 , χµτ

1 ) for the aSME
e , aSME

µ and aSME
τ , respectively.

The two graphs of Fig. (3.7) display the allowed regions in the space of parameters (χee
1 , χ

µτ
1 ),

determined by the bound on contributions from new physics to the electron AMM

|aee1 χee
1 +∆H

2

(

aeµ1 ∆H
1 + aeτ1

)

χµτ
1 | < |∆ae|, (3.26)

where two scenarios were included, each with a different ∆H
1 value, in order to compare the obtained

allowed regions. In one of them, the value ∆H
1 = 102 was used, while in the other, the value ∆H

1 = 103

was considered. Whereas for each graph the values ∆H
2 = 0.1, 0.2, 0.3 have been taken into account.

We can say something about the graphs shown in Fig. (3.7)

• These graphs show how, in general, the orientations of allowed regions differ for different values of

∆H
2 with fixed ∆H

1 .

• Each graph depicts three allowed regions, which are straight strips with similar widths for each

considered ∆H
2 . In the case of ∆H

1 = 102, the allowed regions are practically indistinguishable from

one another, whereas the shapes of the regions appear to be more sensitive to changes in ∆H
2 as

long as ∆H
1 = 103 is present.

The last statement realized for specific choices of factors ∆H
1 and ∆H

2 should not be interpreted to

be valid in general. To demonstrate this, we present Fig. (3.8) which was realized within the same

parameter region (χee
1 , χ

µτ
1 ) as that of the graphs of Fig. (3.7). In this case, the values ∆H

2 = 1 and

∆H
1 = 15, 150, 1500 have been chosen.

It is worth noting that the largest value of ∆H
2 considered for the graphs shown in Fig. (3.8) results

in an allowed stick region that is narrower, with a clockwise rotated orientation, than the others shown

in Fig. (3.7). As a result, in Fig. (3.8), χµτ
1 is more stringently restricted than χee

1 , as opposite to the

allowed regions of Fig. (3.7).

Concerning the contributions from the SME to the AMM of the muon, in this scenario, the expression

aSME
µ is complex valued, so its modulus, |aSME

µ | has been rather considered to compare it with the bound

from new physics on the muon AMM, Eq. (3.3), which corresponds to an interval of positive values.

|aµµ1 χµµ
1 +

(

aeµ1 ∆H
1 ∆H

2 + aµτ1
)

χµτ
1 | < |∆aµ| (3.27)

The graphs in Fig. (3.9) show the allowed regions in the parameter space (χµµ
1 , χµτ

1 ), obtained from

Eq. (3.27). Because we are analyzing the norm |aSME
µ |, the obtained allowed regions are not straight
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Figure 3.7: Allowed regions in the parameter space (χee
1 , χ

µτ
1 ) within |χee

1 | < 1.7×10−21 and |χµτ
1 | < 10−21.

In his case the value of ∆H
1 was fixed and the value of ∆H

2 was varying.

strips, but rather ovals.
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Figure 3.8: Allowed regions in the parameter space (χee
1 , χ

µτ
1 ) within |χee

1 | < 1.7×10−21 and |χµτ
1 | < 10−21.

In his case the value of ∆H
2 was fixed and the value of ∆H

1 was varying.

We consider values within |χµµ
1 | < 6 × 10−14 for both graphs, whereas vertical axes range along

different intervals: The upper graph vertical axis (with ∆H
1 = 102) runs over |χµτ

1 | < 4.5 × 10−15 the

lower graph, with ∆H
1 = 103 , displays values of the vertical axis within |χµτ

1 | < 4.5× 10−16.

It is worth noting that, for fixed ∆H
1 , increasing the value of the parameter ∆H

2 flattens the ring

along the χµτ
1 axis, with larger values of ∆H

2 corresponding to more restricted allowed regions. So, notice

that the choice ∆H
1 = 103 yields more constrained regions than those corresponding to ∆H

1 = 102.

Finally, we will look at the contributions from the SME to the tau AMM. As was the case in the

previous discussion of the muon case, the SME contribution aSME
τ is a complex valued quantity. As a

result, the modulus |aSME
τ | is taken into account

|aττ1 χττ
1 +

(

aτe1 ∆H
2 + aτµ1

)

χµτ
1 | < |aNP

τ |, (3.28)

which aNP
τ is the most restrictive extreme value of the interval in the expression (3.4). Figure (3.10) serves

as an illustration, it displays one sole graph plotted within |χττ
1 | < 3.6 × 10−5 and |χµτ

1 | < 2.2 × 10−5.

