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This paper presents an artificial intelligence (AI) based edge processing real-time maintenance
system for the purposes of industrial manufacturing control and diagnostics. The system is
evaluated in a soybean processing manufacturing facility to identify abnormalities and possible
breakdown situations, prevent damage, reduce maintenance costs, and increase production
productivity. The system can be used in any other manufacturing or chemical processing facility
that make use of motors rotating equipment in different process phases. The system combines
condition monitoring, fault detection, and diagnosis using machine learning (ML) and deep
learning (DL) algorithms. These algorithms are used with data resulting from the continuous
monitoring of relevant production equipment and motor parameters, such as temperature,
vibration, sound/noise, and current/voltage. The condition monitoring integrates intelligent
Industrial Internet of Things (IIoT) devices with multiple sensors combined with AI-based
techniques and edge processing. This is done to identify the parameter modifications and
distinctive patterns that occur before a failure and predict forthcoming failure modes before they
arise. The data from production equipment/motors is collected wirelessly using different
communication protocols - such as Bluetooth low energy (BLE), Long range wide area
network (LoRaWAN), and Wi-Fi - and aggregated into an edge computing processing unit
via several gateways. TheAI-based algorithms are embedded in the processing unit at the edge,
allowing the prediction and intelligent control of the production equipment/motor parameters.
IIoT devices for environmental sensing, vibration, temperaturemonitoring, and sound/ultrasound
detection are used with embedded signal processing that runs on an ARM Cortex-M4
microcontroller. These devices are connected through either wired or wireless protocols.
The system described addresses the components necessary for implementing the
predictive maintenance (PdM) strategy in soybean industrial processing manufacturing
environments. Additionally, it includes new elements that broaden the possibilities for
prescriptive maintenance (PsM) developments to be made. The type of ML or DL
techniques and algorithms used in maintenance modeling is dictated by the application and
available data. The approach presented combines multiple data sources that improve the
accuracy of conditionmonitoring and prediction. DLmethods further increase the accuracy and
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require interpretable and efficient methods as well as the availability of significant amounts of
(labeled) data.

Keywords: industrial internet of things, artificial intelligence, predictive maintainance, industry 5.0, machine
learning, deep learning, AI-based processing, edge processing

1 INTRODUCTION

Soybean is a nutrient-dense legume containing the essential
amino acid profile and providing high protein content that
makes soybean used as a food and feed ingredient. Typical
soybean parameters are protein (46–48%), fat (max. 1%),
moisture (max. 13%), sand/silica (max. 1%), crude fiber (max.
6%), etc. (Van Eys, 2012). Soybean seed chemical composition
makes it possible through specific chemical processes to separate
from soybean production three main products, crude vegetable
oil, lecithin, and defatted meal as illustrated in Figure 1.

The soybean chemical processing involves equipment/motors
used in different production phases. One of the most critical
equipment to monitor is the motor running the hammer mill
located in the crushing area of the production line. Two parallel
hammer mills are used for crushing the lumps in the soybean
meal. When hammers and shafts are worn, the vibration and
sound parameters are changing that can indicate an imminent
accident. Measuring the parameters of motors/equipment (e.g.,
vibration, temperature, sound, current/voltage, etc.) in soybean
production lines requires monitoring and acquisition devices as
data sources for analysis and maintenance.

Today, two essential maintenance strategies are applied in the
food manufacturing processes. Corrective maintenance considers

all maintenance actions that are allocated and completed after a
failure (e.g., reacting to a system failure and correcting it).
Proactive maintenance addresses the routine functionality
checks to identify upcoming faults and predict failures before
their occurrence.

Predictive and prescriptive maintenance approaches are part
of the proactive maintenance strategies that take advantage of the
latest technological developments in edge computing, AI, and
IIoT. PdM (Hashemian, 2011) focuses on extending degradation
mechanism knowledge and expanding the degradation
propagation into the future to forecast system failures. This
approach utilizes the knowledge and pattern discovery
methodology. It also combines insights from degradation in
past events with foreseen operating conditions in the future,
and this supports a maintenance decision-making process. PsM
applies degradation prediction information and extends the scope
of the maintenance decision-making process beyond the motor/
equipment itself.

One data source for maintenance operations is represented by
IIoT devices that monitors the vibration of the motors and
equipment. The vibration analysis techniques include the
vibration measurement and its interpretation. Vibration signals
are measured using 3-axis microelectromechanical systems
(MEMS) based accelerometer sensors in the time domain.

FIGURE 1 | Soybean processing flow to produce oil, meal and lecithin.
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These signals are subsequently converted into the frequency
domain through fast Fourier transform (FFT) processing, and
the information is passed to the AI-based algorithms. When the
motors and equipment are operating correctly, vibration is
constant with a relatively small amplitude. When faults
develop and the dynamic processes in the motors and
equipment change, the vibration spectrum also changes,
triggering the AI-based model to detect the deviations.

The tasks of PdM are closely related to modeling a
system’s normal behavior and detecting deviations, also
known as anomalies, which may point to present or
evolving failures. Anomalies translate to significant
information regarding the health status of the motors and
equipment, and anomaly detection can be achieved, for
example, through classification or clustering. Fault
detection, diagnosis and condition monitoring (Avenas
et al., 2015) are critical for early diagnosis, and an
anomaly detection is a common approach for fault
detection (Vishwakarma et al., 2017). Considering the
taxonomy of error, fault, and failure, an anomaly can be
regarded as a potential error. An error, however, is caused by
a fault, which may cause a failure. Consequently, anomaly
detection may point to a fault and can be used for condition-
based PdM. An overview of data-, model- and knowledge-
driven predictive methods and a data-driven approach based
on industrial data acquisition, edge processing, and
decision-making is presented by (Ran et al., 2019). The
data-driven methods are using signal processing
techniques to analyze the signal for data modeling,
including time-domain, frequency-domain, and time-
frequency domain approaches. The frequency-domain
approach, such as the Fourier-based analysis is used as an
additional method for analyzing the vibration signals.

The system development includes a learning process
(i.e., model training) that is based on historical raw sensor
signals as well as an inference process where the trained AI-
based model is exposed to real-time data to predict targets and
make decisions. These phases include sub-processes, such as
IIoT data acquisition and pre-processing feature engineering
(e.g., feature extraction, concatenation, and selection) and AI-
based model training and prediction. The data-driven PdM
system is applied to industrial soybean processing
manufacturing facilities. Different algorithms (Artificial
Neural Network (ANN), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN)) have been
considered.

