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ABSTRACT
The development of the Edge computing paradigm shifts data pro-
cessing from centralised infrastructures to heterogeneous and ge-
ographically distributed infrastructure. Such a paradigm requires
data processing solutions that consider data locality in order to re-
duce the performance penalties from data transfers between remote
(in network terms) data centres. However, existing Big Data process-
ing solutions have limited support for handling data locality and
are inefficient in processing small and frequent events specific to
Edge environments. This paper proposes a novel architecture and a
proof-of-concept implementation for software container-centric Big
Data workflow orchestration that puts data locality at the forefront.
Our solution considers any available data locality information by
default, leverages long-lived containers to execute workflow steps,
and handles the interaction with different data sources through
containers. We compare our system with Argo workflow and show
significant performance improvements in terms of speed of execu-
tion for processing units of data using our data locality aware Big
Data workflow approach.

CCS CONCEPTS
• Information systems → Computing platforms; Data manage-
ment systems; • Computer systems organization → Cloud
computing.
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1 INTRODUCTION
In recent years, harnessing large data sets from various sources
has become a pillar of rapid innovation for many domains such as
marketing, finance, agriculture, and healthcare [3]. The Big Data
domain has evolved rapidly, and new challenges have arisen at dif-
ferent levels of the technological stack, from the complex business
logic to the infrastructure required to process the ever-increasing
volume, velocity, and variety of data. Working with Big Data is
a complex process involving collaboration among a wide range
of specialisations (such as distributed systems, data science, and
business domain expertise) [4, 5, 21]. Handling such complexity
naturally comes with an increased cost, and the value extracted
from the data must offset this cost.

Big Data workflows formalise and automate the processes that
data goes through to produce value by providing necessary abstrac-
tions for workflow definitions and efficiently leveraging underlying
hardware resources. Big Data workflows usually integrate various
data sets and leverage different programming languages or tech-
nologies to process data. Therefore, a desirable feature of a Big
Data workflow system is to orchestrate workflows in a technology-
agnostic fashion, both in terms of data integration and processing
logic. On the other hand, approaches based on software containers
emerged to create and execute workflows using processing steps in
line with these considerations. While it is beneficial to leverage soft-
ware containers to better separate concerns in a Big Data workflow
system, higher-level abstractions come with a performance penalty;
thus, it becomes more relevant to ensure the system performs as
efficiently as possible.

Traditionally, Cloud service providers have been the standard
solution for working with Big Data. However, Cloud services are
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inherently centralised in a small number of locations (i.e., data
centres) worldwide. Moreover, with the advent of the Internet of
Things (IoT), significant amounts of data are generated at Edge net-
works [10]. With the data processing happening on geographically
distributed systems across Edge and Cloud resources, it is crucial
to reduce the delay and cost of transferring data over the network.
Transferring massive data to the Cloud is an expensive task that
may incur latency, which makes low-latency scenarios unfeasible.
To address these issues, the Edge computing paradigm [9] aims to
complement Cloud computing by leveraging hardware resources
situated closer to the Edge of the network to offload processing,
reducing transfer cost, and satisfying the latency requirements.
However, existing solutions are mainly designed for Cloud-only
workloads, making them unsuitable or inefficient for workloads
spanning both the Cloud and edge.

To this end, we propose a novel architecture for container-centric
Big Data workflow orchestration systems that makes containerised
Big Data workflow systems more efficient on Cloud and Edge re-
sources. Our proposed approach considers data locality, leverages
long-lived containers (i.e., containers whose life-cycle is not tied to
a particular data unit) to execute workflow steps, and handles the
interaction with different data sources through containers. We pro-
vide an evaluation of the proposed approach by comparing it with a
similar existing solution, Argo workflow, through an experiment to
demonstrate the benefits of our approach. Through the experiment,
we show that by considering data locality, our proposed system
significantly improves the performance in terms of data processing
speed (up to five times better).

The rest of the paper is structured as follows. Section 2 provides
the relevant background, while Section 3 discusses the related work.
Section 4 presents our approach and Section 5 describes its imple-
mentation. Finally Section 6 provides an evaluation, while Section
7 concludes the paper.

