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�e work addresses the exponential moment stability of solutions of large systems of linear di�erential Itô equations with variable
delays by means of a modi�ed regularization method, which can be viewed as an alternative to the technique based on Lyapunov
or Lyapunov-like functionals. �e regularization method utilizes the parallelism between Lyapunov stability and input-to-state
stability, which is well established in the deterministic case, but less known for stochastic di�erential equations. In its practical
implementation, the method is based on seeking an auxiliary equation, which is used to regularize the equation to be studied. In
the �nal step, estimation of the norm of an integral operator or veri�cation of the property of positivity of solutions is performed.
In the latter case, one applies the theory of positive invertible matrices. �is report contains a systematic presentation of how the
regularization method can be applied to stability analysis of linear stochastic delay equations with random coe�cients and
random initial conditions. Several stability results in terms of positive invertibility of certain matrices constructed for general
stochastic systems with delay are obtained. A number of veri�able su�cient conditions for the exponential moment stability of
solutions in terms of the coe�cients for speci�c classes of Itô equations are o�ered as well.

1. Introduction

Stability analysis of stochastic delay equations is quite
popular due to its numerous applications. It is therefore
impossible to give a more or less extensive overview of the
topic. Some of the results are summarized in the monograph
[1]; others can be found in more recent works of the author
of this monograph as well as in many other publications.
Indisputably, the main method of stability analysis is based
on Lyapunov functions and their generalizations. However,
this method may not be applicable in certain situations or
may give too restrictive conditions, both in the deterministic
and stochastic cases. It is particularly challengeable to use the
Lyapunov framework in the case of complicated delays or/
and random coe�cients and initial conditions (see, e.g.,
discussion in the recent paper [2]). Yet, many applications
require such kinds of models, e.g., in mathematical �nance,

especially when modeling stock prices, interest rates, or
volatilities (see, e.g., [3] and the references therein), sto-
chastic control theory [4–6], semi-Markov systems [7],
epidemic models [8], and many others.

Stability analysis used in this paper is based an alter-
native approach utilizing a regularization technique. �is
approach has been successfully used by several authors in the
theory and applications of deterministic and stochastic delay
equations. Its theoretical foundations are presented in the
monograph [9], and since then numerous applications of the
method have been investigated in a number of papers.
Among the recent ones are the publications [10] (the
Mackey–Glass equation), [11, 12] (control theory), [13]
(neural networks), [14] (hyperjerk systems), and [15] (the
stochastic pantograph equation).

�e regularization method has its roots in the theory of
the input-to-state stability, which usually implies the
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Lyapunov stability (see, e.g., [16]). As soon as this rela-
tionship between the two types of stability is established, the
algorithm starts with choosing a simpler equation (called a
reference equation) that is assumed to already have the
required stability properties. Resolved and substituted into
the original equation, the reference equation produces a new
integral equation of the form x − Θx � f(x). If the latter
equation is solvable (for instance, if ‖Θ‖< 1), then stability of
the original equation is proven. *us, the method is similar
to Lyapunov’s direct method, but instead of seeking a
Lyapunov function(al), one aims to first find a suitable
reference equation possessing the prescribed asymptotic
property. *e reference equation is then used to regularize
the original equation. *e method proven to be particularly
efficient when constructing Lyapunov function(al) may be
technically difficult (random coefficients and delays, dis-
tributed delays, unbounded delays, complicated noises, and
so on).

In [13, 14, 17], the regularization method was combined
with the estimation technique based on positive invertible
matrices. *is led to new, verifiable stability conditions in
the case of differential equations with variable, in particular,
distributed delays. In general, the approach based on
M–matrices gives better stability results as the technique
utilizing the norm estimation (see, e.g., [15, 17]). In the
above publications, verifiable stability conditions were for-
mulated in terms of the coefficients of the systems in
question.

*e present paper is a continuation of the authors’ work
started in [16, 17]. Minding future applications of the
method (see Section 8), we offer a general framework
combining the regularization approach from [9] with the
theory of positive invertible matrices. After that, we dem-
onstrate how this scheme can be applied to (rather com-
plicated) systems of Itô equations with variable delays and
random coefficients, i.e., in the situations where the Lya-
punov-like functionals may be difficult to construct. A
motivation to study such systems goes back to several so-
phisticated stochastic models used, for instance, in pop-
ulation dynamics. *us, equations for the aggregated state
variables derived from the McKendrick–von Foerster
equation for structured populations always contain random,
distributed delays, random coefficients, and random initial
conditions [14], so that the Lyapunov framework may be
difficult to apply.

For the sake of simplicity, we chose to describe the
framework for the case of linear equations and exponential
stability, as it was done in the monograph [9]. Even if the
most realistic models are nonlinear, we stress that the
methods of the present paper, primarily developed for the
linear case, can be directly used to study local stability of
stochastic nonlinear equations. Moreover, the regularization
technique can be applied to global stability of nonlinear
deterministic and stochastic delay equations. *is has been
clearly shown in many publications based on the regulari-
zation method (see, e.g., the monograph [9] and the ref-
erences therein as well as the recent publications
[10, 11, 13, 14, 17]).

*e presentation of the regularization method will be
incomplete without mentioning the recent publications
[18–20], where many profound stability results were ob-
tained. *e paper [20] deserves a special attention, as the
authors regularize, in our terminology, nonlinear stochastic
equations by means of nonlinear reference equations with
the known stability properties. *is approach is close to the
one used in the present paper, but does not exploit
M–matrices. It seems to be a fruitful idea to combine both
techniques to obtain more general stability results and to
cover more applications.

*e paper is organized as follows. We start with some
preliminary information and the notation (Section 2). *en,
we introduce the system of stochastic delay equations we
intend to study as well as the main assumptions on it
(Section 3). In Section 4, we offer a brief description of the
regularization method and its adjustment based on the
input-to-state stability and the theory of positive invertible
matrices. We remark that the framework described in this
section goes far beyond the tasks of the present paper. It can
be also used in the case of arbitrary semi-martingales, un-
bounded delays, nonlinear systems, etc. We chose this level
of generality because we intend to apply the framework to
many other equations and models in the future. Section 5
contains formulation and the proof of the main result of the
paper. It provides sufficient conditions (in terms of the
coefficients) of exponential 2p-stability (p≥ 1) of the system
introduced in Section 3. In Section 6, the main result is
specified for some particular cases of the general system. We
believe that even in the case of deterministic equations, we
produced some new results. Section 7 contains some ex-
amples illustrating the stability conditions offered in the
previous section. Finally, in Section 8, we provide a short
summary and describe some open problems.

2. Preliminaries

Let (Ω,F, (Ft)t≥ 0, P) be a stochastic basis, whereΩ is set of
elementary probability events, F is a σ-algebra of all events
on Ω, (Ft)t≥ 0 is a right continuous family of σ-subalgebras
of F, and P is a probability measure on F; all the above
σ-algebras are assumed to be complete w.r.t. P, i.e., con-
taining all subsets of zero measure.