This paper is organized into six main sections. The
introduction is included in Section 1. The evolution of the
PdM and PsM and the description of data-, model- and
knowledge-driven predictive methods are presented in
Section 2. Section 3 describes the intelligent real-time
edge processing maintenance system architecture and
design. The integration at the edge of the different ML and
DL algorithms is described in Section 4. Section 5 addresses
the experimental setup, the specific experiments performed,
and the results that were achieved. Section 6 discusses future
research challenges and presents the key open issues related

to AI techniques and methods in implementing industrial
PdM and PsM systems.

2 EVOLUTION OF THE PREDICTIVE AND
PRESCRIPTIVE MAINTENANCE IN
INDUSTRY 5.0 APPLICATIONS
The goal of maintenance for soybean production is to improve
the performance, safety, and reliability of equipment. Motor
failure may occur for a range of reasons such as loose
bearings, misalignment, corrosion etc.

Traditional approaches to maintenance, such as reactive
maintenance (RM) and preventive maintenance (PvM), are
gradually being replaced by PdM solutions, which is based on
continuous monitoring of the condition of equipment using IIoT
devices to collect real-time signals and to identify trends in motor/
equipment behavior. It is then possible to predict failures using
prediction tools, models, and algorithms. This paper presents an
AI-based edge processing real-time maintenance system for
controlling and diagnosing industrial manufacturing equipment.
This approach reduces unscheduled downtime of motors in the
production line via early detection of potential motor faults. The
system can be further tuned to improve energy efficiency by
monitoring and controlling loads and operating conditions.

There are several approaches to PdM solutions for industrial
processes (Jimenez et al., 2020). These approaches are
described below.

First, knowledge-based models are built on experience and
reflect in rules, facts, or cases that have been collected during
previous operation and maintenance of the motors or equipment.
This approach is mainly used in diagnostic systems that use rule-,
case-, and fuzzy knowledge-based models for prognosis.

Data-driven models use historical data and real-time data
collected by sensors, IIoT devices, etc., to develop a model of
normal system behavior. Data-driven approaches implement
statistical (Carden and Fanning, 2004), stochastic, and ML or
DL. Managing the uncertainty inherent in these collected data is a
challenge for data-driven (Dai and Gao, 2013) models; however,
this uncertainty can be mitigated by probability calculations.

Physics or model-based approaches uses the laws of physics to
assess component degradation. This approach incorporates a
physical understanding of the target equipment and develops
models to represent the system’s behavior. This approach models
the physical behavior of the equipment and relies on the accuracy
of simulations to measure degradation in specific components,
systems, equipment, or motors.

Hybrid models combine different approaches in a multi-model
solution. These models address complex PdM tasks by optimizing
the type and amount of information and/or data sources and the
number of targeted diagnostics and predictive elements.

Electric motors and equipment are sources of noise and
vibration. This noise and vibration can be used as a diagnostic
tool in industrial maintenance. Noise and vibration associated
with electrical issues are caused primarily by the action of unequal
electromagnetic forces on the motor’s stator or rotor. Common
causes of unequal magnetic forces include open or shorted rotor
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and stator windings and other inter-turn winding faults, broken
rotor bars, static and/or dynamic air gap eccentricity, uneven air
gap flux distribution, unbalanced current phases, torque
oscillations, or pulses and magnetostriction.

Vibration and noise in electric motors may occur due to
mechanical, electromagnetic, or aerodynamic causes.
Mechanical problems typically involve defective bearings,
imbalance, looseness, misalignment, or end winding damage
due to mechanical shock, impact, or wear. Aerodynamic
problems typically involve ventilation fans and may include
discrete blade passing frequencies (BPF), resonant motor
housings, or broadband turbulence.

The electromagnetic content of a noise or a vibration signal
can be determined if the signal disappears immediately when the
machine is switched off. A low-frequency narrowband analysis of
the bearing vibration signal (Jin et al., 2014) can identify the shaft
rotational frequency. The 50 Hz discrete frequency corresponds
to the frequency of the electrical supply and the harmonic of the
shaft rotational frequency. The discrete low-frequency
component (around 3 Hz) is associated with base motion,
specifically the induction motor unit and a centrifugal pump
that is mounted on a steel mezzanine floor over a cooling pond.

PdM solutions can monitor vibrations, noise or sound,
ultrasonic signals, temperature and thermography, and electric
parameters (e.g., current, voltage, load) to collect data from
industrial equipment/motors. Three types of accelerometers
are used to measure vibrations: piezoelectric, piezoresistive,
and MEMS.

Piezoelectric accelerometers usually use lead zirconate titanate
(PZT) to sense vibrations and produce an electric charge that is
converted to an electrical output under acceleration. Piezoelectric
accelerometers have very low noise and can be used on a three-
axis or single axis measurement setup. Piezoelectric
accelerometers are AC coupled and cannot measure the
gravity vector or sustained acceleration. A three-axis
piezoelectric sensor that measures vibration in the x, y, and z
directions can be used to measure tangential motion or vibration
in the axis of rotation. Several mechanical forces in rotating
machines (e.g., soft footing) produce tangential motions in the
casing that need to be measured and analyzed. Piezoelectric
accelerometers are used extensively in applications that require
broad temperature tolerance or that vibrate above 50 g.
Piezoelectric accelerometers require external analog-to-digital
converters (ADCs) and pre-processing hardware, which
increases the cost and the size of these sensors.

Piezoresistive accelerometers use a strain gauge to measure
changes to resistance under acceleration. The piezoresistive strain
gauge requires amplification and temperature compensation. The
sensors are DC coupled and have an extensive bandwidth (0 Hz
to several thousand hertz). The signal output can be integrated to
calculate velocity and displacement during shock events.

MEMS accelerometers are micromachined components that
measure capacitive changes under acceleration. TheMEMS based
sensors are DC coupled and have low-power consumption.

Advances in the performance of capacitive MEMS
accelerometer sensors make them comparable to piezoelectric
accelerometer sensors while retaining their advantages of lower

costs, higher integration, and industrial tolerance. These advances
include the integration of ADCs, filters, and embedded processing
building blocks for ML.

Vibration can be used to monitor and diagnose the condition
of industrial equipment for PdM, and detect problems such as
load imbalance, misalignment, and ball-bearing failures. New
approaches can use the amplitude and frequency of a vibration to
determine the type of failure.

