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Abstract. In this paper, we present HTAD: A Home Tasks Activities
Dataset. The dataset contains wrist-accelerometer and audio data from
people performing at-home tasks such as sweeping, brushing teeth, wash-
ing hands, or watching TV. These activities represent a subset of activi-
ties that are needed to be able to live independently. Being able to detect
activities with wearable devices in real-time is important for the realiza-
tion of assistive technologies with applications in different domains such
as elderly care and mental health monitoring. Preliminary results show
that using machine learning with the presented dataset leads to promis-
ing results, but also there is still improvement potential. By making this
dataset public, researchers can test different machine learning algorithms
for activity recognition, especially, sensor data fusion methods.

Keywords: Activity recognition · Dataset · Accelerometer · Audio ·
Sensor fusion.

1 Introduction

Automatic monitoring of human physical activities has become of great interest
in the last years since it provides contextual and behavioral information about a
user without explicit user feedback. Being able to automatically detect human ac-
tivities in a continuous unobtrusive manner is of special interest for applications
in sports [16], recommendation systems, and elderly care, to name a few. For
example, appropriate music playlists can be recommended based on the user’s
current activity (exercising, working, studying, etc.) [21]. Elderly people at an
early stage of dementia could also benefit from these systems, like by monitoring
their hygiene-related activities (showering, washing hands, or brush teeth) and
sending reminder messages when appropriate [19]. Human activity recognition
(HAR) also has the potential for mental health care applications [11] since it can
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be used to detect sedentary behaviors [4], and it has been shown that there is
an important association between depression and sedentarism [5]. Recently, the
use of wearable sensors has become the most common approach to recognizing
physical activities because of its unobtrusiveness and ubiquity, specifically, the
use of accelerometers [9, 15, 17], because they are already embedded in several
commonly used devices like smartphones, smart-watches, fitness bracelets, etc.

In this paper, we present HTAD: a Home Tasks Activities Dataset. The
dataset was collected using a wrist accelerometer and audio recordings. The
dataset contains data for common home tasks activities like sweeping, brushing
teeth, watching TV, washing hands, etc. To protect users’ privacy, we only include
audio data after feature extraction. For accelerometer data, we include the raw
data and the extracted features.

There are already several related datasets in the literature. For example, the
epic-kitchens dataset includes several hours of first-person videos of activities
performed in kitchens [6]. Another dataset, presented by Bruno et al., has 14
activities of daily living collected with a wrist-worn accelerometer [3]. Despite
the fact that there are many activity datasets, it is still difficult to find one with
both: wrist-acceleration and audio. The authors in [20] developed an application
capable of collecting and labeling data from smartphones and wrist-watches.
Their app can collect data from several sensors, including inertial and audio.
The authors released a dataset6 that includes 2 participants and point to another
website (http://extrasensory.ucsd.edu) that contains data from 60 participants.
However, the link to the website was not working at the present date (August-
10-2020). Even though the present dataset was collected by 3 volunteers, and
thus, is a small one compared to others, we think that it is useful for the activity
recognition community and other researchers interested in wearable sensor data
processing. The dataset can be used for machine learning classification problems,
especially those that involve the fusion of different modalities such as sensor and
audio data. This dataset can be used to test data fusion methods [13] and used
as a starting point towards detecting more types of activities in home settings.
Furthermore, the dataset can potentially be combined with other public datasets
to test the effect of using heterogeneous types of devices and sensors.

This paper is organized as following: In section 2, we describe the data collec-
tion process. Section 3 details the feature extraction process, both, for accelerom-
eter and audio data. In section 4, the structure of the dataset is explained. Sec-
tion 5 presents baseline experiments with the dataset, and finally in section 6,
we present the conclusions.

2 Dataset Details

The dataset can be downloaded via: https://osf.io/4dnh8/
The home-tasks data were collected by 3 individuals. They were 1 female and

2 males with ages ranging from 25 to 30. The subjects were asked to perform 7

6 https://www.kaggle.com/yvaizman/the-extrasensory-dataset

https://osf.io/4dnh8/


Title Suppressed Due to Excessive Length 3

scripted home-task activities including: mop floor, sweep floor, type on computer
keyboard, brush teeth, wash hands, eat chips and watch TV. The eat chips activity
was conducted with a bag of chips. Each individual performed each activity for
approximately 3 minutes. If the activity lasted less than 3 minutes, an additional
trial was conducted until the 3 minutes were completed. The volunteers used a
wrist-band (Microsoft Band 2) and a smartphone (Sony XPERIA) to collect the
data.