Eq. (3.28) is ∆H
1 independent, so there is no need to include additional graphs to compare regions

associated with different values of the factor ∆H
2 .
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Figure 3.9: Allowed regions in the parameter space (χµµ
1 , χµτ

1 ) within |χµµ
1 | < 6 × 10−14 and |χµτ

1 | <
4.5 × 10−15 (upper graph) or |χµτ

1 | < 4.5 × 10−16 (lower graph). In his case the value of ∆H
1 was fixed

and the value of ∆H
2 was varying.
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Figure 3.10: Allowed regions in the parameter space (χττ
1 , χµτ

1 ) within |χττ
1 | < 3.6 × 10−5 and |χµτ

1 | <
2.2× 10−5.

The graph (3.10)shows that the larger the value of ∆H
2 , the flatter the ellipse along the χµτ

1 axis and,

as a result, the smaller the allowed region in the parameter space (χττ
1 , χµτ

1 ).

Among the le, lµ, lτ mSME AMM contributions, the most stringent constraints on χµτ
1 are set by

|aSME
µ | and are of orders 10−16 to 10−15, we can verify this information in the graphs of Fig. (3.9). The

corresponding allowed intervals are represented by equidistant pairs of horizontal dashed lines from the

horizontal axes. Table (3.11) shows the precise numerical values of these limits which were determined

from lepton AMMs bounds on new physics effects.
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aSME
µ

∆H
1 ∆H

2 |χµτ
1 | <

102 0.1 4.5× 10−15

102 0.2 2.3× 10−15

102 0.3 1.5× 10−15

103 0.1 4.5× 10−16

103 0.2 2.2× 10−16

103 0.3 1.5× 10−16

Table 3.11: The most stringent allowed intervals of χµτ
1 values for different choices of parameters ∆H

1 and

∆H
1 . They were obtained from Fig. (3.9) in the scenario of Hermitian matrices Yαβ .
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Chapter 4

Lorentz violation in nucleon

electromagnetic moments

The theory and calculations presented in the preceding chapters of this thesis can be used to analyze the

EMMs of quarks, which can then be used to define contributions to the EMMs of nucleons.

In this section, we will concentrate on the renormalizable extension of the quark Yukawa sector that

induces LFV via the Higgs boson, which originates in Eq. (1.10)

LSME
Yukawa,q =− 1

2
(HU )

AB

µν Q̄Aφ
cσµνUB − 1

2
(HD)AB

µν Q̄Aφσ
µνDB + h.c. . (4.1)

After spontaneous electroweak symmetry breaking, then yields

LSME
Yukawa,q = −1

2
(v +H)

∑

f=u,d

fA

[

(Yf )
AB
µν PL + (Yf )

BA∗
µν PR

]

σµνfB. (4.2)

Note that quark flavor indices A,B in Eq. (4.2) run over either u, c, t or d, s, b, depending on whether

f = u or f = d.

The dominant diagrams are the same as in the lepton case (see Fig. 2.3), but we must consider

interaction with quarks rather than leptons.

Taking advantage of the property Y AB
αβ = −Y AB

βα , we define the complex electric-like vector

Y AB
0i = eAB

i and the complex magnetic-like vector Y AB
ij = εijkb

AB k, drawing inspiration from the

relationship between electric and magnetic fields and the corresponding electromagnetic strength tensor

Fµν .

Using our calculation of the SME Yukawa sector contributions to quark electromagnetic form factors,

as identified from Eq.(2.16), we write the corresponding contributions to AMMs and EDMs as
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aSME
A =

∑

B

[

ãAB

(

|Re eAB|2 + |RebAB|2
)

+âAB

(

|Im eAB|2 + |ImbAB|2
)]

, (4.3)

dSME
A =

∑

B

d̃AB

(

|Re eAB||ImbAB|+ |RebAB||Im eAB|
)

. (4.4)

Because these electromagnetic contributions are entirely given by real and imaginary parts of Lorentz

violation coefficients eAB and bAB, these are the quantities to be compared with experimental results

and thus to bound, remembering that the original SME coefficients that comprise them are (Hu)
AB
µν and

(Hd)
AB
µν , as introduced in Eq. (4.1).

It is important to mention that we find UV finite results, thought IR divergences remain. As we argued

previously, such divergences are expected to disappear from cross sections, so we will ignore them for the

remainder of our discussion. It should be noted, however, that AMMs and EDMs are not observables,

despite the fact that they can provide estimates of the impact of Lorentz violation on physical processes

involving the quark electromagnetic vertex.

