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Abstract—This paper introduced a new deep learning frame-1

work for fault diagnosis in electrical power systems. The frame-2

work integrates the convolution neural network and different re-3

gression models to visually identify which faults have occurred in4

electric power systems. The approach includes three main steps,5

data preparation, object detection, and hyper-parameter opti-6

mization. Inspired by deep learning, evolutionary computation7

techniques, different strategies have been proposed in each step8

of the process. In addition, we propose a new hyper-parameters9

optimization model based on evolutionary computation that can10

be used to tune parameters of our deep learning framework.11

In the validation of the framework’s usefulness, experimental12

evaluation is executed using the well known and challenging VOC13

2012, the COCO datasets, and the large NESTA 162-bus system.14

The results are very promising against many current state-of-the-15

art solutions in terms of runtime and accuracy performances.16

Index Terms—Genetic algorithm, Chinese news mining, trad-17

ing strategy, technical indicators, expected fluctuation analysis.18

19

I. INTRODUCTION20

The Industrial Internet of Things (IIoT), as well as Industry21

4.0, connect devices to industrial machines, processes, as22

well as workers using them across a multitude of industrial23

use cases like manufacturing, logistical supply chain, energy24

systems, transportation, and healthcare. There has been a25

recent emergence of promising alternatives using deep learning26

in processing vast amounts of data (big data), from which27

knowledge can be extracted. The use of deep learning and AI-28

based systems in IIoT (Industrial Internet of Things) and/or29

Industry 4.0, more specifically in electric power systems30

has been gaining traction in the last ten years [1], [2], in31

particular, numerous computer vision systems [3], [4] have32
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been implemented in electric power systems environments. 33

Object detection [5]–[7] has come into fruition as a popular 34

research area in IIoT and electrical systems, where it can be 35

noted that the aim is to identify objects from electric images. 36

This line of study will continue in the same direction, and 37

a new intelligent algorithm is proposed to efficiently, and 38

accurately identify fault diagnosis on electric power systems. 39

A. Motivations 40

Solutions to AI-based fault diagnosis systems in electrical 41

power systems [8]–[11] are known to be high in time com- 42

plexity coupled with chronic low accuracy. Also, region-based 43

solutions [12] obtain much better efficiency as compared to 44

single-pass solutions [6]. The processes suffer from further 45

problems with high runtime and less precision. The explana- 46

tion for this deterioration is that the previous past initiatives 47

all needed to accomplish complex models with a high number 48

of parameters to be checked. One of the key reasons that 49

these solutions have a major challenge is that they have to 50

construct extremely complicated structures with a high number 51

of parameters to be fixed. There have been high success rates 52

of late using data mining, and deep learning [13]–[15]. These 53

methods merge the benefits of data mining methods which 54

allow the discovery of the relevant knowledge from the data, 55

and the benefits of convolution neural networks in learning 56

the machine learning tasks from visual features. Following 57

this trend of success, the research presented here in this work 58

is an end-to-end framework, which explores data mining to 59

extract the most relevant features for fault diagnosis, and a 60

deep learning model to detect different faults in electric power 61

systems. This reduces the time usually incurred by processing 62

the current solution. The main limitation of the end-to-end 63

framework is that a high number of hyper-parameters need to 64

be tuned. Therefore, efficient hyper-parameters optimization 65

techniques should be adopted. Thus, our end-to-end framework 66

benefits by utilizing meta-heuristics in tuning parameters of 67

deep learning models [16]–[18], this research work incorpo- 68

rates both evolutionary computation to tune the parameters of 69

our deep learning model. When direct comparisons are made 70

to previous works, the work before you makes use of several 71

novel innovations that will be shown to improve both the 72

training as well as inference speed showing an increase in 73

detection accuracy. 74
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B. Contributions75