*e following notational agreements are used
throughout the paper:

(i) R � (− ∞,∞) is the set of all real numbers.
(ii) col(x1, . . . , xn) ∈ Rn is a column vector.
(iii) |.| is an arbitrary yet fixed norm in Rn, ‖.‖ being the

associated matrix norm.
(iv) E is the n × n-identity matrix.
(v) μ is the Lebesgue measure on [0, +∞).
(vi) ‖.‖X is the norm in a normed space X.
(vii) p is an arbitrary real number satisfying 1≤p<∞.
(viii) B(I) is the σ-algebra of all Borel subsets of an

interval I ⊂ R.
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(ix) (B2, . . . ,Bm) is the standard (m − 1)-dimen-
sional Brownian motion (i.e., the scalar Brownian
motions Bl are independent).

(x) Z(t) ≔ col(t,B1(t), . . . ,Bm(t)) (only used in
Section 4).

(xi) *e expectation (the integral w.r.t. the measure P)
is denoted by E.

(xii) kn is the linear space of all n–dimensional,
F0–measurable random values.

(xiii) kn
q � α: α ∈ kn, ‖α‖kn

q
≡ (E|α|q)1/q <∞􏼚 􏼛.

(xiv) cp is the constant from inequality (1) used in the
stability conditions.

Recall that a B(I)⊗F–measurable stochastic process
ξ(t) � ξ(t,ω), t ∈ I, is called Ft–adapted if ξ(t, ·) is
Ft-measurable for all t ∈ I.

A m × m-matrix B � (bij)
m

i,j�1 is said to be nonnegative,
resp. positive if bij ≥ 0 resp. bij > 0 for all i, j � 1, . . . , m.

*e following definition is crucial for what follows.

Definition 1. Amatrix Γ � (cij)
n

i,j�1 is called a (nonsingular)
M–matrix if cij ≤ 0 for i, j � 1, . . . , n, i≠ j, and all the
principal minors of the matrix Γ are positive.

According to [21], a matrix B is a nonsingularM–matrix
if bij ≤ 0 for all i, j � 1, . . . , m, i≠ j, and there exist positive
numbers ξi, i � 1, . . . , m, such that one of the following
conditions is fulfilled:

(1) ξibii > 􏽐
m
j�1,i≠ j ξj|bij|, i � 1, . . . , m.

(2) ξjbjj > 􏽐
m
i�1,i≠ j ξi|bij|, j � 1, . . . , m.

In particular, if ξi � 1, i � 1, . . . , m, in the first of the
above conditions, then we obtain the class of strictly diag-
onally dominant matrices. In [21], one can find plenty of
characterizations of nonsingular M–matrices.

One of the most important properties of nonsingular
M–matrices states the following.

*e inverse of a nonsingular M–matrix is positive. In
what follows we will always silently assume that any
M–matrix is nonsingular.

*e next two lemmas contain inequalities to be used in
this paper.

Lemma 1

E 􏽚
t

0
f(s)dBl(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2p

􏼠 􏼡

1/2p

≤ cp E 􏽚
t

0
|f(s)|

2
ds􏼠 􏼡

p

􏼠 􏼡

1/2p

,

(1)

for any Ft-adapted stochastic process f(s)(0≤ s≤ t), any
t> 0, and any component Bl(s)(1≤ l≤m) of the Brownian
motion B.

Proof. Inequality (1) follows directly from inequality (5) in
[22, p.65], where one can find explicit formulas for cp. □

Lemma 2. Let g(s) be a scalar function that is square in-
tegrable on [0,∞) and f(s) be an Ft-adapted stochastic
process satisfying sups≥0(E|f(s)|2p)1/2p <∞. :en,

sup
t≥0

E 􏽚
t

0
g(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2p

􏼠 􏼡

1/2p

≤ sup
t≥0

􏽚
t

0
|g(s)|ds􏼠 􏼡 sup

t≥0
E|f(t)|

2p
􏼐 􏼑

1/2p
,

(2)

and

sup
t≥0

E 􏽚
t

0
(g(s))

2
(f(s))

2 ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p

􏼠 􏼡

1/2p

≤ sup
t≥0

􏽚
t

0
(g(s))

2
ds􏼠 􏼡

1/2

sup
t≥0

E|f(t)|
2p

􏼐 􏼑
1/2p

.

(3)

Proof. We only prove inequality (2), as inequality (3) can be
justified similarly.

sup
t≥0

E 􏽚
t

0
g(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2p

􏼠 􏼡

1/2p

≤ sup
t≥0

E 􏽚
t

0
|g(s)‖ f(s)|ds􏼠 􏼡

2p

⎛⎝ ⎞⎠

1/2p

≤ sup
t≥0

E 􏽚
t

0
|g(s)|

(2p− 1)/2p
|g(s)|

1/2p
|f(s)|ds

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

2p

⎛⎝ ⎞⎠

1/2p

≤ sup
t≥0

E 􏽚
t

0
|g(s)|ds􏼠 􏼡

2p− 1

􏽚
t

0
|g(s)‖ f(s)|

2p
ds⎛⎝ ⎞⎠

1/2p

⎛⎝ ⎞⎠

≤ sup
t≥0

􏽚
t

0
|g(s)|ds􏼠 􏼡

2p− 1

􏽚
t

0
|g(s)|E|f(s)|

2p
ds⎛⎝ ⎞⎠

1/2p

≤ sup
t≥0

􏽚
t

0
|g(s)|ds􏼠 􏼡 sup

t≥0
E|f(t)|

2p
􏼐 􏼑

1/2p
.

(4)

□
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3. The Main System and Formulation of
the Problem

Wewill study exponential stability of the following system of
Itô delay differential equations

dx(t) � − 􏽘

m1

j�1
A1j(t)x h1j(t)􏼐 􏼑dt + 􏽘

m

i�2
􏽘

mi

j�1
Aij(t)x hij(t)􏼐 􏼑dBi(t)(t≥ 0),

(5)

equipped with the initial conditions

x(t) � φ(t)(t< 0), (6)

x(0) � b. (7)

Remark 1. According to [9], we separate the initial condi-
tions for t< 0 and t � 0, as we do not require the continuity
of the function φ(t). *is function is assumed to be only
bounded and measurable, so that changing its value at
countably many points does not change the solution of
equation (5). On the other hand, it can be easily checked by
examples that changing the value of x(0) � b usually
changes the solution of equation (5). *at is, the space of
initial functions φ and the space of initial values b have
different topologies.

*e following assumptions are put on (5)–(7)
throughout the paper:

(1) b � col(b1, .., bn) is an n-dimensional
F0–measurable random variable belonging to the
space b ∈ kn.

(2) φ � col(φ1, . . . ,φn) is an n-dimensional
F0–measurable stochastic process with essentially
bounded trajectories, defined on the interval [− σ, 0),
where σ � max τij: i � 1, . . . , m, j � 1, . . . , mi􏽮 􏽯.

(3) x � col(x1, . . . , xn) is an unknown n-dimensional
stochastic process defined for t≥ − σ; it is
Ft-adapted for t≥ 0 andF0-measurable for − σt< 0.