Different standards have been developed for the sensor
systems used to monitor vibrations; these standards provide
guidelines for the use of vibration to monitor industrial
equipment and motors. The ISO 2954:2012 standard (ISO
2954, 2012) specifies the minimum vibration intensity that a
vibration measurement instrument must be able to detect. The
ISO 20816 standard series (ISO 20816-1, 2016) that follows the
ISO 10816 (Gomez, 2020) establishes conditions and procedures
for measuring and evaluating vibrations frommotors/equipment.
It defines a vibration severity standard that uses the Root Mean
Square (RMS) velocity in Hz of the installed motor’s housing as a
condition indicator. The measured vibration from the machine is
classified based on machine size, mounting strategy, and
machine class.

The draft standard ISO/DIS 20816-3 (ISO/DIS 20816-3, 2022)
document defines the general requirements for evaluating the
vibration of various coupled industrial motor classes with a power
above 15 kW and operating speeds (revolutions per minute (rpm)
between 120 rpm and 30,000 rpm when measurements are made
stationary. The non-rotating and rotating parts of industrial
motors are measured under normal operating conditions, and
the standard provides guidelines for evaluating these
measurements. The guidelines call for steady vibration and
define acceptable changes in vibration amplitude during use.

Different motor-specific statistical deviations of measured
vibrations and compare the results to that of acceptable limit-
values provided by ISO/DIS 20816-3, and is applied to vibration
measurement of medium-sized industrial electric motors in
group 2 powered above 15 kW up to 300 kW and speed range
from 120 to 15,000 rpm with rigid motor supports. The vibration
zone boundaries are defined by the standard. The limits apply to
the RMS values of vibration velocity and displacement in the
frequency range from 10 Hz to 1,000 Hz. The velocity limit for
medium-sized motor of 45 kW with rigid support is up to
2.8 mm/s for unrestricted operation as presented in Figure 2.

The PdM system presented in this paper uses different
approaches that include statistical calculations, time/frequency
domain analysis, ML and DL techniques for vibration signals
processing.

The vibrations indicate motors unbalance, eccentricity,
turbulence, resonance problems, misalignment of couplings
and bearings, worn gears or bearings, rubbing, bent/cracked
shafts, fan blade defects, defective/misadjusted drive belts/
chains, sleeve-bearing problems, and mechanical looseness/
weakness (Selcuk, 2016).

Vibration analysis can be used for detecting and identifying
problems by having vibration pattern of the normal operating
motor/equipment used as reference and then comparing and
sorting subsequent patterns.
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Statistical time domain parameters such as peak, velocity and
acceleration RMS, standard deviation, skewness, kurtosis, crest-,
factor are used for describing the vibration signals (Wang et al.,
2020).

Frequency-domain parameters offer additional information
for fault diagnosis (Javed et al., 2015). The vibration signals are
transformed by applying the FFT, decomposing the signal into its
different frequencies. Approaches such as time dependent
frequency analysis, short-time Fourier transform, continuous
and discrete wavelet transform are used for analyzing the
vibration signals.

AI systems use data, knowledge, and algorithms to simulate
cognitive functions and learn and solve problems independently.
Different clasifications and definitions of AI and machine
intelligence are presented in Vermesan (2020).

Edge ML for IIoT applications can be applied across edge at
micro-, deep- and meta-edge devices by adapting the ML model
for inference capabilities (e.g., microcontroller, embedded
processing unit, PLC, gateway, micro-server, on-premises

server, etc.). These devices have different process capabilities,
and the MLmodel must be scaled to fit the processing capabilities
of the edge device. Model compression techniques are used to
satisfy memory and runtime requirements. Tools like TensorFlow
Lite (TensorFlow), PyTorch Mobile (PyTorch), and ONNX
Runtime (ONNX) are deployed to optimize the model’s
memory footprint and runtime using techniques such as layer
fusion, quantization and pruning. However, fine-tuning the ML
model on industrial edge devices is challenging. This process
requires several iterations and checks to ensure that the edge
devices have the computing and local storage capabilities to run
the model training process in a reasonable amount of time.

DL uses a complex structure of algorithms modelled on neural
networks (NNs). DL algorithms are seen as the mathematically
complex evolution of ML algorithms. DL describes algorithms
that analyze data with a logic structure through supervised and
unsupervised learning using a layered topology of artificial NNs.
DL requires large amounts of data and computing power. The
development of transfer learning techniques—for example, using

FIGURE 2 | ISO/DIS 20816–3 Guidelines for vibration monitoring.
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pre-trained models—can reduce the amount of data that are
required.

Feature extraction and classification in the DL algorithm are
done in the same phase because the features are extracted
automatically, and the algorithm learns from the errors.

3 INTELLIGENT REAL-TIME EDGE
PROCESSING MAINTENANCE SYSTEM
ARCHITECTURE AND DESIGN
The intelligent real-time edge-processing maintenance system is
implemented using a layered architecture composed of several
layers, which are described in the following paragraphs. The
layers include IIoT devices, communication networks, intelligent
edge-computing units, analytics, and prediction and decision-
making components and functions. The approach supports the
development of AI-driven IoT autonomous capabilities and
increases the decision abilities of IoT edge devices, creating
new business scenarios that incorporate the use of intelligent
things into traditional manual and semiautomated tasks such as
PdM (Vermesan and Bacquet, 2020; AI4DI).

The communication networks provide data transfer using
different wireless protocols such as Bluetooth, Wi-Fi and
LoRaWAN. The wireless protocol stack IEEE 802.15.1 (IEEE
802.15.1, 2005) is used for Bluetooth communication by
deploying IIoT sensors connected to a gateway via Bluetooth.
The raw condition data from the IIoT sensors is transmitted to a
secure server to be processed and analyzed.

The Bluetooth IIoT devices operate within the 2.4 GHz radio
range and use frequency hopping to enable the sensor devices to
transmit RF signals in industrial environments where motors
under monitoring are located. The IIoT devices integrate the
sensors (vibration, temperature, etc.) and a system-on-chip
processing unit that combines an Arm® processor with a
floating-point unit (FPU), with a 2.4 GHz multiprotocol radio
(supporting Bluetooth software). The Bluetooth IIoT devices are
connected to an industrial-grade Bluetooth gateway with
communication backhaul options for Wi-Fi and Ethernet.