2 BACKGROUND
The high velocity of the data, combined with the large volume,
mandates the processing to happen efficiently and cost-effectively
to produce value that outweighs the costs. Therefore, execution time
and bandwidth usage are two indicators that are often measured
in Big Data systems and determine the feasibility of a solution. In
this respect, in what follows, we introduce the essential techniques
and concepts used in this study to reduce the execution time and
bandwidth usage for Big Data workflows.

2.1 Data Locality
Data locality refers to the approach of moving computation closer
to the data, which is typically cheaper and faster than moving data
closer to the computation. The nature of working with Big Data
mandates the resources (network, memory, CPU, disk) of multiple
machines to be pooled together in a distributed system. A desirable
characteristic of distributed systems is to hide the complexities of
the distributed resources behind a single interface, such that the
entire system appears as a single entity (e.g., Cloud storage systems
such as Amazon S3). However, it makes it more challenging to lever-
age individual hosts backing the distributed systems. For example,
a fundamental invariant of the current computer architectures is

that a CPU can only work with data present in the memory of the
same machine.

Consequently, data movement across machines becomes an in-
tegral part of any Big Data system. Besides traditional communi-
cation protocols that rely on the operating system network stack
(e.g., TCP/IP-based protocols), latency is critical for many use cases.
To this end, more efficient protocols have emerged. For example,
RDMA (Remote Direct Memory Access) [17] is a protocol that al-
lows the transfer of data stored in the memory of one machine to
another without involving the CPU or the operating system kernel
through specialised network cards.

As the quantity of data is significant, the network traffic and the
associated latency of transferring data between machines can influ-
ence the overall cost and performance. Even for solutions targeted
at centralised deployment (such as Cloud deployments), data local-
ity has proven to be effective in reducing the cost and execution
times [8, 16]. For example, Apache Spark [18] leverages the infor-
mation provided by the Hadoop File System (HDFS) and knowledge
about outputs of previous work to minimise the data transfer.

One of the core motivations of the Edge computing paradigm is
reducing the amount of data transferred from the Edge of the net-
work to the Cloud and supporting lower latency scenarios, making
data locality a primary concern for any Edge computing solution.
However, data locality is only one aspect that can be taken into
account when scheduling work. Other aspects such as load distri-
bution and heterogeneity of the available resources on different
nodes need to be balanced together with data locality to perform
the work effectively [14]. There exist studies proposing advanced
scheduling strategies to balance the reduction of data transfer with
load distribution (e.g., [6, 19]).

2.2 Inter-component Communication
Optimisation

Separation of concerns and delegating responsibilities to different
components have numerous benefits; however, the communication
between components may introduce other performance and effi-
ciency overhead due to message serialisation and transfer through
potentially slow mediums. For example, what was performed as a
simple method invocation in a monolithic solution can be turned
into a REST API call for a solution where components are separated.

The choice of communication protocols directly impacts per-
formance and bandwidth utilisation as different protocols provide
different guarantees related to data transmission (e.g., TCP ensures
ordered, lossless transmission but requires multiple round trips
to establish connections and exchange data, while UDP is faster
but also unreliable). Different protocols introduce additional over-
head by injecting required data (e.g., HTTP headers). Techniques
such as compression and binary serialisation help reduce the size
of the payload. There exist studies exploring the possibility of us-
ing RDMA-backed memory channels to support fast and efficient
inter-container communication (e.g., [1]). Apart from the band-
width utilisation and speed of a particular protocol, the contract
defining the communication between two entities (message format,
content, and semantics) plays a significant role in facilitating the
integration between components. Defining and enforcing a con-
tract for the communication between the components allows for
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the implementations of the components to be decoupled from one
another.

2.3 Lifecycle Management of Containers
Software containers present themselves as a lightweight virtual-
isation alternative solution to traditional hypervisor-based virtu-
alisation; however, there is still a cost associated with starting up
and shutting down containers as needed. Life-cycle management
is one of the aspects considered to have an impact on workflow
execution time and it is suggested that the fastest option is re-using
containers to process multiple units of data [20] (i.e., long-lived
containers).

For many use cases, the execution time of the work delegated to
a particular container is high, thus making the overhead of instanti-
ating containers negligible. However, especially in Edge computing
environments, the available resources are limited and the amount
of data processed at a given point in time on a single host is re-
duced. Furthermore, with data being constantly processed in small
parts (or even streamed), there is a need for this processing to hap-
pen as quickly as possible to achieve the desirable throughput. In
such cases, the overhead of setting up and tearing down containers
can quickly add up and become a significant bottleneck for the
performance of the solution.

