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A B S T R A C T   

In agricultural production, soil characteristics play a vital role in maintaining fertility by allowing crops to 
develop better through root nutrition with minimal energy inputs. Nitrogen (N), Phosphorus (P), and Potassium 
(K) are all important nitrogen fertilizers extensively utilized in crops to supply a sufficient level of nutrients and 
keep their production level high. However, the application is generally limited to specific crops because of the 
global variability in these essential nutrients. Stability in fertilizer application, growth, and root growth rate 
increases crop fertility and crop production. To predict the suitable nutrients for different crops and provide 
nutrients recommendations by analyzing the crop fertility and yield production, this paper proposes nutrient 
recommendations through an improved genetic algorithm (IGA) that uses time-series sensor data and recom-
mends various crop settings. A neighborhood-based strategy is then presented to handle exploration and 
exploitation for optimizing the parameters to obtain the maximum yield. The method can expand knowledge by 
using the population exploration strategy. The final recommendation is made by using the similarity between 
recommended patterns and real-time sensor data. With time, crop fertility decreases due to the low level of 
nutrients. This crop model will help to increase yield by analysis of the seasonal fertility performance of the soil. 
The proposed method is also a useful tool to improve soil fertility performance by providing the nutrient 
recommendation of optimal conditions for crop development. Experimental results show that the proposed 
model can recommend optimizing patterns and increasing the yearly yield efficiently. The method can help 
identify the region to assess crop suitability under certain nutrients levels and give insight into nutrient suit-
ability assessments concerning specific crops in a climate-changing world.   

1. Introduction 

The agricultural industry plays an essential role in the growth of the 
entire economy of a country. The quality of soil is required to be 
maintained for the cultivation process. The utilization of intelligent 
technologies for planning, analysis, and production control are essential 
to improve the productivity of organic soil, plant nutrition, and quality 
of water of agriculture (Zamora-Izquierdo et al., 2019; Klerkx et al., 
2019; Casta neda-Miranda and Casta no-Meneses, 2020). Fast im-
provements in the Internet of Things (IoT) (Lin et al., 2021), and cloud 
computing are pushing the marvel of what is called intelligent farming 
(Suchithra and Pai, 2020). Precision agriculture is an essential part of 
the durable intensity of agriculture, where information and 

communication technologies and other technologies are essential, but 
not enough for sustainable agricultural systems (Priya and Ramesh, 
2018). Technology should fit into the practice of farmers and should be 
handled by their experienced-based and valuable knowledge to 
contribute to increasing sustainability in farming. Precision agriculture 
utilizes a remote sensor, which has improved dramatically due to 
innovative, sustainable, low-cost fertilizers and pesticides. One of the 
reasons for the improvement is the usage of information and commu-
nication technology (ICT). ICT is a network system that provides infor-
mation on the conditions of production, process control, equipment, 
operations, and environment (Priya and Ramesh, 2018). With ICT usage, 
we can increase the efficiency of operation and management of farming 
with less cost and workforce for agriculture. The ICT utilizes the model 
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like crop growth production prediction, statistical learning methods, 
and decision support systems. 

Another exciting aspect is that the usage of improper fertilizer results 
in nutrients (macro and micro) decline level imbalance. The lack of 
nutrients results in a decrease in yield production, automatically 
increasing the production cost. This also affects environmental costs at 
the same time for lack of nutrients in gaseous form. In a report (Zamora- 
Izquierdo et al., 2019; Priya and Ramesh, 2018), farmers in India are 
making use of soil at its maximum density, resulting in the cultivation of 
two crops a year without soil management methods. The method results 
in nutrient deficits over time and changes in the chemical structure of 
the soil. These can be taken because the soil becomes more susceptible to 
microbial contamination and lacks the quality of crops. With nitrogen 
imbalance, plants are not able to perform soil development activities. 
Therefore, a current need to ensure continuous monitoring of the soil 
with a well-understood approach to maintain a high soil organic matter 
level and nutrition abundance. A soil test for nutrients (including ni-
trogen and phosphorous) can be used before fertilization. In case of 
nutrient deficiency, recommended nutrients should be provided. In this 
way, yield production will be high, and soil fertility is maintained at a 
high level. 