In this work, the RCNN+ framework is proposed with an76

expectation to create a group of efficient learning models77

for fault diagnosis in electric power systems. It is an end-78

to-end framework, which incorporates feature selection, deep79

learning, as well as evolutionary computation approaches. The80

electric images database is first pre-processed using feature81

selection, next to deep learning is used to detect the fault82

diagnosis. Evolutionary computation is integrated into the deep83

learning model to optimize its hyper-parameters. Holding these84

facts as notes, our key contributions to this paper can be85

concluded as follows:86

1) We develop a novel feature selection mode that can87

be used to deduct the unnecessary features from the88

database of the image, the set of features are extracted89

using the sift extractor, we then select the most relevant90

features using the greedy search by optimizing the91

diversification function among the electric images data.92

2) An accurate object detection model is proposed by93

adopting the Fast-RCNN algorithm [5] on electric im-94

ages data. We integrate hard negative mining, feature95

concatenation, and multi-scale training to detect fault96

diagnosis on electric power systems.97

3) We propose a new hyper-parameters optimization model98

to refine the used parameters of our deep learning99

algorithm. This model is inspired by the evolutionary100

computation approaches.101

4) We examine RCNN+ by thoroughly evaluating its com-102

putational time and accuracy with baseline object de-103

tection and fault/error diagnostic approaches. We used104

different image databases: the challenging VOC 2012,105

COCO datasets, and the real large NESTA 162-bus106

system. This evaluation shows that RCNN+ outperforms107

the baseline algorithms in both runtime and accuracy.108

II. RELATED WORK109

Solutions to fault diagnosis in electric power systems differ110

from the nature of the method used in the detection process.111

Some algorithms use evolutionary and uncertainty computa-112

tion, some methods use either machine learning and/or deep113

learning methods while other methods use hybrid models.114

Saura [9] was the first to make use of the fault diagnosis115

approach which is based on fault signature which has been116

observed to be linked to an output voltage of rectifiers. It117

makes detecting fault diagnosis allowable using a collection118

of phase-shifting transformer configurations in the most well-119

known and common fault scenarios. Wang et al. [8] proposed120

a non-dominant sorting in GA which is used to solve the well-121

known fault diagnosis problem. The fault diagnosis problem122

has always been considered as a distinct multi-objective opti-123

mization problem where we use the Pareto approach to assist124

in solving the problem. Wang et al. [19] investigate uncertainty125

in fault diagnosis of many power systems. The authors pro-126

pose a neural system that is defined as interval-valued fuzzy127

spiking. This system that uses interval-valued fuzzy logic is128

amalgamated along with spiking neural systems to represent129

uncertainty within a power system. Similarly, Zhang et al.130

[20] proposed an uncertainty model for sensor faults detection 131

problem by designing a residual generator and analyzing its 132

quantitative influence on sensor faults. Ding [12] introduced a 133

DCN, a short form for a deep convolutional network, where 134

the use of wavelet packet energy images was made for input 135

in the spindle bearing fault diagnosis. To be able to fully 136

find a distinct hierarchical representation, a multi-scale layer 137

is built upon right after the final convolutional layer, which 138

can concatenate outputs of the final convolutional layer with 139

the previous pooling layer. Althobiani [21] introduced a novel 140

scheme for fault diagnosis in reciprocating compressor valves. 141

The use of deep-belief networks with the gaussian visible units 142

is introduced. The scheme makes use of a hierarchical structure 143

with many restricted Boltzmann machines that are stacked as 144

well as a greedy layer-by-layer learning algorithm. Chen et al. 145

[22] introduced the use of distributed fault diagnosis for the 146

multi-machine environment based on deterministic learning 147

theory. A learning estimator is first created for each machine 148

in the network to accumulate the local fault. A distributed 149

fault diagnosis model is then trained to monitor the power 150

system of all machines and identify the global fault diagnosis 151

from the local fault of each machine. Zheng et al. [23] 152

developed the stochastic hybrid automata approach to identify 153

and detect fault diagnosis. It processes simultaneously many 154

of the continuous variables which include charge and voltage 155

states as well as the discrete dynamics which include faulty 156

as well as normal modes. Wang et al. [24] proposed a hybrid 157

auto-encoder deep network with principal component analysis 158

and support vector machine to identify the fault diagnosis in 159

power systems. Thus, instead of using a softmax classifier, a 160

support vector machine classifier with a Gaussian kernel is 161

integrated into the deep model. Principle component analysis 162

is also used to accurately pre-process the data before the 163

classification stage. 164

It should be evident from this short literature review that so- 165

lutions to fault diagnosis algorithms for electric power systems 166

suffer from the detection rate due to many reasons, i) Some 167

methods use the whole data features in the detection process, 168

these approaches suffer from the computational time. ii) Some 169

methods use traditional machine learning approaches, which 170

suffer from accuracy. iii) A variety of deep learning models 171

require a lot of tuning parameters, and it is not easy to refine 172

the hyper-parameters of any of these deep learning models. 173

Motivated by the success of feature selection, deep learning, 174

and evolutionary computation in solving complex problems 175

[25]–[29], in the next section, we propose a framework that is 176

defined as end-to-end, which combines feature selection, CNN, 177

and hyper-parameters optimization, to examine the electric 178

images data, and accurately identify the fault diagnosis from 179

electric power systems efficiently. 180

III. RCNN+ FRAMEWORK 181

A. Principle 182

In this section, the RCNN+ framework is developed to 183

identify faults and anomalies in the industrial internet of things 184

environments. The applicability of the proposed framework 185

on the electric power system is given in the experimentation 186
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Fig. 1: The developed RCNN+ framework