(4) Aij � (a
ij

sl)
n

s,l�1 are n × n –matrices for i � 1, . . . , m,
j � 1, . . . , mi, and the entries of the matrices A1j,
j � 1, . . . , m1, are scalar, Ft-adapted stochastic
processes with almost surely Lebesgue integrable
trajectories, while the entries of the matrices Aij,
i � 2, . . . , m, j � 1, . . . , mi, are scalar, Ft-adapted
stochastic processes with almost surely square in-
tegrable trajectories.

(5) hij, i � 1, . . . , m, j � 1, . . . , mi, are Borel measurable
scalar functions defined on [0,∞) satisfying the
inequalities 0≤ t − hij(t)≤
τij(t ∈ [0,∞), i � 1, . . . , m, j � 1, . . . , mi)μ–everyw-
here for some constants τij, i � 1, . . . , m,
j � 1, . . . , mi.

Remark 2. It can be proven that under the assumptions 1–5,
the initial value problem ((5)–(7)) has a unique (up to the

natural equivalence of stochastic processes) continuous,
Ft-adapted solution x(t, b, φ).

Definition 2. We say that equation (5) is exponentially
q–stable (0< q<∞) with respect to the initial data, i.e., the
initial value x0 and the “prehistory” function φ, if there are
positive numbers K, λ such that all solutions x(t, b, φ) of the
initial value problem ((5)–(7)) satisfy

E|x(t, b,φ)|
q

( 􏼁
1/q

≤K exp − λt{ } E|b|
q

( 􏼁
1/q

+ ess sup
t<0

E|φ(t)|
q

( 􏼁
1/q

􏼠 􏼡(t≥ 0).

(8)

In the next section, we describe the method of our
analysis. We remark that this description is very general and
goes far beyond the particular case of equation (5).

4. Regularization Method in Stability Analysis

In this section, we briefly describe a framework which we use
to study stability properties of stochastic functional differ-
ential equations.*emain idea of this approach is to convert
the property of Lyapunov stability to the property of
invertibility of certain operators in suitable functional
spaces.

In what follows, we put
Z(t) ≔ col(t,B1(t), . . . ,Bm(t)). We remark, however, that
the framework described below is valid for any m-dimen-
sional semi-martingale Z (see, e.g., [16]).

We consider a general linear homogeneous stochastic
hereditary equation

dx(t) � Vhx( 􏼁(t)dZ(t)(t ≥ 0), (9)

equipped with two initial conditions

x(s) � φ(s)(s< 0), (10)

x(0) � b. (11)

Here Vh is a k-linear Volterra operator (see below)
defined in certain linear spaces of vector stochastic pro-
cesses, φ is an B(− ∞, 0)⊗F0-measurable stochastic pro-
cess, and b ∈ kn. By k-linearity of the operator Vh we mean
the following property:

Vh α1x1 + α2x2( 􏼁 � α1Vhx1 + α2Vhx2, (12)

holding for allF0-measurable, bounded, and scalar random
values α1, α2 and all stochastic processes x1, x2 belonging to
the domain of the operator Vh.

It is easy to see that equation (5) is a particular case of
equation (9).

*e solution of the initial value problem ((9)–(11)) will
be denoted by x(t, b,φ), t ∈ (− ∞,∞). Below the solution is
always assumed to exist and to be unique for an appropriate
choice of φ(s), b.
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We also need an adaptation of Definition 1 to the case of
equation (9).

Definition 3. For a given real number q(0< q<∞), we call
the zero solution of equation (9)

(i) q-stable (with respect to the initial data b and φ ) if
for any ϵ> 0 there is δ(ϵ)> 0 such that
E|b|q + ess sups<0E|φ(s)|q < δ implies
E|x(t, b,φ)|q ≤ ϵ for all t≥ 0 and all F0-measurable
φ, b.

(ii) Exponentially q-stable if there exist positive con-
stants K, λ such that the inequality

E|x(t, b,φ)|
q ≤K E|b|

q
+ ess sup

s<0
E|φ(s)|

q
􏼠 􏼡exp − λt{ }, (13)

holds true for all t≥ 0 and all F0-measurable φ, b.
Introducing the q-norm in the spaceΦq of the prehistory

functions φ by

‖φ‖q � ess sup
s<0

E|φ(s)|
q
, (14)

and minding the norm in the space of the initial values
defined in the previous section yield a shorter version of
Definition 3, where the expression E|b|q + ess sups<0E|φ(s)|q

is replaced by ‖b‖kn
q

+ ‖φ‖q.
To describe the regularization method, we need to

represent (9) and (10) in a slightly different form. Let x(t) be
a stochastic process [0, +∞) and x+(t) be a stochastic
process on (− ∞, +∞) coinciding with x(t) for t≥ 0 and
equalling 0 fort< 0, while let φ − (t) be a stochastic process
on (− ∞, +∞) coinciding with φ(t) for t< 0 and equalling 0
fort≥ 0. *en, the stochastic processx+(t) + φ − (t), defined
for t ∈ (− ∞, +∞), will be a solution of the (9)–(11) if
x(t)(t ∈ [0, +∞)) satisfies the initial value problem

dx(t) � [(Vx)(t) + f(t)]dZ(t)(t ≥ 0), (15)

x(0) � b, (16)

where (Vx)(t) ≔ (Vhx+)(t), f(t) ≔ (Vhφ− )(t) for t≥ 0.
Indeed, by k-linearity we have that Vh(x+ + φ− ) � Vh(x+) +

Vh(φ− ) � Vx + f yielding (15). Note that f is uniquely
defined by the stochastic process φ, “the prehistory func-
tion.” Let us also observe that the initial value problem ((15)
and (16)) is equivalent to the initial value problem ((9)–(11))
only for f admitting the representation f � Vhφ− , where φ′
is an arbitrary extension of the function φ to the real line
(− ∞,∞).

Let Bq be a linear subspace of the space of (Ft)-adapted
stochastic processes with trajectories that are almost surely
essentially bounded on [0,∞). *e norm in this space is
defined by

‖f‖
q
Bq

� ess sup
t≥0

E|f(t)|
q
. (17)

As we assume the existence and uniqueness property for
equation (21) for all b ∈ kn

q and f ∈ Bq, we can denote the

corresponding solution by xf(t, b). Let M stand for the
space of all solutions of equation (15), and we define its linear
subspace Mp by

Mp � x: x ∈M, sup
t≥0

E|x(t)|
p <∞􏼨 􏼩. (18)

*e construction above produces two linear operators:

L1: φ↦ Vhφ−( 􏼁(t), (19)

L2: f↦xf(·, b). (20)

*e next theorem is crucial for the framework (see, e.g.,
[12]). It says that the stochastic Lyapunov stability follows
from the input-to-state stability (“the stochastic
Bohl–Perron theorem”).

Theorem 1. Assume that the linear operators
L1: Φq⟶ Bq and L2: Bq⟶Mq, defined by (17) and
(18), respectively, are bounded. :en, the zero solution of
equation (9) is q-stable in the sense of Definition 3.

