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Abstract We study arbitrage opportunities in diverse markets as introduced by
Fernholz (J Math Econ 31:393–417, 1999). By a change of measure technique
we are able to generate a variety of diverse markets. The construction is based
on an absolutely continuous but non-equivalent measure change which implies
the existence of instantaneous arbitrage opportunities in diverse markets. For this
technique to work, we single out a crucial non-degeneracy condition. Moreover,
we discuss the dynamics of the price process under the new measure as well as
further applications.
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1 Introduction

An interesting result of Fernholz in his inspiring work about stochastic portfolio
theory, see the monograph (Fernholz 2002) for a detailed account, is the possibil-
ity of arbitrage in markets where no stock is ever allowed to dominate the entire
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market in terms of market capitalization. The associated notion of a diverse finan-
cial market was introduced and studied by Fernholz in the papers Fernholz (1999,
2001) and the monograph (Fernholz 2002). In particular, Fernholz et al. (2005)
have shown that arbitrage opportunities relative to the market portfolio exist over
any given time-horizon.

The requirement that financial markets are diverse seems to be reasonable from
a regulatory point of view (otherwise we would encounter a very different society).
If the market share of an existing company exceeds certain thresholds, there will
be restrictions imposed on the company which try to prevent it from increasing its
market share. One can also think about regulation authorities controlling mergers
and acquisitions.

The purpose of this paper is to give a somewhat generic construction which
yields a multitude of diverse markets. The existence of arbitrage opportunities fol-
lows then immediately by the very nature of this construction. This allows for a
very transparent explanation of this phenomenon. Our main idea is as follows:
we start with a non-diverse arbitrage-free market by specifying the dynamics of
the price process under some local martingale measure P0. We then construct a
diverse market by changing to another probability measure Q. Since Q is abso-
lutely continuous but not equivalent to P0, a simple argument based on the optional
decomposition theorem then yields the existence of an arbitrage opportunity. The
main technical difficulty is to ensure that the market fulfils a certain non-degener-
acy condition which makes the forementioned measure change work. We can show
this for some standard models including that of Fernholz et al. (2005) by using a
time change technique.

Furthermore, we study the dynamics of the price processes when seen under the
new measure Q. We also include a brief discussion of existing approaches to the
valuation of claims in case the model is complete with respect to P0. Finally, we
show how a similar change of measure technique can also be employed in currency
markets where some exchange rate mechanism has been superimposed.

Arbitrage opportunities in situations governed by an absolutely continuous
but non-equivalent measure change have been studied in earlier works. Gossen-
Dombrowsky (1992) (unpublished, we are grateful to H. Föllmer for providing us
with this reference) studies a complete market model in which the price process
is constrained to stay inside fixed boundaries. The construction of Delbaen and
Schachermayer (1995) of arbitrage possibilities in Bessel processes is also based
on a similar technique.

2 Arbitrage opportunities in diverse markets

2.1 Prelude

Here we introduce some kind of pre-model. Our main model of interest will later
be obtained from this by an absolutely continuous but non-equivalent measure
change. Let us first specify the (preliminary) dynamics of the price processes of n
risky assets. Their dynamics are governed by a probability measure P0 living on
some filtered probability space

(
�, F, (Ft )t>0 , P0

)
. The filtration (Ft ) satisfies

the usual assumptions of right-continuity and completeness with F0 being trivial.
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Definition 2.1 The price process X = (Xi )1≤i≤n is given as stochastic exponential
E (M) of some n -dimensional continuous local P0-martingale M . We therefore
have

dXi (t)

Xi (t)
= dMi (t) , 1 ≤ i ≤ n, t ≥ 0.

The market so far is directly modelled under some martingale measure P0 for X . In
particular, this excludes arbitrage opportunities. The set of all probability measures
equivalent to P0 such that X is a local martingale will be denoted by Me (X). As
we do not necessarily assume that the market is complete, Me (X) need not be a
singleton. We assume that each company has one single share outstanding. Then
we can define the relative market weights:

Notation 2.2 The relative market weight μi of the i th stock is given as

μi (t) = Xi (t)/ (X1(t) + · · · + Xn(t)) .

The largest market weight is denoted by μmax(t) = max1≤i≤n μi (t).

