
 

 
 

 

 
Energies 2022, 15, 4515. https://doi.org/10.3390/en15134515 www.mdpi.com/journal/energies 

Article 

Implementation of a Novel Tabu Search Optimization  

Algorithm to Extract Parasitic Parameters of Solar Panel 

Naveena Bhargavi Repalle 1,*, Pullacheri Sarala 2, Lucian Mihet-Popa 3,*, Shashidhar Reddy Kotha 1  

and Nagalingam Rajeswaran 4 

1 Electrical and Electronics Engineering, CVR College of Engineering, Hyderabad 501510, India;  

shashidhar.kotha5@gmail.com 
2 Electrical and Electronics Engineering, Malla Reddy Engineering College, Maisammaguda,  

Secunderabad 500100, India; sarala.2906@gmail.com 
3 Faculty of Information Technology, Engineering and Economics, Oestfold University College,  

1757 Halden, Norway 
4 Electrical and Electronics Engineering, Malla Reddy Institute of Engineering and Technology,  

Maisammaguda, Secunderabad 500100, India; rajeswarann@gmail.com 

* Correspondence: bhargavi.rn5@gmail.com (N.B.R.); lucian.mihet@hiof.no (L.M.-P.) 

Abstract: The aging of PV cells reduces their electrical performance i.e., the parasitic parameters are 

introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), photo current (IPh), 

diode current (Id), and diffusion constant (a1) are known as parasitic or extraction parameters. 

Cracks and hotspots reduce the performance of PV cells and result in poor V–I characteristics. Cer-

tain tests are carried out over a long period of time to determine the quality of solar cells; for exam-

ple, 1000 h of testing is comparable to 20 years of operation. The extraction of solar parameters is 

important for PV modules. The Tabu Search Optimization (TSO) algorithm is a robust meta-heuris-

tic algorithm that was employed in this study for the extraction of parasitic parameters. Particle 

Swarm Optimization (PSO) and a Genetic lgorithm (GA), as well as other well-known optimization 

methods, were used to test the proposed method's correctness. The other approaches included the 

lightning search algorithm (LSA), gravitational search algorithm (GSA), and pattern search (PS). It 

can be concluded that the TSO approach extracts all six parameters in a reasonably short period of 

time. The work presented in this paper was developed and analyzed using a MATLAB-Simulink 

software environment. 

Keywords: synthetic data (SD); pattern search (PS); absolute error; optimization technique; solar 

cell (SC); tabu list (TL) 

 

1. Introduction 

Photovoltaic (PV) systems are ecologically benign, cost-effective, and simple to in-

corporate into traditional electricity grids [1]. To diminish power lopsidedness, sunlight-

based chargers are not straightforwardly connected to the load [2]. A panel-to-load power 

tracking strategy is recommended to avoid this problem [3]. Another major area of study 

is the extraction of parasitic features from the solar cell [4]. In this article, the use of the 

TSO approach to extract solar properties is reported. 

PV systems with one diode were studied mathematically by Villalva et al. [5]. The 

suggested modelling is easily accessible, quick, meticulous, and emulation-friendly. Se-

ries and shunt protections, as well as how the continuous functional cluster thinks about 

as far as most extreme power [6], are considered in the plan. Three aspects are focused to 

modify the nonlinear condition contingent upon the I–V bend in an experimental manner 

[7]. 
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On a solitary-diode model of a sunlight-based cell, X. Mama et al. [8] recommended 

an information-driven I–V strategy that was surveyed on three boundaries (short circuit 

current (ISC), RSh, and open-circuited voltage, VOC). For finding plan boundaries, such 

as ideally consistent RS, RP, photon initiation current, and dull current, Saleem et al. [9] 

proposed a four-point extraction procedure [9]. Using GaAsP and SiGe tandem structures 

with a three-terminal assessment [10], the authors were able to derive sub-cell features. 

An analysis of the potential difference between the two reference cells was used to derive 

individual voltages in the proposed method. 

Predicting the losses of sub-passive cells also alters I–V curves. Consequently, differ-

ent, but similar, conditions at various input bands [11] govern the multi-performance 

junction's performance. Particle swarm optimization (PSO) was laid out by Wei et al. [12] 

to segregate the exhibition attributes of natural sun-oriented cells, combined with three-

diode lumped boundaries. Muralidhar et al. [13] proposed a technique that assists with 

overcoming the deficiency to avoid the drifting of local optimum issues. Diab et al. [14] 

researched and proposed a quick and precise method for separating obscure sun-oriented 

properties involving tree growth algorithm for assorted sun-powered PV modules. This 

strategy guarantees that all recovered boundaries are processed under ideal circum-

stances, bringing about optimal outcomes. In the future extension for this , PV systems 

will be able to make use of this method in partially shaded conditions [15]. 

