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1 INTRODUCTION

One the most important quantity associated with a Riemannian manifold 𝑀 is the shortest
geodesic length, which is called the systole of 𝑀. We will denote it by sys1(𝑀). Buser and Sar-
nak [2] constructed examples of hyperbolic surfaces 𝑆 whose systole grows logarithmically with
respect to the area:

sys1(𝑆) ⩾
4

3
log(area(𝑆)) − 𝑐,

where 𝑐 is a constant independent of 𝑆. Indeed these surfaces are congruence coverings of an
arithmetic hyperbolic surface. In 1996, Gromov [5, Section 3.C.6] showed that for any regular con-
gruence covering𝑀𝐼 of a compact arithmetic locally symmetric space𝑀, there exists a constant

© 2022 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Bull. London Math. Soc. 2022;54:1265–1281. wileyonlinelibrary.com/journal/blms 1265

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
1
7
5
6
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
1
0
.
2
0
2
2

mailto:vincent.emery@math.ch
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12627&domain=pdf&date_stamp=2022-04-25


1266 EMERY et al.

𝐶 > 0 so that

sys1(𝑀𝐼) ⩾ 𝐶 log(vol(𝑀𝐼)) − 𝑑,

where 𝑑 is independent of𝑀𝐼 . This method, however, does not provide an explicit value for the
constant 𝐶. The knowledge of a precise value for this constant gives us not only geometrical infor-
mation on the locally symmetric space, but it has also proven useful in applications to other con-
texts, see, for instance, the discussion in [1, Proposition 5.3], and [6, Section IV].
The optimal value of the constant 𝐶 mainly depends on the Lie group type of the associated

isometry group, and there are several cases where an explicit 𝐶 are calculated. In 2007, Katz,
Schaps andVishne [7] generalized Buser and Sarnak’s result to any compact arithmetic hyperbolic
surface. They also proved that for compact arithmetic hyperbolic 3-manifolds the constant 𝐶 = 2

3
works. For real arithmetic hyperbolic 𝑛-manifold of the first type, these results were generalized
by Murillo in [16], where he proved that the constant is equal to 8

𝑛(𝑛+1)
. In an appendix to this

article, Dória and Murillo proved that this is the best possible constant in this case. A similar
result for Hilbert modular varieties was obtained in [15].
Recently, Lapan, Linowitz and Meyer obtained a value for the constant 𝐶 for a large class of

arithmetic locally symmetric spaces, including real, complex and quaternionic hyperbolic orb-
ifolds [10]. However, the values of the constants obtained in [10] are not optimal, as the compar-
ison with the results mentioned above shows. See also [9]. This paper is dedicated to improving
the constant for quaternionic hyperbolic spaces. The main result is the following.

Theorem 1.1. Let𝑀 = Γ∖𝐇𝑛
ℍ
be a compact quaternionic hyperbolic orbifold, defined over the num-

ber field 𝑘. There exists a finite set 𝑆 of prime ideals of𝑘 such that the principal congruence subgroup
Γ𝐼 associated with any ideal 𝐼 prime to 𝑆 satisfies

sys1(𝑀𝐼) ⩾
4

(𝑛 + 1)(2𝑛 + 3)
log (vol(𝑀𝐼)) − 𝑑,

where𝑀𝐼 = Γ𝐼∖𝐇
𝑛
ℍ
and 𝑑 is a constant independent of 𝐼.

The proof of Theorem 1.1 appears at the end of Section 5, after the needed preparation. Let us
point out that the definition of Γ𝐼 depends on the choice of an embedding; however, the result of
Theorem 1.1 is not affected by this choice. For concrete Γ, the set of primes 𝑆 can be made explicit;
see Remark 4.6.
Note that when 𝑛 = 1, 𝐇1

ℍ
is isometric to the four-dimensional real hyperbolic space, and the

constant 2

5
agrees with that of [16]. In Section 6, we generalize the argument of Dória andMurillo

to prove that the constant 4

(𝑛+1)(2𝑛+3)
is optimal; see Theorem 6.1.

2 THE QUATERNIONIC HYPERBOLIC SPACE

2.1 Hamiltonian quaternions

Let ℍ be the ℝ-algebra of the Hamilton quaternions 𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑖𝑗 with 𝑞𝑖 being real
numbers, and 𝑖2 = −1, 𝑗2 = −1, 𝑖𝑗 = −𝑗𝑖. Any quaternion 𝑞 has a conjugate 𝑞 = 𝑞0 − 𝑞1𝑖 − 𝑞2𝑗 −

𝑞3𝑖𝑗, and the norm of 𝑞 is given by |𝑞| = √
𝑞𝑞. The real part of 𝑞 is Re(𝑞) = 𝑞0, and its imaginary
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part is Im(𝑞) = 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑖𝑗.Wewill consider the fieldℂ of complex numbers as the subring of
ℍ consisting of the quaternions of the form 𝑞0 + 𝑞1𝑖. We say that two quaternions 𝑝, 𝑞 are similar
if there exist a non-zero 𝑟 ∈ ℍ such that 𝑞 = 𝑟𝑝𝑟−1.

Lemma 2.1. Any quaternion 𝑞 is similar to a complex number with the same norm and the same
real part.

Proof. Let 𝑝 = Re(𝑞) + | Im(𝑞)|𝑖. If we take 𝑟 = Im(𝑞) + | Im(𝑞)|𝑖, a direct computation shows
that 𝑟𝑝𝑟−1 = 𝑞. □

2.2 Matrices over ℍ

Any matrix 𝐴 with coefficients in ℍ has a conjugate 𝐴 whose entries are the conjugates of the
corresponding entries of 𝐴, and has a transpose 𝐴𝑡 which columns correspond to the rows of 𝐴
in the classical way. It is clear that (𝐴)𝑡 = (𝐴𝑡), and we denote that matrix by 𝐴∗. For matrices 𝐴
and 𝐵 of suitable sizes, we can verify that (𝐴𝐵)∗ = 𝐵∗𝐴∗, as in the complex case. A square matrix
with coefficients in ℍ is called hermitian if 𝐴∗ = 𝐴. It is unitary if 𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼, where 𝐼 is the
identity matrix.

