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Abstract—The ubiquitous presence of billions of sensor-enabled
IoT devices actively contributes to the generation of extreme
amounts of electronic waste. To a great extent, this is caused by
the low cost and short lifespan of electronic components, as a
result of which it is often more convenient for consumers to buy
a new device instead of re-using or recycling the old one. With
the increased computing and connectivity capabilities, however,
individual IoT devices are already capable to communicate with
a local network gateway to receive code updates and thus extend
their lifespan. This paper describes how these capabilities can be
exploited to enable last-mile software deployment at scale. We
propose a hierarchical architecture, in which software updates
from the cloud are provisioned to terminal devices via edge
gateways in a scalable and targeted manner. By enabling such
an end-to-end software deployment architecture, the approach
promotes hardware re-use and re-purposing and thus contributes
to the creation of a more sustainable IoT.

Index Terms—Internet of Things, Edge Computing, Sustain-
able IoT, Last-Mile Software Deployment, Firmware Updates

I. INTRODUCTION

Billions of sensors are already embedded in a vast array of
networked physical objects, and soon it will be difficult to buy
a new product without some kind of connected smarts. Con-
trolling an appliance from a mobile phone is already a standard
feature and ubiquitous sensors and actuators will transform
industrial automation, buildings, and our interaction with the
surrounding world. This global digital transformation is driven
by a new class of microcontrollers (MCUs), i.e. stand-alone
miniature computing chips equipped with flash memory for
code storage, and a small amount of RAM in which to
execute. They are also able to communicate with hardware
peripherals via General Purpose Input/Output (GPIO). This
includes both digital I/O and associated protocols such as I2C,
Serial, SPI, and CAN, as well as analog I/O for reading data
from environmental sensors and other analog sources. MCUs
are not designed to run heavy OSs such as Linux or Windows
that are based on a multi-user, multi-application, hardware-
abstracted paradigm, in which the OS is often the heaviest
consumer of resources. Instead, MCUs are typically either OS-
less, or running Micro Real-Time Operating System (µRTOS)
which is just enough to run the application, providing it full,
direct and low-latency access to the chip hardware. This power
efficiency means that MCUs, even with sensors, can run for

years on a small battery, or indefinitely by adding energy
harvesting units such as a small solar cell. By using a fraction
of the power that single-board computers do, their total cost of
ownership is significantly lower. The small power draw also
means that they can be powered by alternative sources than a
wall plug, which means they can be placed virtually anywhere.

With the rapid development of the Internet of Things (IoT),
MCU-enabled tiny sensor devices have penetrated almost
every aspect of people’s everyday life. This rising sensor-
based economy, however, is actively contributing to the e-
waste problem, as it also produces myriads of obsolete devices
with much shorter lifespans and offers no way of properly
disposing them [1]. The United Nations estimated 74.7 million
tonnes of e-waste to be generated annually by 2030, thus
almost doubling in only 16 years, with less than a third of
it being recycled [2].

While MCUs have been embedded in everything from toys
to cars for several decades now, it is only been in the last few
years that they have become truly useful for the IoT. They are
not only sufficiently powerful to run complex applications,
but many have also received built-in support for gateway
connectivity such as Ethernet, WiFi, Bluetooth, and others.
Many of them have also opened up their memory buses to
be extended with external flash and RAM. As we further
argue in this paper, these increased connectivity capabilities
can and should be exploited in order to extend the lifespan
of IoT devices and reduce the e-waste generation rates. More
specifically, the main contribution of this paper is the scalable
hierarchical agent-based approach to uploading code to termi-
nal IoT devices via edge gateways. The proposed architecture
enables re-programming and re-purposing of devices, not
immediately connected to the Internet, thus contributing to
the creation of a more sustainable IoT.