In Raba et al. [16], a definite Markov chain Monte Carlo approach was used to prove 

that 2-dimensional organic solar cells were devoid of uncontrolled events. Caracciolo et 

al. [17] developed a single-variable optimization technique for constant environmental 

conditions. It was found that the majority of the features, such as the RSh, IO, and panel 

range, were resolved when tested under extreme environmental conditions. Therefore, 

the proposed method is successful in all challenging circumstances. 

Cervellini et al. [18] and Semero et al. [19] suggested a novel genetic algorithm (GA) 

that can be applied to a wide range of kelvins and irradiation (G) zones [20]. The simple 

and easy expression of the I–V curve and accompanying equations is achieved using the 

recommended GA approach [20]. This simplifies the assessment process. For single-, dou-

ble-, and multi-diode plans, Liao et al. [21] developed difference vector in differential evo-

lution with adaptive mutation. DVADE's goal is to quickly determine the extricated limits 

of a broad range of PV models. Each individual vector is used and reused in the mutation 

technique, which employs a differential evolution process and, therefore, may be reused 

many times. Toledo et al. proposed the two-step linear-least-square technique [22]. There 

is a vital benefit to the recommended approach, which is that it can gather information 

whether it is obtained from an I–V curve, i.e., it does not need any previous assessments 

and does not request information on past examinations or data about the boundaries 

[23,24]. It is feasible to eliminate the inherent potential (Vbi) from cells by utilizing a ma-

terial-science-based model and an observational method considering I–V attributes 

[25,26]. 

The following is a summary of the remaining portion of the paper. Following the 

introduction, Section 2 presents a mathematical depiction of a solar panel. Section 3 illus-

trates the ageing effect of the solar panel. In Section 4, proposed methods are presented. 

Section 5 provides a comparison of the suggested method's findings and performance 

with those of existing meta-heuristics. Conclusions and recommendations are provided 

in Section 6. 

2. Mathematical Modeling of PV Cell Based on Single Diode 

The current produced by the sunlight is parallelized utilizing the current source from 

a single-diode-modeled solar cell (SC), with the diode acting as a half-wave rectifier. The 

model is easy to implement due to its simplest form. However, this model does not give 

the required information regarding the solar cell’s parameters [27]. Figure 1 shows the 

equivalent circuit of a single-diode-modeled SC. 
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Figure 1. Circuit diagram of a single-diode-modeled solar cell. 

The PV current obtained from the sunlight-based charger was determined as follows: 

dPhPV III   (1)

where IPV is the photovoltaic current, IPh is the photo current, and Id is the diode current. 

The Id was obtained based on Shockley equation, which is represented as: 
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The output current of the PV cell is represented as follows: 
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The following implicit form simplifies the PV cell’s output characteristics: 
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3. Aging Effect of Solar Panels 

The aging of the PV module depends on the type of photovoltaic technology em-

ployed for the design of the solar cell and the environmental conditions in which it is 

installed. The PV panel performance is degraded due to the formation of cracks and bub-

bles on the panel surface. The performance of solar panels is reduced due to aging, which 

is mainly due to dust accumulation, humidity, UV radiation, wind speed, temperature, 

and certain other external factors, such as rain, snow, hail, and mechanical shocks. 

Impact of Aging on Solar Cell 

The aging of the PV cell reduces the electrical performance, i.e., the parasitic param-

eters are introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), 

photo current (IPh), diode current (Id), and diffusion constant (a1) are known as parasitic or 
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extraction parameters. Cracks and hotspots reduce the performance of solar panel V–I 

characteristics. Certain tests are carried out over a span of time to determine the quality 

of solar cells; for example, 1000 h of testing is comparable to 20 years of operation [28]. 