2.3 A model for𝐇𝒏
ℍ

We denote by ℍ𝑛,1 the right ℍ-module ℍ𝑛+1 equipped with the standard hermitian product of
signature (𝑛, 1), given by ⟨𝐱, 𝐲⟩ = −𝑥0𝑦0 + 𝑥1𝑦1 +⋯ + 𝑥𝑛𝑦𝑛.

We consider the subspaces

𝑉− = {𝐱 ∈ ℍ𝑛,1 | ⟨𝐱, 𝐱⟩ < 0},

𝑉0 = {𝐱 ∈ ℍ𝑛,1 ∖ {0} | ⟨𝐱, 𝐱⟩ = 0},

𝑉+ = {𝐱 ∈ ℍ𝑛,1 | ⟨𝐱, 𝐱⟩ > 0},

and the following map:

𝑃∶ ℍ𝑛,1 ∖ {𝐳 = (𝑧0, … , 𝑧𝑛) | 𝑧0 = 0} → ℍ𝑛

𝐳 =

⎛⎜⎜⎜⎜⎝
𝑧0
𝑧1
⋮
𝑧𝑛

⎞⎟⎟⎟⎟⎠
↦

⎛⎜⎜⎜⎜⎝
𝑧1𝑧

−1
0

𝑧2𝑧
−1
0

⋮
𝑧𝑛𝑧

−1
0

⎞⎟⎟⎟⎟⎠
.

It is clear that 𝑃(𝐳) = 𝑃(𝐰) if and only if𝐰 = 𝐳𝜆 for some 𝜆 ∈ ℍ.
The quaternionic hyperbolic 𝑛-space is defined as𝐇𝑛

ℍ
= 𝑃𝑉−, and its ideal boundary is 𝜕𝐇𝑛

ℍ
=

𝑃𝑉0. The hermitian product induces a Riemannian metric in𝐇𝑛
ℍ
given by (see [8]):

𝑑𝑠2 =
−4⟨𝐳, 𝐳⟩2 det

( ⟨𝐳, 𝐳⟩ ⟨𝐳, 𝑑𝐳⟩⟨𝑑𝐳, 𝐳⟩ ⟨𝑑𝐳, 𝑑𝐳⟩
)
.
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This metric is normalized so that the sectional curvature is pinched between −1 and −1

4
. The

distance function 𝜌(⋅, ⋅) in𝐇𝑛
ℍ
induced by this Riemannian metric satisfies the formula

cosh2
(
𝜌(𝑧, 𝑤)

2

)
=

⟨𝐳,𝐰⟩⟨𝐰, 𝐳⟩⟨𝐳, 𝐳⟩⟨𝐰,𝐰⟩ , (2.1)

where 𝐳,𝐰 are any preimages under 𝑃 of 𝑧 and 𝑤, respectively.

2.4 The isometry group

The set of invertible rightℍ-linear transformations ofℍ𝑛+1 identifies with the set of invertible (𝑛 +

1) × (𝑛 + 1)matrices with entries in ℍ, denoted by GL𝑛+1(ℍ). Let Sp(𝑛, 1) denote the subgroup of
GL𝑛+1(ℍ) that preserves the hermitian form ⟨⋅, ⋅⟩. Equivalently,

Sp(𝑛, 1) = {𝐴 ∈ GL𝑛+1(ℍ)|𝐴∗𝐽𝐴 = 𝐽},

where 𝐽 = diag(−1, 1, … , 1). The elements 𝐴 ∈ Sp(𝑛, 1) act on 𝐇𝑛
ℍ
as follows: 𝐴(𝑃(𝐰)) =

𝑃(𝐴(𝐰)). This action preserves the Riemannian structure on 𝐇𝑛
ℍ
. In fact, the isometry group

Isom(𝐇𝑛
ℍ
) is isomorphic to the quotient PSp(𝑛, 1) = Sp(𝑛, 1)∕{±𝐼}.

3 EIGENVALUES AND TRANSLATION LENGTHS IN 𝐒𝐩(𝒏, 𝟏)

This section studies the algebraic properties of the eigenvalues in the quaternionic case (Sec-
tion 3.1), and important implications for the translation lengths in𝐇𝑛

ℍ
(Proposition 3.8).

3.1 Eigenvalues of quaternionic matrices

For matrices with coefficients in a general ring, there is no theory of eigenvalues. However, for
division algebras there is a chance of developing this theory, and in the case of𝑀𝑛(ℍ)we can trace
back this to the work of Lee in the late 1940s [11].

Definition 3.1. Let 𝐴 be an element in𝑀𝑛(ℍ). An (right) eigenvalue of 𝐴 is a complex number 𝑡
such that

𝐴𝑣 = 𝑣𝑡 (3.1)

for some nonzero vector 𝑣 in ℍ𝑛.

Remark 3.2. If 𝐴𝑣 = 𝑣𝑡 for a quaternion number 𝑡, by Lemma 2.1 we can find a quaternion 𝜆

such that 𝜆𝑡𝜆−1 is a complex number. Then 𝐴𝑣𝜆−1 = 𝑣𝜆−1𝜆𝑡𝜆−1, which shows that 𝜆𝑡𝜆−1 is a
complex eigenvalue.

Let 𝐴 be an element in𝑀𝑛(ℍ). We can write 𝐴 = 𝐴1 + 𝑗𝐴2, where 𝐴1,𝐴2 ∈ 𝑀𝑛(ℂ), and con-
sider the map
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𝑓 ∶ 𝑀𝑛(ℍ) → 𝑀2𝑛(ℂ)

𝐴 ↦

(
𝐴1 −𝐴2

𝐴2 𝐴1

)
.

(3.2)

The next theorem summarizes Lee’s results that are relevant to us. Eigenvalues are counted with
multiplicities.

Theorem 3.3 (Lee). The map 𝑓 is an isomorphism of rings from𝑀𝑛(ℍ) into its image in𝑀2𝑛(ℂ).
Moreover for any 𝐴 ∈ 𝑀𝑛(ℍ) we have:

(1) the eigenvalues of 𝐴 corresponds exactly to those of 𝑓(𝐴), and they fall into 𝑛 pairs of complex
conjugate numbers;

(2) 𝑓(𝐴∗) = 𝑓(𝐴)∗.