The following notion of diversity was introduced by Fernholz (1999).

Definition 2.3 We fix a finite time horizon T > 0 and say that the market is diverse
(up to time T ) if there exists δ ∈ (0, 1) such that for every i = 1, . . . , n

μi (t) < 1 − δ, ∀ t ∈ [0, T ] P0 − a.s.

We impose one additional condition on X (the ND stands for “non-degenerate”) :

Assumption ND We have for some T > 0 and δ ∈ (0, 1) that

0 < inf
P∈Me(X)

P

(

sup
0≤t≤T

μmax(t) ≥ 1 − δ

)

,

1 > P0

(

sup
0≤t≤T

μmax(t) ≥ 1 − δ

)

.

This implies in particular that the market is not diverse under P0. Later we shall
give a sufficient condition for Assumption ND to hold and show that it is satisfied
in the standard Itô model as studied in Fernholz et al. (2005).

2.2 Construction of diverse markets and the arbitrage opportunity

We now pass over to a diverse market, governed by a probability measure Q which
we shall construct using a certain change of measure technique. Under this measure
Q, we will be able to show arbitrage opportunities. For this we first have to define
what we mean by arbitrage. Here we use the notion of arbitrage with respect to
(general) admissible strategies as defined in Delbaen and Schachermayer (1995).
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Definition 2.4 (Arbitrage opportunity) A predictable process H that is X -inte-
grable for a semimartingale X is called admissible if

∫
H dX is uniformly bounded

from below. The semimartingale X satisfies the no-arbitrage property for admis-
sible integrands under Q if H admissible and

∫ T
0 Ht dXt ≥ 0 Q-a.s. imply

∫ T
0 Ht dXt = 0 Q-a.s.

We can now define our measure change which directly leads to the construction of
diverse markets:

Definition 2.5 Assume ND. We define a probability measure Q absolutely con-
tinuous to P0 via its Radon–Nikodym density

dQ

dP0 =
{

0 ifμmax (t) ≥ 1 − δ for somet ∈ [0, T ]
c else (1)

where c is a normalizing constant. Since

P0

(

sup
0≤t≤T

μmax(t) ≥ 1 − δ

)

< 1

by ND, we can always find c ∈ R such that Q is a probability measure because
dQ/dP0 is not P0-a.s. equal to 0. As

P0

(

sup
0≤t≤T

μmax(t) ≥ 1 − δ

)

> 0

by ND, Q is absolutely continuous with respect to P0 but not equivalent. This is
crucial for the existence of arbitrage opportunities.

Remark 2.6 The filtration (Ft ) typically does not satisfy the usual conditions with
respect to Q. However, we refer to the Remark following Theorem 1 in Delbaen
and Schachermayer (1995) for a remedy: consider the filtration (Gt ) obtained from
(Ft ) by adding all Q-null sets. The results in Delbaen and Schachermayer (1995)
then show that whenever we have a stopping time τQ and a (Gt )-predictable process
HQ there exists a stopping time τP and a (Ft )-predictable process HP such that
Q-a.s. τQ = τP and HQ and HP are Q-indistinguishable. This implies that when-
ever we need to work with a (Gt )-predictable process we can essentially replace it
by an (Ft ) -predictable process. We shall always do so without further notice.

The dynamics of X with respect to Q can be described via Lenglart’s extension
of Girsanov’s theorem, which we will discuss in Section 3. Hence we get many
examples of diverse markets by our construction: every price process X as above,
satisfying ND, leads to a diverse market when seen under Q.

Let us now construct an arbitrage opportunity under Q via an admissible strat-
egy by using an extension of the argument given in Gossen-Dombrowsky (1992)
and Delbaen and Schachermayer (1995) and applying it to our setting of incom-
plete markets. We shall make use of the following optional decomposition theorem
(see, Föllmer and Kramkov 1997).
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Theorem 2.7 (Optional decomposition theorem) Consider a process V which is
bounded from below and a P -supermartingale for all P ∈ Me (X) (which is non-
empty since P0 ∈ Me (X)). Then there exists a predictable X-integrable process
H and an increasing adapted process C with C0 = 0 such that

V = V0 +
∫

H dX − C.

