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Abstract: To satisfy global electrical energy requirements, photovoltaic (PV) energy is a promising
source that can be obtained from the available alternative sources, but partial shading conditions
(PSCs), which trap the local maxima power point instead of the global maxima peak power point
(GMPP), are a major problem that needs to be addressed in PV systems to achieve the uninterruptable
continuous power supply desired by consumers. To avoid these difficulties, a marine predator
algorithm (MPA), which is a bio-inspired meta-heuristic algorithm, is applied in this work. The work
is validated and executed using MATLAB/Simulink software along with hardware experimentation.
The superiority of the proposed MPA method is validated using four different PSCs on the PV
system, and their characteristics are compared to those of existing algorithms. The four different PSC
outcomes in terms of GMPP are case 1 at 0.07 s 995.0 Watts; case 2 at 0.06 s 674.5 Watts; case 3 at 0.04 s
654.1 Watts; and case 4 at 0.04 s 364.2 Watts. The software- and hardware-validated results of the
proposed MPA method show its supremacy in terms of convergence time, efficiency, accuracy, and
extracted power.

Keywords: maximum power point tracking; solar photovoltaics; meta-heuristic algorithm; partial
shading conditions

1. Introduction

In recent times, renewable energy sources (RES) have begun to play a dynamic role
in the generation of electricity to meet power demands. The core reasons behind these
power demands are industrial growth, commercial utilization, and electric vehicle trans-
portation [1]. Among the various RES, solar PV energy is the best source to cover every
one of the aforementioned energy demands [2]. Solar technologies convert sunlight energy
into electricity through PV, and the costs of PV systems will significantly decrease due to
developments in technology [3]. This technology is risk-free to environmental conditions
and is eco-friendly and pollution-free compared to non-renewable resources such as oil,
nuclear energy, and gas as well as to the applications of those energy sources, such as solar
vehicles, streetlights, irrigation systems, etc. [4]. To carry out the required operations and
to obtain the output, MPPT with a DC-DC converter is needed, and an advanced method is
proposed in this paper, as shown in Figure 1. Although solar PV systems face inevitable
challenges under varying environmental conditions, PSCs are the most influential factors
affecting the characteristics of a PV system [5]. The effects of PSCs can be mitigated through
different types of maximum power point tracking (MPPT) techniques, which are types of
conventional and soft computing techniques that have been addressed in articles [6,7].
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the grey wolf optimizer (GWO), termed MPAOBL-GWO. The proposed MPA does not 
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Due to maximum power point (MPP)oscillations, existing techniques such as perturb
and observe (P&O) [8], open-circuit voltage tracking (OCVT), incremental conductance
(InC) [9], short-circuit current tracking (SCVT) [10], etc., are able to track MPP under
uniform conditions since the P-V curve only has one peak. However, these same techniques
fail to track MPP under PSC since the P-V curve has multiple peaks.

To overcome this issue of MPPT in PSCs, researchers have developed advanced soft
computing techniques such as artificial neural networks (ANN) [11], fuzzy logic (FLC) [12],
etc. These advanced intelligent techniques overcome the issues that occur when using
existing techniques; however, these approaches encounter several challenges in terms of
design, cost, and operation. Furthermore, improper design leads to more tracking time
requirements as well as less optimized output in terms of power. To mitigate the mentioned
issues, several researchers are currently working on bio-inspired techniques that belong to
a group of soft computing techniques known as meta-heuristic algorithms [13]. These bio-
inspired algorithms consist of a variety of categories, including particle swarm optimization
(PSO) [14], artificial bee colony (ABC) [15], ant colony (ACO) [16], bat algorithm (BAT) [17],
cat swarm optimization (CSO) [18], differential evolution (DE) [19], firefly (FA) [20], and
grey wolf optimization (GWO) [21], among others. The aforementioned algorithm-based
techniques have the capability to find the MPP without any oscillations in the steady-state
conditions and can easily determine the global maximum power point (GMPP) using
various local maximum power points (LMPPs) while achieving a high level of accuracy.