Proof. See [11]: Section 4, and Theorems 2 and 5. □

Corollary 3.4. Let 𝑡1, 𝑡1, … , 𝑡𝑛, 𝑡𝑛 denote the eigenvalues of 𝐴 ∈ 𝑀𝑛(ℍ). Then for the trace the fol-
lowing holds:

Re(tr(𝐴)) =
𝑡1 + 𝑡1 +⋯ + 𝑡𝑛 + 𝑡𝑛

2
. (3.3)

In particular, Re(tr(𝐴)) is a conjugation invariant.

Proof. A direct computation shows that Re(tr(𝐴)) = tr(𝑓(𝐴))

2
, so that the result follows from The-

orem 3.3. □

Corollary 3.5. The eigenvalues of 𝐴 and 𝐴∗ coincide.

Proof. Since 𝑓(𝐴∗) = 𝑓(𝐴)∗, the eigenvalues of 𝐴∗ are the eigenvalues of 𝑓(𝐴)∗, which are the
complex conjugates of the eigenvalues of 𝑓(𝐴). But the set of these eigenvalues is invariant by
complex conjugation. □

Corollary 3.6. If 𝐴 ∈ 𝑀𝑛(ℍ) is unitary (𝐴∗𝐴 = 𝐼), then the eigenvalues of 𝐴 have all norm equal
to 1.

Proof. If𝐴 is unitary, then 𝑓(𝐴) is a unitary matrix in𝑀2𝑛(ℂ) by Theorem 3.3 (2). It is known that
eigenvalues of unitary complex matrices have norm equal to 1. □

3.2 Translation lengths in 𝐒𝐩(𝒏, 𝟏)

We start with the following easy observation.

Lemma 3.7. Let 𝐴 ∈ Sp(𝑛, 1). If 𝑡 ∈ ℂ is an eigenvalue of 𝐴, then so is 𝑡−1.
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Proof. If 𝑡 is an eigenvalue of𝐴, then clearly 𝑡−1 is an eigenvalue of𝐴−1. Now, the equation𝐴∗𝐽𝐴 =

𝐽 implies 𝐴−1 = 𝐽−1𝐴∗𝐽, and thus 𝐴−1 has the same eigenvalues as 𝐴∗. But these are the same as
the eigenvalues of 𝐴 by Corollary 3.5. It follows that 𝑡−1 is an eigenvalue of 𝐴. □

We can now prove the main result of this section. For the results concerning the algebra of
Hermitian spaces, we refer the reader to [19].

Proposition 3.8. Let 𝐴 ∈ Sp(𝑛, 1), and assume that 𝐴 leaves invariant a geodesic of𝐇𝑛
ℍ
.

(1) There are exactly 4 eigenvalues of 𝐴 with norm different from 1. If 𝑡 is one of such eigenvalues,
the other such eigenvalues are given by 𝑡, 𝑡−1 and 𝑡−1.

(2) Assume that |𝑡| > 1 in (1). Then, the translation length 𝓁𝐴 of 𝐴 along the geodesic satisfies the
equation

𝓁𝐴 = 2 ln(|𝑡|).
Proof. Being of real rank 1, the Lie group Sp(𝑛, 1) acts transitively on the set of geodesics of its
associated symmetric space 𝐇𝑛

ℍ
. Therefore, after conjugation, we may assume that 𝐴 fixes the

geodesic curve 𝛼(𝑠) = (tanh 𝑠, 0… , 0). Let 𝐯0 = (1, −1,… , 0) and 𝐯1 = (1, 1, 0, … , 0), so that 𝑃(𝐯0)
and 𝑃(𝐯1) are the limit points of 𝛼 in 𝜕𝐇𝑛

ℍ
. In particular those limit points are fixed by 𝐴, that is,

there exist 𝜆, 𝛽 ∈ ℍ such that

𝐴𝐯0 = 𝐯0𝜆,

𝐴𝐯1 = 𝐯1𝛽.

In terms of the standard basis 𝐞0, … , 𝐞𝑛 of ℍ𝑛,1 we obtain

𝐴𝐞0 = 𝐞0
𝛽 + 𝜆

2
+ 𝐞1

𝛽 − 𝜆

2
; (3.4)

𝐴𝐞1 = 𝐞0
𝛽 − 𝜆

2
+ 𝐞1

𝛽 + 𝜆

2
. (3.5)

It also shows that the right ℍ-submodule 𝑉 of ℍ𝑛,1 generated by {𝐯0, 𝐯1} coincides with the right
ℍ-submodule of ℍ𝑛,1 generated by {𝐞0, 𝐞1}, and 𝐴 leaves 𝑉 invariant. Since the Hermitian form
restricted to 𝑉 has signature (1,1), its restriction to 𝑉⟂ has signature (𝑛 − 1, 0). Now, the fact that
𝐴 preserves theHermitian form implies that its restriction to the submodule𝑉⟂ is a unitary trans-
formation. Since 𝐞2, … , 𝐞𝑛 are orthogonal to 𝐞0 and 𝐞1 (with respect to the hermitian form 𝐽), they
generate 𝑉⟂, and in a suitable basis the matrix 𝐴 has the form

𝐴 =
⎛⎜⎜⎝
𝜆 0 0

0 𝛽 0

0 0 𝐵

⎞⎟⎟⎠
where 𝐵 ∈ 𝑀𝑛−1(ℍ) is unitary. By Corollary 3.6, the eigenvalues of 𝐵 have norm 1; it thus remains
to study the eigenvalues of the matrix
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(
𝜆 0

0 𝛽

)
. (3.6)

Since 𝐴 preserves the geodesic 𝛼(𝑠) = (tanh 𝑠, 0, … , 0), and 𝛼(0) = 𝑃(𝐞0), it follows that
𝐴(𝑃(𝐞0)) = (tanh 𝑠0, … , 0) for some real number 𝑠0 > 0. Moreover, the equality

(tanh 𝑠0, 0, … , 0) = 𝑃((cosh 𝑠0, sinh 𝑠0, 0, … , 0))

implies the existence of 𝑤 ∈ ℍ such that

𝐴(𝐞0) =

⎛⎜⎜⎜⎜⎝
cosh 𝑠0
sinh 𝑠0

⋮
0

⎞⎟⎟⎟⎟⎠
𝑤.