The aging of the PV panel is described using aging laws, which are represented as 

follows: 

��(�)  =  ��(−����. � + 100%) (6)

��(�) =  ��0 + (��� · � +  100%) (7)

where ���� represents the degradation rates of the transmissivity (glass optical losses and 

encapsulating losses) and the ���
 of the series resistance (the deterioration of the electri-

cal parts) are defined with accelerated test results. The degradation laws, the reduction in 

the transmissivity, and the augmentation of the series resistance according to time are 

given by expressions (6) and (7). The obtained degradation coefficients are ���� = 0.6% 

per year and ���
 = 0.23% per year. � is the transmissivity and T is the time in years. 

4. Proposed Tabu Search Optimization (TSO) Algorithm 

To address the state of the issue of numerous optimizations, the meta-heuristic 

method is applied. During optimization, the lowest value is chosen initially, followed by 

a more extensive search. The tabu list (TL) memory utilitarian strategy obtains the infor-

mation and stores the past arrangement while directing the following stage. For fore-

stalling nearby improvements, irrelevant information is limited, and ideal information is 

isolated in aspiration criteria (AC). It is feasible to involve nearby heuristic examination 

tasks to concentrate on the outcome space in front of the neighborhood ideal through the 

TSO approach, which utilizes TL to help achieve developmental memory with appropri-

ate limitations and goal levels. 

To solve finite-solution set optimization problems, dynamic properties research is 

preferred because of the flexible memory consumption in tabu motions. Repeated solu-

tions are out of the question, since these are unrepeatable activities. There are three vari-

eties of TSO: the forbidding strategy, the freeing strategy system, and the short-term strat-

egy (STS). By performing approximated solutions, the STS maintains a link between the 

FS and the FSS, while the FSS takes care of what remains after the optimization process, 

and the FS controls which data reach the operational zone. Figure 2 portrays the forbidden 

development, which depends on non-improved and nonlinear arrangements, as well as 

memory and neighborhood arrangements. 

The TL should not contain any of these options. The tabu classification may be dis-

carded if new tabu motions are introduced.  

The new set of T(S)) solutions is as follows: 

SI∈ N(S) = {(N(S) − T(S)} + A(S) (8)
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Figure 2. Tabu list neighborhood solutions for new solution. 

TSO integrates goal programming and evaluates the solutions in more than one di-

mension, i.e., comparing the most important value with the first, second, third, and so on. 

The TSO framework is depicted in Figure 3. 

 

Figure 3. TSO framework for obtaining the optimal solution. 
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Basic TSO  

The algorithm (Algorithm 1) for Basic Tabu Search Optimation is detailed step wise 

below. 

Algorithm 1 Basic TSO 

STEP 1 Select a primary result io in S. Set i0*= 0 and k = 0. 

STEP 2 Fix k = k + 1 and produce a subset V* of outcomes in N (i0, k) in such a way that either one of the tabu 

circumstances is infringed, or even one of the aspiration conditions is clutched. 

STEP 3 Select the best j in V* and put i0= j. 

STEP 4 If f (i0) < f (i0*) arrange i0*= i0. 

STEP 5 Update tabu and aspirational conditions. 

STEP 6 Stop if a stopping condition is reached. Otherwise, go to STEP 2. 

STEP 7 The stopping criteria of TS are as follows: 

N (i, k + 1) = 0. i.e., no possible resolution in the vicinity of result i0. 

Here, k is largest than the highest numbers of rearrangements that are  

accepted.  

The number of repetitions since the last advancement of i0* is higher than the corresponding number. 

There is confirmation that an optimal result has been obtained. 

The upper-band and lower-band areas are described by feasible and unfeasible pa-

rameters. The number of generations is determined by the feasibility, as indicated in Fig-

ure 4a,b. 

 
(a) 
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(b) 

Figure 4. Resulting tabu movements. (a) Lower feasibility and (b) higher feasibility. 

5. Results and Analysis 

The numerical re-enactments of the proposed strategy were simulated in 

MATLAB/Simulink along with existing methods such as LSA and GSA. The obtained nu-

merical findings and synthetic data (SD) had a significant connection. A comparison of 

the proposed TSO algorithm's performance on two different solar-panel wattage ranges 

was drawn. On Windows XP, with a 1.2 GHz Mobile Intel CPU, all of the algorithms ran 

on a single platform with distinct basic data. The proficiency of the boundary extraction 

strategy was assessed utilizing the assembly, I–V information bend, and calculation exe-

cution. 

