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Abstract. This paper presents a method for energy efficient weather routing of a ferry in
Norway. Historical operational data from the ferry and environmental data are used to develop
two models that predict the energy consumption. The first is a purely data-driven linear
regression energy model, while the second is as a hybrid model, combining physical models
with data-driven models using machine learning techniques. With an established energy model,
it is possible to develop a route optimization that proposes efficient routes with less energy usage
compared to fixed speed and heading control.

1. Introduction

To support the UN’s sustainable development goal of combatting climate change, the
International Maritime Organization (IMO) has adopted mandatory measures to reduce ship
emissions through the Ship Energy Efficiency Management Plan (SEEMP) (IMO, 2019). The
initial IMO greenhouse gas (GHG) strategy is to reduce average CO2 emissions across the
international shipping fleet by at least 40 % by 2030, and aiming towards 70 % by 2050, compared
to 2008 values. The total annual GHG emissions from international shipping should be reduced
by at least 50 % by 2050, compared to 2008. One manner to support this goal is through
efficient voyage planning. To do so, the energy consumption of a vessel under various operational
and environmental conditions must be estimated. By optimizing the route of the vessel with
respect to the prevailing conditions, the energy consumption of the voyage can be minimized.
Route optimization has the potential for significant reductions in energy consumption, where
the associated cost and emission savings are estimated to be around 7% for the global fleet [1].

1.1. Related work

As originally presented in [2], an overview of the state-of-the-art optimization methods used in
weather routing has been presented in [3], while a weather routing system based on travel time,
added resistance, and safety is developed in [4]. Many of the related works for weather routing
revolve around long-distance route optimization where a large reduction in energy consumption
can be achieved by avoiding the roughest environmental conditions. However, a considerable
reduction of energy consumption can also be achieved for short-sea shipping, due to the high
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frequency of voyages. An example is presented in [5] where weather routing system for short-sea
shipping is based on a pathfinding algorithm with the use of met-oceanographic predictions.

With large amounts of operational ship data and environmental data available, there
has been an increased interest in using machine learning methods for estimating the energy
consumption [6, 7, 8]. Often, regression models are used to predict the energy consumption,
using engine RPM, ship velocity and weather data as inputs.

Machine Learning (ML) is being applied in a wide variety of domains due to its state-off-the-
art performance in many classification and regression tasks. ML techniques are data-driven, i.e.
they fit a model to a data set without explicit knowledge of underlying relationships. Applying
such techniques in safety-critical systems can therefore be a challenge since ML models are often
used as "black boxes”, where the underlying causality is unknown. Facilitating trust in such
methods is, therefore, a challenge, as the interpretability of ML models is limited. As a result,
there is a growing consensus that ML techniques should be coupled with physical knowledge
to strengthen and overcome some of the drawbacks with ML. This technique is called hybrid
physics-guided ML (also referred to as knowledge-guided ML, science-guided ML, physics-guided
ML, physics-informed ML, physics-aware Al, and theory-guided data science) and is gaining
popularity within both the ML and scientific communities [9, 10]. Recently, several works have
applied hybrid physics-guided ML, i.e., within the fields of air-foil aerodynamics [11] and energy
fusion [12] with promising results.

1.2. Objective

The objective of this paper is to develop a weather routing system for a ferry that will propose
the most energy efficient route. The accuracy of the weather routing system depends on the
accuracy of the model used to predict the energy consumption (hereby referred to as energy
model). In this paper, we seek to investigate if hybrid physics-guided ML techniques can prove
useful when applied within the maritime domain. More specifically, we investigate if it is possible
to estimate the energy consumption of a vessel more accurately using hybrid physics-guided ML
techniques than using pure ML techniques.

1.8. Assumptions

When referring to energy consumption, we focus on the propulsion energy alone i.e., hotel loads
are not considered. Moreover, passenger comfort is not included in the optimization schema,
but low energy consumption is often correlated with low environmental disturbances, which in
turn increase the comfort level. For the ferry route used in this work, transit is the longest
and most energy consuming phase (75 % to 80 % of the overall propulsion energy used for an
individual trip) with the most intricate interplay between vessel and environmental forces [2].
Consequently, we only focus on the transit phase in this paper. Finally, as this is a route
suggestion optimizer, we do not consider dynamic traffic, since the captain will always be in
direct control of the vessel.