We now state the main result about arbitrage opportunities:

Proposition 2.8 Consider a probability measure Q which is absolutely continuous
but not equivalent to P0. If

sup
P∈Me(X)

P

(
dQ

dP0 > 0

)
< 1 (2)

then there exists an arbitrage opportunity under Q which can be realized via an
admissible strategy.

Remark 2.9 Note that it follows from Assumption ND that Q as in Definition 2.5
is an absolutely continuous, non-equivalent probability measure (with respect to
P0) and fulfils Condition (2).

Proof We consider the claim

f := 1{
dQ

dP0
>0

}

and define the process V = (Vt )t≥0 as

Vt = ess sup
P∈Me(X)

EP ( f |Ft ) , t ≥ 0.

V is a P-supermartingale for all P ∈ Me (X) (see, Föllmer and Kramkov (1997)).
It follows that for t ≥ 0,

Vt ≥ EP0 ( f |Ft ) ≥ 0 P0 − a.s.

By the optional decomposition theorem, there exist H and C as specified above
such that

V = V0 +
∫

H dX − C.

Moreover, H is admissible since
∫

H dX is bounded from below: for t ≥ 0,

t∫

0

Hs dXs = Vt − V0 + Ct ≥ −V0

= − sup
P∈Me(X)

EP ( f ) ≥ −1 P0 and Q − a.s.
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For H to be an arbitrage opportunity under Q, we need to check whether

T∫

0

Hs dXs = f − V0 + CT > 0 Q − a.s.

Since we have that f = 1 Q-a.s., C0 = 0 and C is increasing, this holds in
particular if 1 − V0 > 0 or

sup
P∈Me(X)

EP ( f ) < 1,

which is equivalent to

sup
P∈Me(X)

P

(
dQ

dP0 > 0

)
< 1,

which is our Assumption (2). ��
Remark 2.10 Here we have constructed an arbitrage opportunity with respect to
admissible integrands in the sense of Delbaen and Schachermayer (1995). This
means that the value of the arbitrage portfolio is bounded from below in absolute
terms. In relative arbitrage, as in Fernholz (2002) or Fernholz et al. (2005), the arbi-
trage portfolio is bounded from below relative to the market portfolio, or perhaps
some other well-defined portfolio. This amounts to a change in numeraire for the
lower bound from (constant) riskless asset to market portfolio. In general, relative
arbitrage is not the type of arbitrage we consider here, since the numeraire portfolio
is not necessarily bounded, so the result here does not follow from Fernholz (2002)
or Fernholz et al. (2005). Moreover, although the sum of our arbitrage portfolio and
the market portfolio dominates the market portfolio, it is not necessarily bounded
from below relative to the market portfolio as numeraire. We would like to thank
the anonymous referee for pointing this out to us.

2.3 On the non-degeneracy condition

We now give a condition which guarantees ND for small enough time horizons T .
This condition furthermore implies Condition (2). We recall that M is assumed to
be a continuous local P0-martingale.

Theorem 2.11 Assume μmax (0) < 1 − δ and that there exists 0 < ε < κ such
that for all R

n-valued processes η we have

ε

t∫

0

‖η (s)‖2 ds ≤ 1

2

n∑

j=1

n∑

k=1

t∫

0

η j (s) d
[
M j , Mk

]
s ηk (s) ≤ κ

t∫

0

‖η (s)‖2 ds,

(3)

where ‖·‖ denotes the Euclidean norm. Then ND is satisfied for some T > 0 small
enough where the probability space might possibly have been extended to support
an independent Brownian motion.
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Proof Let T > 0 to be chosen later. Fix t ∈ [0, T ] . We have

d

⎛

⎝
n∑

j=1

X j (t)

⎞

⎠ =
⎛

⎝
n∑

j=1

X j (t)

⎞

⎠
n∑

k=1

dXk (t)
∑n

j=1 X j (t)

=
⎛

⎝
n∑

j=1

X j (t)

⎞

⎠
n∑

k=1

μk (t) dMk (t) ,

hence

n∑

j=1

X j (t) = E
⎛

⎝
n∑

k=1

t∫

0

μk (s) dMk (s)

⎞

⎠ .