The rest of the paper is organised as follows. Section
II discusses the motivation behind the presented work by
introducing the research context, outlining the limitations of
the existing research efforts, and formulating the problem.
Section III presents the proposed approach by describing the
conceptual architecture of the last-mile deployment agent and
the proof of concept implementation. Section IV discusses the
results and closes the paper with some concluding remarks.
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II. RESEARCH CONTEXT, RELATED WORKS, AND
PROBLEM STATEMENT

The increasing number of embedded electronic equipment
led to the increasing amount of electronic waste (or simply e-
waste), i.e. any electrical or electronic equipment that has been
discarded at any step of its lifecycle. E-waste is particularly
dangerous due to toxic chemicals that naturally leach from the
metals inside when buried. The e-waste problem is recognised
at the highest governmental levels leading to the initiatives
such as EU’s Waste from Electrical and Electronic Equipment
(WEEE) Directive1 and US’s International E-Waste Manage-
ment Network (IEMN).2 Both initiatives bring together various
stakeholders and policy makers to join efforts on e-waste
reduction aiming to achieve sustainable circular economy.

A. E-Waste and Green IoT

The most hazardous part of WEEE are printed circuit boards
(PCB) [3]. They contain flame retardants, precious metals and
multiple electronic components of different shape and size
soldered to the board (e.g. resistors, inductors, capacitors,
integrated circuits). The presence of multiple elements of
different nature requires differentiated treatment, which makes
recycling WEEE especially challenging and costly. Briefly,
WEEE recycling can be divided into two main categories –
namely, physical and chemical. The former involves physical
dismantling of electronic components (and in rear occasions
– replacing faulty elements for repairing and further reuse),
while the latter handles the actual recycling of disassembled
PCB elements and polymers using chemical processes.

Another negative aspect of the ubiquitous IoT is the in-
creased energy consumption, which has been the main research
focus for the Green IoT community who aim at reducing
energy consumption of sensor devices to achieve sustainable
operation of large-scale IoT systems [4]. Even though modern
devices consume less and less power individually, their com-
bined and continuously growing number still outweighs the
benefits.

In recent years, the Green IoT concept has expanded beyond
energy efficiency into a wide range of related solutions con-
tributing to sustainable and environmentally-friendly IoT sys-
tems in general. More specifically, apart from the physical and
chemical recycling, the research community has been looking
into possible alternative approaches to e-waste reduction by
creating dissolvable electronics using safe and environmentally
friendly materials [5], [6], thus aiming at the very core problem
of e-waste, i.e. toxic chemicals leaching into the environment.
Although still too expensive to produce, dissolvable electronics
may prove to be useful in the near future with the current pace
of IoT development.

A potential alternative to the conventional recycling is
hardware reuse and re-purposing, which regrettably has not
gained much research attention yet. The main idea behind

1https://ec.europa.eu/environment/topics/waste-and-recycling/waste-
electrical-and-electronic-equipment-weee en

2https://www.epa.gov/international-cooperation/international-e-waste-
management-network-iemn

this approach is to opt for updating IoT software on idle
and dormant devices, whenever possible, to be used in a new
application scenario or another IoT system. This would prevent
wasted electronics from ending up in the environment and also
reduce resource-intensive and expensive physical/chemical re-
cycling operations. Moreover, increased energy consumption
by IoT devices can often be caused by outdated or mis-
configured firmware, which has not been properly updated in
time. For example, some weather sensors might have been
hard-coded at the production phase to probe the environment
every second, while in practice a one-minute interval would
be sufficient for most application scenarios.

B. Related Works

The start-of-the-art Infrastructure as Code (IaC) tools au-
tomate the deployment of one application on one device,
or a predefined set of devices, but lack the support for
scalable distribution of multiple variants across a large fleet.
They also do not provide sufficient automated support for
updating devices with constrained resources and limited (or
none) Internet connectivity [7]. This latter aspect has become
particularly important in the recent years with the emerging
need to update firmware (low-level executable code deployed
on MCU-enabled devices) on terminal IoT devices. Such
embedded and MCU-enabled devices traditionally have been
flashed with ‘one-off’ firmware not to be updated in the future,
This was due to hardware and connectivity constraints, as well
as security considerations, which limited consequent manipu-
lation of embedded code once a device leaves the production
line, is shipped to a customer and is finally put into operation.
The situation has only started to change recently. Increasingly
capable IoT devices are now seen as active contributors to
the common pool of shared computing resources, which can
be iteratively assigned and deployed with updated firmware.
This has also led to the so-called concept of IoT-Edge-Cloud
computing continuum, where computing and storage tasks are
distributed across all three levels.