section. RCNN+ integrates deep learning, data mining, evo-187

lutionary computation. From the designed model shown in188

Fig. 1, RCNN+ consists of three stages: i) Data Preparation:189

This step integrates methods of image processing, and feature190

selection for cleaning, and preparing the data to the object de-191

tection model. Note that the data is collected using long-range192

wireless communication technologies such as 4G and 5G. ii)193

Object Detection: a faster RCNN algorithm is adopted to the194

electric power system data to identify fault diagnosis, and195

iii) Hyper-parameters Optimization: Evolutionary computation196

algorithms are used to learn the different hyper-parameters of197

the RCNN+ model.198

B. Data Preparation199

In reality, the images of electric power systems could200

be as high as 10, 000 or 100, 000 pixels [30]. From the201

processed results, a huge number of region proposals (e.g.,202

millions or billions) are then produced, which require a very203

high computational cost and huge memory usage in the204

entire system. In certain cases, the system will be suddenly205

blocked after several days and weeks of processing. To206

tackle this well-known problem and limitation, we develop207

and implement a pre-processing strategy to prune and filter208

the number of pixels. We used the image processing step209

to extract both local, and global features from the set of210

images, then we integrate the feature selection to figure out211

the relevant features for the object detection process. It can212

be summarized as the following two steps:213

214

STEP 1 – SIFT extractor: SIFT extractor [31] is used to215

derive the set of key points within the scale space of a given216

image I .217

First, The scale-space function, L(I, σ), is defined in Equation 218

1. 219

L(I, σ) = G(I, σ) ∗ I, (1)

where G(I, σ) is the Gaussian kernel, and ∗ is the convolution 220

operator. 221

222

Second, we determine the position of each candidate key- 223

point using the interpolation process. It calculates the location 224

that is interpolated right to the extremum. This methodology 225

improves both the stability of the solution as well as matching. 226

The Taylor function D(I, σ) is made for interpolation, which 227

is given in Equation 2. 228

D(I, σ) = D +
dDT

dI
I + 0.5IT

d2D

dI2
I (2)

Third, we generate a vector which is called a descriptor 229

for every key point. We create a distinct set of orientation 230

histograms on 4 ∗ 4 pixel neighborhoods making use of 231

eight bins each. The descriptor vector as defined earlier then 232

becomes every vector of all histograms. 233

STEP 2 – Feature Selection: The main focus of feature 234

selection is to reduce the number of features by using an 235

optimization function. More formally, given the features of 236

each image I , note FI , the aim is to select the set of features 237

F ′I such as F ′I ⊆ FI . Our feature selection is based on 238

diversification criteria. We assume that fault diagnosis on 239

electric power systems does not appear often in the same 240

frame, and if they appear, they should close to each other. 241

Consequently, the features of each image should be diversified 242

among the different pixels of such an image. More formally, 243

the optimization function used during the feature selection 244

process is given in Equation 3. 245

argmax
F ′

I

|F ′
I |∑

i=1

|F ′
I |∑

j=1

Distance(F ′(i)I ,F ′(j)I ) (3)

To solve Equation 3, we used the greedy search algorithm. 246

The process starts by generating the initial solution represented 247

by all SIFT features of the image. We delete one feature 248

from the initial solution and evaluate its associated solution 249

using Equation 3. We repeat the process as described until a 250

max number of iterations is achieved, or no improvement is 251

observed. At each step of the algorithm, we only keep the best 252

solution which maximizes the Equation 3. 253

C. Object Detection 254

This step aims to identify the fault diagnosis from the input 255

image data. We inspire by the Fast-RCNN principle, which is 256

considered the state-of-the-art object detection solutions [5]. 257

Fast-RCNN can be mainly processed as the following steps: 258

1) Region Proposal Determination: This step aims to 259

compute the regions of interest, the potential regions are 260

represented by bounding boxes, that might be the object 261

allocated. The classical RCNN generates a high number 262

of bounding boxes per image, which yields the overall 263

process high and memory time-consuming. Fast-RCNN 264
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[5] uses a more efficient method by using the convolu-265