Since𝐴 preserves theHermitian form,𝑤 has quaternion norm equal to 1. Comparingwith (3.5),
we obtain the equations

𝛽 − 𝜆

2
= sinh 𝑠0𝑤 and

𝛽 + 𝜆

2
= cosh 𝑠0𝑤,

which imply that 𝛽 = 𝑒𝑠0𝑤, and 𝜆 = 𝑒−𝑠0𝑤. In particular, 𝜆 and 𝛽 have norm different from 1, and
they satisfy the relations𝜆 = 𝛽−1,𝛽 = 𝜆−1. Since quaternions are similar to complex numberswith
the same real part and norm (Lemma 2.1), wemay assume that 𝜆 and 𝛽 are complex numbers, and
then eigenvalues of𝐴. See Remark 3.2. Moreover, similarity in ℍ commutes with conjugation and
preserves the norm, and then we obtain that the eigenvalues of the matrix (3.6) have the form 𝑡,
𝑡−1, 𝑡, 𝑡−1 with 𝑡 ∈ ℂ such that |𝑡| > 1.
The translation length 𝓁𝐴 of 𝐴 is equal to the distance between 𝑃(𝐞0) and 𝑃(𝐴𝐞0). Using the

distance formula (2.1), a direct computation shows that

𝓁𝐴 = 𝜌(𝑃(𝐞0), 𝐴(𝑃(𝐞0))) = 2𝑠0 = 2 log(|𝛽|) = 2 log(|𝑡|),
proving the second statement. □

Corollary 3.9. Let 𝐴 ∈ Sp(𝑛, 1) leaving invariant a geodesic in𝐇𝑛
ℍ
. Then

𝑒
𝓁𝐴
2 ⩾

|Re(tr(𝐴))|
𝑛 + 1

.

Proof. Let 𝑡1, 𝑡1, … , 𝑡𝑛+1, 𝑡𝑛+1 be the eigenvalues of𝐴. Assume that 𝑡1 (or 𝑡1) is the eigenvalue with
largest norm. By Proposition 3.8, we have 𝓁𝐴 = 2 log(|𝑡1|), and applying Corollary 3.4, we obtain

|Re(tr(𝐴))|
𝑛 + 1

=
|𝑡1 + 𝑡1 +⋯ + 𝑡𝑛+1 + 𝑡𝑛+1|

2(𝑛 + 1)

⩽
|𝑡1| + |𝑡1| +⋯ + |𝑡𝑛+1| + |𝑡𝑛+1|

2(𝑛 + 1)
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⩽ |𝑡1|
= 𝑒

𝓁𝐴
2 . □

4 ARITHMETIC SUBGROUPS OF 𝐒𝐩(𝒏, 𝟏)

4.1 Arithmeticity of lattices

Combined work of Margulis, Corlette, and Gromov-Schoen shows that any lattice Γ in Sp(𝑛, 1) is
arithmetic. That is, there exists a number field 𝑘with degree [𝑘 ∶ ℚ] = 𝑑 and an absolutely simple
algebraic 𝑘-group 𝐆 such that

𝐆(𝑘 ⊗ℚ ℝ) ≅ Sp(𝑛, 1) × 𝐾, (4.1)

where 𝐾 is a compact group, and Γ is commensurable with 𝐆(𝑘) = 𝐆 ∩ GL𝑚(𝑘) for a fixed
embedding 𝐆 → GL𝑚. A group 𝐆 satisfying (4.1) is called admissible.
The condition (4.1) implies that 𝑘 is a totally real number field,𝐆 is a simply connected algebraic

𝑘-group of type C𝑛+1, and by fixing an embedding 𝑘 ⊂ ℝ we may assume that 𝐆(ℝ) = Sp(𝑛, 1).
Moreover, Γ is cocompact if and only if 𝑘 ≠ ℚ (see [4, Proposition 2.8]).

4.2 Admissible groups

By the classification of simple algebraic groups any admissible 𝑘-group 𝐆 is isomorphic to a uni-
tary group 𝐔(𝑉, ℎ), where 𝐷 is a quaternion algebra over 𝑘, and 𝑉 is the right 𝐷-module 𝐷𝑛+1

equipped with a nondegenerate Hermitian form ℎ which is sesquilinear with respect to the stan-
dard involution of 𝐷. More precisely, we have the following.

Proposition 4.1. Let 𝑘 ⊂ ℝ be a totally real number field. Any admissible 𝑘-group 𝐆 is of the form
𝐔(𝑉, ℎ𝑎), where 𝑎 ∈ 𝑘 and

ℎ𝑎(𝑥, 𝑦) = −𝑎𝑥0𝑦0 +

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖. (4.2)

Proof. It follows from [4, Proposition 2.6] that 𝐆 depends only on 𝐷, and not on the choice of
ℎ provided the latter has the correct signature over the different embeddings 𝜎 ∶ 𝑘 → ℝ. Then it
suffices to choose a positive 𝑎 ∈ 𝑘 with 𝜎(𝑎) < 0 for all nontrivial embeddings 𝜎 ∶ 𝑘 → ℝ; such
an element exists by weak approximation (see [18, Section 1.2.2]). □

4.3 A group scheme structure

We fix an order𝐷 of the quaternion algebra𝐷, and consider the lattice 𝐿 = 𝑛+1
𝐷

in𝑉. Choosing
ℎ as in (4.2) we obtain a Hermitianmodule (𝐿, ℎ) (more generally it suffices to take ℎwith integral
coefficients). For any ring extension 𝑘 → 𝐴, we consider the unitary group

𝐆𝐿(𝐴) = 𝐔(𝐿 ⊗𝑘
𝐴, ℎ). (4.3)



SYSTOLE OF QUATERNIONIC HYPERBOLIC MANIFOLDS 1273

Then𝐆𝐿 defines an affine group scheme over𝑘 with generic fiber𝐆; it is a closed subgroup of the
group scheme𝔈𝔫𝔡𝐷

(𝐿)× defined by taking invertible endomorphisms (see [3, Section II.2.6]). In
particular, the arithmetic subgroup Γ = 𝐆𝐿(𝑘) can be seen as a subgroup of the matrix group
GL𝑛+1(𝐷).
For any ideal 𝐼 ⊂ 𝑘, we define the principal congruence subgroup Γ𝐼 as the kernel of the nat-

ural map 𝐆𝐿(𝑘) → 𝐆𝐿(𝑘∕𝐼).

