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ARTICLE

Phagocytosis by an HIV antibody is associated with
reduced viremia irrespective of enhanced
complement lysis
David A. Spencer 1,7, Benjamin S. Goldberg 2, Shilpi Pandey1, Tracy Ordonez1, Jérémy Dufloo 3,8,

Philip Barnette1, William F. Sutton1, Heidi Henderson1, Rebecca Agnor4, Lina Gao 4, Timothée Bruel 3,5,

Olivier Schwartz 3,5, Nancy L. Haigwood1,6, Margaret E. Ackerman 2 & Ann J. Hessell 1✉

Increasingly, antibodies are being used to treat and prevent viral infections. In the context of

HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser

extent Fc-mediated effector functions. It remains unclear whether augmenting effector

functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential.

Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to

examine the role of antibody-mediated effector and complement (C’) activity when admi-

nistered prophylactically against SHIV challenge in rhesus macaques. With sub-protective

dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-

mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic

outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ func-

tions as determined in vitro. These results suggest that effector functions inherent to

unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma

neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb

modifications for improving protective efficacy.
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To contain the HIV epidemic, the development of longer
acting antivirals with infrequent dosing requirements is of
critical importance. Among other approaches1, HIV-1

broadly neutralizing antibodies (bNAbs) isolated from B cells in
elite neutralizers are being developed for clinical use2,3. Com-
pared to the small molecule inhibitors comprising current anti-
retroviral therapy regimens, bNAbs offer the advantages of
extended half-life, reduced toxicity, and synergistic recruitment of
endogenous immune components through Fc-mediated signaling.

While Fab-mediated neutralization is the dominant antiviral
function of Abs to HIV-1, numerous studies demonstrate an Fc-
mediated contribution, reviewed in4. In vitro work with human
plasma provides evidence for Ab-mediated C’ lysis, inactivation
of virions and clearance of HIV-15,6 despite mechanisms devel-
oped by the virus to evade C’ lysis7. Passive transfer of bNAbs
with abolished Fc functions has provided strong evidence that
effector functions, including antibody-dependent cellular phago-
cytosis (ADCP), cytotoxicity (ADCC), and possibly complement
activity, aid protection and restrict viral proliferation. This
observation has been demonstrated for bNAbs targeting various
sites on the viral enveloped glycoprotein (Env), including the
CD4 binding site (CD4bs), the V1/V2 glycan, and the V3
glycan8–12.

Early mechanistic passive transfer studies in non-human pri-
mates (NHPs) with bNAb b12 showed inserting L228A and
L229A (LALA), point mutations that largely abrogate binding to
FcγRs and complement, reduced protection by 33% following
single high-dose challenge and required fewer repeated low-dose
challenges compared to unmodified b12 before breakthrough
infection8,9. More recent studies in infected mice and NHPs
found Fc functions of unmodified bNAbs contribute 21–39% to
the rate of the plasma viral decay following treatment, with the
remaining portion attributed to neutralization11,12. A noteworthy
exception is bNAb PGT121, for which a pair of studies have
shown loss of effector function does not impact protection13 or
influence viral decay rates in SHIV-infected macaques with or
without NK cell depletion14, despite the fact that PGT121 med-
iates high levels of effector function in vitro15 and these activities
may contribute to the efficacy in humanized mice10. Efforts to
augment the contribution of effector functions through increasing
Fc affinity for FcγRs have slightly improved viral outcomes in
mice12,16. In NHPs, despite improving in vitro ADCC activity,
infusion of antibody variants with enhanced FcγRIII binding has
resulted in either no benefit17 or induced NK cell necroptosis and
paradoxically yielded an Fc functional null phenotype11. Hence,
the potential of enhancing effector functions for protection or
treatment remains unclear.

In this work, we show that enhancing C’ activities in vitro adds
no value toward reducing viremia in either blood or tissue in
SHIVSF162P3-challenged macaques pretreated with membrane
external proximal region (MPER)-targeting bNAb 10E8v418,19.
Little is known about the in vivo effector contributions of bNAbs
targeting the MPER of HIV Env. Thus, we investigated viremic
outcomes with bNAb 10E8v4 containing either unmodified Fc, an
Fc functional knockdown, or an Fc dually enhanced for C’
functions and FcγRII/FcγRIII binding20,21. At low doses, treating
with unmodified 10E8v4 but not the C’/FcγR dual-enhanced
variant or the Fc knockdown reduces post-acute plasma and
tissue virus compared to the control group. The dually enhanced
variant bNAb is rapidly cleared from plasma after treatment and
comparable reductions in post-acute viremia are only observed at
higher doses. Analysis of the influence of effector functions
measured in this study reveal an inverse correlation between
10E8v4-mediated ADCP activity in plasma at the time of chal-
lenge and the reduction in post-acute viremia among all treat-
ment groups, but no correlations are found with either antibody-

dependent complement deposition (ADCD) or antibody-
dependent complement-mediated lysis (ADCML). These results
support an in vivo contribution of effector functions to the
antiviral activity of MPER bNAb 10E8v4, which does not mediate
ADCC against SHIVSF162P3-infected target cells in vitro.