Now fix some i ∈ {1, ..., n} and set

M̃i (t) := Mi (t) −
n∑

j=1

t∫

0

μ j (s) dM j (s) = −
n∑

j=1

t∫

0

μ̃ j (s) dM j (s) ,

where

μ̃ j (t) =
{

1 − μi (t) j = i
μ j (t) j 	= i .

We get from our Assumption (3), together with
√

n ‖μ‖ ≥ |μ1 + · · · + μn| = 1,
that

−κ t ≤ −1

2

n∑

j=1

n∑

k=1

t∫

0

μ j (s) d
[
M j , Mk

]
s μk (s) ≤ − ε

n
t, (4)

ε t ≤ 1

2
[Mi ]t ≤ κ t, (5)

and estimate



294 J.R. Osterrieder and T. Rheinländer

μi (t) < 1 − δ

⇐⇒ log Xi (t) < log (1 − δ) + log
n∑

j=1

X j (t)

⇐⇒ M̃i (t) < a + 1

2
[Mi ]t − 1

2

n∑

j=1

n∑

k=1

t∫

0

μ j (s) d
[
M j , Mk

]
s μk (s) ,

where a = log
∑n

j=1 X j (0) − log Xi (0) + log (1 − δ) > 0 since μi (0) ≤
μmax (0) < 1 − δ. Therefore, with b = κ − ε > 0 and using both the left-hand
sides of (4) and (5), we arrive at

μi (t) < 1 − δ if M̃i (t) < a − b t. (6)

M̃i is a continuous local martingale with M̃i (0) = 0. We can estimate its quadratic
variation by Assumption (3) as

[
M̃i

]
t =

n∑

j=1

n∑

k=1

t∫

0

μ̃ j (s) d
[
M j , Mk

]
s μ̃k (s) (7)

≥ 2ε

t∫

0

‖μ̃ (s)‖2 ds

≥ 2ε

t∫

0

(1 − μi (s))2 ds

as well as, using ‖μ̃‖2 ≤ |μ̃1 + · · · + μ̃n|2 = 4 (1 − μi )
2,

[
M̃i

]
t ≤ 2κ

t∫

0

‖μ̃ (s)‖2 ds (8)

≤ 8κ

t∫

0

(1 − μi (s))2 ds

≤ 8κt.

To show that P0
(
sup0≤t≤T μmax(t) ≥ 1 − δ

)
< 1 we use that M̃i is a time-

changed Brownian motion. Indeed, by Karatzas and Shreve (1991), Theorem 3.4.6
and Problem 3.4.7, there exists on a suitably extended probability space a Brown-
ian motion B with B0 = 0 such that M̃i (t) = B[

M̃i
]
t

for t ≥ 0. In particular, by
the construction of this extension as carried out in Karatzas and Shreve (1991),
Remark 3.4.1, we can take B to be a P-Brownian motion simultaneously for all
P ∈ Me (X) (we need this to prove the other inequality in ND). Since a > 0 we



Arbitrage opportunities in diverse markets via a non-equivalent measure change 295

can choose Ti > 0 small enough such that a − bTi ≥ ρ for some ρ > 0 and such
that

P0 (Bt < ρ for all t ∈ [0, 8κTi ]) > 1 − 1

n
.

By using (8) we estimate

P0 (
M̃i (t) < a − bt for all t ∈ [0, Ti ]

)

= P0
(

B[
M̃i

]
t
< a − bt for all t ∈ [0, Ti ]

)

≥ P0
(

B[
M̃i

]
t
< ρ for all t ∈ [0, Ti ]

)

= P0
(

Bt < ρ for all t ∈
[
0,

[
M̃i

]
Ti

])

≥ P0 (Bt < ρ for all t ∈ [0, 8κTi ]) > 1 − 1

n
.

From this and (6) we can conclude by setting T = min1≤i≤n Ti that for all i ∈
{1, ..., n}

P0

(

sup
0≤t≤T

μi (t) < 1 − δ

)

> 1 − 1

n
,

hence

P0

(

sup
0≤t≤T

μmax(t) < 1 − δ

)

> 0,

which is equivalent to

P0

(

sup
0≤t≤T

μmax(t) ≥ 1 − δ

)

< 1,

as desired.
To show that inf P∈Me(X) P

(
sup0≤t≤T μi (t) ≥ 1 − δ

)
> 0 we use the lower

bound (7) for
[
M̃i

]
. Moreover, here the time horizon T > 0 can be arbitrary.