Provisioning new firmware to terminal IoT devices via an
Internet-connected gateway or a smartphone was a natural fit.
This way, IoT devices connected to a gateway via a non-
TCP/IP network interface which supports a firmware flashing
protocol (e.g. Bluetooth or a serial port) can receive code
updates. Examples of such approaches can be found in [8],
[9], [10]. In parallel to this, some recent research works
also investigated how narrow-bandwidth networks can be used
to enable over-the-air firmware updates for battery-powered
devices [11], [12], [13].

The run-time software management in the IoT is closely
related to the concept of software-defined architectures. The
term software-defined IoT has been coined, albeit there is no
common agreement on the actual concept yet. Most research
work focus on the software-defined networks in the IoT sys-
tems [14], [15], [16], [17], while some other focus on elastic
provisioning of cloud resources for IoT systems [18]. As far as
the actual IoT hardware re-purposing and re-programmability
are concerned, there appears to be very few approaches. A
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representative study is reported in [19], where authors look
at the challenge of re-using existing IoT infrastructure in a
university campus from several perspectives, i.e. technical,
economical, environmental, legal, etc. Albeit very relevant, the
discussion remains at a high level and lacks technical details
of the implemented solution.

C. Problem Statement

While none of the cited research works specifically targets
the sustainability problem in the IoT, they demonstrate how
firmware updates on IoT devices can be managed within
some specific ad-hoc scenarios. Individually they can be
seen as building blocks for creating an end-to-end pipeline
for software management across the whole IoT-Edge-Cloud
continuum. Indeed, what was hardly possible just a decade
ago, has become technically feasible today with the advances
in electronics design and manufacturing. Albeit still relatively
resource-constrained compared to conventional single-board
computers, MCU-based IoT devices are becoming more and
more capable in terms of networking and computing resources,
enabling remote access and re-programmability. What is still
missing, however, is a scalable orchestration layer between the
edge and the IoT layers that would be able to communicate
with the centralised cloud via the Internet – on the one hand,
and with downstream IoT devices via a local connection – on
the other. Such a bridge would enable global access to locally
connected IoT devices via nearest edge gateways, and thus
facilitate automated and scalable firmware deployment.

We refer to this problem as the last-mile software deploy-
ment, i.e. deployment of code to terminal IoT devices, which
do not have immediate connection to the Internet, yet are able
to communicate with a local edge gateway. The presented
approach is part of a wider research effort, which applies
model-driven engineering techniques to automate software
management activities across the IoT-Edge-Cloud computing
continuum [20], [21].

III. PROPOSED APPROACH

In a simplified IoT hierarchy, we distinguish between three
main elements, i.e. a centralised cloud platform, Internet-
connected edge gateways, and downstream IoT devices not
connected to the Internet, but only to a local edge gateway.
Accordingly, data communication takes place via two links
between i) the cloud platform and edge gateways and ii)
edge gateways and IoT devices. While both types of network
interaction are a common state of practice, it is still a challenge
to propagate data (e.g. firmware updates) from the cloud
down to terminal IoT devices via edge gateways in a generic,
scalable, and automated manner.