In this work, to extract the parameters, real measured V–I data of the solar cell and 

PV module were used in the simulation. A commercial silicon solar cell 57 mm in diameter 

was taken as the prototype and V–I measurements were taken under one sun (100 W/m2) 

at 33 °C. This prototype is the same as that used by AlRashidi et al. (2011) and AlHajri et 

al. (2012). The adjustable parameters in this simulation, determined by trial, were given 

by: population size (parallel number) N = 100, maximum iteration number kmax = 2500, 

crossover operation rate Pc = 0:5, and merging operation rate Pm = 0:5.  

The information examination of a 40-watt PV board is displayed in Table 1. The val-

ues derived using the GA algorithm for the parameters IPh, I01, I02, RS, RP, and a1 were 2.69 

A, 9.51 * 10−9 A, 32 × 10−7 A, 0.0794 Ω, 878.95 Ω, and 1.28. In addition, the suggested TSO 

method extracted 1.94 A (IPh), 6.35 × 10−9 A (I01), 11.92 × 10−7 A (I02), 0.0782 Ω (RS), 762.68 

Ω (RP), and 1.29 A (IPh) (a1). The analysis of the pre-existing synthetic data with the nu-

merical values gathered by the various instruments used in this study clearly yielded a 

statistically significant difference. When compared to other current algorithms, the TSO 

algorithm requires substantially less time to compute, taking just 112 s. 

Table 2 shows that the suggested TSO method produced numerical results that were 

similar to the synthetic data, namely 5.41 A (IPh), 8.7 × 10−9 A (I01), 9.29 × 10−5 A (I02), 0.942 

Ω (RS), 1281.98 Ω (RP), and 1.01 A (IPh) (a1). When compared to current techniques, the TSO 

algorithm takes less time to compute (228 s). Accordingly, the proposed TSO calculation 

was demonstrated to be better than that of current metaheuristic calculations. Figure 5a–

d shows the I–V charts of the S75, S115, SM55, and SQ150PC modules utilizing the TSO 

technique and test information, respectively. 
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Table 1. Comparison of fata for a 40-watt PV panel using GA, LSA, GSA, PS, PSO, and proposed 

TSO algorithms. 

S.NO Parameter Synthetic Data GA LSA GSA PS PSO TSO 

1 Iph 1.967 A 2.69 A 2.55 A 2.162 A 2.189 A 2.01 A 1.94 A 

2 I01 6.23 × 109 A 9.51×109 A 8.2 × 109 A 8.6 × 109 A 7.65 × 109 A 5.65 × 109 A 6.35 × 109 A 

3 I02 20.9 × 107 A 32.6 × 107 A 25.9 × 107 A 26.28 × 107 A 26.76 × 107 A 23.32 × 107 A 11.92 × 107 A 

4 Rs 0.0775 Ω 0.0794 Ω 0.0975 Ω 0.097 Ω 0.0969 Ω 0.0954 Ω 0.0782Ώ 

5 Rp 712.65 Ω 878.95 Ω 862.65 Ω 858.53 Ω 816.76 Ω 782.65 Ω 762.68 Ω 

6 a1 1.45 1.28 1.19 1.32 1.47 1.38 1.29 

7 Time (s) … 779 682 395 362 237 112 

Table 2. Comparison of data for a 200-watt PV panel using Ga, Lsa, Gsa, Ps, Pso, and proposed TSO 

algorithms. 

S.No. Parameter 
Synthetic 

data 
GA LSA GSA PS PSO TSO 

1 Iph 5.300 A 7.45 A 7.21 A 6.95 A 6.45 A 6.06 A 5.41 A 

2 I01 8.97 × 109 A 9.48 × 109 A 9.27 × 109 A 9.27 × 109 A 9.027 × 109 A 9.17 × 109 A 8.7 × 109 A 

3 I02 9.29 × 107 A 10.88 × 107 A 10.49 × 107 A 9.87 × 107 A 10.22 × 107 A 10.98 × 107 A 9.29 × 107 A 

4 Rs 0.896 Ω 1.12 Ω 1.176 Ω 1.0968 Ω 1.796 Ω 1.016 Ω 0.942 Ω 

5 Rp 1298.18 Ω 1498.58 Ω 1545.08 Ω 1434.78 Ω 1398.18 Ω 1386.08 Ω 1281.98 Ω 

6 a1 1 1.88 1.76 1.63 1.43 1.19 1.01 

7 Time (s) … 898 731 676 487 341 228 

 

 
 

(a) (b) 

  
(c) (d) 
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Figure 5. I–V qualities obtained by utilizing TSO calculation and trial information. (a) S75, (b) S115, 

(c) SM55, and (d) SQ150PC. 