We remark that the operatorL1 is, as a rule, bounded, so
that the only challenge in application of *eorem 1 is to
prove boundedness of the operatorL2. *is can be done by
the regularization method, also known as “the W-method”
[9, 16]. *e regularization is usually constructed with the
help of an auxiliary or reference equation

dx(t) � [(Qx)(t) + g(t)]dZ(t)(t≥ 0), (21)

where Q is again a k-linear Volterra operator. *e reference
equation is, thus, similar to equation (15), but it is supposed
to be “simpler” in the sense that the required stability
property for this equation is already proven (see condition
(2) in *eorem 2 below).

Assuming the existence and uniqueness property for
equation (21), we get the following “variation-of-constants”
formula for its solutions:

x(t) � U(t)x(0) +(Wg)(t)(t ≥ 0), (22)

where U(t) is the fundamental matrix of the associated
homogeneous equation and W is the corresponding Cauchy
operator.

Using representation (22), we can regularize equation (15)
in two ways: on the right and on the left. In this paper, we only
use the left regularization to be described below. *e algo-
rithm based on the right regularization is presented in [16].

Using equation (21), we rewrite equation (15) as follows:

dx(t) � [(Qx)(t) +((V − Q)x)(t) + f(t)]dZ(t)(t≥ 0),

(23)

or, if we use the representation (22), as

x(t) � U(t)x(0) +(W(V − Q)x)(t) +(Wf)(t)(t ≥ 0).

(24)

Denoting W(V − Q) � Θ, we obtain the operator
equation

International Journal of Differential Equations 5



x(t) � (Θx)(t) + U(t)x(0) +(Wf)(t)(t≥ 0). (25)

Theorem 2. Assume that equation (15) and reference
equation (21) satisfy the following conditions:

(1) :e linear operators V, Q act continuously from Mq to
Bq.

(2) :e Cauchy operator W in (22) constructed for ref-
erence equation (21) is bounded as an operator from
Bq to Mq.

(3) :e operator I − Θ: Mq⟶Mq has a bounded
inverse.

*en, the operator L1: Bq⟶Mq in (20) is bounded.
*eorems 1 and 2 justify the regularization framework in

the analysis of Lyapunov stability for stochastic linear
functional differential equations. In fact, all the conditions
except condition (3) in *eorem 2 are usually fulfilled, and
this is easy to check. *e only real challenge is therefore the
invertibility of the operator I − Θ. In [16] (see also the
references therein), the invertibility of this operator is
verified by estimating the norm of the integral operator Θ: if
‖Θ‖Mq
< 1 in the inequality

‖x‖Mq
≤ ‖Θ‖Mq

‖x‖Mq
+ K1‖x(0)‖kn

q
+ K2‖f‖Bq

, (26)

then equation (6) is q-stable due to *eorem 1. If one also
proves that the equation remains q-stable after the substi-
tution y(t) � exp(λt)x(t) for some positive λ, then equation
(9) becomes exponentially q-stable.

However, calculation of the norm ‖Θ‖Mq
might be chal-

lengeable, especially in the vector case and in the case of random
coefficients. In [13], and later in [14, 17] for the stochastic case, it
was suggested to use the properties of monotone operators. *e
main idea was to perform all the estimates componentwise,
which is much simpler, and then to check the positive invert-
ibility of a certainmatrix. Belowwe offer a generic description of
this method.

Let

x(t) � col x1(t), . . . , xn(t)( 􏼁, xi � sup
t≥0

E xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑
1/q

,

x � col x1, . . . , xn( 􏼁.

(27)

Suppose that after estimating each component of vector
equation (23), we arrived at the vector inequality

Dx≤ ‖x(0)‖kn
q
e1 +‖f‖Bq

e2, (28)

where D is an n × n–matrix and e1, e2 are some column
n-vectors with nonnegative components. Typically,
D � E − T, where E is the n × n identity matrix, while T and
ei replace Θ and Ki(i � 1, 2) in the scalar inequality (26),
respectively. *en, we have the following.

Theorem 3. If D is anM–matrix in the sense of Definition 1,
then the operator L2: Bq⟶Mq in (20) is bounded.

Proof. As D is anM–matrix, the matrix D− 1 is positive, and
we can rewrite (28) as

x≤D
− 1

‖x(0)‖kn
q
e1 +‖f‖Bq

e2􏼒 􏼓. (29)

*erefore,

|x|≤K ‖x(0)‖kn
q

+‖f‖Bq
􏼒 􏼓, (30)

where K � ‖D− 1‖max |e1|, |e2|􏼈 􏼉. As ‖x‖Mq
≤ |x|, we conclude

from (30) that x ∈Mq and ‖x‖Mq
≤K(‖b‖kn

q
+ ‖f‖Bq

) for
some positive K. *us, the operator L2: Bq⟶Mq is
bounded.

In the next section, the scheme just outlined is applied
to equation (5), i.e., for the system of Itô equations with
variable delays and random coefficients. Using the
boundedness of all delay functions in equation (5), the
substitution y(t) � exp(λt)x(t) for some positive λ, and
*eorems 1 and 3 for q-stability of the equation for y(t), we
prove exponential q-stability of equation (5) for q � 2p,
p≥ 1.

We also remark that the second Lyapunov method may
be difficult to use in this case. □

5. The Main Result

*e following conditions are supposed to be valid
throughout this section:

(C1) *ere exist positive numbers a
ij

sl , i � 1, ..,

m, j � 1, . . . , mi, s, l � 1, . . . , n,, so that the coefficients
of equation (5) satisfy the inequalities

a
ij

sl(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a
ij

sl ,

t ∈ [0, +∞),

i � 1, .., m,

j � 1, . . . , mi,

s, l � 1, . . . , n,

(31)

μ × P–almost everywhere.
(C2) For each s � 1, . . . , n, there is a nonempty
subset Is ⊂ 1, . . . , m1􏼈 􏼉 and positive number as, so
that

􏽘
k∈Is

a
1k
ss (t)≥ as,

t ∈ [0, +∞),

s � 1, . . . , n,

(32)

μ × P–almost everywhere.
*e n × n–matrix C is defined as follows:
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css � 1 −
1
as

􏽘
k∈Is

􏽘

m1

j�1
τ1ka

1k
ss a

1j
ss + cp 􏽘

k∈Is

􏽘

m

i�2
􏽘

mi

j�1

���
τ1k

√
a
1k
ss a

ij
ss + 􏽘

m1

j�1,j∉Is

a
1j
ss

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −
cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss

⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n,

csl � −
1
as

􏽘
k∈Is

􏽘

m1

j�1
τ1ka

1k
ss a

1j

sl + cp 􏽘
k∈Is

􏽘

m

i�2
􏽘

mi

j�1

���
τ1k

√
a
1k
ss a

ij

sl + 􏽘

m1

j�1
a
1j

sl
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −

cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl
⎡⎢⎢⎣ ⎤⎥⎥⎦, s, l � 1, . . . , n, s≠ l.

(33)

Theorem 4. If conditions (C1) and (C2) are fulfilled and if C

is anM–matrix, then equation (5) is exponentially 2p–stable
in the sense of Definition 2.