A new method that not only uses MPA for maximum power point tracking, but that
uses two optimization methods for obtaining the MPP: MPA and the mayfly optimization
algorithm (MFA), has been proposed. However, this work uses MPA alone, which produces
optimal output in terms of time to reach GMPP [22]. Similarly, another method with the
same objective that does not use the MPA technique alone to obtain the MPP is a modified
MPA method that integrates an opposition-based learning (OBL) strategy with the grey
wolf optimizer (GWO), termed MPAOBL-GWO. The proposed MPA does not use any other
techniques to improve the swarm agent’s local efficiency or to prevent searching deflation.
This makes the system very complicated, and to avoid that, we have proposed a simple
and effective method to attain the objective [23]. There are a few other studies that have
been published in the literature in the same field of research covering topics such as event-
trigger-based distributed cooperative energy management for multi-energy systems [24];
integrated energy systems [25]; energy cooperation optimization [26]; and sensorless hybrid
MPPT algorithms based on fractional short-circuit current measurements [27].

On the other hand, these bio-inspired techniques face high complexity in terms of
accuracy, tracking time, and efficiency under momentary circumstances. To eradicate these
difficulties, this article introduces a new bio-inspired algorithm for the MPPT applications
called the marine predator algorithm (MPA). Additionally, this MPA can be used for
parameter identification in solar PV models since it allows an additional degree of freedom
to change the position speed by changing the order of the derivative.

The most important contributions of this article are as follows: 1. The design and
analysis of a solar PV system with single-diode and two-diode models under different
environmental conditions. 2. The application of MPA for extracting the maximum amount
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of generated power during various PSCs. 3. The effectiveness of the proposed MPA-based
MPPT is compared to other existing techniques under various PSCs.

The rest of the article is organized as follows: the design of the solar PV system and
its characteristics are provided in Section 2. The proposed MPA-based MPPT technique is
explained in Section 3, while in Section 4, the results and discussion related to them are
conferred, and experimental validation is discussed in Section 5. Finally, the conclusions
can be found in Section 6.

2. Modeling of PV Cell and Partial Shading Conditions
2.1. Photovoltaic Module Model

Because of the computational benefits, most PV module models are single-diode
models, and recombination loss in the depletion area is often ignored in this type of diode
model [28,29]. The equivalent circuit of the PV cell model is shown in Figure 2.
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Kirchhoff’s current law equation is used to calculate the PV cell’s output current. The
PV system’s current is calculated using the following equation:

I = Iph − Io

[
e

q(V+IRs)
KTA − 1

]
− V + IRs

Rsh
(1)

where the output current of PV is I, the output PV voltage is denoted by V, the PV module’s
photocurrent is Iph, the diode current is Id, the diode’s reverse saturation current is Io, the
Boltzmann constant is 1.38065 × 10−23 J/K, the electron charge is q (1.60217646 × 10−19 C),
the operating temperature (K) is T, the ideality factor of the diode is A, and the series
resistance RS is normally low, and shunt resistance RSh is normally high.

Iph = (Isc_STC + ki∆T)
G

GSTC
(2)

Io = Io_STC

(
TSTC

T

)3
e
[

qEg

AK

(
1

TSTC
− 1

T

)]
(3)

Io_STC =
Isc

e
(

qVoc
AKTSTC

)
− 1

(4)

Under standard test conditions (STC), the light-generated current is ISC_STC; the tem-
perature at TSTC is 25 ◦C per panel; the difference between T and TSTC is T in kelvin; the cell
surface irradiance is G;GSTC is the STC irradiance (1000 W/M2); the short circuit current
coefficient is KI; the energy bandgap of the semiconductors is EG; and IO_STC, shown in
Figure 3a,b shows the typical irradiation settings characteristics (GSTC = 1000 W/M2). The
temperature ranges of a single-diode PV module may operate between 15 and 55 ◦C (b).
Figure 3c,d show the PV module’s characteristics at STC 25 ◦C under various irradiances
ranging from 200 W/m2 to 1000 W/m2. The figure clearly shows the multiple peaks for
various environmental conditions [28].
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2.2. PV Characteristics under Uniformirradiance and PSCs