Results
Fc modifications alter 10E8v4 effector phenotype. To determine
suitable bNAb candidates for NHP studies using Fc functional
alterations, we developed a panel of ten clinically relevant bNAbs
with either unmodified Fc regions or with point mutations
designed to abrogate or enhance FcγR binding and/or interaction
with C’. Initially, we screened this panel for the ability to perform
ADCML of HIVBaL virions and for ADCC activity against
SHIVSF162P3-infected target cells. Unmodified bNAb
10E8v4 showed comparatively high levels of ADCML against
HIVBaL, but as expected no ADCC activity against SHIVSF162P3-
infected cells15 (Fig. 1a, b) and thus was selected to investigate the
role of C’ lysis in SHIV-challenged macaques. Fc variants LALA
(L234A/L235A) and EFTAE (G236A/S267E/H268F/S324T/I332E;
Fig. 1c), which have been previously reported to reduce or
enhance, respectively, both FcγR binding and complement
activation20,21, were inserted into the IgG1 backbone of 10E8v4.
These modifications do not alter binding or neutralization
activities solely mediated by Fab, as variant binding to an MPER
epitope containing peptide and neutralization of replication-
competent SHIVSF162P3 and pseudovirus matched those of
unmodified 10E8v4 (Fig. 1d, e).

In contrast, the 10E8v4 EFTAE variant increased Fc-mediated
C1q binding and ADCD (measuring C3d opsonization) by a
factor of two, while 10E8v4 LALA did not bind C1q and showed
three-fold less binding to ADCD (Fig. 1f, g). Consistently, 10E8v4
EFTAE showed greater ADCML of Raji B cells stably expressing
either intermediate or high levels of HIVYU2 Env on their surface7

(Fig. 1h). Virion lysis varied by strain, however, as unmodified
10E8v4 showed strong lysis of HIVBaL (Fig. 1a) but little
propensity for lysing SHIVSF162P3 virions (Fig. 1i). Importantly,
strong lysis of SHIVSF162P3 was achieved with sera from five of six
macaques supplemented with 10E8v4 EFTAE, suggesting the
added potential for this variant to reduce infectious particles
in vivo (Fig. 1i).