A. Last-Mile Software Deployment: Conceptual Architecture

The cloud counterpart is only able to communicate with
edge gateways, and is usually not aware of the billions of
terminal devices installed in the field. In these circumstances, it
is typically not feasible to target a firmware update to a specific
single IoT device (using, for example, its ID). Instead, it is

Fig. 1. Last-mile software deployment agent.

required to annotate firmware updates with target conditions
and push them down to the edge layer, which, in its turn,
will evaluate the conditions and route the updates to matching
IoT devices in its subnet. Thus, edge gateways become the
key element in this software management hierarchy [22].
Accordingly, we tackle the challenge of last-mile software
deployment by introducing a context-aware deployment agent
to be installed on edge gateways. The main role of this agent is
to bridge the communication gap between the cloud and IoT
devices by ‘routing’ software updates to target IoT devices
taking into account the current cyber-physical context. The
deployment agent is expected to be operating in a daemon-like
manner, implementing the following four-fold functionality, as
depicted in Fig. 1:

1) Interaction with the cloud: edge gateways sit in the
middle of the IoT hierarchy and are able to receive updates
from the cloud. It is expected that the cloud platform maintains
a list of registered edge gateways and communicates with them
asynchronously using standard pub-sub mechanisms or – less
usual – synchronously using direct method invocations. In
both cases, edge gateways should be able to receive update
commands (annotated with target conditions) along with the
actual code to be deployed on IoT devices.
2) Context monitoring: edge gateways are expected to per-
form continuous context monitoring by keeping track of as-
sociated downstream devices. These are closely located IoT
devices using the gateway for pushing collected sensor data
via one of the available communication interfaces, such as
Bluetooth, ZigBee, serial USB connection, or even direct
physical wiring via GPIO pins. The collected context informa-
tion about downstream IoT devices, among other things, may
include the current firmware version, the manufacturer brand
and model, MCU architecture, available physical interfaces,
installed hardware sensors/actuators, etc. It is important to
collect as much context information as possible, since it will
be taken into account at the next step to resolve to which
devices firmware updates should be applied.
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3) Context-aware firmware assignment: at this step, edge
gateway will map target conditions of received firmware
updates with the collected device context information, thus
assigning new firmware to matching devices. In its simplest
form, this can be implemented as a collection of AND and
OR logical operators, where each IoT device is evaluated
independently from the rest. More sophisticated scenarios
might take into account the whole fleet of IoT devices, so
that updates are assigned following some global policies. For
example, it might be required to evenly distribute several
firmware variants among the devices, or follow an A/B testing
strategy, where some new code is tried only on a limited subset
of devices. This step should also consider situations when an
IoT device satisfies conditions of multiple updates, as well
as when none suitable devices are found. As an outcome of
this step, the deployment agent generates a map of firmware
updates and matching IoT devices (assuming that a device can
accept at most one update at time).
4) Interaction with downstream IoT devices: the firmware
update pipeline concludes with the actual flashing of new code
onto matching IoT devices. Once again, the collected context
information about IoT devices will help the deployment agent
to determine which underlying physical interface should be
invoked in each individual case.

It is worth noting that despite the described ordered se-
quence, some steps can be executed in a circular and iterative
manner. More specifically, it is possible that as a result of
code deployment the context of IoT devices will change, thus
possibly triggering another iteration of firmware assignment,
and in some rare occasions lead to infinite loops or conflicts.
Solving such emerging issues goes beyond the current paper,
but is part of this overall research effort and is included as
part of future work.

B. Proof of Concept

With the rapid adoption of edge computing, orchestra-
tion of containerised micro-services on edge gateways via a
centralised cloud platform has recently become the state of
practice, with the prominent offerings such as MS Azure IoT
Edge,3 AWS IoT Greengrass,4 and Balena Cloud5 available
[21]. From a practical point of view, it is therefore a natural
fit to implement the four-step functionality of the deployment
agent as loosely coupled micro-services, packaged and provi-
sioned as individual software containers, thus facilitating re-
use, fault tolerance, and redundancy.