A crucial condition in solar PV systems is the partial shading conditions (PSCs). These
occur due to varying weather conditions, shadows caused by nearby buildings, passing
clouds, trees, dust, and bird waste, among other things [30]. The characteristics of the solar
PV under uniform conditions as well as under PSCs are depicted in Figure 4.
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As illustrated in Figure 4, the P-V and I-V curves reflect the maximum power point
(MPP) during uniform irradiance (a). Partial shading creates a mismatch, which causes
hotspots. To reduce hotspot effects, bypass diodes are utilized between modules, which
results in many peaks in the P-V and I-V curves, as seen in Figure 4b. As demonstrated
in Figure 4, both curves contain LMPPs under the PSCs, with just one being GMPP (b).
Solar PV systems should always be operated under GMPP so that the maximum amount of
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power produced from solar PV can be collected and transmitted to the load. This article
proposes a bio-inspired program dubbed the marine predator algorithm (MPA) to achieve
this aim.

3. Methodology

As shown in Figure 1, to carry out the required operation and to obtain the output,
MPPT with a DC-DC (boost) converter is needed. The MPPT controller controls a control
variable (duty cycle) during MPPT implementation. This produces a control signal in the
range of [0, 1], as shown in Equations (5) and (6).

Vout =
Vin

1− d
(5)

d =
Ton

TSwitching
(6)

where Vout and Vin are the input and output voltages of the boost converter, and d is
the duty cycle. This article introduces a new bio-inspired algorithm based on the marine
predator model’s social behavior pattern.

3.1. Marine Predator Algorithm

The marine predator algorithm (MPA) is a nature-inspired meta-heuristic optimization
technique [31] that has been applied for various optimization problems. Some of the
applications of the MPA are estimating the parameters of solar PV cells [32] and COVID-19
image classification [33], among others. In this article, the MPA is applied during MPPT in
an optimized way to determine the optimal expected output.

The key points of the MPA are (i) Lévy motion for low-concentration prey environ-
ments, (ii) Brownian motion for high-concentration prey environments, and (iii) excellent
memory when recalling hunting mates and sites of successful hunting, as depicted in
Figure 5. These features make the marine predator’s technique more advanced compared
to other bio-inspired techniques.
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3.1.1. Lévy Flight

Lévy flight is nothing but random numbers with step sizes specified by a probability
function called Lévy distribution, which is given in Equation (7), where α is theindex
distribution, and x and y are the normal distribution variables.

Lévy (α) = 0.05× x

|y| 1α
(7)

3.1.2. Brownian Motion

This probability function is obtained from a normal (Gaussian) distribution, where
µ(mean) = 0 and σ2 (variance) = 1 with step length from a stochastic process called standard
Brownian motion. At point x for this motion, the probability density function (PDF) is
given by Equation (8).

f (x; µ, σ) =
1√
2π

e−
x2
2 (8)

3.1.3. Formulation of MPA

Similar to other metaheuristics, MPA is also a population-based technique, in that
the first solution is homogeneously spread over the search space as the initial trial. The
population can be started by Equation (9), where Dmin and Dmax are the variables’ lower
and higher limits, respectively, while rand is a random integer.

D0 = Dmin + rand (Dmax − Dmin) (9)

An elite matrix is developed using the fittest solutions among the marine predators
based on the “survival of the fittest” theory. Naturally, the topmost predators (denoted by
de) are brilliant when hunting. The matrix given in Equation (10).

Elite =

de1,1 · · · de1,n
...

. . .
...

dem,1 · · · dem,n


m×n

(10)

Search agents are both predator and prey because both are searching for their food. If
the highest predator is replaced by a better predator, Equation (10) is updated, and a new
size matrix known as the prey is produced. Accordingly, the position of the predator is
updated from time to time. In the prey matrix, di,j represents the jth position of the prey.
The prey matrix is given in Equation (11).