Proof. We rewrite equation (5) and the initial condition (6)
as a single system:

dxs(t) � − 􏽘

m1

j�1
􏽘

n

l�1
a
1j

sl (t) xl h1j(t)􏼐 􏼑 + φl h1j(t)􏼐 􏼑􏽨 􏽩dt

+ 􏽘
m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl(t) xl hij(t)􏼐 􏼑 + φl hij(t)􏼐 􏼑􏽨 􏽩dBi(t)(t≥ 0, s � 1, . . . , n),

(34)

where xs(t), s � 1, . . . , n, are scalar, Ft-adapted stochastic
processes defined on [− σ,∞) satisfying the condition

xs(t) � 0 for t< 0, while φs(t), s � 1, . . . , n, are scalar,
F0–measurable stochastic processes defined on [− σ,∞)

satisfying the conditions φs(t) � φs(t) for t ∈ [− σ, 0) and
φs(t) � 0 for t ∈ [0, +∞). Due to the assumed property of
the existence and uniqueness of the solutions of the initial
value problem ((34) and (7)), we can use the notation
x(t, b,φ) for its solution. It is straightforward to check that
x(t, b,φ) � x(t, b,φ) for t≥ 0, where x(t, b, φ) is the solution
of (5)–(7).

*e next step consists in introducing the new variables
ys(t) � xs(t)exp λt{ }, where ys(t) is defined on [− σ,∞) and
the number λ satisfies the inequalities 0< λ< min as,􏼈 s �

1, . . . , n} for all s � 1, . . . , n. Clearly, ys(t) � 0 for t< 0, and
we obtain the following system:

dys(t) � λys(t) − 􏽘

m1

j�1
􏽘

n

l�1
a
1j

sl (t) exp λ t − h1j(t)􏼐 􏼑􏽮 􏽯yl h1j(t)􏼐 􏼑 + exp λt{ }φl h1j(t)􏼐 􏼑􏽨 􏽩⎡⎢⎢⎣ ⎤⎥⎥⎦dt

+ 􏽘
m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl(t) exp λ t − hij(t)􏼐 􏼑􏽮 􏽯yl hij(t)􏼐 􏼑 + exp λt{ }φl hij(t)􏼐 􏼑􏽨 􏽩dBi(t)(t≥ 0, s � 1, . . . , n).

(35)

Denoting ηs(t) � 􏽐k∈Is
a1k

ss (t)exp λ(t − h1k(t))􏼈 􏼉 − λ for s

� 1, . . . , n and minding 􏽒
t

h1k(t)
dys(τ) � ys(t) − ys (h1k

(t), k ∈ Is, transform (35) to the system

dys(t) � − ηs(t)ys(t) + 􏽘
k∈Is

a
1k
ss (t)exp λ t − h1k(t)( 􏼁􏼈 􏼉 􏽚

t

h1k(t)
dys(τ) + 􏽘

k∈Is

a
1k
ss (t)exp λt{ }φs h1k(t)( 􏼁⎡⎢⎢⎢⎣

+􏽘

m1

j�1
􏽘

n

l�1,l≠s,j∈Is

a
1j

sl (t) exp λ t − h1j(t)􏼐 􏼑􏽮 􏽯yl h1j(t)􏼐 􏼑 + exp λt{ }φl h1j(t)􏼐 􏼑􏽨 􏽩⎤⎥⎥⎥⎦dt

+ 􏽘
m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl(t) exp λ t − hij(t)􏼐 􏼑􏽮 􏽯yl hij(t)􏼐 􏼑 + exp λt{ }φl hij(t)􏼐 􏼑􏽨 􏽩dBi(t)(t≥ 0, s � 1, . . . , n).

(36)

Substituting the expression for dys(t) from the s-th
equation in (35) into the s-th equation in (36), where
s � 1, . . . , n, leads to
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dys(t) � − ηs(t)ys(t) + 􏽘
k∈Is

a
1k
ss (t)exp λ t − h1k(t)( 􏼁􏼈 􏼉 􏽚

t

h1k(t)
λys(τ) + 􏽘

m1

j�1
􏽘

n

l�1
a
1j

sl
(τ) exp λ τ − h1j(τ)􏼐 􏼑􏽮 􏽯yl h1j(τ)􏼐 􏼑 + exp λτ{ }φl h1j(τ)􏼐 􏼑􏽨 􏽩⎡⎢⎢⎣ ⎤⎥⎥⎦dτ

⎧⎪⎨

⎪⎩
⎡⎢⎢⎢⎢⎢⎣

+􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl(τ) exp λ τ − hij(τ)􏼐 􏼑􏽮 􏽯yl hij(τ)􏼐 􏼑 + exp λτ{ }φl hij(τ)􏼐 􏼑􏽨 􏽩dBi(τ)
⎫⎪⎬

⎪⎭
+ 􏽘

k∈Is

a
1k
ss (t)exp λt{ }φs h1k(t)( 􏼁

+􏽘

m1

j�1
􏽘

n

l�1,l≠s,j∈Is

a
1j

sl
(t) exp λ t − h1j(t)􏼐 􏼑􏽮 􏽯yl h1j(t)􏼐 􏼑 + exp λt{ }φl h1j(t)􏼐 􏼑􏽨 􏽩⎤⎥⎥⎥⎦dt

+ 􏽘
m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl(t) exp λ t − hij(t)􏼐 􏼑􏽮 􏽯yl hij(t)􏼐 􏼑 + exp λt{ }φl hij(t)􏼐 􏼑􏽨 􏽩dBi(t)(t≥ 0, s � 1, . . . , n).

(37)

Finally, setting ms(t, ς) � exp − 􏽒
t

ς μs(ζ)dζ􏼚 􏼛, s � 1,

. . . , n, and remembering initial condition (7), carry (37)

over to the system

ys(t) � ms(t, 0)bs + 􏽘
k∈Is

􏽚
t

0
ms(t, ς)a1k

ss (ς)exp λ ς − h1k(ς)( 􏼁􏼈 􏼉 􏽚
ς

h1k(ς)
λys(τ)dτ dς + 􏽘

k∈Is

􏽘

m1

j�1
􏽘

n

l�1
􏽚

t

0
ms(t, ς)a1k

ss (ς)exp λ ς − h1k(ς)( 􏼁􏼈 􏼉

× 􏽚
ς

h1k(ς)
a
1j

sl (τ) exp λ τ − h1j(τ)􏼐 􏼑􏽮 􏽯yl h1j(τ)􏼐 􏼑 + exp λτ{ }φl h1j(τ)􏼐 􏼑􏽨 􏽩dτ dς + 􏽘
k∈Is

􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
􏽚

t

0
ms(t, ς)a1k

ss (ς)exp λ ς − h1k(ς)( 􏼁􏼈 􏼉

× 􏽚
ς

h1k(ς)
a

ij

sl(τ) exp λ τ − hij(τ)􏼐 􏼑􏽮 􏽯yl hij(τ)􏼐 􏼑 + exp λτ{ }φl hij(τ)􏼐 􏼑􏽨 􏽩dBi(τ)dς + 􏽘
k∈Is

􏽚
t

0
ms(t, ς)a1k

ss (ς)exp λς{ }φs h1k(ς)( 􏼁dς

+ 􏽘

m1

j�1
􏽘

n

l�1,l≠s,j∈Is

􏽚
t

0
ms(t, ς)a1j

sl (ς) exp λ ς − h1j(ς)􏼐 􏼑􏽮 􏽯yl h1j(ς)􏼐 􏼑 + exp λς{ }φl h1j(ς)􏼐 􏼑􏽨 􏽩dς

+ 􏽘
m

i�2
􏽘

mi

j�1
􏽘

n

l�1
􏽚

t

0
ms(t, ς)aij

sl(ς) exp λ ς − hij(ς)􏼐 􏼑􏽮 􏽯yl hij(ς)􏼐 􏼑 + exp λς{ }φl hij(ς)􏼐 􏼑􏽨 􏽩dBi(ς)(t≥ 0, i � 1, . . . , n).