The wireless protocol stack IEEE 802.11a/b/g/n/ac/ax, point-to-
point/star/cluster-tree (IEEE 802.11ax, 2021), in the ISM 2.4 GHz
band is used for the Wi-Fi IIoT sensors and gateway. TheWi-Fi IIoT
sensors are optimized to boost the radio link quality in industrial
environments subject to random and diverse disturbances using two
omnidirectional antennas that can assure a line-of-sight (LOS)
maximum radio range of tens of meters. As the IIoT sensor nodes
are operated in industrial environments (soybean production facility),
the radio range is extended by adding Wi-Fi bridges/repeaters.

The LoRaWAN, Low Power, Wide Area (LPWA) networking
protocol is used to enable several battery-operated IIoT sensors to
connect wirelessly, forming a network architecture deployed in a
star-of-stars topology where the gateways dispatch messages
between IIoT devices and a central network server.

The LoRaWAN platform has a layered topology comprising
five layers: an IIoT device layer, a gateway layer, a network layer,
an application layer, and a processing/analysis layer. The IIoT
device layer is part of the micro-edge implementation and

includes the sensors (three-axis vibration, temperature,
humidity, etc.), the microprocessor, LoRaWAN wireless
communication modules, and the embedded software and/or
operating system.

The gateway layer is part of the deep-edge implementation and
includes the LoRa concentrator and the host microcontroller unit
(MCU). The LoRa concentrator entitles the gateway to receive
and transmit LoRa messages and contains a LoRa baseband
processor and two front-end chips. The LoRaWAN frequency
band used is EU868 (863–870 Mhz). Different options were
evaluated for LoRaWAN system communication backhaul,
including Wi-Fi, Ethernet, and cellular.

The evaluation process has included LoRaWAN gateways
connected online using a network server deployed by a third
party or integrated into the gateway. An integrated LoRaWAN
gateway solution stacked on a single-board computer is under
evaluation.

As part of the LoRa architecture, the network layer ensures
communication between devices and gateways, and between
gateways and network servers and application servers. The
application layer includes the application server, which
provides the information related to the gateways/devices
profiles, categorizes the types of data based on properties of
sensors, and stores data in a database. The processing/analysis
layer can be used for applying AI/ML techniques for situation
analysis. This layer utilizes all the information provided by the
network and information layers by synthesizing information
from multiple sources over time and identifying the events,
the context, and the situation. ML and other AI techniques
can learn and identify abnormal situations using the data
collected.

The PdM architecture deployed considers that the IIoT sub-
systems are connected to different edge gateways. The
information collected from the various IIoT devices is
aggregated to an on-premises edge server, as presented in
Figure 3. The proposed edge computing solution improves the
performance, security, operating cost, and reliability of IIoT and
AI-based platform, applications, and services.

The system design is based on a heterogeneous wireless sensor
network that consists of sensor nodes and IIoT devices with
different communication interfaces, computing processing,
sensing range and AI-based capabilities.

In industrial environments using real-time communication,
the coverage area of wireless devices, their radio channel
characteristics, and the reliability of the data may suffer from
noise, co-channel interferences, strong vibrations, and
interferences from other devices using ISM bands, among
other limitations. The signal strength may be severely affected
by the reflections from the walls (multi-path propagation),
interferences from other devices using ISM bands
(863–870 MHz or 2.4–2.5 GHz), and the noise generated from
the equipment or heavy machinery. It is essential to maintain data
integrity under these conditions.

The implementation solution presented in this paper
addresses the wireless network performance requirements,
including latency and reliability, and design as part of an edge
processing concept to leverage the computing and storage
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capabilities of edge IIoT wireless devices. IIoT edge devices are
optimally deployed to locations across the factory floor and
placed on the motors/equipment, with several gateways and
wireless repeaters implemented to address network overload,
latency, and interference.

The gateway placement for protocols such as Bluetooth, Wi-Fi
and LoRaWAN considers different characteristics of industrial
systems, such as the wireless channel, fading, multi-path, and
performance requirements. The traffic for monitoring IIoT
devices and gateways in this implementation is characterized by
small packets and relatively small communication distances that
ensure the latency, bandwidth, and throughput to reliably collect
and monitor the parameters for the motors/equipment. For
example, three gateways collect data from 32 IIoT nodes spread
across the production facility for Bluetooth communication.

Adopting edge processing using several IIoT devices
associated with maintenance tasks that may have various
latency and reliability requirements was part of the design.
The optimal assignment of wireless gateways was adapted to
the dynamic environment of intelligent soybean manufacturing
systems to reduce interference, improve the monitoring and
control of IIoT devices, and reduce time delay, data dropout,
or transmission congestion. In this context, a preliminary
inspection of the site was performed for Wi-Fi connectivity,
and an analysis of the load on different channels was
conducted. For the deployment, the channel with a lower load
was selected for each IIoT device.

The PdM implementation performs maintenance based on the
motors/equipment health status indicators. The edge computing

approach is integrated and interfaced with industrial supervisory
control and data acquisition (SCADA) infrastructure and linked
through the historian component. The processing at the edge and
the AI deployment use the data stored in the historian unit linked
to the industrial SCADA system.

4 EDGE INTELLIGENCE INTEGRATION

The implementation and integration of data-driven PdM and
edge intelligence follow the phases of the design methodology
framework presented in Figure 4:

• Operational analysis and assessment.
• Data collection and acquisition.
• Feature engineering
• AI modeling
• Edge processing

The operational analysis and evaluation include the
operating conditions of the motors/equipment,
environmental restrictions on data acquisition, time cost
(e.g., PdM system design and development, debugging,
deployment), economic costs (e.g., research and
development, SW/HW implementation, testing).

The data collection and acquisition include the conversion and
processing the signals from the IIoT sensors into data and
information to be modeled by AI-based techniques. The PdM
system performance depends on the efficient design and

FIGURE 3 | An intelligent real-time edge processing maintenance system for industrial manufacturing.
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implementation of the components covered by the functions
integrated in this phase.

The feature engineering phase implements the signal functions
by implementing functional module for time-, frequency- and
time-frequency domain analysis.

The AI modelling phase includes the AI model selection
(based on the model complexity, target processing unit,
computing resources), model training (supervised,
unsupervised, labeled/unlabeled data) and the model
prediction (with requirements such as time-efficiency, accuracy).

An essential feature of the proposed solution is that the model
training is carried out at the edge (micro-, deep-, meta-), and the
computing power and energy requirements are aligned with the
computing power and storage capacity of the edge devices. For
the model to be deployed on edge devices, such as an intelligent
IIoT node, edge gateway, or edge server, the model is developed to
optimize computing resources.