tion neural network to determine the bounding boxes.266

The neural network is launched to propose bounding267

boxes by using the ground truth of the training images.268

2) Fast-RCNN: This step aims to classify regions of im-269

ages into objects, and refining the boundaries of those270

regions. Both classification and regression are used.271

In this paper, a Fast-RCNN is extended for fault diagnosis272

on electric power systems. First, the CNN model is trained on273

the Fast-RCNN making use of the transfer learning process.274

We train our Fast-RCNN on ImageNet dataset 1 and then use275

the pre-trained model to the fault diagnosis dataset. In this276

step, we generate a hard negative, which enriches the network277

in the training procedure. The combination between feature278

concatenation and multi-scale training is applied that can be279

used to speed up the performance of the described trained280

model. A detailed explanation of our adaptation is given as281

follows:282

1) Feature Concatenation: Faster RCNN network283

performs the regions of interests pooling only on the284

final feature map layer which assists in the generation of285

features within the region. This strategy is incomplete286

and misses some important features, and consequently,287

the accuracy performance is decreased. To address this288

issue, different level features are combined with features289

maps of multiple convolution layers. Multiple feature290

maps’ polling result is concatenated and re-scaled using291

L2 normalization that assists in the generation of the292

final pooling features which are used for detection tasks.293

294

2) Hard Negative Mining: This strategy aims to identify295

hard negatives, regions where the network makes an296

error prediction. Hard negatives are entered into the297

network using reinforcement learning to enhance the298

performance of the developed approach. Hard negatives299

are harvested from the second iteration of our training300

process, where a region is considered as hard negative if301

its intersection over union over the ground truth-region302

is no greater than 40%.303

304

3) Multi-Scale Training: The classical Fast-RCNN uses a305

fixed scale for generating the bounding boxes. In real-306

world applications such as electric power systems, ob-307

jects to be detected are multi-scales. Different scales are308

used to generate the bounding boxes, in this work, we309

consider five different scales of bounding boxes, (tiny,310

small, medium, large, and big) to capture objects with311

different sizes. Thus, five different groups are created,312

each group consists of bounding boxes of the same313

size. In this context, the region proposal determination314

is launched for each group of bounding boxes. At the315

end of this step, we merge the generated bounding boxes316

to the convolution neural network for classification and317

regression steps.318

4) Feature Concatenation: Faster RCNN network319

performs the regions of interests pooling only on the320

1http://www.image-net.org/

final feature map layer which assists in the generation of 321

features within the region. This strategy is incomplete 322

and misses some important features, and consequently, 323

the accuracy performance is decreased. To address this 324

issue, different level features are combined with features 325

maps of multiple convolution layers. Multiple feature 326

maps’ polling result is concatenated and re-scaled using 327

L2 normalization that assists in the generation of the 328

final pooling features which are used for detection tasks. 329

330

D. Hyper-parameters Optimization 331

The purpose of this part is to determine an optimal set 332

of hyper-parameters of the RCNN+ algorithm. We define 333

the set of hyper-parameters HP = {HP1,HP2, . . . ,HPr}, 334

where r is the number of hyper-parameters of the RCNN+ 335

algorithm. Each HPi is represented by the set of possible 336

values of this hyper-parameter. We define the configuration 337

space C by the set of all possible configurations, where each 338

configuration represents a vector of possible values of all the 339

hyper-parameters in HP . The hyper-parameters optimization 340

problem aims to derive the optimal configuration which gives 341

the best accuracy in both classifications and regression rates. 342

The size of the configuration space depends on the number 343

of all possible values of the hyper-parameters, and it is 344

determined as given in Equation 4. 345

|C| =
r∏

i=1

|HPi| (4)

The configuration space is considerably huge, for instance, 346

if we only consider 1, 000 possible values for epoch parameter, 347

100 possible value for error rate and 1, 000 possible values for 348

the number of bounding boxes, the size of the configuration 349

space is 100 million configurations. Therefore, exhaustive 350

search methods are not suitable to solve such a problem. 351

To deal with this issue, evolutionary computation approaches 352

are used. We then present the detailed components of the 353

developed solution as follows. 354

1) Population Initialization: The initial population of 355

pop size individuals should be distributed among the con- 356

figuration space C. This allows exploration of different con- 357

figurations and covers most regions of the configuration space 358

C. The initial population is generated by respecting diversity, 359

the process starts by generating randomly an individual rep- 360

resented by one configuration in C. From this individual, we 361

generate pop size−1 individuals, where each new individual 362

could be dissimilar to the already generated individuals. The 363

dissimilarity between the two configurations is determined 364

using the distance between the configurations of these indi- 365

viduals. The initial population, noted P , should maximize the 366

diversification function described as given in Equation 5. 367

Diversify(P) =
pop size∑

i=1

pop size∑
j=1

Distance(Ci, Cj), (5)