(38)

To obtain estimates for the solutions of (38), we will
adopt the following notation:

(i) 􏽢ys � sup
t≥0

(E|ys(t)|2p)1/2p, s � 1, . . . , n.

(ii) 􏽢φs � ess supt<0(E|φs(t)|2p)1/2p, s � 1, . . . , n.

(iii) ‖φ‖ � ess supt<0(E|φ(t)|2p)1/2p.

In addition, we will use the following inequalities:

(i) ess supt≥0(E|exp λt{ }φl(hij(t))|2p)1/2p ≤
exp λτij􏽮 􏽯ess supt<0(E|φl(t)|2p)1/2p
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for l � 1, . . . , n, i � 1, . . . , m, j � 1, . . . , mi.
(ii) ms(t, ς)≤ exp − (as − λ)(t−􏼈 ς)}, t ∈ [0, +∞), ς ∈

[0, t]P − almost surely for all s � 1, . . . , n.
(iii) 􏽒

t

0 exp − (as − λ)(t − ς)􏼈 􏼉dς ≤ 1/as − λ, s � 1, . . . , n.

(iv) 􏽒
t

0 exp − 2(as − λ)(t − ς)􏼈 􏼉dς ≤ 1/2(as − λ), s �

1, . . . , n.

Now, from (38) and inequalities (1)–(3), we obtain

􏽢ys ≤ bs

����
����k12p

+
λ

as − λ
􏽘
k∈Is

a
1k
ss exp λτ1k􏼈 􏼉τ1k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦􏽢ys +
1

as − λ
􏽘
k∈Is

􏽘

m1

j�1
􏽘

n

l�1
a
1k
ss exp λτ1k􏼈 􏼉τ1ka

1j

sl exp λτ1j􏽮 􏽯 􏽢yl + 􏽢φl( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
cp

as − λ
􏽘
k∈Is

􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a
1k
ss exp λτ1k􏼈 􏼉

���
τ1k

√
a

ij

sl exp λτij􏽮 􏽯 􏽢yl + 􏽢φl( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +
1

as − λ
􏽘
k∈Is

a
1k
ss exp λτ1k􏼈 􏼉􏽢φs

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
1

as − λ
􏽘

m1

j�1
􏽘

n

l�1,l≠s,j∈Is

a
1j

sl exp λτ1j􏽮 􏽯 􏽢yl + 􏽢φl( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
cp

��������
2 as − λ( 􏼁

􏽱 􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl exp λτij􏽮 􏽯 􏽢yl + 􏽢φl( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n.

(39)

From the definition, we have that 􏽢φj ≤ ‖φ‖, j � 1, . . . , n.
Hence, (39) yields

􏽢ys ≤ bs

����
����k12p

+ 􏽘
n

l�1
Nsl(λ)􏽢yl + Ms(λ)‖φ‖s � 1, . . . , n, (40)

where

Nss(λ) ≔
λ

as − λ
􏽘
k∈Is

a
1k

ss exp λτ1k􏼈 􏼉τ1k
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
1

as − λ
􏽘
k∈Is

􏽘

m1

j�1
a
1k
ss exp λτ1k􏼈 􏼉τ1ka

1j
ss exp λτ1j􏽮 􏽯 + cp 􏽘

k∈Is

􏽘

m

i�2
􏽘

mi

j�1
a
1k
ss exp λτ1k􏼈 􏼉

���
τ1k

√
a

ij
ss exp λτij􏽮 􏽯⎡⎢⎢⎢⎣

+ 􏽘

m1

j�1,j∉Is

a
1j
ss exp λτ1j􏽮 􏽯⎤⎥⎥⎦ +

cp
��������
2 as − λ( 􏼁

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss exp λτij􏽮 􏽯⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n,

Nsl(λ) ≔
1

as − λ
􏽘
k∈Is

􏽘

m1

j�1
a
1k
ss exp λτ1k􏼈 􏼉τ1ka

1j

sl
exp λτ1j􏽮 􏽯⎡⎢⎢⎢⎣

+ cp 􏽘
k∈Is

􏽘

m

i�2
􏽘

mi

j�1
a
1k
ss exp λτ1k􏼈 􏼉

���
τ1k

√
a

ij

sl exp λτij􏽮 􏽯 +􏽘

m1

j�1
a
1j

sl exp λτ1j􏽮 􏽯⎤⎥⎥⎦

+
cp

��������
2 as − λ( 􏼁

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl exp λτij􏽮 􏽯⎡⎢⎢⎣ ⎤⎥⎥⎦, s, j � 1, . . . , n, s≠ l,

Ms(λ) ≔
1

as − λ
􏽘
k∈Is

􏽘

m1

j�1
􏽘

n

l�1
a
1k
ss exp λτ1k􏼈 􏼉τ1ka

1j

sl exp λτ1j􏽮 􏽯⎡⎢⎢⎢⎣

+ cp 􏽘
k∈Is

􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a
1k
ss exp λτ1k􏼈 􏼉

���
τ1k

√
a

ij

sl exp λτij􏽮 􏽯

+ 􏽘
k∈Is

a
1k
ss exp λτ1k􏼈 􏼉 + 􏽘

m1

j�1
􏽘

n

l�1,l≠s,j∈Is

a
1j

sl exp λτ1j􏽮 􏽯⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +
cp

��������
2 as − λ( 􏼁

􏽱 􏽘

m

i�2
􏽘

mi

j�1
􏽘

n

l�1
a

ij

sl exp λτij􏽮 􏽯⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n.