Activating AI processing loads at the micro-edge (sensors/
actuators and chips/microcontrollers) level makes various data
collection processes faster and more data rich. The transition to
the AI-embedded circuit technologies allows for offloading of
network-data-carrying loads while providing edge real-time
information, processing, and analytics.

Activating AI processing loads at the micro-edge level system
on a chip (SoC) allows implementation of intelligent distributed
IIoT device architectures that distribute, and offload data-
processing loads to different layers of application architecture
across the edge continuum, improving data management and
processing and optimizing communication bandwidth.
Manufacturing processes powered by AI-enabled decisions at
the edge, use edge AI circuits as part of the more extensive
industrial system integrated into upstream and downstream
operations.

Integrating AI software and hardware stacks into industrial
processes has many challenges, including AI model-building,
programming AI-based SoCs and deploying these systems to
various industrial applications. Edge IIoT architecture integrates
AI methods/algorithms to pre-process information in real-time at
the edge and transfer relevant and valuable data to industrial
processes.

The PdM design methodology framework is used as the basis
for the AI-based edge processing real-time maintenance system
for industrial manufacturing control and diagnostics, which will
be integrated into several layers that map to the functional
domains of the high-level reference hybrid system’s
architecture. The AI-based edge processing real-time
maintenance system layers are:

• Physical layer
• Control layer
• Signal analysis layer
• Prediction layer
• Decision-making layer

Several parameters (e.g., vibration, temperature, sound,
current, rotating speed) are monitored as input signals to
represent the performance of the motor/equipment. By using
the vibration signal to perceive the status of the motor/
equipment, vibration monitoring is considered appropriate for
identifying failure. When correlated with electric signals, the
vibration information can precisely identify defects in the
motor or equipment operations.

The accelerometer signals are pre-processed, and depending on
the application, different analysis techniques in time, frequency, and
time-frequency domains are applied to acceleration and velocity
signals to extract valuable intelligence about the motor condition.

FIGURE 4 | Design methodology framework for PdM edge intelligence integration.
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Signal data analysis and engineering processing includes data
processing in the time, frequency, and wavelet domains as
illustrated in Figure 5.

Time series forecasting refers to the estimation of parameters
that change over time. These parameters are measured until
instant t and the value that will be predicted is instant t + dt.
Typically, variable of interest measurements can be obtained at
regular intervals, making it possible to predict future values. In a
time-series, it is common to identify the following:

• Trends or long-term increase/decrease in values. Seasonal
phenomena, or phenomena that determine changes in
values over time, that constantly repeat the same duration.

• Cyclical phenomena, which push fluctuating increase/
decrease in values, that do not always have the same
duration (i.e., they are not periodic).

One of the most important things to understand when
analyzing data is the relationship between the measured
quantities. The time-domain analysis of the signals measured
by the IIoT devices on motors/equipment makes use of several
statistical time-domain features, such as:

• Acceleration peak (g)
• Velocity RMS (mm/s)
• Acceleration RMS (g)
• Displacement (µm)
• Standard deviation
• Kurtosis
• Crest factor
• Skewness

The time domain statistical parameters, equations and
description is presented in Table 1.

The vibration RMS velocity technique determines the
vibration signal’s trends over time. As machines wear, their
vibration velocity increases, and monitoring RMS velocity
trends provides an indicator of wear that is compared to pre-
determined thresholds, signaling the need for maintenance.
Acceleration is compared to pre-determined thresholds to
detect bending or breakage in mechanisms for motors. Many
defects typically display periodic “spikes” in the signal, and
identifying trends, such as increasing acceleration or instability
in the acceleration profile over time, are indicators of wear and
damage.

Because these features examine the probability density
function (PDF) of the signal, which changes when the
condition of the motor/equipment changes, the skewness
and kurtosis can be affected accordingly. Skewness
measures whether the signal is negatively or positively
skewed, and kurtosis measures the peak value of the PDF
and indicates whether the signal is an impulse in nature (e.g.,
a shock signal).

Normal operation motor vibration signals have a normal
distribution and a skewness value of zero. While kurtosis is
calculated from the peak of the PDF of the vibration signal,
skewness is obtained from the mean value of the PDF of the
vibration signal. The kurtosis value of the normal motor’s
vibration signal is around three, and the skewness value is
approximately zero. When the PDF of the vibration signal
changes due to faults/failures, the kurtosis increases to a value
greater than three, and the skewness shifts to a negative or
positive value.

The entropy of the vibration signal can be calculated as the
histogram of the PDF, and it measures the degree of randomness
in the vibration signal. Based on the features mentioned above,
several of the following non-dimensional features can be
calculated (Caesarendra and Tjahjowidodo, 2017):

FIGURE 5 | Signal data analysis, engineering processing and AI-based model building flow.
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• The shape factor, defined as the RMS divided by the mean,
represents a value affected by an object’s shape but
independent of its dimensions.

• The crest factor, defined as the standard deviation divided
by the RMS, calculates how much impact happens during
the rolling element and tread contact.

Using a FFT to convert the acceleration and velocity data from
the time domain to the frequency domain offers more detailed
insights into motor conditions. For instance, a strong signal at a
single frequency related to the rotation rate can indicate an

imbalance or bent shaft in motors. General looseness or a
broken gear tooth can be impacted by introducing different
harmonic content. A strong signal amplitude modulated by a
lower frequency is a diagnostic tool for gear mesh analysis and
can be identified by examining the frequency domain.

The Fourier transform is defined as:

F(ω) � F(f(t)) � ∫+∞

−∞
f(t)eiωtdt

Where ω frequency, and F (ω) the frequency-dependent
Fourier transform and t representing time, f (t) the time-
dependent function.

The FFT is an algorithm that computes the discrete Fourier
transform (Heckbert, 1998; Seryasat et al., 2010). In order to deal
with large amount of sampling vibration data, short time Fourier
transform (STFT) analysis that combines time domain with
frequency domain to analyze the vibration characteristics of
the target points in a long period and wavelet transform (WT)
is used (Zhu et al., 2014).

Depending on the motor’s design, the sensor bandwidth of
the vibration accelerometers ranges from 0.1 Hz to 5–10 kHz
for synchronous AC motors with speeds up to 3,600 rpm and
DC motors with speeds from 10 to 7,000 rpm or more. As
changes in the acceleration reading or temperature accumulate
throughout the velocity data integration, vibration monitoring
sensors must have good stability over time and across
temperatures. The vibration sensor should be as small as
possible to maximize the options for placement on the
monitored motors/equipment. The vibration sensor’s mass
should be low to prevent it from affecting the motors’
vibration characteristics.