where Distance(Ci, Cj) is the distance between the configu- 368

rations of the ith, and jth individuals, respectively. 369

http://www.image-net.org/
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2) Crossover: To generate new offspring, the following370

steps are applied in each of two individuals of the current371

population:372

• We generate a crossover point randomly ranges from 1373

to r, which splits each individual into two parts, left side,374

and right side.375

• The left side of the first individual is transferred to the376

left side of the first offspring and the right side of the377

first individual is copied to the right side of the second378

offspring.379

• The left side of the second individual is copied to the left380

side part of the second offspring and the right side of the381

second individual is copied to the right side of the first382

offspring.383

3) Mutation: The mutation operation stimulates the diver-384

sification search. The technique we use consists of altering385

the value of one parameter of each existing configuration386

randomly. The mutation point is generated randomly which387

is ranges from 1 to r. We iteratively update the value of the388

mutation point of each configuration in the offspring generated389

by the crossover operator.390

4) Local Search: The local search operator starts from391

an individual and then recursively moves to its neighbors.392

The neighborhood is defined by updating the value of one393

hyper-parameters in the current configuration. This process394

is repeated for all individuals in the population, and the395

maximum number of iterations.396

5) Fitness Function: As mentioned above, RCNN+ can397

be used to maximize both the classification and regression398

ratio. Thus, we use a multi-objective function to evaluate the399

individuals of the populations as follows:400

Fitness(Ci) = α×CRRCNN+(Ci)+β×RRRCNN+(Ci) (6)