2.4 Integration with Data Management
Solutions

One of the pillars of Big Data processing is being able to reason over
and process heterogeneous data sets together in a unified manner.
These data sets can be stored using different technologies and the
interaction with these technology requires complex logic in itself.
Thus, Big Data workflow systems should facilitate easy integration
with different data management solutions, such as databases, file
systems, Cloud storage, and web services.

3 RELATEDWORK
In this section, we provide a review of the existing solutions accord-
ing to the following criteria: (i) ability to incorporate data locality in
the orchestration process, (ii) support for container lifecycle man-
agement, and (iii) the ease of integration with any data management
solution.

• Snakemake [13] is a workflow orchestration tool that sup-
ports wrapping individual steps in containers, and different
data solutions can be integrated into workflows by extending
the Snakemake codebase. However, there is no support for
controlling where the computation happens (data locality).

• Kubeflow1 is a workflow orchestration tool oriented at ma-
chine learning-related workflows. The only storage sup-
ported is Minio (a Cloud-native, open-source alternative to
the S3 Cloud storage). It offers no support for data locality.

• Makeflow [2] is a workflow orchestration tool able to or-
chestrate workflows on a wide variety of infrastructures.
However, it does not have any built-in support for different
data management systems or data locality features.

1https://www.kubeflow.org

• Pachyderm2 is another machine learning workflow orches-
tration solution, but the only supported storage system is
the Pachyderm file system, a distributed file system built to
offer additional functionalities to Pachyderm.

• Pegasus3 is a workflow orchestration solution that supports
containerised steps and leverages the location of the pro-
cessed files to schedule the steps on the same host. However,
its data management is limited to file systems.

• Airflow4 is one of the most popular data workflow orches-
trators and supports the execution of the workflows on a
Kubernetes cluster. It is also possible to control where in-
stances of steps are created. However, this needs to be set
when the workflow is defined, making it unable to capture
dynamically changing requirements. Integration with dif-
ferent data management solutions is possible by extending
the Airflow code with providers, thus limiting it to Python
implementations only.

• Argo workflows5 is a workflow orchestration solution na-
tively built on Kubernetes and supports data locality through
a set of mechanisms. Similar to the Airflow solution, different
data management solutions can be integrated, but require
changes and integration with Argo code libraries.

All the considered solutions leverage short-lived containers as
part of the orchestration - a container is created to execute work and
destroyed as soon as the processing completes as these solutions
target mostly batch processing scenarios. In terms of data locality
specification, Argo offers the most expressive feature, as it leverages
the full feature set offered by Kubernetes. However, by default, the
limitation of having to specify data locality at workflow (introduced
with the analysis of Airflow) definition time applies to Argo as
well. Argo offers a mechanism through which respective outputs
of processing steps can be used to modify the parameters (for data
locality in this case) of subsequent steps in the workflow, allowing
for dynamic data locality configurations at run-time. However, such
an approach would require additional logic to be injected into the
processing step. Pegasus, although limited in terms of data locality
features, does handle data locality implicitly, without the need to
modify the workflow definition. In contrast, for both Argo and
Airflow, while offering more expressive data locality features, the
workflow definition has to capture these details, thus breaking the
separation of concerns principle.

4 PROPOSED SOLUTION
We propose an approach based on a workflow system architecture
covering the run-time considerations of Big Data workflows based
on the separation of concerns principle. The proposed architecture
has three main layers:

(1) Control layer: it is responsible for the execution of work-
flows concerning their definitions (e.g., correct step sequenc-
ing and data being processed). The main component of the
control layer is the orchestrator.

2https://github.com/pachyderm/pachyderm
3https://pegasus.isi.edu
4https://airflow.apache.org
5https://argoproj.github.io/projects/argo
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(2) Data layer: it collectively refers to all the components in-
volved in data handling (e.g., storage and retrieval of data,
and moving data between hosts to make it available to com-
pute steps that require it). The layer includes the data store
component, referring to the technology used to store data
(e.g., distributed file system and Cloud storage) and the data
adapter component, serving as an interface between the data
store and the other components in the workflow.

(3) Compute layer: it refers to the processing logic contained
in the steps used in the workflow. The compute layer is com-
posed of multiple compute steps, and by sequencing them
together, they form a workflow. It is also possible that multi-
ple instances of the same compute step type run in parallel.