Accordingly, to implement the proof of concept prototype
(see Fig. 2), we relied on Azure IoT Edge as the underlying
cloud platform for i) installing the containerised deployment
agent on edge devices, and ii) pushing firmware updates via
the agent once it is up and running. The main reason behind
this choice is the rich and mature support for scalable container
management on edge gateways, as well as multiple services

3https://azure.microsoft.com/services/iot-edge/
4https://aws.amazon.com/greengrass/
5https://www.balena.io/cloud/

Fig. 2. Last-mile software deployment: proof of concept.

available through the Azure ecosystem. The latter factor was
also aligned with our intention to re-use already existing
tools whenever possible, instead of building from scratch or
integrating third-party tools. Raspberry Pi 3 boards were used
as edge gateways, while the role of terminal IoT devices was
played by Arduino Uno boards. In our experimental setup, the
Arduino boards were connected via the serial USB port.

The firmware deployment process is triggered whenever
one or more code updates are released via the central IoT
cloud platform. The software developer is expected to annotate
each update with target conditions, i.e. tags determining to
which IoT devices a given update should be loaded. As al-
ready mentioned, neither the software developer nor the cloud
platform are aware of what particular devices will be affected
by each update; this will be determined by edge gateways
upon receiving the update commands. We now describe the
implemented proof of concept using the previously outlined
four steps:
1) MQTT agent for interacting with the cloud: Azure IoT
Edge keeps track of the fleet of managed edge devices by
continuously updating their digital twins. All communication
between edge gateways and the cloud platform takes place
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via a standard MQTT API – lightweight and reliable solution
for large-scale IoT systems. Among other things, device twins
also report on the currently deployed and running software
containers, as well as possible failures and errors. It is possible
to selectively apply software deployment configurations to
edge gateways using simple tag- and priority-based targeting.
This way, the last-mile deployment agent can be installed
only on a specific sub-set of the available edge gateways,
e.g. within a specific geographical area or equipped with
some required hardware. Accordingly, once up and running,
the deployment agent starts continuously listening to incom-
ing MQTT messages in order to further propagate firmware
updates to target downstream IoT devices. Furthermore, the
communication between the containers also takes place via
MQTT.
2) Context monitoring using standard Linux commands:
upon connecting a new IoT device to the gateway, it is then
possible to query information about it using a combination
of standard lsusb and udev Linux commands. Among other
things, this yields information about the board model, MCU
architecture, and port address. Although there is no direct
way of querying the currently loaded sketch directly from an
Arduino board, we can keep track of the loaded code on each
device at the firmware deployment step. As a result, the edge
gateway maintains a list of connected devices and associated
context tags.
3) Tag-based firmware assignment: the current prototype
implementation relies on a tag-based system for matching
firmware updates to target IoT devices. Once a new firmware
update is received from the cloud, the deployment agent
evaluates the target conditions against the collected device
context information to decide whether new code should be
loaded. Tag-based assignment operates on individual devices,
without taking into account the rest of the fleet. To enable
more advanced assignment at the fleet level, we are also ex-
perimenting with the constraint solving [20] and combinatorial
optimisation [23] techniques.
4) GeneSIS for enacting firmware updates: to implement
the final step, we relied on our software deployment tool
GeneSIS [24], [25]. GeneSIS is a toolkit for continuous
orchestration and deployment of software components across
the IoT-Edge-Cloud computing continuum. GeneSIS supports
the automatic deployment within a local subsystem. When
hosted on a local edge device, it can be used as a bridge
to further deploy required code to associated downstream IoT
devices. The GeneSIS modelling language is used to define
software components, dependent libraries, and target devices,
while the execution engine resolves what interface needs to
be used to install or update the software artefacts accordingly.
The GeneSIS engine is non-intrusive and does not require any
bootstrap or pre-deployed agent running on a target IoT device
to load code. Instead, it relies on an extensible plugin-based
repository of supported IoT devices and interfaces. Currently,
most of the Arduino-compatible boards are supported, and
the available interfacing options are over-the-air updates using
Bluetooth or Wi-Fi and serial communication over USB or

direct wired connection using GPIO pins.
The described implementation of the deployment agent is

one possible way of instantiating the proposed architecture
for last-mile software deployment. This proof of concept has
been validated in the context of a remote patient monitoring
scenario [20], where sensor-enabled telecare devices are re-
motely re-programmed via a healthcare gateway installed on
patients’ premises. Nevertheless, the proposed approach can
be successfully applied to other smart environments involving
sensor-enabled IoT devices, edge gateways, and a centralised
loud platform.