Prey =

d1,1 · · · d1,n
...

. . .
...

dm,1 · · · dm,n


m×n

(11)

3.1.4. Optimization Process of MPA

There are three phases of optimization, as shown in Figure 5. Depending on the
velocity ratio and time, the phases are classified as follows:

1. Phase 1: Predator moves slower than the prey (velocity ratio is high).
2. Phase 2: Predator and prey are in almost same pace (unity velocity ratio).
3. Phase 3: Predator moves faster than the prey (low velocity ratio).

1. Phase 1: High velocity ratio

If the prey is moving faster than the predator, then this is known as an exploration
phase. It only happens in the initial or starting iterations of the algorithm and is given by
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Equations (12) and (13). Here, R is the rand [0, 1]. To set a high exploration phase, this
phase happens in the first three iterations.

−−−−−→
Stepsizea =

−→
RB ×

( −−→
Elitea −

−→
RB ×

−−→
Preya

)
; a = i . . . n (12)

−−→
Preya =

−−→
Preya + P

−→
R ×

−−−−−→
Stepsizea (13)

2. Phase 2: Unity velocity ratio

This phase imitates both the prey and predator moving at the same pace. To set the
explorative and exploitative phases, this phase occurs in the middle of the number of
iterations. As such, one population is exploring in one part, and the other population is
exploiting in another part, which indirectly depicts exploitation being the responsibility of
the predator, whereas responsibility for exploration relies on prey. This phase is represented
by Equations (14)–(17), where RL is the Lévy distribution number or the vector of random
numbers based on α.

For the predator population:

−−−−−→
Stepsizea =

−→
RL ×

( −−→
Elitea −

−→
RL ×

−−→
Preya

)
; a = i . . .

n
2

(14)

−−→
Preya =

−−→
Preya + P

−→
R ×

−−−−−→
Stepsizea (15)

For the prey population:

−−−−−→
Stepsizea =

−→
RB ×

(−→
RB ×

−−→
Elitea −

−−→
Preya

)
; a =

n
2

. . . n (16)

−−→
Preya =

−−→
Elitea + P

−→
CF ×

−−−−−→
Stepsizea (17)

CF is a step size controlling parameter for the predator.

3. Phase 3: Low velocity ratio

In this phase, the prey is moving slower than the predator. To set a high exploita-
tion phase, the Lévy base is a random number. Equations for this phase are given in
Equations (18) and (19).

−−−−−→
Stepsizea =

−→
RL ×

(−→
RL ×

−−→
Elitea −

−−→
Preya

)
; a = 1 . . . n (18)

−−→
Preya =

−−→
Elitea + P

−→
CF ×

−−−−−→
Stepsizea (19)

Things that affect the marine eco-system will also affect the marine predators. At
times, Eddy formation or fish aggregating devices (FADs) may change the marine predators’
behavior. To avoid the FADs, marine predators may make long jumps, as shown in

Equation (20), where r1 andr2 are the random indexes of
→

Prey and
→
U is the array of the

binary vector [0, 1].

−−→
Preya =


−−→
Preya + CF

(−−→
Dmin +

−→
R ×

(−−→
Dmax −

−−→
Dmin

)
×
−→
U
)

i f r ≤ FAD1

−−→
Preya + (FADs × (1− r) + r)

( −−→
Preyr1 −

−−→
Preyr2

)
i f r ≤ FADs

(20)
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3.2. Implementation of MPA for MPPT during PSCs

In the search space between Dmin and Dmax [0 to 1], the particles should be initialized
for the implementation of MPPT using the MPA optimization technique and should have
a population size of four since this work uses four panels in the array. The suggested
algorithm will then be used to update all of the initialized particles’ locations. Due to
irradiance changes, the power (PPV) will change, at which time the code will automatically
restart or reinitialize, as shown by the conditional Equation (21).

i f

∣∣PPVnew − PPVold

∣∣
PPVold

≥ PPV(%) (21)