The components of the different layers can be spread across
multiple hosts, and the orchestrator serves as the coordinator of
the centralised architecture. The use of a centralised architecture
is motivated by leveraging data locality when executing Big Data
workflows requires knowledge about the entire system (e.g., com-
ponent physical placement) and the data that flows through it (the
physical location where data is stored). The centralised architec-
ture greatly simplifies the acquisition, management, and usage of
this information. Data are organised into discrete, indivisible, and
independent units when passing through the framework. These
represent the units of work at both an orchestration level and indi-
vidual step level. Each unit is processed independently of the others,
and multiple units can be processed in parallel across different steps.
This model, where the execution of the workflow is handled at the
data unit level, can provide significant performance benefits as
opposed to models where steps are executed synchronously (all
outputs of the previous step have to be available to start the next
one) [7, 15].

Whenever a new unit of data is available in the system, the
orchestrator is notified, and it passes on the notification to a com-
putation step to be processed. The compute step may produce one
or more outputs from the input, each being a new data unit that
continues to flow through the system independently of the others.
Organising the work in independent units enables tasks to be dis-
tributed across all the available resources, allowing the proposed
solution to scale horizontally (increase the processing power by
adding more hosts in the distributed system). Figure 1 depicts a
high-level overview of the three layers and their interactions. The
following sections present each layer in greater detail.

4.1 Control Layer
Upon receiving a notification indicating new data are available
to be processed, the orchestrator needs to determine what type
of compute step needs to be invoked for the current data unit,
according to the workflow specification. For example, in a workflow
consisting of three sequential steps, the data units outputted by the
second step need to be passed to an instance of the third step.

Throughout the system, there can be multiple instances of the
same compute step type. The orchestrator is responsible for choos-
ing one of the instances to perform the processing of the data.
Instead of relying on traditional load balancing algorithms (such
as round-robin, random, and least connections), the orchestrator
needs to employ a custom routing decision algorithm that takes the

Figure 1: High level overview of the design components.

number of variables as input. The orchestrator decides about the
routing based on available information, such as data locality, cur-
rent load, varying resource availability, cost, and existing policies.
This list is not exhaustive and presents only a subset of potential
aspects that can be considered when making a routing decision.
Optimising for cost, performance while ensuring all the explicit
requirements of the workflow are met makes the routing problem
a complex, multi-variable optimisation problem, with no clear best
decision. A trade-off in one or more areas is necessary.

The inputs to the routing decision need to be acquired and made
available by the module responsible for the decision. Depending
on the volume and velocity of the units of data flowing through
the orchestrator, the calculation of the routing decision needs to
be efficient to avoid spending a significant amount of time routing
each unit. This means that some of the inputs may have to be pre-
calculated or estimated asynchronously, as acquiring information
about all the possible targets synchronously may incur a significant
performance cost.

4.2 Data Layer
The ability to share data between the nodes hosting the compute
step instances is a fundamental requirement of the proposed solu-
tion approach. This allows the steps to pass data from one another
as part of the workflow execution. All the interactions with the
data storage happen through the data adapter in the proposed ar-
chitecture, serving as an intermediary between the data storage
technology and the orchestration components. The data adapter
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model hides the complexities and particularities of interacting with
the data storage by separating the logic into a dedicated component
that exposes a simplified interface for external communications.

Separating data handling concerns from the compute step cre-
ates a modular architecture that facilitates and encourages the
re-usability of both components in multiple workflows. For exam-
ple, a compute step processing images can be re-used to process
images from multiple data sources, and the same data solution can
be re-used with different compute steps. In addition to re-usability,
separating the compute steps from the data adapter allows for more
flexibility in terms of technologies chosen to implement either of
them. For example, a compute step can be implemented in Python
while the data adapter can be written in Java, and the two compo-
nents can still communicate.

Apart from interacting with the underlying storage, the data
adapter is also responsible for providing the other components
in the system with information about the physical localisation
of the data handling to support locality-aware work scheduling.
The data locality model employed to communicate the localisation
information needs the following characteristics:

(1) It needs to apply to both the data units flowing through the
system and the compute step instances, as the information
it captures is used to route data units to be processed on
compute step instances in proximity.

(2) The localisation information needs to apply to resources
throughout the computing continuum, and a distance mea-
sure needs to be determinable for any two localisations.