2. Methodology
From the ship we gather GPS positions, speed over ground (SOG), course over ground (COG),
vessel heading, power consumed by the electric motors driving the propulsors, and local wind
measurements on the ship. In addition, vessel trim angle, and ship draft are measured, which
often are not easily available. Draft measurements are gathered by mounting two displacement
radars at the side of the ferry, measuring the distance between the sensors and the sea surface.
Knowing the distance between the sensors, distance measurements from the two sensors are used
to calculate the average draft measurement as well as vessel trim angle.

The ship data from about 1000 half hour ferry crossings is logged at a frequency of 1 Hz.
Waves and current values are estimated by meteorological forecasting models gathered from the
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open-source weather service provided by MET Norway [13]. From the waves model we collect
the wave period and the wave direction, measured from true north. From the current model
we collect the speed and direction, relative true north. The weather models have a temporal
resolution of one hour and a spatial resolution of 800 m x 800 m.

The waves and current models are interpolated in time and space to relate them to the ship
data. Weather data are first interpolated spatially using inverse distance weighted interpolation
with the four grid points closest to the current position. Then, the values are interpolated
linearly in time. Directional variables, e.g. current direction, are interpolated in the space of
complex numbers, mapping angles between 0° and 360° to the unit circle before interpolation.

To remove unphysical data, all trips are filtered by discarding trips that do not have a
reasonable duration or speed profile. The stored data is used to develop the energy models, as
illustrated in Figure 1.

______________________________________________________________

Modelling

Data collection

ML energy model

Figure 1: Collected data is used as input to the energy
models.

2.1. Data analysis

This paper is a continuation of the work done in [2]. In this study, draft, trim and wind
measurements are collected from the ship in addition to the other ship data. An analysis of the
three newly added data is given in the following.

In this study, the static draft and trim are utilized. These values are estimated as the mean
of the prior 30s of data for each departure when the vessel is free floating and not affected by
engine forces. In this way measurements are not affected by dynamic variations from external
forces during the voyage. To remove measurement bias, all used measurements are scaled by
subtracting the mean draft value for each sensor.

Having two draft measurements, one located at the front, and one located at the back of the
vessel, the trim can be calculated using the draft measurements. Additionally, the pitch angle
is measured by a vessel motion reference unit (MRU). The calculated trim is compared with
the pitch angle. As can be seen in Figure 2, there is a high correlation (Pearson correlation
coefficient P = 0.97) between calculated trim angle and the pitch angle. Moreover, since there
is a high correlation between the pitch angle and the trim angle calculated using the draft
measurements, we conclude that both signals are applicable as model input. For simplicity by
keeping the number of inputs to a minimum, we choose to use the draft measurement to estimate
trim angles.

The wind measurements from the vessel are compared with wind models from the weather
service provided by MET Norway. Wind speed and direction analysis are shown in Figure 3
and Figure 4 with Pearson correlation coefficient P = 0.76 and P = 0.49, respectively. The
level of correlation is as expected since wind measurements are often highly varying since it
is affected by the vessel itself as well as measuring a combination of average and wind gusts.
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Figure 2: Correlation between calculated trim
angle from the displacement radars and pitch
angle from the vessel MRU.

Data from MET Norway on the other hand, is model based and does not capturing the complex
dynamics around the vessel in the local area. Moreover, the measurement height is not the same
as the MET Norway model. Nevertheless, since there are clear relationships between the wind
measurements and the MET Norway model, we conclude that the vessel wind measurements are
reliable and will therefore use these measurements in the energy model to capture the complex
wind dynamics.
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2.2. Energy models
Using the collected weather and ship data, two energy models are developed and evaluated.

2.2.1. Linear model The first energy model is a linear regression model based on selected
parameters derived from the collected data. These parameters are selected based on their
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correlation with the energy consumption. This model is purely data driven, where the correlation
between the input parameters and the energy consumption are identified via ML.