Note that,401

• Ci is the configuration of the ith individual in the402

population.403

• CRRCNN+(Ci): is the classification ratio of the RCNN+404

algorithm by applying Ci.405

• RRRCNN+(Ci): is the regression ratio of the RCNN+406

algorithm by applying Ci.407

• α, and β are two user parameters set between 0.0, and408

1.0.409

Based on these operations, we proposed two algorithms as410

follows for hyper-parameters optimization. The first one is411

based on the mimetic algorithm, and the second one on bees412

swarm optimization.413

6) Mimetic Algorithm: First, the initial population size414

which is defined as pop size is randomly generated. Every415

individual is then built based on the population initialization.416

Next, local search operators as well as mutation, and crossover417

are applied that are useful in the generation of configurations418

from C. To maintain consistent population size, every individ-419

ual is evaluated making use of the fitness function and focus is420

placed on keeping the first good-quality pop size individuals.421

All others are removed at this stage. This entire process is422

then repeated in multiple iterations until the max number of423

iterations is reached.424

7) Bees Swarm Optimization Algorithm: Good features 425

are found using an initial bee that settles to find a strong 426

configuration. Through this initial configuration, a distinct set 427

of configurations are determined known as the SearchArea of 428

the larger search space. This is done using Equation 5. Every 429

bee considers from the SearchArea a configuration as a starting 430

point. Once the local search processing is accomplished, every 431

bee then will communicate what they consider as the best 432

configuration visited all other neighboring bees. This process 433

is completed using a table known as Dance. During the next 434

iterations, one configuration from Dance will then become the 435

reference configuration. To ensure that know cyclic iterations 436

occur, a taboo list is created of previous reference config- 437

urations. Quality criteria are used to choose each reference 438

configuration. That being said, after a set amount of time if the 439

swarm itself as a whole sees that the reference configurations 440

are not improving, a criteria diversification process is utilized 441

to avoid becoming trapped in a local optimum which does 442

not provide any benefit globally. The taboo list is used to 443

create the diversification criteria locating the further past 444

reference configuration from the current one. Once the optimal 445

configuration is located or the maximum iterations (variable) 446

are reached, the algorithm ceases. 447

IV. PERFORMANCE EVALUATION 448

The performance evaluation of the proposed framework 449

(RCNN+) is confirmed through experimental evaluation. The 450

VOC 2012 is used, a standard image database, as well as 451

COCO, and a real NESTA162-bus data. The specifics of those 452

databases are given below: 453

1) VOC 2012: The VOC 2012 images database is then used 454

in the experiments for the performance evaluation, which 455

has 17.125 images for varied objects. The images were 456

of very high resolution and were greater than 200x200 457

pixels per image. In general, there are 20 classes in this 458

database, and each class is considered as a single of 459

the objects, e.g., bird, dining table, person, and among 460

others [32]. 461

2) COCO [33]: We used the challenging COCO images 462

database, which contains 83.000 images for varied ob- 463

jects. Each of these images is generated by a large 464

number of pixels, which are used in high-quality image 465

processing (e.g., more than 200x200 pixels of each im- 466

age). There are about 80 classes in the COCO database. 467

3) NESTA162-bus Data [34]: it is a set of data that 468

contains N-1 possible contingencies which represent all 469

plausible operating points for any given energy demand 470

profile. This set contains over 1 million points. In this 471

dataset topology changes are also included for N-1 472

investigations. 473

To examined the observed objects, computing runtime, and 474

accuracy represented by mAP (mean Average Precision) are 475

conducted and verified. mAP is used to test object detection 476

systems, which can be defined and denoted as: 477

mAP =

n∑
i=0

AvgP (i)

n
, (7)
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where n is considered as the detected objects among all478

objects, and AvgP (i) is calculated as the precision results479

at i-rank. For example, the first i-ranked object is then taken480

into the consideration but ignored others.481

The implemented models are performed on a machine fitted482

with an Intel-Core i7 processor and combined with NVIDIA483

GeForce GTX 1070 GPU. To simulate IoT environment, the484

ZigBee2 system is used in the whole process. To accurately485

assess the training phase, the parameters are defined by the486

evolutionary computation (EC) model. The optimized RCNN+487

is then evaluated with the up-to-date object detection solutions488

under a varied number of images in databases, as well as the489

number of detected images.490

A. Parameters Setting491

The main purpose of the conducted experiment is to refine492

the parameters of the RCNN+ model. Fig. 2 presents the493

convergence of the hyper-parameters optimization algorithms494

by using a different number of bees for the bees swarm495

optimization and a different number of generations for the496

mimetic algorithm. From the results, we can see that the497

RCNN+ reaches convergence of 85% on VOC 2012, 84%498

for COCO, and 88% for NESTA162-bus data. As RCNN+499

includes different steps, feature selection, objection, and hyper-500

parameters optimization, in the following, the parameters501

setting of each step of RCNN+ is explained:502

1) Feature selection: Greedy algorithm is used in this step,503

it requires a maximum number of iterations as parameter504

setting. Therefore, the number of maximum iterations is505

varied from 1 to 100. The best value of this parameter506

is used in the next experiment.507

2) Object Detection: Adopted FastRCNN algorithm is508

used in this step, which requires a high number of509

parameters. The parameter setting of this step is auto-510

matically performed by the hyper-parameters optimiza-511

tion step. Therefore, the hyper-parameters optimization512

algorithm is responsible to refine the parameters of513

FastRCNN including the parameters used in the region514

determination, the classification, and regression stages.515

We used selective search for region determination, which516

requires several bounding boxes per image as a param-517

eter. We varied this parameter from 500 to 2, 000. We518

used a convolution neural network in the classification519

stage. We varied the number of epochs from 100 to520

1, 000, and the error learning rate from 0.001 to 0.009.521

We used the support vector machine in the regression522

stage. We varied the epsilon rate from 0.001 to 0.009.523

The best values of these parameters are used in the next524

experiment.525

3) Hyper-parameters Optimization: This step first needs526

to select the best method between the evolutionary527

computation strategy, and then select the best parameters528

of each method. If the mimetic algorithm is selected,529

then the population size, the number of generations, the530

mutation rate, the crossover rate, and the number of531

2https://zigbeealliance.org/
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Fig. 2: Convergence of the RCNN+ by varying different hyper-
optimization algorithms (BSO: Bees Swarm Optimization),
and Mimetic Algorithm, and on different datasets VOC 2012,
COCO and NESTA162-bus data.

neighbours should be well selected. We varied the popu- 532

lation size, and the number of generations from 1 to 100, 533

respectively, the mutation and the crossover rates from 534

0.1 to 0.9, respectively, and the number of neighbours 535

from 1 to 10. If the bees swarm optimization algorithm 536

is considered, then the number of bees, the number of 537

iterations, and the number of neighbours should be well 538

selected. We varied the number of bees, and the number 539

of iterations from 1 to 100, respectively, and the number 540

of neighbours from 1 to 10. The best values of these 541

parameters are used in the next experiment. 542

The best values of the parameters setting step are reported 543

in Table I. 544

https://zigbeealliance.org/
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TABLE I: Best Parameters of the RCNN+.