IV. CONCLUSION AND DISCUSSION

The proposed last-mile deployment agent, provisioned on
edge gateways via the centralised cloud platform as container-
ised micro-services, is able to receive firmware updates from
the cloud and apply them to connected IoT devices. The major
benefit of this solution is that IoT software engineers are
not required to know about target IoT devices beforehand
when releasing firmware updates (which would be simply
infeasible given the growing numbers). Instead, the task of
assignment of firmware updates is shifted to the edge layer
and takes place on gateways, which are able to evaluate target
conditions against the collected cyber-physical context in order
to selectively deploy new code to terminal IoT devices. By
offloading the software assignment task to the edge layer,
the proposed solution implements a hierarchical approach to
software deployment in the IoT-Edge-Cloud continuum, and
also contributes to the increased scalability by parallelising the
software assignment task across multiple edge gateways, rather
than on a centralised cloud. By integrating with the already
available cloud-based container management at the edge, it is
possible to build an end-to-end software management pipeline,
so that even terminal IoT devices without Internet connectivity
can be re-flashed in an automated scalable manner. This a
big step towards a sustainable IoT where all the elements,
even dormant and outdated, are not wasted, but are rather re-
programmed and re-used.

A potentially promising direction for future work is to im-
plement dynamic discovery of IoT devices in a local network
of an edge gateway. The currently implemented prototype
assumes that IoT devices are connected to the host gateway
via a USB port; in this case, implementing a polling mecha-
nism for continuously updating the list of connected devices
and their cyber-physical contexts is relatively straight-forward
using the standard Linux tools. A more challenging task would
be to implement similar dynamic discovery in a local TCP/IP
network or even via a wireless interface by detecting idle
devices within the range of the edge gateway. Some initial
attempts in this direction are reported in [26] and [27].

Another direction yet to be explored is the continuous self-
adaptive behaviour of the system, as well as the intelligent
resolution of infinite loops and potential conflicts between the
changed context (caused by the applied firmware updates) and
the target conditions. While the current proof of concept is
implemented as a finite four-step pipeline triggered by the
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initial update command received from the cloud, some ad-
vanced scenarios would require a continuous operation where
firmware assignment and deployment would be triggered by
the changing cyber-physical context of IoT devices.

While in this paper we focused on the sustainability prob-
lem of the exponentially growing IoT systems, the proposed
solution has the potential to address a wide range of challenges
related to re-use and re-purposing of legacy IoT devices – an
increasingly pressing concern for modern smart and rapidly
digitalised urban environments. There are obvious financial
benefits for IoT software providers, who do not need to
frequently invest in new infrastructure, and can also reduce
operational costs related to manual device management. On
the other hand, however, this can be seen as a threat to IoT
hardware manufacturers whose profits are typically directly
proportional to the number of manufactured and retailed units.

These economical considerations lead us to the final con-
cluding remark. In this paper we focused on demonstrating
only the technical feasibility of designing and implementing
sustainable IoT systems for smart environments. There are,
however, many other aspects to be considered and addressed
in this respect. We intentionally omitted the discussion on the
device ownership, access management, and security issues,
which are major hindering factors. The proposed solution (and
any other similar approaches relying on re-programming and
re-purposing existing IoT infrastructures) is not yet ready to
be immediately put into practice and adopted by the society.
As any other ‘green’ and environmentally friendly initiative,
it would require involving not just ICT researchers and IoT
companies, but rather multiple stakeholders and policy mak-
ers from several adjacent domains, including governmental,
environmental, and legal organisations, who should join their
efforts to define common strategies for building sustainable
IoT systems.
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