Similarly as before, we use the right-hand sides of (4) and (5) to show (now with
b = κ − ε/n > 0) that M̃i (t) ≥ a + bt implies μi (t) ≥ 1 − δ. We consider the
following two cases.

Case 1

inf
P∈Me(X)

P

⎛

⎝
T∫

0

(1 − μi (s))2 ds ≤ δ2T

⎞

⎠ > 0

for some T > 0. As

(1 − μi (t))2 ≤ δ2 for some t ∈ [0, T ]

⇐⇒ μi (t) ≥ 1 − δ for somet ∈ [0, T ]
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it follows that

inf
P∈Me(X)

P (μi (t) ≥ 1 − δ for some t ∈ [0, T ]) > 0.

This is what we wanted to show.

Case 2

inf
P∈Me(X)

P

⎛

⎝
T∫

0

(1 − μi (s))2 ds ≤ δ2T

⎞

⎠ = 0

for all T > 0. Consider a minimizing sequence (Pn) ⊂ Me (X) such that

Pn
(
M̃i (t) ≥ a + bt for some t ∈ [0, T ]

)

↘ inf
P∈Me(X)

P
(
M̃i (t) ≥ a + bt for some t ∈ [0, T ]

)
.

We may assume that

lim
n→∞ Pn

⎛

⎝
T∫

0

(1 − μi (s))2 ds ≤ δ2T

⎞

⎠ = 0 (9)

[otherwise we are either in Case 1 (for (Pn)) or can extract a further subse-
quence fulfilling (9)]. Again we proceed by time-changing the process M̃i into
a Brownian motion B as above:

inf
P∈Me(X)

P
(
M̃i (t) ≥ a + bt for some t ∈ [0, T ]

)

= lim
n→∞ Pn

(
B[

M̃i
]
t
≥ a + bt for some t ∈ [0, T ]

)

≥ lim
n→∞ Pn

(
B[

M̃i
]
t
≥ a + bT for some t ∈ [0, T ]

)

= lim
n→∞ Pn

(
Bt ≥ a + bT for some t ∈ [

0,
[
M̃i

]
T

])

≥ lim
n→∞ Pn

⎛

⎝Bt ≥ a + bT for some t ∈
⎡

⎣0, 2ε

T∫

0

(1 − μi (s))2 ds

⎤

⎦

⎞

⎠

≥ lim
n→∞Pn

⎛

⎝Bt ≥a+bT for some t ∈[
0, 2εδ2T

]
,

T∫

0

(1−μi (s))2 ds >δ2T

⎞

⎠

> 0,

where the last inequalities follow by (7), (9) and the fact that

Pn
(
Bt ≥ a + bT for some t ∈ [

0, 2εδ2T
])

does not depend on n. This gives us our second result. ��



Arbitrage opportunities in diverse markets via a non-equivalent measure change 297

Remark 2.12 We cannot guarantee the existence of an arbitrage opportunity if the
number of stocks in the portfolio goes to infinity. In that case we cannot choose by
our construction a non-zero T such that ND holds up to T . This justifies a criticism
of D. Hobson which is based on the fact that one can often observe that new firms
are created once one company enjoys a dominant position in some market.

2.4 On the non-degeneracy condition in the standard Itô model

Here we will show that Condition 3 is satisfied in the standard Itô model as used
in Fernholz et al. (2005). This shows in particular that their assumptions imply
Assumption ND and hence the existence of arbitrage opportunities after the mea-
sure change to Q. The prices of n stocks are modelled by the following linear
stochastic differential equation:

dXi (t)

Xi (t)
= bi (t) dt +

m∑

ν=1

ξiν (t) dWν (t) , Xi (0) = xi , t ∈ [0,∞) ,

for i = 1, . . . , n, where W is a standard m-dimensional Brownian motion on
(�, F, P), m ≥ n. The coefficients are assumed to be adapted and finite; more-
over,

t∫

0

‖b (s)‖2 ds < ∞, ∀t ∈ (0,∞) .