Proposition 4.2. The subgroup Γ𝐼 corresponds to the kernel of the map Γ → GL𝑛+1(𝐷∕𝐼𝐷).

Proof. In view of the definition (4.3), this follows directly from the isomorphism 𝐷 ⊗𝑘
𝑘∕𝐼 ≅

𝐷∕𝐼𝐷 . □

4.4 Localizations

We will denote by  = f ∪ ∞ the set of (finite and infinite) places of 𝑘. For any 𝑣 ∈  , the
symbol 𝑘𝑣 denotes the completion of 𝑘 with respect to 𝑣, and 𝐷𝑣 = 𝐷 ⊗𝑘 𝑘𝑣. It follows from the
admissibility of 𝐆 = 𝐔(𝑉, ℎ) that 𝐷𝑣 ≅ ℍ for each 𝑣 ∈ ∞; see [4, Corollary 2.5]. For 𝑣 ∈ f , we
denote by 𝔬𝑣 the valuation ring of 𝑘𝑣, and by 𝜋𝑣 a uniformizer in 𝔬𝑣.
For 𝐿 = 𝑛+1

𝐷
and 𝑒 ∈ ℕ,we set 𝑃(𝑒)

𝑣 = ker(𝐆𝐿(𝔬𝑣) → 𝐆𝐿(𝔬𝑣∕𝜋
𝑒
𝑣)). Note that 𝑃

(0)
𝑣 = 𝐆𝐿(𝔬𝑣), and

the latter is a hyperspecial parahoric subgroup of 𝐆(𝑘𝑣) for all but finitely many 𝑣 ∈ f ; see [20,
Section 3.9.1]. We shall use the notation 𝑃𝑣 = 𝑃

(0)
𝑣 . The group Γ = 𝐆𝐿(𝑘) can thus be written as

𝐆(𝑘) ∩
∏

𝑣∈f
𝑃𝑣. Let 𝐼 ⊂ 𝑘 be an ideal with prime factorization 𝐼 =

∏
𝑣∈f

𝔭
𝑒𝑣
𝑣 . Then it follows

from the Chinese reminder theorem that

Γ𝐼 = 𝐆(𝑘) ∩
∏
𝑣∈f

𝑃
(𝑒𝑣)
𝑣 . (4.4)

The following lemma is a well-known consequence of the strong approximation property for 𝐆.

Lemma 4.3. For the index, the following equality holds

[Γ ∶ Γ𝐼] =
∏
𝑣∈f

[𝑃𝑣 ∶ 𝑃
(𝑒𝑣)
𝑣 ].

Proof. For two subgroups 𝐴, 𝐵 of a common group, there is a bijection between 𝐴∕𝐴 ∩ 𝐵 and
𝐴𝐵∕𝐵. The result follows with 𝐴 = Γ = 𝐆(𝑘) ∩

∏
𝑃𝑣 and 𝐵 =

∏
𝑃
(𝑒𝑣)
𝑣 , noting that 𝐆(𝑘)𝐵 is the

whole adelic group 𝐆(𝔸f ) by strong approximation. □

Lemma 4.4. Assume that 𝑃𝑣 = 𝐆𝐿(𝔬𝑣) is parahoric hyperspecial. Then

[𝑃𝑣 ∶ 𝑃
(𝑒)
𝑣 ] = 𝑞

𝑒(𝑛+1)(2𝑛+3)
𝑣

𝑛+1∏
𝑗=1

(
1 −

1

𝑞
2𝑗
𝑣

)
,

where 𝑞𝑣 denotes the order of the residue field 𝔣𝑣 = 𝔬𝑣∕𝜋𝑣 .
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Proof. If 𝐆𝐿(𝔬𝑣) is hyperspecial, then 𝐆𝑘𝑣
must be split, and 𝐆𝐿

𝔬𝑣
is the Chevalley group scheme

of type C𝑛+1 (see [20, Section 3.4.2]). In particular, 𝐆𝐿
𝔬𝑣
is smooth, and the reduction map 𝑃𝑣 →

𝐆𝐿(𝔬𝑣∕𝜋
𝑒
𝑣) is surjective. In case 𝑒 = 1, the index is thus given by the order of 𝐆𝐿(𝔣𝑣), which can

be found, for instance, in [17, Table 1]. For 𝑒 > 1, this order must be multiplied by the order of
ker(𝐆𝐿(𝔬𝑣∕𝜋

𝑒
𝑣) → 𝐆𝐿(𝔣𝑣)), which by induction over 𝑒 equals 𝑞

(𝑒−1) dim(𝐆)
𝑣 . For the type C𝑛+1 we

have dim(𝐆) = (𝑛 + 1)(2𝑛 + 3), and the result follows. □

4.5 An upper bound for the index

We keep the notation introduced above. We denote by N(𝐼) the norm of an ideal 𝐼 ⊂ 𝑘, that is,
the order of 𝑘∕𝐼.

Proposition 4.5. Let Γ = 𝐆𝐿(𝑘). There exists a finite set 𝑆 ⊂ f such that for any ideal 𝐼 ⊂ 𝑘

prime to 𝑆 the following holds:

[Γ ∶ Γ𝐼] ⩽ N(𝐼)(𝑛+1)(2𝑛+3).

Proof. Let 𝑆 be the set of places 𝑣 such that 𝑃𝑣 = 𝐆𝐿(𝔬𝑣) is not hyperspecial. Let 𝐼 =
∏

𝑣∈f
𝔭
𝑒𝑣
𝑣 be

any ideal with 𝑒𝑣 = 0 for each 𝑣 ∈ 𝑆. From (4.4) and Lemma 4.4, we obtain

[Γ ∶ Γ𝐼] =
∏
𝑣∈f

[𝑃𝑣 ∶ 𝑃
(𝑒𝑣)
𝑣 ]

⩽
∏
𝑣∈f

𝑞
𝑒𝑣(𝑛+1)(2𝑛+3)
𝑣 .