To improve the linear model proposed in [2], vessel draft and trim measurements have been
added to the energy model. To further improve the energy model, model parameters are
expressed such that the correlation between them are minimized. For example, instead of using
wave peak period wy and the wave angle of attack [ separately, the wave encounter frequency
we is used instead and given by

2

wWo — %Ucos(ﬁ) : (1)

We =

where g is the acceleration of gravity and U is the speed of the vessel. Moreover, the current

velocity Vg yel Telative the vessel operating at velocity Ug, is given by
b b b
vc,rel = Rn(g)vgtrue = Uy, (2)
where vy, 18 the current velocity relative true north, 6 is the vessel heading, RY () is the

rotation matrix between the vessel body attached frame {b} and the North-East-Down (NED)
frame {n}. Superscript {b, n} denotes which frame the vector is expressed in. See (Fossen, 2021)
for details.

Based on the relationships above, a regression model for the transit phase is developed. The
model estimates energy per distance used during transit based on average SOG, longitudinal
and transverse current and wind speed, wave encounter frequency, significant wave height Hj,
trim and draft.

2.2.2. Hybrid physics-guided model As an extension to the linear model, a hybrid physics-
guided model combining physical models with data driven ML models is developed (hereby
referred to as hybrid energy model). The model utilizes known physical relations between the
selected parameters and the energy consumption. Machine learning methods are then applied
to find the unknown relations.

The transverse (denoted t) and longitudinal (denoted !) wind (denoted w) and current
(denoted c) forces Fj ; acting on a vessel are estimated as

Ej= %PiAi,jUi,j vigl, (3)
where i € {w,c}, j € {t,1}, p; is the air and water density, A; ; is the transverse and longitudinal
air and underwater cross-section areas and v; is the relative wind and current velocities. For
modelling simplicity, the static cross-section areas are given by the vessel drawings, hence we
do not consider dynamic cross-section areas due to time varying trim and draft. The drag
coefficients in Equation 3 are not included, as they are assumed to be estimated as part of the
ML-based regression.

In addition to the linear model parameters presented in Section 2.2.1, squared SOG, wind
and current forces given in Equation 3 have been added to the physics-guided ML model.

3. Optimization

Once the energy models have been sufficiently trained and evaluated, they can be used to
optimize planned routes. This is illustrated in Figure 5. Given the trained energy model, an
initial route, weather forecast, and ferry schedule, the goal of the Route Optimizer (RO) is to
return an optimized route that minimizes the energy consumption. The RO optimizes the route
by modifying the geography and speed profile of the initial route.
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Figure 5: Optimization flow diagram.

The initial route, shown in the upper left corner of Figure 5, is typically defined as a collection
of waypoints from the start position to the desired end position of the voyage. The legs between
two consecutive waypoints are then often associated with a desired speed value and a cross track
distance where it is safe for the vessel to operate. In fact, this is so common that there exists
a standard route plan exchange format (RTZ) specifically for this purpose [14, 15]. The cross-
track distances for all the legs in a route constitutes a safety zone the vessel can safely operate
in, illustrated as the grey area around the routes in Figure 5. The safety zone will typically be
configured to avoid shallow water and fixed obstacles. This area also set an absolute limit for
where the route optimizer can manipulate the voyage route.

Another element that constrains the route optimizer is the ferry time schedule. The ferry
typically needs to be at the destination within a required time. The schedule sets an upper
bound for the duration of the trip, and the route optimizer must balance the arrival time with
the energy consumption since these are in general competing parameters.

The final input to the RO is the trained energy model presented in Section 2.2. The energy
model will be used to estimate the energy consumption for the current proposed route by the
RO. To score the current route, the RO proposes an objective function for the current route as
a sum of the energy estimation, penalty terms, and regularisation terms. Given the objective
function score, the RO can iteratively update the route until an optimal route is given. For
details about the optimization, please see [2].

4. Result and discussion

Energy consumption is a sensitive parameter for operating companies, hence the presented data
has been anonymised by removing explicit reference to location and energy consumption is
not reported in absolute numbers, but relative to reference values, e.g. the average energy
consumption for the route or the energy consumption before optimisation.

To evaluate model performance, the data set was split into training and test sets. In this
manner, the models can be evaluated on unseen data, i.e. the test set. The test error of
both models is given in Table 1, where the mean error of the predictions is evaluated as a
percentage of the true values. Furthermore, the root mean squared error (RMSE) and coefficient
of determination (R?) are evaluated.