In addition to Fc-mediated complement functions, we
measured the altered binding of LALA and EFTAE mutations
on 10E8v4 to recombinant FcγR extracellular domains. The
affinity of 10E8v4 EFTAE for allelic variants of solubilized FcγRII
and FcγRIII measured by biolayer interferometry (BLI) was
increased by a factor of 3–10 among both human and rhesus
receptors (Fig. 2a). As expected, the 10E8v4 LALA mutations
severely reduced or abrogated binding across human and rhesus
FcγRII and FcγRIII allelic variants (Fig. 2a). Notably, the
introduced Fc mutations did not alter affinity to either human
or rhesus neonatal FcR (FcRn; Fig. 2b), and thus were not
expected to impact FcRn-mediated IgG cellular recycling and its
role in extending plasma antibody half-life22,23. Next, binding of
fluorescently labeled 10E8v4 to FcγRs on PBMCs from four
SHIV-naive rhesus macaques was measured by flow cytometry.
Relative to binding of unmodified 10E8v4, 10E8v4 EFTAE
showed similar binding to CD64 (FcγRI) and a 2–3 factor
increase in binding to CD32 (FcγRII) and CD16 (FcγRIII) on
PBMCs from three of four macaques, while 10E8v4 LALA
binding to all cellular FcγRs was diminished to varying degrees
(Fig. 2c). We then evaluated downstream FcγR-mediated effector
functions and determined that ADCP activity reported using an
MPER peptide-coated fluorescent bead-based assay was unaltered
for 10E8v4 EFTAE relative to unmodified antibody, while the
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Fig. 1 Fc variant EFTAE enhances complement-mediated functions of bNAb 10E8v4. a C’-mediated lysis of HIVBaL virions incubated with a panel of
bNAbs in normal serum. Data shown are mean ± SD of two replicates. Lysis was measured by flow cytometric quantification of supernatant p27 with
complete lysis determined by incubation with detergent instead of antibody. b Comparative ADCC activity of bNAbs against SHIVSF162P3-infected target
cells expressing luciferase reporter, with greater activity corresponding to a decrease in relative light units (RLU). Data shown are mean only. c Site
visualization of Fc point mutations inserted into each IgG1 CH2 domain. Each mutation is shown on only one arm for clarity. d 10E8v4-unmodified and Fc-
modified Fab-mediated binding to MPER determined by ELISA and e neutralization of SHIVSF162P3 replication-competent challenge virus (single round
infection in TZM-bl cells) and SHIVSF162P3 pseudovirus in the TZM-bl assay. Values shown are mean ± SD among 10E8v4-unmodified and variants. f C1q
binding and g ADCD assessed as C3b deposition to antibody complexed with MPER-coated beads measured by SPR. h Complement-mediated lysis of
transduced Raji B cells resulting in either intermediate or high levels of HIVYU2 Env surface expression. Antibody plus cells were incubated with normal
(left) or heat-inactivated (right) serum and percent lysed cells determined by flow cytometry. Results are reported as the percentage of dead cells above
that in wells without antibody, with biological replicates from three independent serum donors. i C’-mediated lysis of SHIVSF162P3 virions incubated with
10E8v4 variants in normal serum. Data and analysis are derived from n= 6 animals per group. Analyzed data shown in a, d, f–i are mean ± SD and are
representative of at least two independent experiments. Source data are provided in the Source Data file associated with this manuscript. The color key is
shown and colors are consistent throughout the manuscript. ADCML antibody-dependent complement-mediated lysis, ADCP antibody-dependent cellular
phagocytosis, ADCC antibody-dependent cellular cytotoxicity, ADCD antibody-dependent complement deposition.
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LALA mutations resulted in a >2-fold decrease (Fig. 2d). Neither
variant of 10E8v4-mediated ADCC when tested against the
SHIVSF162P3 challenge virus (Fig. 2e).

Neutralization of free virus can be expected to play a major role
in antibody protection, and it has been reported that FcγRI on the
surface of HIV-1-susceptible cells promotes stronger neutraliza-
tion by MPER specific bNAbs, likely through co-localizing these
bNAbs with post attachment or budding virions displaying Env
conformations favoring MPER recognition24,25. Here, the IC50 of
both unmodified 10E8v4 and EFTAE was 3 log10 lower against
SHIVSF162P3 pseudovirus in FcγRI-expressing versus non-
expressing target cells (Fig. 2f). Consistent with its greater affinity
for FcγRII, the EFTAE variant displayed a 2 log10 reduction in
IC50 in TZM-bl cells expressing that receptor (Fig. 2f), which
suggests a potential neutralization benefit of EFTAE in addition
to enhanced C’-mediated virion lysis compared to unmodified
10E8v4 vs SHIVSF162P3.

Pharmacokinetics of unmodified 10E8v4 and Fc variants vary
in naive macaques. We evaluated the in vivo kinetics of each of
the antibodies proposed for the passive protection studies. For
each antibody, we dosed three macaques by subcutaneous deliv-
ery with 10 mg/kg of either unmodified 10E8v4, 10E8v4 LALA, or

10E8v4 EFTAE. Antibody concentrations of unmodified 10E8v4
and 10E8v4 LALA peaked in plasma at day 3 or 4 in a range of
98–118 µg/ml with a half-life of 5.7 and 4.2 days, respectively. In
contrast, 10E8v4 EFTAE peaked at day 1 following injection, with
a plasma concentration of only 21–50 µg/ml and a half-life of
2.3 days. Re-testing 10E8v4 EFTAE in three different macaques
yielded almost identical results (Supplementary Fig. 1). As most
clinical trials of human bNAbs have been conducted with intra-
venous infusion26, we further tested two more macaques in each
10E8v4 group to investigate if route of delivery would impact the
kinetics of antibody decay in plasma. As could be expected, peak
bNAb levels were slightly higher after intravenous delivery;
however, the shorter half-life for 10E8v4 EFTAE was again
observed (Supplementary Fig. 1).