In (Priya and Ramesh, 2018), the authors have recognized the 
regional soil variation within different agricultural areas. The soil 
monitoring technique has also been developed with different crops 
being placed under different environmental conditions, e.g., using an 
essential nutrient for specific climate conditions. The discussed method 
helps increase plants’ ability to grow with fertilizer and produce a high 
yield. It enhances productivity along with the usage of nutrients that 
have critical applications in soil engineering. GPS (global position sys-
tem) helps access different soils, associated sensors, automatic hardware 
control, and irrigation system frameworks. Precision farming with GPS 
will give practical information for the optimal management of local 
environments and agriculture (Priya and Ramesh, 2018). This helps in 
the decision-making of the decision support system and application of 
water control and spraying drones. 

Motivation: Soil is the most basic organic resource of the earth; it 
helps in food production and maintains the balance of local, global, and 
regional environmental quality. In Asia, farmers have practiced the 
cultural system for centuries and ensuring a stable yield. The farmer can 
maintain the fertility of the soil in a controlled manner. However, the 
equilibrium of fertility and yield production is disturbed due to the in-
crease in production by the usage of seed varieties, chemical fertilizers, 
and pesticides (Priya and Ramesh, 2018). In recent years, the population 
is increased rapidly. Crop production was not able to fulfill the demand 
of the current population. The importance of nutrient-rich soil in the 
production of food, agriculture, and industry has been increasing. With 
the improvement of nutrient research, the correct ratio of nutrients has a 
critical role in increasing farming yield. In this work, we focus on 
optimizing the nutrients, i.e., Nitrogen (N), Phosphorous (P), and Po-
tassium (K), together as N-P-K, by using the time-series data from the 
previous cultivation period. The improved genetic algorithm is proposed 
to optimize the yield production and recommend setting the nutrients 
values before the cultivation period. The research uses the recommen-
dation of German scientist Justus von Liebig proposed the theory that 
states the value of N-P-K values are essential for crop improvement 
(Priya and Ramesh, 2018). Therefore, the proposed model recom-
mended the optimized setting of nutrients for predicting the attainable 
yield. The method helps the farmer to manage the content of N-P-K 
values for every farmland in agriculture. 

The problem of optimization terms as a combinatorial optimization 
problem. The natural evolutionary process inspires evolutionary 
computation (EC) (Hochba, 1997). EC has been applied to several 
combinations of task in data mining (Ahmed et al., 2021), scheduling 
problem and sequence planning (Xu et al., 2020). To explore the vast 
search space of optimization task, EC-based approaches, i.e., genetic 
algorithm (Lin et al., 2014) and ant colony optimization (Wu et al., 

2017) are utilized in many domains and applications. However, the EC- 
based optimization typically searches for the global optima, i.e., moving 
towards the best fitness values; sometimes, EC methods miss the local 
optimization. The EC-based optimization methods are inefficiently able 
to search for the newly optimized parameters. We propose an improved 
GA method to recommend the optimized nutrients to address optimi-
zation, thus resulting in high yield production. Our approach offers a 
novel alternative to finding optimal nutrients to increase yield produc-
tion while maintaining soil fertility. The major contributions are:  

1. We have improved the population initialization strategy by using the 
time series soil nutrients. The proposed method helps to reduce 
search space and reduce the missing local optimization parameters.  

2. We have introduced the neighborhood exploration method to speed 
the evolution process and increase the convergence rate. We intro-
duce a repair method to reduce the invalid combination of the 
optimized parameters. Also, we introduce a reduction prevention 
method to maintain high optimize parameters. 

3. Experimental results showed that an improved population initiali-
zation strategy significantly improved the nutrient recommendation 
and yield production performance compared to the traditional 
method. 

The rest of the paper discusses as follows. First, in Section 2, we 
discuss the related work in the nutrient recommendation and increasing 
yield production to various farm situations. Section 3 discusses some 
preliminary information and problem statements. Section 4 discusses 
the proposed model and the framework. Section 5 describes the outcome 
of the proposed model and its comparison with the traditional approach 
through our thorough experimental analysis. Finally, the conclusion and 
possible future enhancements are discussed in Section 6. 