4.1 EMMs of nucleons

To constrain Lorentz violation coefficients, we consider EMMs of nucleons. The Particle Data Group

recommends the following nucleon AMM values [130]:

• µp = 2.7928473446(8)µN [131], for the proton.

• µn = −1.9130427(5)µN [132], for the neutron.

The nuclear magneton is denoted by µN in both expressions. Assuming that new physics

could be as large as the errors in these data, we chose the proton magnetic moment measurement to

constrain SME coefficients because its error is three orders of magnitude smaller than that of the neutron.

In terms of EDMs, the Particle Data Group leans towards

• |dp| < 2.1× 10−25e cm [133], for the proton.

• |dn| < 1.8× 10−26e cm [134], in the case of the neutron.

We use the neutron bound to constrain SME parameters.

Using standard prescriptions, we connect these nucleon EMMs to those of constituent quarks.

ap =
4

3
au − 1

3
ad, (4.5)
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dn =
4

3
dd −

1

3
du. (4.6)

obtaining

aSME
p =

∑

B

4

3

[

ãuB
(

|Re euB|2 + |RebuB|2
)

+ âB
(

|Im euB|2 + |ImbuB|2
)]

−
∑

B

1

3

[

ãdB
(

|Re edB|2 + |RebdB|2
)

+ âB
(

|Im edB|2 + |ImbdB|2
)]

. (4.7)

dSME
n =−

∑

B

1

3
d̃uB

(

|Re euB||ImbuB |+ |RebuB ||Im euB|
)

+
∑

B

4

3
d̃dB

(

|Re edB||ImbdB|+ |RebdB||Im edB|
)

(4.8)

Table 4.1 displays upper bounds on maximal attained sensitivities of the real and imaginary parts of

eAB and bAB derived from our expression for the SME Yukawa sector contribution to the proton AMM.

LVP Bounds

|Re{euu,buu}| 9.028× 10−10

|Im{euu,buu}| 2.019× 10−9

|Re{euc,buc}| 2.541× 10−8

|Im{euc,buc}| 2.546× 10−8

|Re{eut,but}| 9.461× 10−11

|Im{eut,but}| 9.461× 10−11

|Re{edd,bdd}| 9.028× 10−9

|Im{edd,bdd}| 2.019× 10−8

|Re{eds,bds}| 4.320× 10−8

|Im{eds,bds}| 4.550× 10−8

|Re{edb,bdb}| 2.901× 10−7

|Im{edb,bdb}| 2.936× 10−7

Table 4.1: Bounds from the proton AMM on Lorentz violation parameters (LVP) of the minimal SME

Yukawa sector. Re{eAB,bAB} denotes both Re eAB and RebAB, and the same applies for imaginary

parts.

The bounds from the neutron EDM, were calculated in two different ways.

• Consider some fixed quark flavor index u,B or d,B, in the sum defining the EDM contribution in

Eq. (4.8) and assume that all contributions associated with other index combinations vanish. The

remainder of the terms were then bound using experimental data. Table (4.2) displays the resulting

constraints for each fixed u,B or d,B. It is an illustrative method of comparing sensitivities to

SME coefficients of experiments measuring proton AMMs with those aimed at neutron EDMs.
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• In the alternative scenario, assume that all SME parameters |Re eAB|, |RebAB|, |Im eAB|, and

|ImbAB| are nearly equal. Table (4.3) shows the experimental bound for neutron EDM in such

circumstances.

In this section, we calculated the contributions to the EMMs of quarks from the renormalizable SME

Yukawa sector, using the standard prescription for connecting quark EMMs to nucleon EMMs. Our

findings were used to estimate proton and neutron contributions to AMMs and EDMs, which were then

compared to current bounds to yield constraints on SME coefficients that parametrize the effects of

Lorentz violation at low energies. Bounds as stringent as 10−12 have been established.
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EMM Bounds Best