(41)
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Put now y(t) � col(y1(t), . . . , yn(t)),
y � col(y1, . . . , yn), and M(λ) � col(M1(λ), . . . , Mn(λ))

and let C(λ) � (cij(λ))n

i,j�1 be an n × n –matrix with the
entries given by

css(λ) � 1 − Nss(λ), s � 1, . . . , n, csl(λ)

� − Nsl(λ), s, l � 1, . . . , n, s≠ l.
(42)

From (40), we then deduce the following estimate:

C(λ)y≤ ‖b‖kn
2p

e +‖φ‖M(λ), (43)

where e � col(1, . . . , 1). Evidently, C(0) � C. According to
the assumptions of the theorem, C is an M–matrix, so that
C(λ0) is also an M–matrix for small λ0 > 0. *us, from (43)
and *eorem 3, we obtain

|y|≤K ‖b‖kn
2p

+‖φ‖􏼒 􏼓, (44)

for some constant K. Combining the substitution x(t,

b,φ) � exp − λt{ }y(t) with the inequalities
sup
t≥0

|(Ey(t))2p|1/2p ≤ |y| and (44), we get the estimate

E|x(t, b,φ)|
2p

􏼐 􏼑
1/2p

≤K exp − λt{ } ‖b‖kn
2p

+ ess supt<0 E|φ(t)|
2p

􏼐 􏼑
1/2p

􏼒 􏼓(t ∈ [0,∞)).

(45)

Hence, equation (5) is exponentially 2p–stable in the
sense of Definition 2.

*e theorem is proven. □

Remark 3. Whether or not the matrix C is anM–matrix can
be verified by calculation of its principal minors: if all of
them are positive, then C is an M–matrix. Otherwise, one
can use the sufficient conditions described right after Def-
inition 1.

6. Some Corollaries

In this section, we produce some sufficient conditions for
exponential stability of (5).

Let us start with the following particular case of equation
(5):

dx(t) � − 􏽘

m1

j�1
A1j(t)x h1j(t)􏼐 􏼑dt(t≥ 0). (46)

We define the n × n–matrix C(1) � (csl) as follows:

css � 1 −
1
as

􏽘
k∈Is

􏽘

m1

j�1
τ1ka

1k
ss a

1j
ss + 􏽘

m1

j�1,j∉Is

a
1j
ss

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, s � 1, . . . , n,

csl � −
1
as

􏽘
k∈Is

􏽘

m1

j�1
τ1ka

1k
ss a

1j

sl + 􏽘

m1

j�1
a
1j

sl
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, s, l � 1, . . . , n, s≠ l.

(47)

From *eorem 4, we readily obtain the following.

Corollary 1. If condition (C1) with i � 1 and condition (C2)
are fulfilled and C(1) is an M–matrix, then equation (46) is
exponentially 2p–stable in the sense of Definition 2.

In particular, for the system

dx(t) � − A11(t)x h11(t)( 􏼁dt(t≥ 0) , (48)

we obtain the following.

Corollary 2. If condition (C1) with i � 1, j � 1 and condition
(C2) with m1 � 1, Is � 1{ }(s � 1, . . . , n) are fulfilled and
C(2) � (csl) given by

css � 1 −
a
11
ss􏼐 􏼑

2
τ11

as

, s � 1, . . . , n,

csl � −
a
11
ss􏼐 􏼑

2
τ11 + a

11
sl

as

, s, l � 1, . . . , n, s≠ l,

(49)

is an M–matrix, then equation (48) is exponentially
2p–stable in the sense of Definition 2.

Remark 4. Systems (46) and (48) consist of random delay
equations or, if the coefficients A1j, j � 1, .., m1 are all
nonrandom, they become deterministic delay systems. Even
in these cases, the results in the two above corollaries seem to
be new.

Let us now consider the following system of stochastic
delay equations:

dx(t) � − A11(t)x h11(t)( 􏼁dt + 􏽘
m

i�2
􏽘

mi

j�1
Aij(t)x hij(t)􏼐 􏼑dBi(t)(t≥ 0).

(50)

We define the matrix C(3) � (csl) as

css � 1 −
1
as

a
1k
ss􏼐 􏼑

2
τ11 + cp 􏽘

m

i�2
􏽘

mi

j�1

���
τ11

√
a
11
ss a

ij
ss

⎡⎢⎢⎣ ⎤⎥⎥⎦ −
cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss

⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n, (51)

csl � −
1
as

a
11
ss a

11
sl τ11 + a

11
sl + 􏽘

m

i�2
􏽘

mi

j�1

���
τ11

√
a
11
ss a

ij

sl
⎡⎢⎢⎣ ⎤⎥⎥⎦ −

cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl
⎡⎢⎢⎣ ⎤⎥⎥⎦, s, l � 1, . . . , n, s≠ l. (52)
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Corollary 3. If condition (C1) and condition (C2) with
m1 � 1, Is � 1{ }(s � 1, . . . , n) are fulfilled and C(3) is an
M–matrix, equation (50) is exponentially 2p–stable in the
sense of Definition 2.

In particular, we have the following.

Corollary 4. If n � 2, condition (C1) and condition (C2) with
m1 � 1, Is � 1{ }(s � 1, 2) are fulfilled and
c11 > 0, c11c22 > c12c21, where csl(s, l � 1, 2) are defined in (51)
and (52); then, equation (50) is exponentially 2p–stable in the
sense of Definition 2.

Indeed, in this case, the matrix C(3) with n � 2 is an
M–matrix, as its principal minors are positive.

Corollary 5. If condition (C1) and condition (C2) with
m1 � 1, Is � 1{ }(s � 1, . . . , n) are fulfilled and C(4) � (csl)

given as

css � 1 −
cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss, s � 1, . . . , n,

csl � −
1
as

a
11
sl −

cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl , s, l � 1, . . . , n, s≠ l,

(53)

is an M–matrix, equation (50) is exponentially 2p–stable in
the sense of Definition 2.

In particular, we obtain the following.

Corollary 6. If n � 2, h11(t) � t(t ∈ [0,∞))μ–almost ev-
erywhere, condition (C1) and condition (C2) with m1 � 1,
Is � 1{ }(s � 1, 2) are fulfilled and, finally, if

cp
���
2a1

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
11 > 1,

1 −
cp
���
2a1

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
11

⎡⎢⎢⎣ ⎤⎥⎥⎦ 1 −
cp
���
2a2

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
22

⎡⎢⎢⎣ ⎤⎥⎥⎦>
1
a1

a
11
1l +

cp
���
2a1

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij

1l
⎡⎢⎢⎣ ⎤⎥⎥⎦

1
a2

a
11
2l +

cp
���
2a2

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij

2l
⎡⎢⎢⎣ ⎤⎥⎥⎦,

(54)

then equation (50) is exponentially 2p–stable in the sense of
Definition 2.

*is follows from Corollary 5 and the observation that
the principal minors of the matrix defined by (51) and (52)
are in this case positive.

7. Examples

Consider the deterministic system

dx(t) � − 􏽘
m

j�1
Ajx t − hj􏼐 􏼑dt(t≥ 0), (55)

where

Aj � a
j

sl􏼐 􏼑
n

s,l�1, j � 1, . . . , m, (56)

are the real-valued n × n–matrices and hj, j � 1, . . . , m, are
nonnegative real numbers.

Example 1. Assume that

(i) 􏽐
m
j�1 a

j
ss � as > 0, s � 1, . . . , n.

(ii) css � 1 − 1/as 􏽐
m
k�1 􏽐

m
j�1 hk|ak

ss||a
j
ss|, s � 1, . . . , n.