In [2], the mean error of the energy model was found to be 7%. By utilizing the improved
linear model in this study, the error has decreased to 5.44%. As such, it appears that the
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Table 1: Model accuracy metrics.

Training error (%] Test error [%] Test RMSE [E™2]  Test R?

Linear model 4.86 5.44 0.0024 0.79
Hybrid model 4.26 4.70 0.0020 0.86

outlined parameter selection and transformation yields a more accurate energy model.

The second model investigated was a hybrid model that leverages known physical
relationships. In this manner, classical physics-based models can be fused with data-driven
ML-based models. Furthermore, non-linearity is added to the model via such relationships. The
hybrid model was found to have superior performance, with a mean error of 4.70 % for the test
set. Furthermore, the RMSE was found to be 0.002kW h/m, with an R? value of 0.86. This
indicates that the model can describe most of the variation in the data with high accuracy. It
should be noted that the accuracy and generalizability of ML-models will increase for larger
data sets. As such, the accuracy of the models can be expected to increase further given more
data.

Figure 6 shows the predicted energy consumption (y-axis) plotted against the true energy
consumption (x-axis) of the linear model (blue dots) and hybrid model (orange dots). If a model

is zero error, the dots will appear along the diagonal line, indicating that the predicted energy
equals the true energy.
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Figure 6: Energy model predictions on test set.

The results indicate that the hybrid model is more robust with respect to predicting
energy consumption, as the data are more concentrated about the line representing zero error.
Furthermore, the figure shows that the linear model has several outliers, indicating that the
linear model was not able to capture the true relationships in the data set. This may be due to
the inherent inability of a linear model to capture nonlinear physical relationships. In addition,
the model may be overly sensitive to certain parameters, where anomalous values in the input
parameter space result in erroneous predictions. It appears that the hybrid model could handle
such data in a better manner. This may be due to its ability to leverage the known physical
relationships between parameters in a better manner, making it less sensitive to outliers, and
thus more generalizable. Hence, it is of interest to investigate the sensitivity of the models to
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various input parameters, to better understand what the respective models are focusing on.

4.1. Model interpretation

Generally, machine learning models are viewed as black boxes, where end-users have little to
no insight into the reasoning behind a prediction. By providing a form of explainability to the
model, users may gain increased confidence in the models [16].

Figure 7 and Figure 8 illustrate the scaled mean energy contributions of the input parameters
for the linear model and hybrid model respectively. These contributions are calculated as the
mean of all energy contributions derived from each parameter irrespective of sign. In this
manner, the relative energy contribution of each parameter can be compared, yielding insight
into the reasoning behind the models.

50G
S0G?
Vel
Fe
Fe,t
Vet
Fuw,i
Fu,t
Vw, t
Trim
Draft

Draft V.1
We

We Hs

0.0 02 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 10
Mean Energy Consumption Contribution [-] Mean Energy Consumption Contribution [-]
Figure 7: Relative mean energy contributions  Figure 8: Relative mean energy contributions
of the linear model. of the hybrid model.

From Figure 7 it is evident that the linear model has focused primarily on the relative
transverse current speed, v. ¢, as well as the speed over ground. From a physical standpoint, the
relationship between SOG and energy is sound. However, the focus of the model on the relative
transverse current speed does not seem physically meaningful. It may be attributed to the
dominating current direction in the region in which the ferry is operating. As such, the model
may be indirectly able to identify the direction in which the ferry is sailing. Each direction
the ferry sails will constitute a specific operational mode, due to the varying characteristics
of each route. As such, the model may focus on differentiating between these modes, as this
minimizes the prediction error. This, however, may come at the expense of the generalizability
of the model. This is supported by Table 1, which illustrates the training and test error of the
investigated models. The difference between the performance of the linear model on the training
and test data sets are higher than that found for hybrid model, which may indicate overfitting
to the training data.