The subjects wore the wrist-band in their dominant hand. The accelerometer
data was collected using the wrist-band internal accelerometer. Figure 1 shows
the actual device used. The inertial sensor captures motion from the x, y, and
z axes, and the sampling rate was set to 31 Hz. Moreover, the environmental
sound was captured using the microphone of a smartphone. The audio sampling
rate was set at 8000 Hz. The smartphone was placed on a table in the same
room where the activity was taking place.

An in-house developed app was programmed to collect the data. The app runs
on the Android operating system. The user interface consists of a dropdown list
from which the subject can select the home-task. The wrist-band transfers the
captured sensor data and timestamps over Bluetooth to the smartphone. All the
inertial data is stored in a plain text format.

Fig. 1. Wrist-band watch.

3 Feature extraction

In order to extract the accelerometer and audio features, the original raw sig-
nals were divided into non-overlapping 3 second segments. The segments are not
overlapped. A three second window was chosen because, according to Banos et
al. [2], this is a typical value for activity recognition systems. They did compre-
hensive tests by trying different segments sizes and they concluded that small
segments produce better results compared to longer ones. From each segment, a
set of features were calculated which are known as feature vectors or instances.
Each instance is characterized by the audio and accelerometer features. In the
following section, we provide details about how the features were extracted.
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3.1 Accelerometer features

From the inertial sensor readings, 16 measurements were computed including:
The mean, standard deviation, max value for all the x, y and z axes, pearson
correlation among pairs of axes (xy, xz, and yz), mean magnitude, standard
deviation of the magnitude, the magnitude area under the curve (AUC, Eq. 1)
, and magnitude mean differences between consecutive readings (Eq. 2). The
magnitude of the signal characterizes the overall contribution of acceleration
of x, y and z. (Eq. 3). Those features were selected based on previous related
works [7, 10,23].

AUC =

T∑
t=1

magnitude(t) (1)

meandif =
1

T − 1

T∑
t=2

magnitude(t) −magnitude(t− 1) (2)

Magnitude(x, y, z, t) =

√
ax(t)

2
+ ay(t)

2
+ az(t)

2
(3)

where ax(t)
2
, ay(t)

2
and az(t)

2
are the squared accelerations at time t.

Figure 2 shows violin plots for three of the accelerometer features: mean of
the x-axis, mean of the y-axis, and mean of the z-axis. Here, we can see that
overall, the mean acceleration in x was higher for the brush teeth and eat chips
activities. On the other hand, the mean acceleration in the y-axis was higher for
the mop floor and sweep activities.

3.2 Audio features

The features extracted from the sound source were the Mel Frequency Cepstral
Coefficients (MFCCs). These features have been shown to be suitable for activity
classification tasks [1,8,12,18]. The 3 second sound signals were further split into
1 second windows. Then, 12 MFCCs were extracted from each of the 1 second
windows. In total, each instance has 36 MFCCs. In total, this process resulted in
the generation of 1, 386 instances. The tuneR R package [14] was used to extract
the audio features. Table 1 shows the percentage of instances per class. More or
less, all classes are balanced in number.

4 Dataset structure

The main folder contains directories for each user and a features.csv file. Within
each users’ directory, the accelerometer files can be found (.txt files). The file
names are comprised of three parts with the following format: timestamp-acc-
label.txt. timestamp is the timestamp in Unix format. acc stands for accelerom-
eter and label is the activity’s label. Each .txt file has four columns: timestamp
and the acceleration for each of the x, y, and z axes. Figure 3 shows an example
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Fig. 2. Violin plots of mean acceleration of the x, y, and z axes.

Table 1. Distribution of activities by class.

Class Proportion

Brush teeth 12.98%

Eat chips 20.34%

Mop floor 13.05%

Sweep 12.84%

Type on keyboard 12.91%

Wash hands 12.98%

Watch TV 14.90%

of the first rows of one of the files. The features.csv file contains the extracted
features as described in section 3. It contains 54 columns. userid is the user id.
label represents the activity label and the remaining columns are the features.
Columns with a prefix of v1 correspond to audio features whereas columns with
a prefix of v2 correspond to accelerometer features. In total, there are 36 audio
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features that correspond to the 12 MFCCs for each second, with a total of 3
seconds and 16 accelerometer features.