(iii) csl �

− 1/as[􏽐
m
k�1 􏽐

m
j�1 hk|ak

ss||a
j

sl| + 􏽐
m
j�1 |a

j

sl|], s, l �

1, . . . , n, s≠ l.

*en, from Corollary 1, we obtain that equation (55) is
exponentially stable with respect to initial data if the
n × n–matrix C(5) � (csl) with csl defined in Example 1 is an
M–matrix.

Example 2. Assume that in (55), h1 � 0, a1
ss > 0, s � 1, . . . , n,

and the n × n–matrix C(6) � (csl) defined by

css � 1 −
1

a
1
ss

􏽘

m

j�2
a

j
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, s � 1, . . . , n,

csl � −
1

a
1
ss

􏽘

m

j�1
a

j

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, s, l � 1, . . . , n, s≠ l,

(57)

is an M –matrix. *en, from Corollary 1, we obtain that
equation (55) is exponentially stable with respect to initial data.

It is straightforward to observe that the entries csl, s, l �

1, . . . , n of the matrix C(6) defined in (57) satisfy the estimates

css > 􏽘
n

l�1,l≠s
csl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, s � 1, . . . , n. (58)

*us, C(6) is an M–matrix, and equation (55) becomes
exponentially stable with respect to initial data.

In particular, the deterministic system

dx(t) � − Ax(t)dt(t≥ 0), (59)

is exponentially stable if a1
ss > 􏽐

n
l�1,l≠ s |a1

sl|, s � 1, . . . , n.
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Example 3. Consider the following system of linear Itô
equations with constant delays:

dx(t) � − 􏽘

m1

j�1
A1jx t − h1j􏼐 􏼑dt + 􏽘

m

i�2
􏽘

mi

j�1
Aijx t − hij􏼐 􏼑dBi(t)(t ≥ 0),

(60)
where

Aij � a
ij

sl􏼐 􏼑
n

s,l�1, i � 1, . . . , m, j � 1, . . . , mi, (61)

are the real-valued n × n–matrices and hij,
i � 1, . . . , m, j � 1, . . . , mi, are nonnegative real numbers.

We define the n × n–matrix C(7) � (csl) by

css � 1 −
1
as

􏽘

m1

k�1
􏽘

m1

j�1
h1k a

1k
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 a
1j
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + cp 􏽘

m1

k�1
􏽘

m

i�2
􏽘

mi

j�1

���

h1k

􏽱

a
1k
ss ‖ a

ij
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦

−
cp
���
2as

􏽰 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦, s � 1, . . . , n,

csl � −
1
as

􏽘

m1

k�1
􏽘

m1

j�1
h1k a

1k
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 a
1j

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + cp 􏽘

m1

k�1
􏽘

m

i�2
􏽘

mi

j�1

���

h1k

􏽱

a
1k
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 a
ij

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘

m1

j�1
a
1j

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦

−
cp
���
2as

􏽰 􏽘
m

i�2
􏽘

mi

j�1
a

ij

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎣ ⎤⎥⎥⎦, s, l � 1, . . . , n, s≠ l.

(62)

If C(7) � (csl) is an M–matrix and

􏽘

m1

j�1
a
1j
ss � as > 0, s � 1, . . . , n, (63)

then system (60) is exponentially 2p–stable in the sense of
Definition 2.

Example 4. Consider the system

dx(t) � − A11x(t)dt + 􏽘
m

i�2
􏽘

mi

j�1
Aijx t − hij􏼐 􏼑dBi(t)(t≥ 0),

(64)

and define the n × n–matrix C(8) � (csl) by

css � 1 −
cp
����

2a
11
ss

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, s � 1, . . . , n,

csl � −
a
11
sl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a
11
ss

−
cp
����

2a
11
ss

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, s, l � 1, . . . , n, s≠ l.

(65)

From *eorem 4, it follows that if C(8) is an M–matrix
and a11

ss > 0, s � 1, . . . , n, then equation (64) is exponentially
2p–stable in the sense of Definition 2. In particular, C(8)

becomes an M–matrix if

1 −
cp
����

2a
11
ss

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij
ss

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> 􏽘

n

l�1

a
11
sl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a
11
ss

+
cp
����

2a
11
ss

􏽱 􏽘

m

i�2
􏽘

mi

j�1
a

ij

sl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦, s � 1, . . . , n.

(66)

8. Conclusions and Outlook

We described a general framework to study exponential
stability of linear functional differential stochastic equations
combining the regularization technique with the theory of
M–matrices. We demonstrated how this techniques can be
directly applied to stochastic Itô equations with variable
delays and random coefficients, i.e., in the cases where the
Lyapunov-like functionals may be difficult to find. In ad-
dition to the general stability result, we provided several
specific stability conditions, including those for determin-
istic systems with delays. *e results clearly show that in-
troducing the time delays into a system deteriorates its
stability properties in most cases. However, in some special
situations (see Corollaries 4–6 and Example 4), our methods
provide delay-independent stability conditions.

*e suggested framework is by no means thought to
replace the Lyapunov method and its stochastic counter-
parts. Rather, our method may serve as an alternative in the
situations where a direct application of the Lyapunov
method seems to be more difficult (some examples can be
found in the introductory section). On the other hand, our
approach is not yet well developed to study global stability of
nonlinear differential equations, and the main reason for
that is the absence of the complete theory of the stochastic
input-to-state stability, which the regularization method is
based upon. *erefore, the efficiency of the method should
be investigated further. For this purpose, it may be ap-
propriate to study the following problems:

(i) Stability in the first approximation. *is is an im-
portant problem in many models, for instance, in
connection with extinction of populations in the
random environment. *e techniques developed in
the present paper can be directly applied to this
problem.

(ii) Asymptotic stability that is not exponential stability.
*is property is typical for equations with un-
bounded delays, for instance, for the stochastic
pantograph equation [15]. *e regularization
method in its conventional setting has been used in
this case, so that it is quite realistic to assume that
combining it with the theory ofM–matrices will not
be difficult.

(iii) Extension of the analysis based on M–matrices
using nonlinear reference equations, as it is sug-
gested in the paper [20]. Such constructions are
believed to be challengeable, as it is known from the
deterministic theory of functional differential
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equations [9]. However, the breakthrough ideas
from [20] can help to overcome some of the ob-
stacles, and not only in the stochastic case, but also
in the deterministic case.

(iv) Applications to specific time-continuous stochastic
models from various fields, e.g., stochastic networks,
population dynamics, and analysis of neural fields.
In this case, a graphical comparison with the
existing results should be an essential part of the
analysis.

(v) It is highly desirable to apply the theory of
M–matrices to analyse time-discrete stochastic
systems, especially those arising in the control
theory. A popular and challengeable example is
given by the Roesser model described by linear,
time-delayed systems. *e Lyapunov function ap-
proach, frequently used to study these systems (see,
e.g., [6, 23]), may be complemented by the tech-
niques developed in the present paper.
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matrices and stability of Itô delay differential equations,”
Differential Equations, vol. 53, no. 5, pp. 571–582, 2017.

[18] Q. Zhu, “Stability analysis of stochastic delay differential
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