The flow chart of the proposed bio-inspired MPA technique based MPPT is given in
Figure 6, which validates Equation (21), and the pseudo-code for the same is also given in
the below Algorithm 1.
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Algorithm1: MPA-based MPPT Pseudo-code

initializethe particles Di (i = 1, 2, . . . n)
while (iteration < max_iteration)
evaluate fitness and make Elite matrix
if (iteration < max_iteration/3)

update particles using Equations (12) and (13)
else if ((max_iteration/3) < iteration < (max_iteration/(3/2)))

first half of particles updated using (14) and (15)
second half of particles updated using (16) and (17)

else if
update particles using Equations (18) and (19)

end if
update Elite matrix
apply FADs effect and update using Equation (20)
end while
return dbest.

4. Results and Discussion

The proposed MPA-based MPPT technique for solar PV systems was developed using
MATLAB/Simulink and was tested experimentally. To validate the results, four different
partial shading cases were considered, and the technique was also compared to particle
swarm optimization (PSO), grey wolf optimization (GWO), and mouth flame optimization
(MFO)-based MPPT techniques. Four 250 W solar PV panels connected in a series–parallel
configuration were used in this work, and the rating of the panels at standard testing
conditions (STC) are given Table 1. Kyocera KC 250GT PV solar modules were used for
this work, and the ratings are in Table 1. Table 2 provides the various PSCs used to validate
the proposed work.

Table 1. Solar PV module ratings under STC.

Parameter Rating

Power at MPP (Pmpp) 250 W
Open circuited voltage (Voc) 36.9 V
Short circuited current (Isc) 8.81 A

Voltage at MPP (Vmpp) 30.3 V
Current at MPP (Impp) 8.11 A

Table 2. Four different cases of PSCs for testing.

Cases
Irradiance in W/m2

P11 P12 P21 P22

Case 1 1000 1000 1000 1000
Case 2 400 400 1000 1000
Case 3 500 800 700 1000
Case 4 200 300 700 1000

4.1. Case 1

In case 1, all four modules were given equal irradiance of 1000 W/m2. The perfor-
mance characteristics of the array can be checked by measuring the voltage, current, power,
and duty. Figure 7 depicts all of the data with respect to time. Three other MPPT techniques
were incorporated into the system for comparison, and the four techniques compared were
the (1) proposed MPA algorithm technique, (2) the PSO algorithm technique, (3) the GWO
algorithm technique, and (4) the MFO algorithm technique. From Figure 7 it is clear that the
time required to reach the MPP is 0.07 s and that the efficiency of MPA is 99.82% according
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to the proposed MPA technique. Additionally, it is clear that the proposed MPA technique
performed better than the other techniques.
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4.2. Case 2

In case 2, all four modules were assigned the variable irradiance values given in
Table 2. The performance characteristics of the array could be checked by measuring the
voltage, current, power, and duty cycle. Figure 8 depicts all of the data with respect to
time. From Figure 8,it is clear that the time required to reach the MPP is 0.06 sand that
the efficiency achieved by the proposed MPA technique is 99.86%, which is better than the
other three techniques in case 2.
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4.3. Case 3

Similar to case 2, in case 3, all four modules were given the variable irradiance values
given in Table 2. Figure 9 depicts duty data with respect to time, current, voltage, and
power. It can be observed that the time required to reach the MPP is 0.04 s and that the
efficiency of MPA MPPT is 98.84% when using the proposed MPA technique, which is
better than other three techniques in case 3.
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4.4. Case 4