At various irradiance levels, including 1000 W/m2 and 600 W/m2, the TSO approach 

was utilized to inspect the effects of a few PV modules, including multi-glasslike (S75 and 

S115) and mono-translucent (SM55 and SQ150PC). The S75 multi-crystalline panel takes 

0.5 s to compute at 1000 W/m2 to retrieve the parameters. Different modules, such as S115, 

SM55, and SQ 150PC, require 0.43, 0.41, and 0.39 s, respectively. Data extracted is tabu-

lated in Table 3. The extra boundaries of the S75 PV module, IPh, I01, I02, RS, RP, and a1, are 

5.420 A, 9.97 × 10−9 A, 6.29 × 10−7 A, 0.696 Ω, 416.18 Ω, and 1.15. At G = 600 W/m2. The 

situation is therefore similar. The S75 modules take up a significant amount of processing 

time, whereas the SM55 takes up the least. However, the S75 multi-crystalline module's 

total numerical values are noticeable under any irradiance levels. 

Table 3. Data extracted at different irradiance levels from multi-crystalline and mono-crystalline. 

S. NO Parameter Multi-Crystalline Mono-Crystalline 

G = 1000 W/m2 S75 S115 SM55 SQ150PC 

1 IPh(A) 5.420 5.457 3.876 4.046 

2 I01 (A) 9.97 × 109 10.87 × 109 1.68 × 109 2.47 × 109 

3 I02 (A) 6.29 × 107 6.37 × 107 2.98 × 107 3.049 × 107 

4 Rs (Ω) 0.696 0.968  0.32 0.876 

5 Rp (kΩ) 416.18  434.78  598.58 345.08 

6 a1 1.15 1.23 1.08 1.76 

7 Time (min) 0.5 0.43 0.41 0.39 

G = 600 W/m2     

1 IPh(A) 3.420 3.457 3.876 2.546 

2 I01 (A) 10.09 × 109 8.87 × 109 3.68 × 109 8.47 × 109 

3 I02 (A) 8.29 × 107 6.37 × 107 2.98 × 107 3.029 × 107 

4 Rs (Ω) 0.596 0.698 0.52 0.976 

5 Rp (kΩ) 426.18 464.38 698.58 1345.08 

6 a1 1.15 1.13 1.28 1.36 

7 Time (min) 0.41 0.36 0.36 0.39 

The combination time for the TSO technique corresponds to the level of emphasis 

performed. As the quantity of cycles rises, so do the execution time and the rate at which 

the results increase. Instances of the combination reaction of PV modules with 40-watt 

and 200-watt appraisals are displayed in Figure 6a,b. 
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(a) 

 
(b) 

Figure 6. Convergence characteristics of (a) 40-watt and (b) 200-watt PV module. 

Changes in absolute errors have a significant impact on the proposed TSO algorithm 

and current approaches under diverse irradiance patterns. Figure 7a,b illustrates the % 

absolute error on the mono-crystalline and multi-crystalline PV panels, respectively. 
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(a) 

 
(b) 

Figure 7. Absolute errors for (a) multi-crystalline and (b) mono-crystalline. 

6. Conclusions 

Under a variety of environmental conditions, the parasitic limits of PV modules may 

be extricated using a TSO-based approach. On an assortment of PV modules, including 

40-watt and 200-watt PV modules, multi-glass-like mono clear, and small-film modules, 

the proposed TSO algorithm was compared with existing computation algorithms, such 

as the genetic algorithm, lightning search algorithm, gravitational search algorithm, pat-

tern search algorithm (PS), and particle swarm optimization (PSO). The proposed ap-

proach is different from the other current optimization algorithms, and showed a superior 

calculation ability proving that the TSO calculation has superior qualities, with less intri-

cacy and quicker combination, as displayed in Tables 1 and 2. 
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Nomenclature 

IPV photovoltaic current (A) 

IS diode reverse-saturation current (A) 

Id diode currents (A) 

Iph photocurrent (A) 

q charge (C) 

α number of iterations for each simplex 

β number of offspring 

Rs series resistance (Ω) 

Rsh shunt resistance (Ω) 

Kb Boltzmann constant (1.3806503 × 10−23 J/K 

η empirical constant 1 for Ge,2 for Si 

TK cell temperature in kelvin 
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