2. Literature review 

Nowdays, agriculture recommendation systems have emerged 
through various experiments using different approaches related to 
agriculture crops. The quality of seeds can be increased genetically, 
which results in high crop productivity. To improve the seeds geneti-
cally, the combination of the genotype and phenotype could be studied 
under the unique environment (Parent and Tardieu, 2014). The other 
factor that can increase productivity includes soil quality, weeds, nu-
trients level, and water management (Khoury et al., 2014). The learning- 
based mechanism also plays an essential role in improving the crop 
productivity and development of precision agriculture (Rehman et al., 
2019). Khoshnevisan et al. addressed a greenhouse gas emission fore-
casting method is proposed to predict the potatoes yield in Iran farms 
(Khoshnevisan et al., 2014). They gathered the data for several crops in 
person; the developed model is tested under different conditions and 
tested by experts. The features that influence the forecasting output are 
electricity, fertilizers, and seed quality. The model can achieve 98% 
forecasting accuracy and 99% for gas emission. Muniasamy used the 
wireless sensor network for soil moisture detection and then helped in 
the automation of irrigation system (Muniasamy, 2020). The sensor 
collects information related to soil moisture and soil pH level to increase 
crop production. The developed system helps to give information related 
to moisture levels and soil requirements, fertilizers, and pesticides 
(Muniasamy, 2020). Bhar et al. (2020) introduced a coordinated descent 
algorithm for parameter calibration in agricultural model. A calibrated 
Root Zone Water Quality Model (RZWQM) model is also developed to 
determine the recommendations for fertilizer (Urea Ammonium Nitrate 
UAN) and irrigation amount which would help maximize the profit per 
hectare of the farm. Zou et al. (2020) presented an optimization model 
of drip irrigation and fertilization regimes for spring maize in Northwest 
China. Results then showed that the appropriate reduction of fertiliza-
tion cannot significantly reduce the grain yield of spring maize, but low 
irrigation and fertilization amounts significantly reduced economic 
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benefits. Xia et al. (2020) conducted a two-year field experiment in a 
typical rice–wheat cropping system in southern China to investigate the 
response of soil carbon input. Results then showed that the optimization 
of the nitrogen fertilization rate could increase food security, and soil 
organic carbon storage by enhancing soil carbon input, decreasing car-
bon output, and decrease nitrogen pollution caused by reactive nitrogen 
losses. 

A machine learning-based for efficient crop yield recommendation is 
proposed (Suresh et al., 2021), which predicts the values for crops and 
gives a recommendation based on the predicted values (Suresh et al., 
2021). In addition, Sharma et al. used to predict uncertain rainfall that 
affects the crops (Sharma et al., 2018). Furthermore, Khan and Ghosh 
used Meteorological Data of Chhattisgarh (CG) data to predict the crop 
yields (Khan and Ghosh, 2020). The data represents different crops 
nutrients levels (Khan and Ghosh, 2020). A neural network-based 
regression model is also proposed to predict the rain occurrence of the 
relevant geographical area. They collected the data from Ahmednagar, 
India, weather station. The features include temperature, humidity, 
values, and rainfall for the last ten years. The regression model can 
improve the selected geo-location rainfall prediction (Bendre et al., 
2015). Different data mining algorithms have also been applied to 
agriculture datasets. For example, in (Hot and Popovic-Bugarin, 2015), 
Hot and Popovic-Bugarin introduced the clustering-based model incor-
porated with fuzzy k-mean. The soil is clustered based on the charac-
teristic of the gathered sensor values. The paper is then compared the 
results with Google map and local streets’ segmentation maps (Hot and 
Popovic-Bugarin, 2015), which stated that the developed model is 
suitable to present data to scientists and landowners. In (Navarro-Hellín 
et al., 2016), Navarro-Hellín et al. proposed two machine learning 
models respectively named Partial Least Square Regression (PLSR) 
(Navarro-Hellín et al., 2016) and Adaptive Neuro-Fuzzy Inference Sys-
tems (ANFIS) (Navarro-Hellín et al., 2016) for managing irrigation in 
agriculture. The model could predict the water in the irrigation system 
that uses the soil condition, weather, and crop conditions as the major 
features for prediction. 