Figure 8 shows that the primary focus of the hybrid model is on speed related parameters,
with current forces as secondary contributions, and wind contributions as tertiary contributions.
Furthermore, the contributions of the longitudinal components of the respective external forces
appear to have a higher magnitude than their transverse components. This is conducive with
physical phenomena related to ship resistance. As such, the model appears to be physically
meaningful. The relative longitudinal current speed, however, has a more significant contribution
than expected. This may be due to correlation with the speed over ground.

In both the linear and hybrid models, the trim, draft, significant wave height and wave
encounter frequency parameters provide limited to no contribution to the predicted energy
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consumption. Such results are unexpected, as these parameters are known to affect ship
resistance. However, when inspecting the data, it was found that the draft varies little between
trips. Such low variation in the data set likely results in the inability of the ML model to
learn meaningful correlations. Furthermore, as seen in Figure 2, the observed trim angles in
the data set are small. From a physical standpoint, it follows that there should be little to no
energy contribution from such angles. Similarly, the wave related parameters have little effect
on the energy models, despite wave resistance constituting a significant portion of the energy
consumption of sea-going vessels. This can be explained by the region and season the data were
gathered in, where the wave height was generally low with little variation, i.e. less than 1% of
the vessel length. As such, the model is unable to learn any meaningful relationship between
the wave related parameters and energy consumption, as other effects are dominant.

In general, it appears that the use of a hybrid model provides multiple advantages compared
to a purely data-driven linear model. In addition to achieving better accuracy, the hybrid model
behaves in a manner that conforms to known physical relationships. As such, the causation of
the model is more apparent, increasing confidence in the predictions. The linear model, being
purely data-driven, appears to focus more on correlations in the data than physical relationships
founded in causation. Furthermore, the hybrid model introduces known non-linear relationships
that allow the model to learn more complex relationships than a linear model.

It should, however, be noted that the developed models are specific for this ferry and will
need to be re-trained for another vessel and/or region. The focus of the models may also shift
depending on the use case. For instance, draft, trim and wave related parameters may play a
larger role for vessels that experience greater variation. Also note that by specifying the wave
encounter frequency as in (1), one do not get any information how the wave direction affects
the energy. For cases with larger Hy this could influence the model performance and should be
investigated further. Nonetheless, hybrid ML-based energy models should generally outperform
linear ML models due to their ability to leverage more complex causal relationships, as well as
be more generalizable.

4.2. Optimization
Once an energy model has been trained on the operational data of the vessel, it can be utilized
for route optimization, as illustrated in Figure 5. In this study, the hybrid energy model was
chosen for use due to its enhanced performance. To investigate the performance of the route
optimization, a historical voyage was randomly selected from the data set. This test voyage can
then be optimized, and the relative energy consumption of the respective routes compared.
Using the test voyage, the operational data were extracted and input to the route optimization
function. The test voyage is input as the initial route, along with the prevailing met-ocean
conditions for the voyage. The original, unoptimized route is illustrated in blue in Figure 9.
Using the safety zone, illustrated in green, as a constraint, the route optimization outputs
an optimized route, illustrated in orange. Note that the optimized route is slightly longer
than the original, but provides an energy reduction of 3.7%. The optimization algorithm
therefore finds a longer path which is advantageous for the current met-ocean conditions. The
energy reduction is achieved solely via minor alterations to the route and speed profile prior to
departure. If implemented, such route optimizations can lead to a reduction in fuel consumption
and associated operational costs.

5. Conclusion

In this paper, a linear regression, and a hybrid physics-guided ML energy model have been
developed to facilitate route optimization. The models were developed to predict the energy
consumption of a ferry based on operational data. Compared to the data-driven linear regression
model, the hybrid model was found to have superior results. Furthermore, by attempting to
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4 —@— Original route, E = 100 %
Optimized route, E = 96.3 %
—— Safety zone

Figure 9: Example figure showing optimized
route, energy savings and safety zone.

interpret the reasoning behind the models, it appeared that the hybrid model discovered causal
relationships grounded in known physical relationships. The linear model, however, appeared
to discover correlations without direct causality.

Based on the findings, the hybrid energy model was tested in an optimization schema showing
an energy reduction of 3.7 % compared to the actual consumption, simply by applying minor
route and speed profile alterations. Such route optimizations prior to departure can lead to
reduced fuel consumption and operational costs.
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