(3) The data locality model needs to be granular enough to
capture host-level information.

(4) As different data storage solutions have different capabilities
of exposing information about where data is stored, the data
locality model should support reserved values to indicate
parts of the information are missing.

4.3 Compute Layer
The compute steps follow a simple execution model since both the
orchestration and data handling logic being handled by external
components:

(1) Compute steps are served a unit of data as input (provided
by the data adapter).

(2) The processing logic is applied in the compute step.
(3) The processing logic can produce one ormore outputs, picked

up by a data adapter and resulting in notifications for the
orchestrator.

This architecture gives complete freedom to execute any logic
that can be run in containers as the implementation of the compute
step has no restrictions over what the processing logic can do with
the input data. Neither the input nor the output data are typed.

4.4 Extension Model
The current architecture opts for the container-based extension
model as it aligns better with the architecture requirements. The
container-based extension model becomes apparent when diving
deeper into the architecture of a compute step (Figure 2). A compute
step is logically composed of a framework agent and processing

logic, running in a separate container. The framework agent con-
tainer is responsible for coordinating the execution in the context
of a single step (retrieving the input data, triggering the processing
logic, handling the output data). It effectively hides the complexities
related to the orchestration and acts as the intermediary between
the data and compute components, thus allowing them to have
simplified interfaces they need to adhere to, dedicated only to their
function (handling data or processing it), as described:

(1) The framework agent needs to accept requests from the
orchestrator to process a unit of data.

(2) Based on the instructions received from the orchestrator, it
reaches out to the data adapter to retrieve the input data.

(3) Once the input data is accessible to the container hosting
the processing logic, the agent needs to send a request to
trigger the computation.

(4) The output data is passed to the data adapter, and the orches-
trator is notified that new data has become available.

By leveraging the container-based extensionmodel, the microser-
vice inspired architecture combines the code contributed by the
user (i.e., data adapter, business logic, and data store) and the frame-
work provided components (i.e., orchestrator and framework agent)
to allow the definition and execution of customisable workflows.
By injecting two components implementing simple interfaces (one
for data handling and one for processing logic), the framework
can orchestrate the execution workflows composed of steps imple-
mented in different programming languages or technologies and
leverage different data storage solutions. The data handling and pro-
cessing logic are completely separated from one another, allowing
the two components to be created and evolve independently, thus
helping with the separation of concerns between the stakeholders
involved in creating workflows. The proposed architecture provides
a way for the framework users to inject data, processing logic and
a workflow definition, combining the two elements.

5 IMPLEMENTATION
We implement our proposed solution as a proof of concept using
Docker and Kubernetes. The code of the proposed solution, along
with the associated Dockerfiles and Kubernetes YAML files to de-
ploy the model to Kubernetes clusters, are publicly available, under
the MIT license6.

Docker is used for building the container images for both the
framework components (orchestrator and framework agent) and
the examples of pluggable components (compute steps and data
storage). The container images contain all the information needed
by a container run-time to run the components. At run-time, the
container orchestration solution uses the images to instantiate the
different components as needed. Kubernetes is used to manage
and orchestrate the deployment and communication between the
components. Kubernetes is the industry standard for container or-
chestration and exposes abstractions over the hardware resources
it manages. The following is a brief introduction to the main Kuber-
netes abstractions and features referenced in the remainder paper:

6https://github.com/alin-corodescu/MSc-workflows

https://github.com/alin-corodescu/MSc-workflows
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Figure 2: Detailed view of a compute step.

(1) Nodes: these are the abstraction Kubernetes uses for the
hosts making up a cluster. These can either be physical or
virtual machines.

(2) Pods: these are the smallest unit Kubernetes manages and
deploys. A pod is a group of one or more containers, logically
belonging together to perform a particular task.

(3) Services: these are a type of Kubernetes resource that helps
connecting pods or expose functionalities outside the cluster.
A selection criterion is used to identify the pods hosting the
application the service exposes. The communication with
the service is done through a designated IP address and port,
with the request routing and load balancing between the
pods being handled by Kubernetes.

(4) DaemonSets: these enable Kubernetes users to deploy an
instance of a pod to every node in the cluster.

(5) Labels: All Kubernetes resources can be associated labels
to help identify and distinguish resources serving different
purposes (e.g., pods hosting different applications)

(6) Volumes: these are abstractions that allow the storage used
by a container to be managed independently of the con-
tainer. Volumes are made accessible by mounting them in a
container.