But the latter equals N(𝐼)(𝑛+1)(2𝑛+3) since 𝑞𝑣 = N(𝔭𝑣). □

Remark 4.6. Proposition 4.5 holds for any arithmetic subgroup of 𝐆(𝑘). In the case Γ = 𝐆𝐿(𝑘),
we can have some control on the set 𝑆. Let us assume that 𝐿 = 𝑛+1

𝐷
with 𝐷 a maximal order,

and consider the integral form ℎ = ℎ𝑎 given in (4.2). Then it follows from [4, Lemmas 5.1 and 5.5]
that 𝑆 can be taken to be the set of places 𝑣 where either

∙ 𝐷𝑣 ramifies;
∙ or 𝔭𝑣 divides the coefficient 𝑎.

5 BOUNDING THE SYSTOLE FROM BELOW

This section deals with the computations that provide a lower bound for the trace in a congruence
subgroup. This material is then used in Section 5.3 for bounding the systole of the corresponding
manifolds, in particular for proving Theorem 1.1.
We essentially keep the notation of the preceding section: Γwill denote the arithmetic subgroup

𝐆𝐿(𝑘), where 𝐆 = 𝐔(𝑉, ℎ) is an admissible 𝑘-group with ℎ = ℎ𝑎 as in (4.2). It will be important
to work with the matrix representation with coefficients in 𝐷 (the quaternion algebra over 𝑘).
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That is, we embed Γ as a subgroup of

𝐆(𝑘) = {𝐶 ∈ GL𝑛+1(𝐷) ∣ 𝐶
∗𝐽𝐶 = 𝐽},

where 𝐽 = diag(−𝑎, 1, … , 1). In particular the trace tr(𝐶) has the samemeaning as in Section 3. In
accordancewith thenotation of Sections 2 and 3,weuse the convention that the rows (respectively,
columns) of the matrices are indexed from 0 to 𝑛.

5.1 Two lemmas

Recall that we have fixed an embedding 𝑘 ⊂ ℝ, which we refer to as the trivial embedding (or
trivial Archimedean place). The symbol 𝐼𝑛+1 denotes the identity matrix in GL𝑛+1(𝐷).

Lemma 5.1. Assume 𝑘 ≠ ℚ. For any 𝐶 ∈ Γ different from ±𝐼𝑛+1, we have |Re(tr(𝐶))| ≠ 𝑛 + 1.

Proof. Suppose that |Re(tr(𝐶))| = 𝑛 + 1. Since 𝑘 ≠ ℚ there exists a nontrivial embedding 𝜎 ∶ 𝑘 →

ℝ, for which |Re(tr(𝐶𝜎))| = 𝑛 + 1. By the admissibility condition, we have 𝐶𝜎 ∈ Sp(𝑛 + 1), so
that 𝐶𝜎 is unitary (in the quaternionic sense). Corollary 3.6 implies that the eigenvalues of 𝐶𝜎

are all complex numbers of norm equal to one. With |Re(tr(𝐶𝜎))| = 𝑛 + 1, it follows that these
eigenvalues are either all equal to 1, or all equal to −1. Since unitary matrices are diagonalizable,
we obtain 𝐶𝜎 = ±𝐼𝑛+1, so that 𝐶 = ±𝐼𝑛+1. □

Lemma 5.2. Let 𝐶 = (𝑐𝑖𝑗) be an element in𝐆(𝑘) and write 𝑐𝑖𝑖 = 1 + 𝑦𝑖 . For every nontrivial embed-
ding 𝜎 ∶ 𝑘 → ℝ and each 𝑖 = 0, … , 𝑛, we have |𝜎(|𝑐𝑖𝑖|2)| ⩽ 1 and |𝜎(Re(𝑦𝑖))| ⩽ 2.

Proof. The equation 𝐶∗𝐽𝐶 = 𝐽 implies that the columns of 𝐶 satisfy the equations

−𝑎|𝑐00|2 + 𝑛∑
𝑖=1

|𝑐𝑖0|2 = −𝑎, (5.1)

−𝑎|𝑐0𝑗|2 + 𝑛∑
𝑖=1

|𝑐𝑖𝑗|2 = 1, for 𝑗 = 1,… , 𝑛. (5.2)

where |𝑥|2 = 𝑥𝑥 denotes the quaternion norm of 𝑥 in 𝐷. Since all the coefficients 𝑐𝑖𝑗 lie in 𝐷, the
norm |𝑐𝑖𝑗|2 is an element of 𝑘. Let 𝜎 ∶ 𝑘 → ℝ be a nontrivial embedding. Applying 𝜎 to (5.1), we
obtain

−𝜎(𝑎)𝜎(|𝑐00|2) ⩽ −𝜎(𝑎)𝜎(|𝑐00|2) + 𝑛∑
𝑖=1

𝜎(|𝑐𝑖0|2)
= −𝜎(𝑎).

Hence |𝜎(|𝑐00|2)| ⩽ 1. Similarly, applying 𝜎 to (5.2), we obtain that |𝜎(|𝑐𝑖𝑖|2)| ⩽ 1 for 𝑖 = 1, … , 𝑛.
Now, if 𝐷 = (

𝛿,𝛾

𝑘
) and 𝑐 = 𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑖𝑗, then |𝑐|2 = 𝑥2

0
− 𝛿𝑥2

1
− 𝛾𝑥2

2
+ 𝛿𝛾𝑥2

3
. Since 𝐷𝜎 is
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a division algebra, we have 𝜎(𝛿) < 0 and 𝜎(𝛾) < 0, and thus

𝜎(|𝑐|2) = 𝜎(𝑥0)
2 − 𝜎(𝛿)𝜎(𝑥1)

2 − 𝜎(𝛾)𝜎(𝑥2)
2 + 𝜎(𝛿)𝜎(𝛾)𝜎(𝑥3)

2

⩾ 𝜎(𝑥0)
2

= 𝜎(Re(𝑐))2.

In particular, 𝜎(|𝑐𝑖𝑖|2) ⩽ 1 implies |𝜎(Re(𝑐𝑖𝑖))| ⩽ 1, from which one deduces |𝜎(Re(𝑦𝑖))| ⩽ 2. □

5.2 Bounding the trace

We want to bound the trace of a congruence subgroup Γ𝐼 , for 𝐼 ⊂ 𝑘 some ideal. In the matrix
representation, we have the following description:

Γ𝐼 = {
(
𝑐𝑖𝑗

)
∈ Γ ∣ 𝑐𝑖𝑖 − 1 ∈ 𝐼𝐷, 𝑐𝑖𝑗 ∈ 𝐼𝐷 for 𝑖 ≠ 𝑗}.