3. Preliminaries and problem statement 

Let N = {N1,N2,…,Nm} be a set of nutrients level, and the data be a 
set of instances such as I = {I1, I2,…, In} where each instance is a set of 
time-series data belonging to N and has a unique identifier called Iid. 
Each nutrient in an instance has a value (depending upon crop condition 
and sensor values) such as v(Nk, Ic). Table 1 shows a simple example for 
the crop time-series database where nine years nutrient levels are used 
as features (3×9  = 27) marked as white colored column: encoded 
chromosome with time series data, yellow colored column: recommended 
nutrient level for current year as output variables, Grey colored column: 
single objective high yield optimization Furthermore, Table 2 shows the 
cotton crop data-set sample. 

Problem Statement: This paper develops a model that enables 
efficient exploration of correct usage of nutrients for developing a 
knowledge-based system for the ICT environment. Develop knowledge is 
then applied directly to the environment, which recommends balancing 
soil fertility and crop production. The recommended setting also helps to 
improve crop yield. The model can optimize nutrient levels with no 

initial threshold values and extract patterns from the time-series data. 
The model takes advantage of the genetic algorithm to use the infor-
mation and recommend optimizing remote environments. 

4. Designed model 

We show the designed framework for ICT in Fig. 1, each sensor in the 
remote area has its set of nutrient levels (Ni). The sensor values are 
stored locally and sent to the database based on intervals (weekly, 
monthly, yearly) (Priya and Ramesh, 2018). All sensors for each nutrient 
are collected and merged through the Internet to log the extensive data 
set of the remote area. The designed algorithm is then applied and 
optimize for sequence nutrients for decision-making. We describe the 
detail of the framework below. The objective of the developed model is 
to maintain soil fertility (maintaining nutrient levels) and increase crop 
production (yield) simultaneously. The model extracts the optimization 
parameter by using the Euclidean distance-based search method. The 
proposed exploration and exploitation method helps to optimize locally 
main as well, globally. Sometimes, quality soil is not able to produce a 
high yield. The reason is the continuous cultivation of crops for a more 
extended time. As a result, the nutrients level drops after some years, 

Table 1 
A sample of initialized population.  

Table 2 
A sample of year wise data collection for the cotton farming.  

SID Time Nitrogen Phosphorous Potassium 

s1 2001 108 67 11 
s2 2002 182 67 12 
s3 2003 177 78 11 
. . . . . 
. . . . . 
. . . . . 
. . . . . 
s10 2010 290 70 25  

Fig. 1. A designed framework for ICT.  
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resulting in quality and production. 
For this reason, we used the series of data of the same cultivated area 

and then recommended the nutrient level before the crop. Compared to 
the traditional approach that only utilities the previous or current state 
of the soil, the developed model can recommend a set of nutrient levels 
and maximize the yield production. The used fitness function is shown in 
Eq. 1, where n is the number of the objectives, and fi(x) represents the ith 

objective function for crop yields. 

Maximize F(x) = [f1(x), f2(x),…, fn(x)] (1)  

Algorithm 1. Initialization   
INPUT: Number of instances I, population pop size, number of generation Gen, Set of 

nutrients N, the size of neighbors ns, crossover probability pc, mutation probability 
pm.  

OUTPUT: Initialize individuals in a population. 
1: population←0;  
2: i←1;  
3: While i⩽Gen do ▹i represents number of generation  
4: chromosome← Initialized for len(N) with 0;  
5: population← select random number [1,len(I)];  
6: chromosome←RouletteSelection(population);  
7: pop←pop ∪ chromosome;  
8: pop←IGA(pop,ns,pc,pm);  
9: i + + ;  
10: Return pop.   

4.1. Initialization 

The initialization of the population is an essential step in the 
evolutionary algorithm. The population may cause a weak solution or 
very computational expenses (Ahmed et al., 2021). They applied the 
random initialization method to the database called a random selection. 
However, the issue with random selection is that it may cause invalid 
chromosomes and individuals, i.e., instances that are not in the data-
base. In the first step, we propose the problem-specified initialization 
strategy. The value (nutrient values) encoded method is used. For the 
selection mechanism, we use the roulette selection mechanism. In Al-
gorithm 1 (line 1–6), the chromosome is initialized with zero. Then 
random value is selected of length len(Ni). The loop starts with roulette 
selection that select individual based on the roulette wheel where a 
population of all the chromosome (complete dataset) is placed. The 
roulette selection size is directly propositional to the fitness value of 
every chromosome; the larger the value, the greater the chance of the 
selection. In Algorithm 2 (line 1–4), we calculate the sum of the fitness 
value of each chromosome in the population. Then, we generated the 
random number to spin the roulette and get the index and chromosome 
values. For each chromosome, we assign the value for selection in the 
same manner. In this way, we complete the initialization method for the 
population size of pop. All the chromosomes of the individuals are 
populated and appended in the population matrix. 