5 EXPERIMENTAL SETUP

The experimental set-up comprises the physical/field part,
including the equipment and motors, and the IIoT devices
mounted on the motors. The system is intended to monitor
electric motors such as such as AEG AM 225MX4 (hammer mill/
crushing) with the following characteristics: 45 kW power, 220/
380 V, 150/87A, 50 Hz, and ~1,500 rpm; and ABBHXR 315 4 B3/
HXUR 638G2 B3 (preparation/conditioning) with the following
characteristics: 200 kW power, 380/220 V, 360/624 A, 50 Hz, and
~1,500 rpm. In the set-up for the proof-of-concept, smaller
motors with lower vibration frequency characteristics have
been installed on the lab bench.

The PdM demonstrator performs maintenance based on the
health status indicators of the motors and equipment. The IIoT-
based sensors are used tomeasure unusual patterns of the motors’
parameters, such as vibration level, temperature, and current
consumption. Based on experience, such distinctive patterns can
precede potential failures.

The sensor integrated into the IIoT device (Sensor Tile
Wireless Industrial Node, 2022) used in the experiments is a
three-axis MEMS accelerometer that contains three ultrawide
bandwidth (DC to 6 kHz) acceleration sensors, a 12-bit analog-

TABLE 1 | Time domain statistical parameters.

Parameter Equation Description

Peak xp � max |xi | Represents the maximum value of a signal

Mean
�x � 1

N ∑N
i�1
xi

Represents the average value of a signal

Standard
deviation xstd �

�����������
1
N ∑N
i�1
(xi − �x)2

√
Statistical metric defining the amount of
variation in the signal, that is independent
of DC bias. A low value indicates that the
values tend to be more concentrated and
closer to the mean, while a high value
indicates that the values tend to spread
out over a wider range

RMS
xrms �

������
1
N ∑N
i�1
x2i

√
Root Mean Square (RMS) or the quadratic
mean is the square root of the mean
square (the arithmetic mean of the squares
of a set of values). RMS can be calculated
from the power spectral density of a signal
(Seryasat et al., 2010)

Kurtosis
xkur �

1
N∑N

i�1(xi−�x)4
x4std

Quantifies the peak value of the probability
density function. Statistical parameter that
allows to analyze the distribution of the
vibratory amplitudes contained in a time
domain signal. It corresponds to the
moment of fourth order norm. For a
Gaussian distribution, its value is 3.
Kurtosis indicates heavy-tailed or light-
tailed datasets in comparison to a normal
distribution. Datasets with high Kurtosis
tend to have outliers (Dron et al., 2004)

Crest factor CF � xp
xrms

Corresponds to the ratio between the
crest value (maximum absolute value
reached by the function representative of
the signal during the considered period of
time) and the RMS value (efficient value) of
the signal (Dron et al., 2004)

Skewness
xske �

1
N∑N

i�1(xi−�x)3
x3std

Quantifies the asymmetry behavior of a
vibration signal through its probability
density function. The skewness is a metric
of symmetry in a dataset. A dataset is
symmetric if it looks the same to the left
and right of the center point. A normal
distribution has a skewness of 0. Negative
skew value illustrates that the distribution
concentrates at the right. Positive skew
value illustrates that the distribution
concentrates at the left (Singh, 2021)

Where xi is a digital signal series, i = 1, 2, ......, N; N is the number of elements of the digital
signal.
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to-digital converter, a user-configurable digital filter chain, a
temperature sensor, and a serial peripheral interface. The
MEMS accelerometer sensor operates from 2.1 to 3.6 V with a
low current consumption of 1.1 mA. The operating temperature
ranges from −40°C to +105°C, and the MEMS vibration sensor
has a selectable sensitivity (±2, ±4, ±8, or ±16 g) that can be
tailored to a range of application requirements.

There is another three-axis MEMS accelerometer in the same
IIoT device and a three-axis gyrometer for six degrees of motion
sensing, including an inter-integrated circuit interface, sensor
hub capability, a 9 Kbyte first in, first out algorithm, a
programmable finite state machine for data processing, and
the core blocks for ML.

The processing capabilities of the IIoT device are ensured by
an Arm® Cortex®-M4 processor with environmental sensing,
vibration monitoring and sound/ultrasound detection. It also
features a debugger, a floating-point unit to handle the
processing, embedded signal processing libraries running on
an STM32 ARM Cortex-M4 microcontroller. The module can
be powered externally or by an internal lithium-ion battery. The
module has BLE and Wi-Fi connectivity. The multi-sensor IIoT
device is illustrated in Figure 6.

STM32 ARM Cortex M-based boards allow AI/ML to
integrate easily and cost effectively. They can run
autonomously at the edge with no cloud connection, which
provides privacy data security and optimizes latency.

5.1 Fusing the Predictive Maintenance
Application with Machine/Deep Learning
In the previous sections, the PdM application was described using
statistical and predictive modeling techniques to identify patterns
in historical data and capture the relationships among the

relevant parameters and factors. This process allowed to assess
the capabilities and risks associated with PdM.

In this section, the process is extended by applying ML to real-
time measurements of selected key parameters to assess the
current and future functioning. The fusing of the PdM
application with ML/DL is shown in Figure 7. The fusing
encompasses all the steps in the pipeline generation based on
the sensor data, including feature extraction and selection, model
creation, training, and classification.

Two AI solutions for fusing were designed, one with ML and
the other with DL.

The ML solution creates untrained ML models to be
embedded in MCUs, running unsupervised learning
algorithms directly on the target microcontroller. Given that
the training process is integrated within the device, restrictions
may apply. Several optimizing and configuration features are
therefore available, such as limiting random access memory
(RAM) and flash memory, frequency filtering, flash memory
optimization, generation of alternative candidates and selection
of the best model candidate. A microcontroller emulator can be
used to test and debug the model before deployment on the
device.

The DL solution creates pretrained NN models with
frameworks such as Tensorflow, Keras, or ONNX and
converts them into optimized code for the MCUs. It can also
optimize memory usage during runtime and run large NNs by
storing weights and activation buffers in external flash memory
and RAM, respectively.