We recall that the element 𝑎 ∈ 𝑘 appears (with negative sign) as the unique nontrivial coefficient
of the Hermitian form ℎ = ℎ𝑎 that determines 𝐆.

Lemma 5.3. Let 𝐶 ∈ Γ𝐼 , and write 𝑐𝑖𝑖 = 1 + 𝑦𝑖 . Then

2𝑎

𝑛∑
𝑖=0

Re(𝑦𝑖) ∈ 𝐼2. (5.3)

Proof. We first replace 𝑐00 = 1 + 𝑦0 in (5.1) to obtain

−𝑎(2Re(𝑦0) + |𝑦0|2) + 𝑛∑
𝑖=1

|𝑐𝑖0|2 = 0. (5.4)

For𝐶 ∈ Γ𝐼 wehave 𝑦0 ∈ 𝐼𝐷 and 𝑐𝑖0 ∈ 𝐼𝐷 for 𝑖 > 0. From (5.4), it follows that 2𝑎 Re(𝑦0) ∈ 𝐼2. By
replacing 𝑐𝑖𝑖 = 1 + 𝑦𝑖 in (5.2), the same argument shows that 2Re(𝑦𝑖) ∈ 𝐼2 for 𝑖 > 0. Since 𝑎 ∈ 𝑘

we have that 2𝑎 Re(𝑦𝑖) ∈ 𝐼2 for all 𝑖 = 0, … , 𝑛, and thus the same holds for their sum. □

In the following, the symbolN(⋅) denotes either the normN𝑘∕ℚ(⋅) for elements of 𝑘, or the norm
of ideals in 𝑘. Recall that for a principal ideal 𝐼 = (𝛼), one has N(𝐼) = |N(𝛼)| unless 𝛼 = 0.

Corollary 5.4. Let Γ𝐼 be defined over the number field 𝑘 of degree 𝑑 > 1, and let 𝐶 ∈ Γ𝐼 different
from ±𝐼𝑛+1. Then ||||||N

(
𝑛∑
𝑖=0

Re(𝑦𝑖)

)|||||| ⩾
N(𝐼)2

2𝑑 N(𝑎)
,

where 𝑐𝑖𝑖 = 1 + 𝑦𝑖 .
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Proof. We have
∑𝑛

𝑖=0 Re(𝑦𝑖) ≠ 0 by Lemma 5.1. The result follows then immediately by applying
N(⋅) on (5.3). □

Proposition 5.5. Let 𝑘 be of degree 𝑑 > 1, and 𝐼 ⊂ 𝑘 be a proper nontrivial ideal. For any 𝐶 ∈ Γ𝐼
different from ±𝐼𝑛+1 we have

|Re(tr(𝐶))| ⩾ N (𝐼)2

22𝑑−1(𝑛 + 1)𝑑−1 N(𝑎)
− 𝑛 − 1.

Proof. By Lemma 5.2, we have

|||||N
(

𝑛∑
𝑖=0

Re(𝑦𝑖)

)||||| =
|||||

𝑛∑
𝑖=0

Re(𝑦𝑖)
|||||
|||||
∏
𝜎≠𝑖𝑑

𝜎

(
𝑛∑
𝑖=0

Re(𝑦𝑖)

)|||||
⩽
|||||

𝑛∑
𝑖=0

Re(𝑦𝑖)
||||| ⋅ 2𝑑−1(𝑛 + 1)𝑑−1.

With Corollary 5.4, we obtain

|||||
𝑛∑
𝑖=0

Re(𝑦𝑖)
||||| ⩾ N (𝐼)2

22𝑑−1(𝑛 + 1)𝑑−1 N(𝑎)
.

Now, since Re(tr(𝐶)) = 𝑛 + 1 +
∑𝑛

𝑖=0 Re(𝑦𝑖), we have

|Re(tr(𝐶))| ⩾ |||||
𝑛∑
𝑖=0

Re(𝑦𝑖)
||||| − 𝑛 − 1

⩾
N (𝐼)2

22𝑑−1(𝑛 + 1)𝑑−1 N(𝑎)
− 𝑛 − 1.

□

5.3 Bounding the systole

We can now use the preceding results to obtain a lower bound for the systole of Γ𝐼∖𝐇𝑛
ℍ
in terms

of the norm of the ideal 𝐼.

Proposition 5.6. Let𝑀 = Γ∖𝐇𝑛
ℍ
be a compact arithmetic orbifold with Γ = 𝐆𝐿(𝑘). If Γ𝐼 is a prin-

cipal congruence subgroup associated to an ideal 𝐼 ⊂ 𝑘 , then

sys1(𝑀𝐼) ⩾ 4 log(N(𝐼)) − 𝑐,

where𝑀𝐼 = Γ𝐼∖𝐇
𝑛
ℍ
is the associated congruence cover of𝑀, and 𝑐 is a constant independent of 𝐼.

Proof. Let 𝐴 ∈ Γ𝐼 be a matrix corresponding to a shortest closed geodesic in𝑀𝐼 , so that its trans-
lation length 𝓁𝐴 equals sys1(𝑀𝐼). By Corollary 3.9 and Proposition 5.5, we obtain
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𝓁𝐴 ⩾ 2 log

(|Re(tr(𝐴))|
𝑛 + 1

)
⩾ 2 log

(
N (𝐼)2

22𝑑−1(𝑛 + 1)𝑑 N(𝑎)
− 1

)
⩾ 2 log

(
N (𝐼)2

2 ⋅ 22𝑑−1(𝑛 + 1)𝑑 N(𝑎)

)
= 4 log(N(𝐼)) − 2 log

(
22𝑑(𝑛 + 1)𝑑 N(𝑎)

)
ifN(𝐼)2 ⩾ 22𝑑(𝑛 + 1)𝑑 N(𝑎). Since there exist only finitelymany ideals 𝐼 ⊂ 𝑘 with bounded norm,
the result follows by enlarging the constant 𝑐 if necessary. □

We can now prove the main result.