Algorithm 2. Roulette Selection   
INPUT: Population. 
OUTPUT: indexindividual.  
1: SumValue←sum(Ni);  
2: CommulatedScore←CMU(Ni); ▹Calculate the cumulative values  
3: Positionroulette←sum(Ni)× random; ▹Spin wheel of the roulette  
4: Search(CommulatedScore,Positionroulette);  
5: Return index individual.   

Algorithm 3. IGA: population evolution   

(continued on next column)  

(continued ) 

INPUT: P, Ni, the size of neighbors ns, crossover probability pc, mutation probability 
pm.  

OUTPUT: Optimize population with higher yield values. 
1: for all i ∈ pop do  
2: individuals←Eculideandistance(Pi);  
3: P′

i←Neighbourhood(individuals,ns);  
4: child←CrossMutation(P′

i ,Pi);  
5: pop←replace(Pi, child);  
6: Yieldindividual←Max(Fitness,2);  
7: Population←replace(random(),2,Yieldindividual);  
8: Return Optimizepopulation.    

4.1.1. Encoding 
The encoding mechanism was depended on the domains and their 

applications. The commonly used encoding schemes are valued and 
binary as they result in the higher convergence and diversity of the so-
lution (Ahmed et al., 2021). We use the value of the nutrient as the 
encoding method and time series of the last ten years. According to 
(Ahmed et al., 2021), the encoding mechanism depended on the two 
factors, i.e., order and values. The order helps in the permutation task, 
whereas the values and order are preserved by the binary and value 
encoded. Since we need to recommend nutrient values, so in this 
research, we are using the values encoding. The nutrient values (N, P, 
and K) are used as encoded values, as mentioned in the Eq. 2. The time 
series of the year-based encoding method are mentioned in Fig. 2. 

Bq,j =

{
nutrient value(), ij ∈ Iq
0, otherwise (2)  

4.1.2. Neighbor exploration and population evolution 
The neighbor-based crossover and mutation method is proposed in 

the designed model. The Euclidean distance of the initialized population 

is calculated by using the equation, i.e., dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1
(
xik − xjk

)2
√

. The 
equation gives the distance between two individuals by calculating the 
root square and the difference between each point (Algorithm 3, line 2). 
The most similar individual is selected, thus exploring the global opti-
mization. We select the individual neighbour’s and then apply one point 
cross mutation operation, as mentioned in Algorithm 3 (Algorithm 3, 
line 3) and shown in Figs. 3 and 4. 

For each iteration, we develop a strategy to transfer the data from 
one generation to another, as mentioned in Figs. 5 and 6. Two consec-
utive individuals are selected from the previous generation randomly. 
We replace it with the current generation, and the random replacement 
helps as better individuals improved to do the evolution in different 
directions (Algorithm 3, lines 6–7). Also, the search space of the popu-
lation expanded with the inclusion helps in the population diversity and 
preventing the failure of local optimization. 

As shown in Fig. 6, we also propose the population exploitation 
method that helps to lose the best individual. First, we merge the pre-
vious population and the new population. Then, we remove the dupli-
cates individually. After that, we perform a ranking-based selection. 
Finally, the individual is sorted and selected based on the fitness values 
according to decreasing order. 

5. Experimental evaluation 

In this section, we used the dataset from the source (Priya and 
Ramesh, 2018). The amount of nutrients by the crop and applied to the 
past ten years has been discussed. Table 3 shows the characteristics of 
different crops. The best and maximum values are mentioned. The ex-
periments are carried on Linux mint distro, core i7 processor, and 16 GB 
RAM. For an improved GA-based model, we set the population size to 
100. The maximal generation is set to 100, the neighbourhood 
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exploration is set to 10, and mutation and crossover probability were set 
to 0.01 and 1.0, respectively. We then used the datasets from 2001 to 
2009 and suggested the 2010 nutrient level for cotton, groundnut, 
maize, and rice. 