Denote σ = ξξ ′ where ξ = (ξiν)1≤i≤n,1≤ν≤m . We shall need the crucial (but com-
mon) assumption that the market is non-degenerate (in the terminology of Fernholz
1999), i.e.

x ′σ (t) x ≥ ε ‖x‖2 , ∀x ∈ R
n, ∀t ∈ [0,∞) , (10)

and has bounded variance

x ′σ (t) x ≤ M ‖x‖2 , ∀x ∈ R
n, ∀t ∈ [0, ∞) (11)

for some real constants M > ε > 0.
Condition (10) allows us to remove the drift terms bi using Girsanov’s theorem

so that we get the following dynamics of the price processes:

dXi (t)

Xi (t)
=

m∑

ν=1

ξiν (t) dBν (t) , i = 1, . . . , n, t ∈ [0, ∞) ,

where B is a standard m-dimensional Brownian motion under some martingale
measure P0 (see section 5.8 of Karatzas and Shreve 1991).
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To apply the previous results, we need to show Condition 3. In our case this
amounts to the existence of two numbers 0 < ε < κ such that for all R

n-valued
processes η we have

ε

t∫

0

‖η (s)‖2 ds ≤ 1

2

n∑

j=1

n∑

k=1

t∫

0

η j (s)
m∑

ν=1

ξ jν (s) ξkν (s) ds ηk (s)

≤ κ

t∫

0

‖η (s)‖2 ds.

The left inequality follows from the non-degeneracy condition (10) while the right-
hand side follows because of the condition of bounded variance (11).

Remark 2.13 It is apparent from the preceding discussion that the validity of
Assumption ND, and hence the existence of the arbitrage opportunity, depends
crucially on the conditions (10), (11) of non-degeneracy and bounded variance.
While it seems to be reasonable from an economic point of view to assume that
actual markets are diverse, and that the regulatory impact ensuring diversity cor-
responds in the mathematical model to the measure change to Q, a stalwart of the
efficient market hypothesis might object to (pre-)models where those conditions
are fulfilled.

3 The dynamics of the price processes under Q: further applications

This section has been included for the convenience of the reader: we review related
results and put them into the context of our setting.

3.1 Q-Dynamics of the price processes

Fernholz et al. (2005) construct an explicit example of price processes which lead
to a diverse market. With our approach we can generate a multitude of diverse
markets: every pre-model as in Section 2.1 satisfying ND leads to a diverse market
when seen under Q as defined in (1). Let us now illustrate the new dynamics under
the measure Q. For this, we shall make use of Lenglart’s extension of Girsanov’s
theorem (see, Lenglart 1977).

Theorem 3.1 (Lenglart’s theorem) Let Q be a probability measure absolutely
continuous with respect to P0. Define the process Z as

Zt = EP0

⎛

⎜
⎝

χ{
dQ

dP0
>0

}

P0
(

dQ
dP0 > 0

)

∣
∣∣
∣∣
∣∣
Ft

⎞

⎟
⎠ .

Let X be a continuous local martingale under P0. Then there exists an X-integrable
process α such that

X −
∫

1

Z−
d [Z , X ] = X −

∫
α d [X ]
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is a Q-local martingale.

Although it seems in general difficult to find an explicit expression for the drift α
in our situation, let us recall from Jacod (1979) a more detailed description via the
Kunita–Watanabe decomposition. In our case, the price processes are given as

dX (t)

X (t)
= dM (t) , t ≥ 0,

where M is a continuous local martingale under P0. We note that the process Z in
Lenglart’s theorem is square-integrable. Using the Galtchouk–Kunita–Watanabe
decomposition, we project Z on the space of all square-integrable martingales
which can be written as

∫
γ dM for some predictable process γ and write the

resulting orthogonal projection as
∫

β dM . The process
∫

β dM is square-integra-
ble by construction and hence we have a fortiori that

T∫

0

β ′ (t) d [M]t β (t) < ∞ P0 − a.s.

Moreover, [Z , M] = ∫
β d [M]. Z is Q -a.s. strictly positive (see, Revuz and Yor

2004, Proposition VIII.1.2.), so we may set

α = β

Z−
.