Proof of Theorem 1.1. Let𝑀 = Γ∖𝐇𝑛
ℍ
be a compact quaternionic orbifold. Then Γ ⊂ 𝐆(𝑘) for some

admissible 𝑘-group 𝐆 with 𝑘 ≠ ℚ. On the other hand, by [10, Proposition 2.2] we can replace
the study of Γ with any subgroup commensurable with it, in particular, we may assume that Γ =

𝐆𝐿(𝑘) as above. By Proposition 4.5, there exist a finite set 𝑆 of prime ideals of 𝑘 such that any
ideal 𝐼 ⊂ 𝑘 with no prime factors in 𝑆 satisfies

[Γ ∶ Γ𝐼] ⩽ N (𝐼)(𝑛+1)(2𝑛+3).

From Proposition 5.6, we obtain

sys1(𝑀𝐼) ⩾
4

(𝑛 + 1)(2𝑛 + 3)
log ([Γ ∶ Γ𝐼]) − 𝑐,

for some constant 𝑐 independent of 𝐼. The result then follows with the equality vol(𝑀𝐼) =

vol(𝑀)[Γ ∶ Γ𝐼]. □

6 OPTIMALITY OF THE CONSTANT

In this section, we show that the constant 4

(𝑛+1)(2𝑛+3)
is sharp, using similar arguments as in the

Appendix of [16]. The precise result is the following.

Theorem 6.1. Let 𝑘 ⊂ ℝ be totally real with 𝑘 ≠ ℚ, and let 𝐆 be an admissible 𝑘-group, so that
𝐆(ℝ) = Sp(𝑛, 1). Then there exists an arithmetic subgroup Γ ⊂ 𝐆(𝑘) such that for any sequence of
prime ideals 𝔭 ⊂ 𝑘 the principal congruence subgroups Γ𝔭 satisfy

sys1(𝑀𝔭) ⩽
4

(𝑛 + 1)(2𝑛 + 3)
log

(
vol(𝑀𝔭)

)
+ 𝑑′,

where𝑀𝔭 = Γ𝔭∖𝐇
𝑛
ℍ
and 𝑑′ is a constant independent of 𝔭.
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Proof. Let 𝐆 = 𝐔(𝑉, ℎ𝑎) and set Γ = 𝐆𝐿(𝑘) (see Sections 4.2–4.3). The idea is to construct arith-
metic real hyperbolic manifolds which are totally geodesic submanifolds in Γ𝔭∖𝐇

𝑛
ℍ
, and to apply

[16, TheoremA.1]. The latter proves in particular the case𝑛 = 1, so thatwewill assume𝑛 > 1here-
after.
We denote by {𝑒0, … , 𝑒𝑛} the standard basis of 𝑉 = 𝐷𝑛+1; recall that 𝐷 is a quaternion algebra

over 𝑘. Let𝑊 be the 𝑘-vector space generated by {𝑒0, … , 𝑒𝑛}, and 𝐿
′
⊂ 𝑊 be the𝑘-lattice with the

same basis. Consider the quadratic form on𝑊 given by

𝑞(𝑥, 𝑦) = −𝑎𝑥0𝑦0 +

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖.

This is the restriction to 𝑊 of the Hermitian form ℎ𝑎; it is admissible in the sense of [16, Sec-
tion 2.3]. We consider the 𝑘-group 𝐒𝐎(𝑊, 𝑞) and its simply connected cover 𝐒𝐩𝐢𝐧(𝑊, 𝑞). The
Lie group 𝐒𝐩𝐢𝐧(𝑊, 𝑞)(ℝ)∕{±𝐼} is isomorphic to the orientation preserving isometry group of
the real hyperbolic 𝑛-space 𝐇𝑛

ℝ
. Since the basis {𝑒0, … , 𝑒𝑛} is common to 𝑉 and 𝑊, we have an

inclusion 𝐒𝐎(𝑊, 𝑞) ⊂ 𝐔(𝑉, ℎ𝑎), and composing with the isogeny we obtain a homomorphism
𝐒𝐩𝐢𝐧(𝑊, 𝑞) → 𝐆 defined over 𝑘.
Let Γ′ ⊂ 𝐒𝐩𝐢𝐧(𝑊, 𝑞)(𝑘) be the stabilizer of 𝐿′. Since 𝑘 ≠ ℚ it is a cocompact arithmetic lattice in

Spin(𝑛, 1). The map 𝐒𝐩𝐢𝐧(𝑊, 𝑞) → 𝐆 induces a map Γ′ → Γ, and similarly Γ′
𝐼
→ Γ𝐼 for any ideal

𝐼 ⊂ 𝑘. This induces a totally geodesic embedding

𝑇𝐼 ↪ 𝑀𝐼,

where 𝑇𝐼 = Γ′
𝐼
∖𝐇𝑛

ℝ
. Therefore

sys1(𝑀𝐼) ⩽ sys1(𝑇𝐼).

From now on, we will assume that 𝐼 = 𝔭 is a prime ideal. By [16, Theorem A.1] (see also [13,
Theorem B]), there exists a constant 𝑑 independent of 𝔭 such that

sys1(𝑇𝔭) ⩽
8

𝑛(𝑛 + 1)
log(vol(𝑇𝔭)) + 𝑑. (6.1)

Following the argument as in [13, Theorem B], there exist constants 𝑎1 and 𝑎2 such that

𝑎1 ⩽
vol(𝑇𝔭)

N(𝔭)
𝑛(𝑛+1)

2

⩽ 𝑎2. (6.2)

For 𝔭 of norm large enough, we have that 𝐆𝐿(𝔬𝔭) is parahoric hyperspecial. By Lemmas 4.3 and
4.4, we obtain

[Γ ∶ Γ𝔭] = N(𝔭)(𝑛+1)(2𝑛+3)
𝑛+1∏
𝑗=1

(
1 −

1

N(𝔭)2𝑗

)
.
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Since vol(𝑀𝔭) = vol(𝑀)[Γ ∶ Γ𝔭], there exist positive constants 𝑏1 and 𝑏2 such that

𝑏1 ⩽
vol(𝑀𝔭)

N(𝔭)(𝑛+1)(2𝑛+3)
⩽ 𝑏2. (6.3)

By plugging the right-hand side of (6.2) in (6.1), and using the left-hand side of (6.3) afterward,
we conclude that

sys1(𝑀𝔭) ⩽ sys(𝑇𝔭)

⩽
4

(𝑛 + 1)(2𝑛 + 3)
log(vol(𝑀𝔭)) + 𝑑′,

for some constant 𝑑′ independent of 𝔭. □
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