ap
∣

∣1.963|Reeuu|2 + 0.393|Imbuu|2
∣

∣ < 1.6× 10−18

dn 0.970|Reeuu||Imbuu| < 1.8× 10−23 X

ap
∣

∣1.963|Rebuu|2 + 0.393|Imeuu|2
∣

∣ < 1.6× 10−18

dn 0.970|Rebuu||Im euu| < 1.8× 10−23 X

ap
∣

∣2.479|Reeuc|2 − 2.468|Imbuc|2
∣

∣ < 1.6× 10−15

dn 2.037|Reeuc||Imbuc| < 1.8× 10−20 X

ap
∣

∣2.479|Rebuc|2 − 2.468|Imeuc|2
∣

∣ < 1.6× 10−15

dn 2.037|Rebuc||Im euc| < 1.8× 10−20 X

ap
∣

∣1.787|Reeut|2 + 1.787|Imbut|2
∣

∣ < 1.6× 10−20 X

dn 1.497|Reeut||Imbut| < 1.8× 10−18

ap
∣

∣1.787|Rebut|2 + 1.787|Imeut|2
∣

∣ < 1.6× 10−20 X

dn 1.497|Rebut||Im eut| < 1.8× 10−18

ap
∣

∣1.963|Reedd|2 + 0.393|Imbdd|2
∣

∣ < 1.6× 10−16

dn 6.208|Reedd||Imbdd| < 1.8× 10−21 X

ap
∣

∣1.963|Rebdd|2 + 0.393|Imedd|2
∣

∣ < 1.6× 10−16

dn 6.208|Rebdd||Im edd| < 1.8× 10−21 X

ap
∣

∣− 8.575|Reeds|2 + 7.727|Imbds|2
∣

∣ < 1.6× 10−14

dn 4.329|Reeds||Imbds| < 1.8× 10−20 X

ap
∣

∣− 8.575|Rebds|2 + 7.727|Imeds|2
∣

∣ < 1.6× 10−14

dn 4.329|Rebds||Im eds| < 1.8× 10−20 X

ap
∣

∣− 1.901|Reedb|2 + 1.857|Imbdb|2
∣

∣ < 1.6× 10−13

dn 0.990|Reedb||Imbdb| < 1.8× 10−19 X

ap
∣

∣− 1.901|Rebdb|2 + 1.857|Imedb|2
∣

∣ < 1.6× 10−13

dn 0.990|Rebdb||Im edb| < 1.8× 10−19 X

Table 4.2: Comparison of sensitivities to SME coefficients of experimental bounds from the proton AMM

and the neutron EDM.

LVP Bounds

|euu,buu| 4.308× 10−12

|euc,buc| 9.401× 10−11

|eut,but| 1.096× 10−9

|edd,bdd| 1.703× 10−11

|eds,bds| 6.449× 10−11

|edb,bdb| 4.264× 10−10

Table 4.3: Bounds from the neutron EDM on LVPs of the minimal SME Yukawa sector. |eAB,bAB|
denotes both |eAB| and |bAB|.
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Conclusions

The present investigation was carried out in the context established by the Lorentz and CPT violating

Standard Model Extension, an effective field theory that establishes a very general framework for

quantifying the effects to be expected from a higher energy formulation incorporating Lorentz invariance

violation at relatively low energies.

In a perturbative approach, the Lorentz violating interactions generated by the extended Yukawa

sector, after implementation of the Higgs mechanism, yield two point insertions and three point

vertices that induce one loop corrections to the electromagnetic vertex AµlAlA. The loop corrections

involve contributions to both magnetic and electric form factors. These quantities are consistently

Lorentz invariant, the contributions from this new physics emerge for the first time at the second order

in Lorentz-violating coefficients. We identified the leading contributions from Lorentz violation to

anomalous magnetic moments, in terms of trκAB
1 and trκAB

2 , and electric dipole moments, in terms of

trκAB
2 .

Lorentz violation results in ultraviolet finite contributions to anomalous magnetic moments and

electric dipole moments. Despite this, the contributions contain infrared divergences which have been

removed from the contributions to estimate the impact of these interactions on some physical process.

To constrain the Lorentz violating parameters, coming from lepton EMMs, we investigated two

scenarios:

quasidiagonal textures scenario, in which all contributions from Lorentz violation are real. The

electron EDM establishes the most stringent bounds restricting SME coefficients trκeej at the order

10−27, whereas AMMs limits on new physics effects are of order 10−22. The restrictions on the tau lepton

EMM bounds determine the weakest constraints for both electromagnetic moment Lorentz violation

contributions, as expected.

Hermitian Yukawa matrices scenario, here no contributions to electric dipole moments are
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generated, the Lorentz violation contributions to the anomalous magnetic moments of the muon and

the tau lepton, which are unstable particles, have turned out to be complex quantities. The parameter

|trκµτ1 | is the one which has been bounded, its most restrictive limit is as stringent as 10−16.

A summary of the bounds determined in both scenarios is provided in Table (5.1), where “QDT” and

“HYM” are the acronyms for quasidiagonal textures and Hermitian Yukawa matrices, respectively. The

table (5.2) displays the maximum attained sensitivities for the AMMs and EDMs of leptons.