Fig. 3. First rows of one of the accelerometer files.

5 Baseline experiments

In this section, we present a series of baseline experiments that can serve as a
starting point to develop more advanced methods and sensor fusion techniques.
In total, 3 classification experiments were conducted with the HTAD dataset. For
each experiment, different classifiers were employed, including ZeroR (baseline),
a J48 tree, Naive Bayes, Support Vector Machine (SVM), a K-nearest neighbors
(KNN) classifier with k = 3, logistic regression, and a multilayer perceptron. We
used the WEKA software [22] version 3.8 to train the classifiers. In each experi-
ment, we used different sets of features. For experiment 1, we trained the models
using only audio features, that is, the MFCCs. The second experiment consisted
of training the models with only the 16 accelerometer features described ear-
lier. Finally, in experiment 3, we combined the audio and accelerometer features
by aggregating them. 10-fold cross-validation was used to train and assess the
classifier’s performance. The reported performance is the weighted average of
different metrics using a one-vs-all approach since this is a multi-class problem.

Table 2. Classification performance (weighted average) with audio features. The best
performing classifier was KNN.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.065 0.625 0.623 0.624 0.559

Naive Bayes 0.049 0.720 0.714 0.713 0.667

SVM 0.054 0.699 0.686 0.686 0.637

KNN 0.037 0.812 0.788 0.793 0.761

Logistic regression 0.062 0.654 0.652 0.649 0.591

Multilayer perceptron 0.041 0.776 0.769 0.767 0.731
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Table 3. Classification performance (weighted average) with accelerometer features.
The best performing classifier was KNN.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.036 0.778 0.780 0.779 0.743

Naive Bayes 0.080 0.452 0.442 0.447 0.365

SVM 0.042 0.743 0.740 0.740 0.698

KNN 0.030 0.820 0.820 0.818 0.790

Logistic regression 0.031 0.800 0.802 0.800 0.769

Multilayer perceptron 0.031 0.815 0.812 0.812 0.782

Table 4. Classification performance (weighted average) when combining all features.
The best performing classifier was Multilayer perceptron.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.035 0.785 0.785 0.785 0.750

Naive Bayes 0.028 0.826 0.823 0.823 0.796

SVM 0.020 0.876 0.874 0.875 0.855

KNN 0.014 0.917 0.911 0.912 0.899

Logistic regression 0.022 0.859 0.859 0.859 0.837

Multilayer perceptron 0.014 0.915 0.914 0.914 0.901

Tables 2, 3 and 4 show the final results. When using only audio features
(Table 2), the best performing model was the KNN in terms of all performance
metrics with a Mathews correlation coefficient (MCC) of 0.761. We report MCC
instead of accuracy because MCC is more robust against class distributions.
In the case when using only accelerometer features (Table 3), the best model
was again KNN in terms of all performance metrics with an MCC of 0.790.
From these tables, we observe that most classifiers performed better when using
accelerometer features with the exception of Naive Bayes. Next, we trained the
models using all features (accelerometer and audio). Table 4 shows the final
results. In this case, the best model was the multilayer perceptron followed by
KNN. Overall, all models benefited from the combination of features, of which
some increased their performance by up to ≈ 0.15, like the SVM which went
from an MCC of 0.698 to 0.855.

All in all, combining data sources provided enhanced performance. Here, we
just aggregated the features from both data sources. However, other techniques
can be used such as late fusion which consists of training independent models
using each data source and then combining the results. Thus, the experiments
show that machine learning systems can perform this type of automatic activity
detection, but also that there is a large potential for improvements - where the
HTAD dataset can play an important role, not only as an enabling factor, but
also for reproducibility.
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6 Conclusions

Reproducibility and comparability of results is an important factor of high-
quality research. In this paper, we presented a dataset in the field of activity
recognition supporting reproducibility in the field. The dataset was collected us-
ing a wrist accelerometer and captured audio from a smartphone. We provided
baseline experiments and showed that combining the two sources of information
produced better results. Nowadays, there exist several datasets, however, most
of them focus on a single data source and on the traditional walking, jogging,
standing, etc. activities. Here, we employed two different sources (accelerome-
ter and audio) for home task activities. Our vision is that this dataset will allow
researchers to test different sensor data fusion methods to improve activity recog-
nition performance in home-task settings.
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