It results that

∫
1

Z−
d [Z , M] =

∫
β

Z−
d [M]

=
∫

α d [M]

and

T∫

0

α′ (t) d [M]t α (t) =
T∫

0

β
′
(t)

1

Z2
t−

d [M]t β (t) < ∞ Q − a.s. (12)

Summing up, the dynamics of X under Q are given as

dX

X
= dM̃ + α d

[
M̃

]
, (13)

where M̃ = M − ∫
α d [M] is a local Q -martingale.
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3.2 Valuation of claims when the pre-model is complete

Let us now briefly discuss the problem of valuation of claims in our setting. First
we observe that defining a price based on superreplication, using admissible in-
tegrands, would lead to a non-finite price in our case. Fortunately, it turns out that
pricing is still possible if we only allow strategies which require no intermediate
credit. We assume that the market under P0 is complete and apply the traditional
replication approach to find a price for contingent claims in our diverse market.
Here we review two approaches taken in the literature and show that they are in
fact equivalent.

Gossen-Dombrowsky (1992) proposes to consider for any integrable claim H
a modified claim H̃ = Hχ�Q , where �Q is the support of the measure Q. He then
assigns to it the usual no-arbitrage price EP0

[
H̃

]
since P0 is the unique martingale

measure for X under the completeness assumption. This method coincides with
the approach taken in Fernholz et al. (2005) which, generalized to our setting, is
as follows: motivated by (13), we consider the stochastic exponential

L = E
(

−
∫

α dM̃

)
.

It follows from (12) that L is Q-a.s. strictly positive. The proposed price for the
claim H is then EQ [H LT ] which, as

LT
dQ

dP0 = χ�Q Q − a.s.,

coincides with the price as in Gossen-Dombrowsky (1992). Note that for H ≥
0 Q−a.s, we get for the associated value process

V· = EP0
[

Hχ�Q

∣∣ F·
] ≥ 0 Q − a.s.

3.3 Further arbitrage opportunities in stock, bond and currency markets

The original motivation of Gossen-Dombrowsky (1992) comes from a model where
the stock price follows a geometric Brownian motion respecting two a priori fixed
exponential curves as upper and lower boundaries. Delbaen and Schachermayer
(1995) show that there are arbitrage possibilities in Bessel processes. Using a
Brownian motion B starting in one they construct a new measure which assigns
probability zero to the set of paths where B ever hits zero.

In a similar spirit, one gets arbitrage opportunities in bond and currency markets
once certain bounds have been imposed. While mathematically these situations are
much more straightforward to treat than the case of diverse markets, we shall still
give a brief illustration of an exchange mechanism where the domestic currency
is tied to some foreign currency by allowing it to float freely only within a certain
range. As usual, we work on a filtered probability space

(
�, F, (Ft ) , P0

)
. The

exchange rate process X , which is used to convert foreign payoffs into domestic
currency, is modelled under P0 for simplicity by the following stochastic differ-
ential equation:

dX (t)

X (t)
= σ dW (t),
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where σ is some positive constant and W is a P0-Brownian motion. We now
assume that by regulation, X is restricted to move only in a range of [a, b] for
some b > a > 0 (whether the regulating authority is able to support the currency
in this manner is of no concern to us here, albeit it is of highly practical relevance).

Fix a finite time horizon T > 0. Observe that in our set-up (where it is assumed
that X (0) ∈ (a, b)) we have

P0 (a ≤ X (t) ≤ b ∀t ∈ [0, T ]) > 0

and

P0 (∃t ∈ [0, T ] such that X (t) /∈ [a, b]) > 0.

We now pass over to a new measure Q (reflecting the regulatory impact) which is
defined via its density

Z = dQ

dP0

∣
∣∣
∣ FT =

{
0 if X (t) /∈ [a, b] for some t ∈ [0, T ]
c otherwise ,

where c is a normalizing constant. We consider the contingent claim

f = χ{Z>0}.

As the original market under P0 is complete, there exists a replicating strategy
which, under Q, represents an arbitrage opportunity since Q (Z = 0) = 0. This
can be seen by the same argument as in the proof of Proposition 2.8 (here it is even
easier since we are in a complete-market situation).
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