Steps Parameters VOC 2012 COCO Nesta162-bus
Feature Selection Number of Iterations of 85 80 73

Number of Bounding Boxes 750 1,100 1,200
Object Detection Number of Epochs 250 350 500

Error Learning Rate 0.002 0.004 0.005
Epsilon Rate 0.003 0.005 0.004

Method Mimetic Bees Swarm Optimization Bees Swarm Optimization
Population Size/Number of Bees 75 50 60

Hyper-parameters Optimization Number of Generations/ Number of Iterations 55 60 65
Mutation Rate 0.5 - -
Crossover Rate 0.6 - -

Number of Neighbors 5 7 9

B. RCNN+ Vs State-of-the-art Object Detection Algorithms545

1 2 5 8 10 50 100 150 171
70

75

80

85

# of images(×100)

m
A

P

1 2 5 10 20 30 50 70 83
70

75

80

85

# of images (×1000)

m
A

P

15 30 45 60
78

80

82

84

86

88

# of images (×100)

m
A

P
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Fig. 3: Accuracy between the RCNN+ v.s. the state-of-the-art
fault diagnosis algorithms. The used datasets from the top to
down are respectively VOC 2012, COCO and NESTA162-
bus data.

The experimental evaluation aims to compare RCNN+ with546

two baseline algorithms, namely Fast-RCNN [5], and NSGA-547

II [8] in terms of accuracy and runtime. Fig. 3 present the548

accuracy of the RCNN+ approach on VOC 2012, COCO, and549

NESTA162-bus databases, compared with Fast-RCNN550

[5], and NSGA-II [8]. By experimenting with how many551

images are used as the input data, RCNN+ achieves the best552

VOC2012 COCO NESTA-162-bus
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Fig. 4: False positive ratio between the RCNN+ v.s. the state-
of-the-art fault diagnosis algorithms. The used datasets from
the top to down are respectively VOC 2012, COCO and
NESTA162-bus data.

performance compared to the two state-of-the-art algorithms 553

in terms of mAP value as the accuracy result. In addition, 554

Fig. 4 shows the superiority of the RCNN+ in terms of 555

false-positive ratio. This is explained by the fact that the 556

RCNN+ uses efficient strategies to extract the relevant features 557

using the feature selection, the learning is highly optimized 558

using the feature concatenation, the hard negative mining, and 559

multi-scale training. In addition, the parameters are well se- 560

lected using hyper-parameters optimization. Fig. 5 present the 561

computational time processing between the RCNN+ and the 562

state-of-the-art fault diagnosis algorithms Fast-RCNN [5], and 563

NSGA-II [8] using well-known datasets VOC 2012, COCO 564

and NESTA162-bus data. By varying with the number of 565

image queries from 1 to 10, 000 queries, RCNN+ outperforms 566

the two baseline algorithms in terms of runtime. This is 567

explained by the fact that the RCNN+ explores a new and 568

complete methodology for fault diagnosis problems based 569

on feature selection. This methodology allows to reduce the 570

number of bounding boxes, and therefore, reduce the whole 571

computational process. 572

V. DISCUSSION AND FUTURE PERSPECTIVES 573

In addition to distinguishing objects from the image 574

database, the proposed system examines the numerous corre- 575
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Fig. 5: Runtime between the RCNN+ v.s. the state-of-the-art
fault diagnosis algorithms. The used datasets from the top to
down are respectively VOC 2012, COCO and NESTA162-
bus data.