The containers used to perform the steps are long-lived, and each
can process multiple units of data. This reduces the overhead in per-
formance incurred by creating and deleting containers constantly
throughout the execution of a workflow. The current implemen-
tation opts for a point-to-point communication model. It allows
for easier, explicit communication between two parties, making
it more suitable for the deliberate routing decisions that take into
account data locality. The gRPC framework is chosen to support the
communication between different components. By leveraging the
long-lived nature of the containers, the proposed implementation
also attempts to re-use established connections to remote machines
(connection pooling).

5.1 Orchestrator
A single instance of the orchestrator is deployed and made available
to all the components in the cluster through a Kubernetes service.
The single-replica strategy is needed because the central orchestra-
tor is a stateful service, where the state is kept in memory. Setting

up a multi-replica orchestrator is beneficial for performance, scala-
bility, and resilience. However, it also requires external solutions to
store, share, and synchronise the state among the replicas.

A workflow consists of a sequence of processing steps. Each
step specifies a name that uniquely identifies the processing logic
of the step. The orchestrator uses the name of the step to find
pods hosting the specified processing logic through Kubernetes
labels. Alongside the name, a data source and a data sink identifier
are also part of a step specification7. The data source and sink
identify the data storage solutions where the input and output data
should be retrieved and stored. The orchestrator exposes another
service responsible for orchestrating the execution of the workflow
registered through the workflow definition service. The execution
of the workflow is driven by the availability of data in the system,
as opposed to a task-driven execution approach [12].

Request routing discussed earlier is a multi-objective problem.
For the proposed implementation, request routing uses the distance
and current load as inputs. The distance between the same hosts is
considered zero. For all other cases, the orchestrator constructs a
𝑁 × 𝑁 matrix hosting the distances between each of the 𝑁 zones
(assuming there are 𝑁 zones in total in the system). We presume
that the distance between hosts within the same zone is higher than
zero but lower than between two different zones. In the current
implementation, the values are hard-coded in the matrix. Using a
work tracker component, the orchestrator knows the number of
concurrent requests on each pod. We propose two flavors of the
selection algorithm.

The first one is the greedy approach: (i) the pods with several
active connections higher than a configurable number (three by
default) are eliminated, to avoid overloading a particular pod due
to the uneven load balancing introduced by the data locality pref-
erences; (ii) from the remaining pods, the one with the shortest
calculated distance is selected (greedy selection); and (iii) if no pod
remains, the request is added back into the queue to be processed
at a later time.

The second approach is slightly modified and focuses more on
spreading the load among the available resources. Instead of always
choosing the closest pod, this variant spreads the load evenly at a

7In a simplified generalisation, steps receive data as input from a data source, processes
it, and then push the outputs to a data sink.
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zone level and falls back to a different zone8, when the load on the
pods passes a configurable threshold (three by default). The zone
with available resources closest to where data are stored is chosen.

5.2 Framework Agent
Since the framework agent is logically coupled with a compute step,
the two are always deployed together by leveraging the sidecar
deployment pattern [11]. The agent and the compute step are sepa-
rated in different containers, and they can communicate efficiently
via local host calls. With pods being the atomic unit Kubernetes can
manage, this deployment model guarantees that each pod hosting
a compute step container also contains an agent container.

The agents implement a service to expose a communication
endpoint for the orchestrator. The request from the orchestrator
contains the metadata needed by the data source to find the data the
step should process, a unique identifier for the request (requestId),
and the identifier of the data adapter to be used as a data sink.
Upon receiving the request, the agent will perform the following
operations:

(1) Forward the metadata to the data adapter specified in the
request from the orchestrator.

(2) Once the data adapter ensures that the data is available at
a path the compute step container can access, the compute
step is invoked with the path to the file containing the data
it needs to process.

(3) For each output emitted by the compute step, the frame-
work agent will instruct the sink data adapter to register the
output.

(4) Once the sink data adapter returns the metadata necessary
to identify the newly added data, it is sent, together with the
initial requestId, back to the orchestrator to notify that new
data are available.