Single high-dose SHIV challenge study design is used for
rhesus macaque passive studies. The in vitro C’ profile of 10E8v4
EFTAE, including increased C1q/C3b opsonization and enhanced
virion lysis of SHIVSF162P3 (Fig. 1f, g, i) combined with the lack of
ADCC activity (Fig. 2e), made this bNAb an attractive candidate
to examine the potential to improve the contributions of Fc-
mediated C’ activity in vivo. Since effector functions become less
impactful at high neutralization titers14,27, we selected low-dose
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administration of 10E8v4 prior to challenge as our approach for
the macaque protection studies. We hypothesized that in a pro-
phylactic setting with incomplete neutralization, the stronger C’-
mediated effector functions associated with 10E8v4 EFTAE would
protect and/or control viremia superior to unmodified bNAb
10E8v4, which would, in turn, be superior to 10E8v4 LALA. Thus,
we selected sub-neutralizing doses of 10E8v4 derived from a
previous study using SHIVBaLP4 that found that 10E8 plasma
concentrations that were a factor of 2–3 above the in vitro IC50 in
TZM-bls were sufficient to protect28. Consequently, Macaques
were subcutaneously treated with 5 mg/kg 10E8v4, 10E8v4 LALA,
10E8v4 EFTAE, or an isotype control IgG1 3 days prior to a
single 300 TCID50 intrarectal challenge that was expected to
infect all controls (Fig. 3).

Low-dose unmodified 10E8v4 reduces post-acute viremia in
macaques. Plasma antibody levels at time of challenge (TOC: day 0)
ranged from 10 to 21, 9 to 56, and 13 to 21 µg/ml for 10E8v4,
10E8v4 LALA, and 10E8v4 EFTAE, respectively (Fig. 4a, b). There
were comparable levels of functional antibody between groups at
TOC as measured by neutralization titers against HIVSF162P3 pseu-
dovirus (Fig. 4c). Importantly, none of the 10E8v4-infused macaque
plasma showed neutralization activity against the replication-
competent virus at the time of challenge, consistent with its rela-
tively high IC50 of 28.4 µg/ml measured in TZM-bl cells (Fig. 1e).
Plasma antibody half-lives were similar to those of SHIV-naive
macaques, with unmodified 10E8v4 and 10E8v4 LALA showing
equivalent half-lives of 5.3 days and 10E8v4 EFTAE clearing more
rapidly with a 2.2-day half-life (Fig. 4a).

All macaques were productively infected by 7 days post
challenge. We monitored plasma viral load (PVL) for 63 days
post challenge and plotted the quantitation of SIVgag viral RNA
as a function of time for a longitudinal comparison between
groups (Fig. 4d, e). All groups had comparable levels of virus in
plasma and inguinal lymph nodes during acute infection, with no
significant difference in peak PVL (Fig. 4e, f), peak PBMC cell-
associated viral load (CAVL; Fig. 4g), or inguinal lymph node
CAVL at day 14 (Fig. 4h). Average post-acute PVL, however, was
86% lower (0.14 fold) in unmodified 10E8v4-treated animals
compared to that in the control group (p= 0.0012; Fig. 4i, n).
Significant differences in post-acute PVL from the control group
were not found in either the Fc knockdown (LALA) or Fc
enhanced (EFTAE) groups (Fig. 4i, n).

Macaques were necropsied at nine weeks post challenge and
representative lymph node and gut tissues were collected, along
with subsections of the spleen, liver, and reproductive tract.
Among all tissues sampled, the unmodified 10E8v4 group had
significantly less virus quantified as SIVgag DNA compared to
controls (p= 0.0016; Fig. 4j), and this effect was most
pronounced in the lymph nodes and spleen, where a 67%
reduction (0.33 fold) compared to controls was observed (Fig. 4k,
n). Tissue virus in the 10E8v4 LALA-treated group mirrored that
in the control group (Fig. 4j–n), further indicating that in the
absence of protective neutralizing titers at TOC, Fc functions of
unmodified 10E8v4 were responsible for the reduction in post-
acute viremia. Remarkably, the 10E8v4 EFTAE group had
elevated levels of virus in tissues (p= 0.035; Fig. 4j). This was
most pronounced in lymphoid tissues, where average SIVgag
DNA was 103% higher (2.03 fold) compared to that of controls
(p= 0.0433) (Fig. 4k, n), suggesting higher levels of initial
reservoir seeding in those sites.