lations and similarities between images and detects anomalies576

from electric power data. We claim in respect of object577

detection that given the object detection and the techniques578

of hyper-optimization, the fault diagnosis can be detected579

rapidly and precisely. RCNN+ is an example of how various580

approaches can be integrated to improve the learning pro-581

cess from an in-depth analysis perspective. In the designed582

model, we employ feature concatenation, hard negative min-583

ing, feature selection, and evolutionary computation to explore584

electric power systems data. This adaptation takes place at585

various phases including the elimination of noises, discover586

the related clusters, learning processes and optimizing the587

hyper-parameters. The research also finds that the learning588

process benefits from pre-processing data through the use589

of feature selection. This helps to accelerate the learning590

process by generating powerful and coherent models, and591

each model is learned from clean images. The last point is592

that, compared to other algorithms, the designed model is593

more generic and could be extended to more than a certain594

computer vision problem; the topic of object detection in595

this paper is an example to show how our framework is 596

to be implemented. The developed system can handle other 597

computer vision problems such as classification, etc. 598

As far as future work is concerned, the strong results 599

garnered in this paper may lead to different directions 600

investigated later on: 601

602

1) Data Reduction: In practical scenarios, the number of 603

energy images is too huge, where the fault diagnosis 604

objects to be detected varied in type. Feature selection 605

is one of the powerful data reduction techniques for 2D 606

image analysis [35]. Statistically speaking, it is hard 607

to select the best features of such images since they 608

are computed from the convolution operators. To well 609

reduce the data used in the detection model, a decom- 610

position strategy could be used. The aim is to divide the 611

database of the image into different clusters, and then 612

create different models, one for each cluster of similar 613

images. k-means is one of the methods used to group 614

datasets as several homogeneous and similar clusters, 615

and is most widely used in image datasets. Additional 616

techniques can be used to enhance the clustering process 617

and then reduce the number of features shared by the 618

images of different clusters. The incorporation into the 619

RCNN+ system of various clustering strategies such 620

as partitioning, intelligent hierarchical, overlapping, or 621

other research fields, such as entity resolution and/or 622

record linkage, is an important subject for future work. 623

It is also possible to find a suitable method for automat- 624

ically setting the number of clusters as a constant value. 625

It is not very efficient to use many runs for revealing the 626

best number of clusters. Alternative progress is to build 627

a knowledge-based model having each training image 628

database. After that, the correlation between the meta- 629

features (e.g., number of features, number of images, 630

and luminous pixel values) of the image databases is 631

then examined, as well as the best number of clusters. 632

This helps to estimate the best number of clusters of the 633

database of new images automatically. 634

2) Improving the learning step: We aim to improve 635

the performance of RCNN+ by using high-performance 636

computing resources, such as GPUs, supercomputers and 637

cluster computing for more advanced computer vision 638

applications in the electrical power system environ- 639

ment. This paper aims to build independent work for 640

each image cluster in compliance with high-performance 641

computing issues such as divergence of threads, syn- 642

chronization, communication, memory management, as 643

well as load balancing. Also, it is necessary to have 644

efficient strategies to process the load balancing issue. 645

One solution for this limitation is to implement the 646

clustering strategies that can figure out the equitable 647

clusters by considering the number of images of each 648

cluster. An alternative way is to design new strategies 649

for repairing clusters and to figure out the clusters under 650

the consideration of a similar number of images. It is 651

also interesting to utilize the RCNN+ on the MapReduce 652
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platform that can be used to improve both the training653

step, as well as the inference step.654

3) Case studies: A case study is already shown in this655

work for an RCNN+ application on electric system data.656

Gauging the strength of the results from the first case657

study, RCNN+ can be extended in the future to solve658

more complex problems from specific domains that are659

needing learning frameworks for big data. As an exam-660

ple, medical data, as well as intelligent transportation661

systems, may prove to be perfect applicable scenarios662

for RCNN+ or any of its future derivatives. Another663

potential future use of RCNN+ is with sensor-generated664

data, in real-world, real-time systems like the Internet665

of Things (IoT) as well as Cyber-Physical Systems666

(CPS). Some examples include traffic management and667

other IoT scenarios including smart grids and green668

technologies. Here, the process for learning needs to be669

done within short periods, often in real-time with limited670

latency. Another important case study is to deal directly671

with 3D images, in this context, we need to adopt the672

graph convolution neural network [36] to learn the 3D673

images, for instances the 3D point clouds data.674

VI. CONCLUSION675

This work introduces a new deep learning framework for676

fault diagnosis in electric power systems. It combines the677

convolution neural network and different regression models to678

visually identify which faults occurred in the electric power679

systems. The approach includes three main steps, data prepara-680

tion, object detection, and hyper-parameters optimization. The681

feature selection is used to pre-process the image database and682

extract the most relevant features of each image. An extended683

version of the faster RCNN algorithm is used to detect fault684

diagnosis, integrating transfer learning, feature concatenation,685

hard negative mining, and multi-scale training. The overall686

process is optimized by the evolutionary computation algo-687

rithms, in which the best hyper-parameters of the trained688

model are retrieved. The experimental results of the designed689

model are very promising against NSGA-II, and FastRCNN in690

terms of computational time, and the mean average precision691

of the detected objects in VOC 2012, COCO, and the NESTA692

162-bus datasets. As a perspective, we plan to extend the693

proposed framework by targeting data reduction, other deep694

learning models, more promising case studies on industrial695

informatics.696
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