5.3 Data Adapter
In the current implementation, the data adapters only work with
files (i.e., data retrieved from the storage solution is stored in a
file, and only uploading data from a file to the storage solution
is supported). Data adapters are deployed using the DaemonSet
concept in Kubernetes. One pod for each type of storage adapter is
deployed to every node of the Kubernetes cluster. The DaemonSet
choice assumes the number of possibly different types of storage
adapters is limited, and thus the overhead of running one pod of
each type is negligible.

The distributed storage system used leverages the local storage
of every node in the cluster to store the data being processed by
the workflow. Besides reading and writing data, the interface also
captures the localisation information about the data as part of the
communication. Hard linking is used to leverage further the advan-
tage provided by data locality. Hard linking is a faster operation
than copying, and thus it further reduces the time spent on moving
data between directories. The volumes are based on directories in
the underlying node file system. Even though different directories
are mounted as different volumes in pods, the resolution of hard
links is delegated to the node file system. This allows the hard links
8The zone is a general term, meant to capture groups of hosts in close proximity to
one another.

to cross volumes mounted in different pods. By contrast, symbolic
links operate by attempting to resolve a particular path, so they
cannot cross different volumes unless all pods mount the same
volume under the same path.

A data master was added as a standalone component to separate
data handling from the orchestration components. While the cur-
rent feature set is limited to locating files in the distributed storage
system, it could potentially be extended to offer more functional-
ities (such as data lineage, sharing the same data across multiple
workflows, and others). Like the orchestrator component, the data
master runs in a single pod in the cluster, made available through a
service. The state of the data master is stored in memory.

6 EVALUATION
Through the experiments, we compare our approach with Argo
workflows. The test environment is set up on the Microsoft Azure
Cloud using only Infrastructure-as-a-Service offerings (virtual ma-
chines and networking capabilities). The test environment is using
Standard D2s v3 (two2 vcpus, 8GB memory) virtual machines, pro-
visioned in three different Azure regions to mimic the geographical
distribution of resources in a real Cloud and Edge topology. One
virtual machine serves as the Kubernetes master node (and does
not run additional pods). In addition to the master node, two vir-
tual machines are configured as Kubernetes worker nodes in each
region. The lightweight K3s9 distribution of Kubernetes has been
manually installed on each virtual machine. All machines are part
of the same cluster.

We consider the following workflow to evaluate the architecture
and implementation of the systems. There are four sequential steps,
each accepting a file as input, randomly shuffling the bytes, and
writing the shuffled result as output. The motivation for choosing
an artificial workflow is the ability to capture and describe the be-
haviour of the solution in terms of universally applicable measures
(e.g., bytes for data size). In contrast, a workflow processing par-
ticular data types (such as images) captures the specific behaviour
better. However, the conclusions are harder to generalise because
the data type is more restrictive (in terms of size, characteristics)
than the artificial example.

For the first three steps, every machine in the cluster runs one
instance of each step type. The final step only runs in the machines
in the EastUS region, simulating a step that can only run on Cloud
instances in a real scenario. Both the central orchestrator and the
data master components are deployed on machines in the WestEu-
rope region. Two additional supporting components are used when
running experiments. The load generator is responsible for inject-
ing data into the cluster and notifying the orchestrator that data is
available. The load generator creates files containing random bytes,
and it can trigger workflows for these files. The size and number
of files to be injected into the cluster are configurable. The load
generator also supports injecting data into two regions in parallel.
The telemetry reader is responsible for gathering data on the execu-
tion of the workflow (e.g., time spent in different components, the
quantity of data transferred between regions, and load spreading).
The data is retrieved using the Jaeger API and is written in CSV
files, which are later analysed through Python/Jupyter notebooks.

9https://k3s.io

https://k3s.io
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Figure 3: Proposed solution vs Argo.

6.1 Comparison with Argo
We implement the workflow using the Argo workflow definition
language. The data communication medium between the steps is
Cloud storage (Azure BlobStorage), with one instance provisioned
per region. The steps can read input data from any region but
write output data to the region they are running in (e.g., a step
in WestEurope can retrieve data from NorthEurope, but it always
writes the output to WestEurope). Argo orchestration components
(e.g., Argo Server) are deployed to worker nodes in the WestEurope
region, similar to the proposed implementation. Files of different
sizes are uploaded manually to the Cloud storage in WestEurope
and NorthEurope region, and workflows are triggered from a client
running outside the cluster, with these files as inputs.