Higher doses of FcγR/complement-enhanced 10E8v4 reduce
post-acute plasma viremia. Due to the rapid plasma decay of the
5 mg/kg dose, it was unclear if 10E8v4 EFTAE would have
mediated a reduction in post-acute viremia if present at similar
levels and with comparable half-life to unmodified 10E8v4 post
challenge. To allow a more direct comparison with the 5 mg/kg
unmodified group, as well as to investigate whether the reduced
post-acute viremia observed in the unmodified group could be
improved, we chose to dose additional NHPs with higher levels of
10 mg/kg (dashed lines, n= 2, Fig. 5) and 20 mg/kg (solid lines,
n= 2, Fig. 5) followed by an equivalent SHIVSF162P3 challenge.
Here, plasma antibody at TOC ranged from 38 to 52 µg/ml for all
four 10E8v4 EFTAE-treated animals (Fig. 5a, b) compared to 13
to 21 µg/ml in those treated with 5 mg/kg (Fig. 4b). Unexpectedly,
with higher dosing, there was slightly more disparity in plasma
antibody between groups at TOC, with 10E8v4 EFTAE con-
centrations and neutralization titers two to three times lower than
those in the unmodified group (Fig. 5b, c).

Longitudinal plasma viremia was reduced in all high-dose
groups compared to that in the control group, with 20 mg/kg
dosing resulting in greater suppression of post-acute viremia than
in the 10 mg/kg groups (Fig. 5e). Peak plasma viremia was lower
overall in both treatment groups, although one macaque (30192)
treated with 20 mg/kg 10E8v4 EFTAE experienced peak viremia

IR SHIVSF162P3

300 TCID50

Time (Days)

-3 -2 -1 0 1 2 3 4 5 6 8 10 12 14 63

rectal
biopsy

LN
biopsy

Longitudinal bleeds for PVL, PBMC

Tissue VL

†
Unmodified

10E8v4

10E8v4
LALA

10E8v4
EFTAE

DEN3
Control mAb

Fig. 3 Schematic of macaque challenge model and tissue sampling. Macaques for challenge studies were divided into four antibody treatment groups,
10E8v4 unmodified, 10E8v4 LALA, 10E8v4 EFTAE, or isotype control mAb (DEN3). Antibody was subcutaneously delivered 3 days prior to a single high-
dose mucosal SHIVSF162P3 challenge. Rectal and inguinal lymph node biopsies were collected on study day 5 and 14, respectively, PBMCs were collected
every 14 days, and plasma collected weekly. Thirteen tissues representing diverse anatomical regions, detailed in Fig. 4m, were harvested on study day 63.
Group colors are consistent throughout the manuscript. IR intrarectal, TCID50 50% tissue culture infectious dose, LN lymph node, PVL plasma viral load,
PBMC peripheral blood mononuclear cells.
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comparable to controls (Fig. 5e, f). Average post-acute PVL in
both the unmodified and EFTAE groups was lower by 88% (0.12
fold; p < 0.0001) and 78% (0.22 fold; p= 0.0072), respectively,
than that of control group (Fig. 5h). Taken together with the
results from the 5 mg/kg treatment groups (Fig. 4), these results
show that sub-protective levels of unmodified 10E8v4 present at

the time of challenge reduced post-acute viremia by 78–88% and
this effect was dependent on intact Fc functions (Supplementary
Fig. 3). However, dually enhancing FcγR binding and C’ did not
improve this outcome and, on the contrary, may have encouraged
tissue seeding when the antibody was present at low levels
(<20 µg/ml in plasma; Fig. 4j–n).
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Plasma ADCP activity at TOC inversely correlates with the
reduction in post-acute viremia. To investigate possible corre-
lates with the reduction in post-acute viral load, we measured
plasma activity of passively transferred bNAb at TOC as well as

longitudinal metrics of endogenous immune responses. As noted
above, neutralizing activity from passively administered bNAb
was not detected in the plasma of any animal at TOC against the
challenge virus. However, plasma ADCP activity at TOC,