Both solutions are standalone, end-to-end solutions for
anomaly detection and classification tasks, but they are
complementary rather than mutually exclusive. The ML
solution is based on unsupervised algorithms and is
completely automated. As it skips the complexity of full

FIGURE 6 | STWIN sensor tile wireless industrial node.
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pipeline generation based on the data, it is intended as a rapid
prototyping system. The DL solution, on the contrary, follows all
the step, including building and training the NN. Both solutions
generate optimized code to be included in the microcontroller
application, and both run on-device inference and display output.

5.2Machine Learning Solution for Predictive
Maintenance
In short, anomaly detection withML solution provides a dynamic
model to detect anomalies in the PdM system. Based on the
sensor data representing both normal and abnormal behavior, a
set of model candidates is generated using variousML algorithms,
and the best one regarding accuracy, confidence and memory
usage is selected. Accuracy reflects the candidate’s ability to
correctly identify normal signals as normal behavior and
abnormal signals as abnormal behavior, whereas confidence
reflects the candidate’s ability to separate the two.

The generation process for the best candidates can be stopped
any time after achieving satisfactory results; however, it is
recommended that the process runs as long as the accuracy
and confidence are lower than 80%. For example, the selected
candidate for the PdM application has an accuracy of 98.95%,
confidence 80.1%, RAM 5.7kB + Buffer 6.2kB and Flash 13.2 kB.

The selected model can be installed on multiple systems
mounted on different motors. Each model will learn its
motor’s behavior and create a distinct trained model, as
motors have different behaviors. During the inference step, the
models take the vibrations coming from the motors as input and
are able to identify and report anomalies correctly.

The models will function based on a state machine, as shown
in Figure 8.

The model functions for the “init,” “learning” and “detection”
states are called in the main loop. After initialization, the model
runs a predefined number of training cycles, after which, it

switches to inference mode and is ready to detect anomalies as
required by the PdM application. The model can be programmed
to retrain, either periodically or with a user interrupt callback.

The ML model was implemented with NanoEdge AI Studio
(https://www.st.com/en/development-tools/nanoedgeaistudio.
html), following the flowchart as shown in Figure 9.

The flow steps in the chart are detailed in the following text:.
At the start, if any memory restrictions exist, the maximum
amount of RAM and flash can be set.

For the logging of sensor data, a simple datalogger code
was generated that reads and logs the raw sensor data directly
on the serial port of the processing device, so that logs can be
retrieved from a computer using serial tools such as Tera
Term or from the console of the integrated development
environment (IDE).

The signals for normal and abnormal behavior can be
imported from different sources, and all settings can be
configured in the graphical user interface (GUI); no code
writing is required at this stage. Different configurations exist
in terms of data format, sensor inputs and using a serial interface
or secure digital (SD) card to store the data. The signals can be
visualized as shown in Figure 10, in both temporal and frequency
plots for the accelerometer Z-axis.

Depending on project constraints, the buffer size, signal
lengths, and sampling frequencies will vary. For the 3-axis
sensor, a collection of 100 signals was acquired for each
normal and abnormal behavior, at a baud rate at 115,200 bps
and with a buffer size of 512 samples on each axis, in total 1,536
values per signal. With a sampling frequency of 1,667 Hz, each
buffer represents a temporal signal of ~300 ms, which is sufficient
to capture the essence of motor vibration patterns.

Filter settings were activated in the signal pre-processing
steps. By providing filtering, only the frequencies that
represent the characteristics of the motor vibration are kept,
and the rest are attenuated. Filtering techniques also help

FIGURE 7 | Fusing the PdM application with ML/DL.
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eliminate high-frequency noise that interferes with the
vibration signal.

As shown in Figure 10, the signals can be visualized in both
the temporal and frequency plots for the accelerometer
Z-axis.

The graph’s x-axis corresponds to the number of samples
(512), while the y-values contain an indication of the mean
value of each sample across all 100 signals, their min-max
values, and their standard deviation.

The abnormal signal was acquired by applying a variation to the
load of the motor. During inference, it was recognized as an anomaly.
Another variation, not seen before, has also been applied, leading to
the similarity dropping instantly while an anomaly occurs as expected.

It is important to note that these signalsmainly provide context for
the automatic search for the most efficient algorithms and
optimization for target AI-based embedded systems during
benchmarking. The model is trained on the target directly, where
only the “normal” behaviors are learned.

FIGURE 8 | ML model state machine diagram.

FIGURE 9 | Flow chart for implementation of an AI-based model with NanoEdge AI Studio.
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Based on the collected data, the benchmarking process
starts searching through a pool of ML algorithms and tests
combinations of three elements: preprocessing, principal
component analysis (PCA), model using algorithms such as
K-Means, random forest (RF), support vector machines
(SVM), and hyper-parameters for each model. Each
combination is a library that is evaluated for balanced
accuracy, confidence and memory usage, and the results
provide a ranking of these libraries.

Each library has its own emulator, which allows for easy
testing with real data to determine if it provides acceptable
results, without the need to download, link or compile. If the
library functions as expected, it can be deployed and downloaded
in the form of a library and header file. The firmware wrapped
with the generated files is then compiled and flashed onto the
microcontroller target. A snapshot from the anomaly detection is
shown in Figure 11.

5.3 Deep Learning Solution for Predictive
Maintenance
In short, anomaly detection with a DL solution entails a model
generated and trained using a ML framework being input into a
model converter or code generator in order to deploy it on the
embedded device. Various converters are available to reduce the
size and other resource requirements so that models developed
using high-end APIs can be deployed on boards.

For the implementation of the AI/DL solution, code
generation was chosen in which the model is translated into a
low-level programming language more suitable for embedded
devices in terms of performance. Inferences can be made with
high accuracy while also accounting for limited resources; the
generated files and NN library are thenmerged with the firmware,
compiled, and flashed onto the target microcontroller.

For the DL model, different architectures were considered,
with the final choice being convolutional neural network (CNN)

FIGURE 10 | Visualization of normal (A) and abnormal (B) signals.

FIGURE 11 | Model benchmarking and snapshot from the inference state.
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architecture (Jing et al., 2017; Kiangala andWang, 2020; Silva and
Capretz, 2019). CNNs combine the feature extraction process and
the classification of the extracted features in the same algorithm,
which was one of the decisive factors in its selection. This
advantage emerges from the capability extracting knowledge
from raw data. CNNs usually present a structured pattern of
layers, combining successive convolutional layers with ReLU
(rectified linear unity as activation function) and pooling
layers. The convolution operation performed by the
convolutional layer is the feature extractor, which is a filter
(also known as a kernel) that slides over data, combining
information (Jing et al., 2017).