Assumptions EMMs Combinations Bounds

QDT, |trκee2 | < 10−21 aSME
e |tr κee1 | < 7.24× 10−22

QDT, |trκµµ2 | < 10−13 aSME
µ |tr κµµ1 | < 7.26× 10−14

QDT, |tr κττ2 | < 10−4 aSME
τ |tr κττ1 | < 4.98× 10−5

QDT dSME
e |tr κee3 | < 5.58× 10−27

QDT dSME
µ |tr κµµ3 | < 1.02× 10−10

QDT dSME
τ −i trκee3 > −5.95× 10−5

< 1.21× 10−4

HYM, ∆H
1 = 102, ∆H

2 = 0.3 |aSME
µ | |tr κµτ1 | < 1.44× 10−15

HYM, ∆H
1 = 103, ∆H

2 = 0.3 |aSME
µ | |tr κµτ1 | < 1.45× 10−16

Table 5.1: Most restrictive bounds on SME coefficients from the Lorentz violating Yukawa sector.

After calculating the AMM of the proton, we get the most stringent limit, of order ∼ 10−11, which

is established on the SME parameters eut and but, linking the physics of Lorentz invariance violation of

the u and t quarks. The best constraint provided by the neutron EDM is for the quark flavors f = u,

B = t, of the order of ∼ 10−20; this is the only case in which the proton AMM yields the most stringent

limit. With the second analysis, |euu| and |b|uuare limited to values as small as 10−12.
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EMMs Parameters Upper bounds

aSME
e |trκee1 | 5.24× 10−22

|tr κeµ1 | 1.35× 10−19

|trκeτ1 | 2.28× 10−18

|trκee2 | 2.62× 10−21

|tr κeµ2 | 1.36× 10−19

|trκeτ2 | 2.28× 10−18

aSME
µ |tr κµe1 | 4.12× 10−14

|trκµµ1 | 5.26× 10−14

|tr κµτ1 | 1.05× 10−12

|tr κµe2 | 4.21× 10−14

|trκµµ2 | 2.63× 10−13

|tr κµτ2 | 1.18× 10−12

aSME
τ |trκτe1 | 2.36× 10−5

|tr κτµ1 | 2.15× 10−5

|trκττ1 | 2.99× 10−5

|trκτe2 | 2.37× 10−5

|tr κτµ2 | 2.64× 10−5

|trκττ2 | 1.49× 10−4

dSME
e |trκee3 | 1.12× 10−26

|tr κeµ3 | 8.65× 10−25

|trκeτ3 | 1.46× 10−23

dSME
µ |tr κµe3 | 6.09× 10−5

|trκµµ3 | 1.02× 10−10

|tr κµτ3 | 1.28× 10−9

dSME
τ |trκτe3 | 1.19× 105

|tr κτµ3 | 3.47× 10−2

|trκττ3 | 6.31× 10−5

Table 5.2: Most restrictive bounds on SME coefficients from the Lorentz violating Yukawa sector.
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[37] V. A. Kostelecký and M. Mewes, Phys. Rev. D 88, 096006 (2013).

[38] T. Mariz, J. R. Nascimento, A. Yu Petrov, and H. Belich, J. Phys. Commun. 1, 045011 (2017).

[39] R. Casaca, M. M. Ferreira, L. Lisboa-Santos, F. E. P. dos Santos, and M. Schreck, Phys. Rev. D 97,

115043 (2018).

[40] M. M. Ferreira, L. Lisboa, R. V. Maluf, and M. Schreck, Phys. Rev. D 100, 055036 (2019).

[41] R. Potting, Journal of physics: Conference Series, 447, 012009 (2013).

[42] A. Connes and D. Kreimer, Commun. Math. Phys. 199, 203 (1998).
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[71] V. A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87, 251304 (2001).
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[92] V.A. Kostelecký and R. Lehnert, Phys. Rev. D 63, 065008 (2001).

[93] D. Colladay and P. McDonald, J. Math. Phys. 43, 3554 (2002).

[94] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).



[95] P. W. Higgs, Phys. Lett. 12, 132 (1964).

[96] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[97] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Perseus, Reading,

1995.

[98] T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford University Press,

Oxford, 1988.

[99] C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University

Press, New York, 2007.

[100] P. Langacker, The Standard Model and Beyond, Taylor and Francis Group, Boca Raton, 2010.

[101] M. D Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, New

York, 2014.

[102] J. Montaño, H. Novales, et al., e-Print arXiv:2107.12444v1.

[103] W. Hollik, J. I. Illana, S. Rigolin, C. Schappacher, and D. Stckinger, Nucl. Phys. B 551, 3 (1999).

[104] M. Nowakowski, E. A. Paschos, and J. M. Rodŕıguez, Eur. J. Phys. 26, 545 (2005).
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