In terms of data locality, we evaluate two different approaches.
First, no data locality is captured in the workflow definition, al-
lowing the steps to be assigned to nodes anywhere in the clus-
ter. Second, using the node selectors to limit where step pods are
instantiated, the processing is kept within the same region (e.g.,
files originating from WestEurope will continue to be processed
in WestEurope as much as possible). By default, the orchestration
component of Argo reacts to changes in step states (e.g., a step has
finished) once every 10 seconds. This default value is unsuitable for
workflows processing small amounts of data quickly, and for these
experiments, we change it to one second, which is the minimum
recommended value. The exact configuration used to deploy Argo
workflows for the experiment is available in the GitHub repository
of the solution.

6.2 Results
Figure 3 presents the average run-time of aworkflow, given different
data sizes and numbers of files to be processed in parallel. The X-axis
denotes the number of files used in each of the two Edge regions,
WestEurope and NorthEurope, along with their size. For example, “3

files, 1MB” indicates that three files of 1MB each are passed through
the workflow from both WestEurope and NorthEurope in parallel
(six files in total). The Y-axis is the time spent on the execution of
the workflow, measured in milliseconds. The numbers on the Y-axis
are averaged from a number of iterations.

The results show a low variance between different iterations.
The chart compares the numbers from four runs of the same work-
flow: (i) in Argo, both with region-level data locality and without
data locality, and (ii) in our solution, with the two flavors of the
routing algorithm, greedy and load spreading. From experiments,
we observe the followings:

(1) The first observation is made on the case when running
with small data chunks that take little time to process, the
proposed solution outperforms Argo workflows by a factor
of five.

(2) As the data size grows, the time spent on executing the logic
of the step increases, and the benefit of data locality reduce.

(3) Data from the second case (three files, 10MB) show that
using data locality does not affect the case of Argoworkflows.
Furthermore, in the fourth case (three files, 100MB), using
data locality in the workflow has a detrimental effect on
performance. This phenomenon can be explained by a setup
of the experimental testbed and the nature of the steps.

(4) The solutions that leverage data locality attempt to perform
the work close to the data, while the other solutions spread
the load evenly across the available machines. The gathered
telemetry indicates that the steps of the example workflow
are significantly slower when multiple instances are sched-
uled on the same host, as they are competing for resources.

(5) Considering that there are two worker nodes available in
each region, processing three files in parallel results in at
least two of the files to be processed on the same node when
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data locality is enabled. This load distribution significantly
offsets the reduction in data transfer time.

(6) When processing only two files of data sizes of 10MB and
100MB, the load can be better spread on the testbed topol-
ogy (two files can be processed in parallel on the two host
machines available in each region), and the benefit of data
locality can be observed.

(7) On all cases, however, our proposed solution with the load
spreading algorithm proved to be faster to execute the ex-
ample workflow. However, the benefits varied, depending
on the size of the data, from 500% (for the three files, 1MB)
to roughly 20% (for the two files, 100MB case).

7 CONCLUSION
In this paper, we proposed a novel architecture and a proof-of-
concept implementation for container-centric Big Data workflow
orchestration systems. Our proposed solution enables the orches-
tration components to consider data locality, quantified using a flex-
ible model that accounts for the physical distance between hosts
spread across the computing continuum. Our solution is better
suited for processing small, frequent data units by leveraging long-
lived containers, but they are instead re-used to process multiple
units. Furthermore, it extends the ideas behind isolating processing
steps in separate containers to the data management aspect of Big
Data workflows. As such, the logic needed to interact with data
management systems is encapsulated in containers, providing the
same benefits as for processing logic (technology agnostic solution,
isolation, lightweight, etc.).

Future work can include extending the solution in multiple direc-
tions. The simplistic workflow definitions supported in the current
form investigate potential performance improvements, but most
real use-cases require complex constructs. A few examples include
supporting direct acyclic graph-structured workflows, processing
steps to receive input from more than one data source, and support-
ing aggregation over multiple data units. Both data and processing
logic are isolated in different components, and the workflow defini-
tion language uses these components as building blocks. A potential
direction is creating a marketplace-like ecosystem where data and
processing logic are exchanged between parties in the form of these
components. Regarding run-time concerns, a central piece of the
proposed solution is the routing algorithm that takes into account
load and data locality. Further improving the heuristic and adding
more dimensions (such as matching node capabilities, e.g., needs
to have a GPU with step requirements) can lead to better results.
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