Fig. 7 and Table 4 below depict all crop categories, which are used to 
analyze trends of nutrient loss. Each plot describes the level of the crop 
nutrient levels. As seen in the figure, the nitrogen level is almost double 
compared to the actual required by the plants for the cotton plant. The 
traditional settings lead to a low fertility level and result in low crop 
production. Based on the designed model, the recommended setting 
results in a higher yield. The phosphorous and potassium level applied 
with IGA is almost similar to the traditional one. However, in combi-
nation with the other nutrient, the nitrogen level helps to increase the 
yield production. For groundnut crops, nitrogen and phosphorous values 
are higher than compared to the traditional method. However, the value 
of potassium is lower. Thus, the resultant yield value is almost similar to 
the traditional. The model performs slightly better. For the maize crop, 

the model required more generation to expand more knowledge. For the 
maize crop, all the nutrient levels recommended by IGA are higher than 
the traditional method. As a result, the model can produce the 2,035 
quantity (kg/Hg) compared to the traditional approach with 1, 865.47 
quantity (kg/Hg). For rice crops, both traditional and IGA methods have 
an equal suggestions. They are resulting in an equal performance of the 
yield production. Thus, the proposed model can perform better for 
cotton and groundnuts, whereas maize and rice production is equally. 
For that reason, maize and rice are required to be run for more 
generations. 

After experimentation, the proposed method is found to perform 
better and produce a higher number of yields. It is found that a better 
nutrient amount can be achieved by using the proposed model. If the 
right amount of nutrients is applied to crops, then a high yield can be 

Fig. 2. Encoding example with time-series data.  

Fig. 3. Population offspring methodology.  

Fig. 4. Population exploration methodology.  

Fig. 5. Population selection mechanism.  
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achieved. Using the proposed model, crop yield production increased 
and gave super ability to decide the right combination of different types 
of available resources. This will helps farmers and agriculture experts to 
adopt the method for other crops. The automation of the N-P-K helps to 
avoid manual estimations. The method also improved if a high volume 
dataset of different crops can be accessible and targets yield values 
properly indexed with soil type and location. 

6. Conclusion and future work 

This paper proposed an improved genetic algorithm (IGA) to 
recommend an optimal setting for nutrients to different crops. The al-
gorithm adopts an optimization scheme, which involves a neighborhood 
exploration and exploitation strategy. The model was able to improve 
local optimization to prevent the local premature individual in the 
population strategy. We also use diversity to maintain a method to 
expand population knowledge. The results in the real-world datasets 
showed that the proposed IGA method could perform better against the 
standard recommendation. Thus, the algorithm can optimize the yield 

Fig. 6. Population exploitation method.  

Table 3 
Characteristic of dataset used.  

Type Nutrients Max Min Best 
max 

Best 
min 

Yield Best 
Yield 

Cotton Nitrogen 350 180 290 110 1600 1900 
Phosphorous 110 60 70 60 
Potassium 30 15 25 10  

Ground 
nut 

Nitrogen 90 40 30 15 1100 1600 
Phosphorous 110 60 55 35 
Potassium 35 15 45 25  

Maize Nitrogen 275 90 170 60 1400 2400 
Phosphorous 70 30 50 15 
Potassium 90 20 60 10  

Rice Nitrogen 80 70 55 45 110 2200 
Phosphorous 38 20 35 15 
Potassium 25 10 20 10  

Fig. 7. Results comparison with the traditional method for Nitrogen, Phosphorous, Potassium and Yield.  
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and maintain nutrient levels. In the future, we plan to optimize the 
search strategy and individual repair methods to extract valuable pa-
rameters. This will help to reduce the computation resources and 
improve the recommendation to maintain crops for soil fertilization. 
Furthermore, the AI/ML models or multi-objective optimization models 
can also be considered to solve the limitation of the optimization issue if 
there is a suitable model to tune the parameters for further imple-
mentation efficiently. 
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