The CNN architecture for the PdM proof-of-concept is a
sequential model, with one input and output layer and four
hidden layers: one convolution layer, one pooling layer, and
two dense layers (Figure 12).

The input layer is a one-dimensional time series sensor data,
comprising of motor vibrations along the X,Y,Z axis. In the
convolution layer, the appropriate number and size of the
convolution kernel performs one dimensional convolution
operations. Using ReLU as the activation function, vanishing
gradient problem is avoided and better computation performance
is obtained. The max-pooling layer is appended to the
convolutional layer and carries out a 2 × 1 max-pooling
operation. In the flatten layer, the extracted features from
output of the max-pooling convolution layer are extended to a
one-dimensional vector. A dropout operation with a ratio set to
0.3 is executed after the first dense layer. It randomly selects and
deletes neurons from the model in order to form a random subset
of the neurons, solve the overfitting problem, and enhanced the
generalization ability of the NNmodel. The output layer contains
4 neurons. Using softmax as the activation function, one normal
behavior and three types of abnormal behavior are identified after
training.

The model was implemented in Python using Keras, with the
layers designed and added one-by-one. For the purpose of
supervised learning, the sensor data was classified with one

normal behavior and three types of abnormal behavior, for a
total of four classes. The trained model was saved in an open-
source HDF5/H5.h5 file (Hierarchical Data Format version 5).

The conversion into optimized C code was implemented with
STM32 Cube AI, an extension of the CubeMX tool, which offers
simple and efficient interoperability with ML frameworks. The
state machine consists mainly of two states with two functions
“init” and “process”, respectively, with the former initializing the
NN model and the latter being a continuously running function
for collecting raw data from the sensors on board and making
inferences in real-time.

The fusion of PdM application with AI/DL solution is shown
in Figure 13.

An overview of the NN model is given in Figure 12, showing
the required memory needed to store the model and how many
multiply-and-accumulate (MAC) operations are required.

Various experiments were conducted with both TensorFlow
Lite and Cube. AI on the same model as described above. The
results show that the latter is faster and requires less flash and
RAM than the former (Figure 14).

Summing up, for anomaly detection based on sensor
measurements, such as vibrations, current consumption and
temperature variations, ML algorithms (such as RF, SVM) are
very efficient and easy to configure, and they can be trained on the
target directly. Moreover, minimal amount of data input is
needed to select the proper algorithm.

The results also showed that the combination of CNNwith the
optimization outperformed traditional ML techniques (RF,
SVM). The model created by the AI/DL solution achieved
accuracy rates as high as 98% for one of the datasets and 95%
for the other. As with any other DL, the DL solution for PdM
requires more investment than ML solutions.

The ML solution was implemented with NanoEdge AI Studio,
whereas the DL solution was implemented with CUBE. AI. The
former is a useful toolkit to test the ML solution and using proper
input signal capturing and formatting and correctly selecting the
generated libraries, it is possible to obtain useful results for the

FIGURE 12 | CNN architecture and the overview of the NN model.
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PdM application. The latter has proven to be a useful toolkit for
implementing the DL solution, due to interoperability with
various ML frameworks.

In addition to anomaly detection, for the implementation of
the DL solution, more features have been considered:
classification, which enables automatic identification of a
machine state among many different possible states and
extrapolation, which uses mathematical regression models in
order to estimate a target value using other known features.
The classification library can be used on top of the anomaly
detection library to determine the source of the problem after an
anomaly has been detected. The extrapolation library can be used
to predict future behavior. The insight and results will be valuable
for the DL solution.

It is important to note that the above frameworks, although
designed for the food processing industry, can be applied to other

manufacturing sectors, chemical engineering plants, or similar
facilities involving motors and equipment that are in need
of PdM.

6 FUTURE RESEARCH CHALLENGES IN
INTELLIGENT MAINTENANCE SYSTEMS
FOR INDUSTRIAL MANUFACTURING,
CONTROL, AND DIAGNOSTICS

This section discusses various current open research and
innovation topics and provides recommendations for future
research directions on different issues related to intelligent
maintenance systems for industrial manufacturing, control,
and diagnostics.

FIGURE 13 | The fusion of PdM application with AI/DL solution.

FIGURE 14 | Comparison of results using a model converter (TensorFlow Lite) and code generator (Cube.AI).
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Continued research on developing new algorithms for multi-
sensors and multi-protocol techniques for data analytics using
ML and DL is needed especially for PdM solutions that require
considerable amounts of data to train extensive neural networks.
This implies that the development of robust algorithms that use
small-scale datasets that can provide similar accuracy as those
that rely on more comprehensive datasets is necessary.

Developing techniques to enhance the scalability and model
migration across devices in the edge continuum from micro-,
deep-, and meta-edge is another important topic. These features
are essential for a trained model to ensure enhanced applicability
when applied to other devices at the edge, thus simplifying the
PdM design process.

Another future research area is related to the dataset structure
and the requirement to balance the feature of datasets used in PdM
solutions using ML and DL algorithms. This issue is important
because many challenges need to be addressed when handling
mechanical and electrical data that are measured from the motors/
equipment, such as the accuracy, availability, and quality. In this
context, the balance between the observed data volume for normal
operations of the motors/equipment that far exceeds the practical
data volume for an anomalous operation is a critical issue. This
imbalance between the two creates problems in model training,
which requiresmore data under fault status scenarios to construct a
more balanced complete dataset.

The significance of data to AI-based algorithm’s performance is
self-evident. In this context, further research is needed to implement
less complex acquisition systems based on IIoT devices at the edge
using datasets originating from the actual industrial operating
motors/equipment in addition to the public datasets provided by
a few open-source platforms. The use of in situ datasets improves the
fine-tuning of the AI-based model and helps solve practical
problems in industrial manufacturing more efficiently.

Unsupervised learning based on training the AI-based model
with unlabeled data in PdM implementations is another

significant research direction in the future. The existing AI
solutions mainly focus on supervised learning that requires
datasets to be uniquely labeled.

Further research is needed to study the efficiency of the AI-
based models used in PdM applications, the benchmarking tools
for evaluating these models, and the consequences of
misdiagnosis.

The misdiagnosis and mitigation actions that address a certain
degree of loss or breakdown of the system under maintenance are
essential elements that must be evaluated to provide safe and
reliable industrial PdM systems.
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