Similar to last two cases, in case 4, all four modules were given the variable irradiance
values given in Table 2. Figure 10 depicts duty data with respect to time, current, voltage,
and power. It can be observed, the time required to reach the MPP is 0.04 s and that the
efficiency of MPA MPPT is 98.84% when using the proposed MPA technique, which is
better than other three techniques in case 4.
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A complete evaluation of the MPA PSO, GWO, and MFO techniques considering
four different test cases is given in Table 3. Additionally, the transition during the sudden
change in irradiance (case 1 to case 2) is shown in Figure 11. The comparison was carried
out by considering power at MPP, the time to attain MPP, and the efficiency of PV. The
graph shown in Figure 12 clearly shows that for all the four cases, the MPA technique stays
ahead of the other techniques in terms of convergence time. Its efficiency is also almost
like that of the best level technique. Moreover, the proposed MPA technique can be easily
applied to real-time hardware implementation, but also it needs a sensitive microprocessor
such as Pi Zero 2 W.
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Table 3. Comparison between MPA, PSO, GWO, and MFO techniques for different test cases.

Performance
Parameters

Case 1 Case 2 Case 3 Case 4

Various MPPT Techniques

MPA PSO GWO MFO MPA PSO GWO MFO MPA PSO GWO MFO MPA PSO GWO MFO

Power extracted at
MPP (Watts) 995.0 992.9 995.0 995.2 674.5 672.3 674.6 674.6 654.1 653.8 654.5 654.5 364.2 358.5 364.5 364.7

Time to attain
MPP

(seconds)
0.07 0.09 0.12 0.20 0.06 0.10 0.16 0.12 0.04 0.10 0.18 0.12 0.04 0.10 0.12 0.16

Efficiency (%) 99.84 99.76 99.93 100 99.86 99.82 100 100 98.85 98.83 99.99 99.99 99.85 99.45 99.98 100
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5. Experimental Validation

The performance of the proposed MPA method for MPPT was experimentally verified
in the four different PSCs cases given Table 2. The suggested MPA approach was applied
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in the microcontroller, and the PV simulator simulated the PSC behavior. The results are
shown in the following subsections and clearly depict that the performance of the MPA is
far better than that of the other techniques.

5.1. Case 1

As described in the simulation, in the first example, uniform irradiation is applied
to the PV array, and the time required for GMPP extraction is recorded. Figure 13 clearly
shows that the experimental results are closer to the simulation results, which indicates the
time taken to achieve GMPP: 0.08 s with 984.55 W.
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5.2. Case 2

Variable irradiations were supplied to the PV array as mentioned in Table 2, and the
GMPP extraction time was noted. Figure 14 clearly shows that for case 2, the time taken to
achieve GMPP is 0.03 s with 630.39 W at 121.23 V and 5.2 A.
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5.3. Case 3

For case 3, uneven irradiation values were given to the PV array, and the GMPP
extraction time was noted. Figure 15 depicts the time taken to achieve GMPP, which was
0.03 s with 603.66 W, which is similar to the simulation result obtained for the same case.
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5.4. Case 4

Uneven irradiation values were assigned to all of the panels for the PV array in case 4,
and the time taken for GMPP extraction was noted. Figure 16 shows the results for case 4,
in which the time taken to achieve GMPP was 0.05 s and the respective power was 350.0 W,
which is similar to the simulation result obtained for the same case.
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6. Conclusions

To track the MPP of a solar PV panel with high accuracy, a bio-inspired algorithm
called the marine predator algorithm, which uses a pulse width modulation control boost
converter, was applied in this article. To show the effectiveness of the MPA technique, the
efficiency, power at MPP, and the time to track MPP for various PSCs were determined.
The results show a high degree of MPP tracking accuracy in the steady state with the
MPA technique compared to the PSO, GWO, and MFO techniques. The superiority of the
proposed MPA method was validated using four different PSCs on the PV system, and its
characteristics were compared to those of existing algorithms. The outcomes of the four
different PSCs in terms of GMPP are case 1 at 0.07 s 995.0 Watts, case 2 at 0.06 s 674.5 Watts,
case 3 at 0.04 s 654.1 Watts, and case 4 at 0.04 s 364.2 Watts. In future work, the effects of
partial shading on PV arrays will be tested using more meta-heuristic algorithms, and we
will integrate them into the grid via an inverter to be analyzed. Additionally, parameter
estimation using MPA will be incorporated to large scale PV systems.
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