Fig. 4 Pre-treatment with 5mg/kg unmodified but not FcγR/complement-enhanced 10E8v4 decreases post-acute plasma and tissue virus in
macaques. a Longitudinal or b TOC plasma bNAb concentrations following 5mg/kg 10E8v4 subcutaneously delivered 3 days prior to challenge (day –3).
The average half-life (t1/2) ± se calculated from the n= 6 animals in each group is shown in the right panel of Supplementary Fig. 2a, c Plasma
neutralization titers against SHIVSF162P3 pseudovirus at TOC. d Individual and e average ± se longitudinal plasma viremia of macaques in each bNAb
treatment group. f Average peak viremia, g longitudinal PBMC CAVL ± se, and h day 14 inguinal lymph node CAVL. i Average post-acute PVL defined as
days 28–63 post challenge. j Average tissue viral load at necropsy (day 63) from all tissues, k lymphoid tissues (lymph nodes and spleen), or l gut tissues.
m Individual tissue viral load at necropsy. n Summary of fold-difference in viral load from the control group, with statistically significant comparisons
(p < 0.05) in bold. Boxes in box and whisker plots extend from 25 to 75 percentiles with a line at median and whiskers extending to min–max values.
Statistical comparisons were performed using a one-way ANOVA (b, c) followed by Tukey’s post-hoc comparison between groups and Dunnett’s post-hoc
test for comparison to control group (f, h), two-way ANOVA (i, j, k, l), and two-way repeated-measures ANOVA (m) followed by Tukey’s post-hoc
comparison between groups. Viral loads are presented (d, e) and analyzed using log10 transformed data. All <0.05 adjusted p values are shown as well as
non-significant p values between comparisons mentioned in the text. NS designates no significant difference from any group. Data and analysis are derived
from n= 6 animals per group with symbols denoting individual macaques as indicated in (d) and also used in (m). Group colors are consistent throughout
the manuscript. Statistical significance was determined at the significant alpha level of 0.05 and performed in GraphPad Prism 9. Data shown in panels a, b,
c, e–m are representative of at least two independent experiments. Source data are provided in the Source Data file associated with this manuscript. TOC
time of challenge, PVL plasma viral load, PBMC peripheral blood mononuclear cell, CAVL cell-associated viral load.
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neutralization titers against SHIVSF162P3 pseudovirus at TOC. d bNAb concentrations in biopsies collected from the rectal mucosa 5 days after challenge
(8 days post delivery). e Individual and f average ± se longitudinal plasma viremia of macaques in each mAb treatment group. A dashed line at 106 vRNA
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significant alpha level of 0.05 and performed in GraphPad Prism 9. Data in b–d, g, and h are representative of at least two independent experiments. Source
data are provided in the Source Data file associated with this manuscript. TOC time of challenge, PVL plasma viral load.
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measured in vitro by THP-1 internalization of MPER peptide-
coated beads, was significantly higher than that of controls among
groups with reduced viremia (Fig. 6a), and there was an inverse
correlation between ADCP at TOC and post-acute viral load
(Spearman r=−0.4202, p= 0.0163; Fig. 6a, b). There was no
correlation between complement deposition and ADCML
(Fig. 6c–f).

bNAb delivery does not substantially alter endogenous
immune responses. It has been reported that bNAb delivery in
the context of HIV/SHIV may augment the development of
native immune responses through immune complexes driving
activation of antigen-presenting cells29. In this study, passive
transfer of unmodified 10E8v4 did not significantly alter the
relative composition of effector cells (Fig. 7a and Supplementary
Fig. 4). Autologous binding titers to SF162 gp140 among maca-
ques that seroconverted were generally similar within and across
treatment groups (Fig. 7b, c), although it should be noted that 5
of the 32 macaques did not seroconvert. Two of these were in the
control group and one was from the 5 mg/kg EFTAE group where
seroconversion noticeably varied in titer and time of onset
(Fig. 7c). Overall, neither serostatus nor binding titers were
associated with a difference in post-acute PVL. In addition, no

endogenous neutralizing activity was detected in any animal on
days 28, 42, and 56 against the challenge virus (Fig. 7d). Virus-
specific CD4+ and CD8+ T cell responses were assessed at
multiple time points, and there was no clear association between
specific T cells and post-acute viral load (Fig. 7e, f and Supple-
mentary Fig. 5).

Neither mucosal targeting nor anti-drug antibodies (ADA)
account for rapid plasma clearance of EFTAE. Given the higher
affinity of 10E8v4 EFTAE for FcγRII and FcγRIII (Fig. 2a), it is
possible that at least part of the lower plasma concentrations
compared to unmodified or LALA variant was due to increased
cellular affinity and/or altered tissue trafficking. While we were
not able to directly detect 10E8v4 on the surface of PBMCs in any
group 1–3 days post delivery, 10E8v4 was detected in day 5 rectal
biopsies of NHPs receiving 10 or 20 mg/kg unmodified bNAb
(Fig. 5d). Concentrations for unmodified 10E8v4 measured near
10 ng/mg of rectal tissue, corresponding to a plasma to rectal
mucosa concentration ratio ranging from 7 to 21 × 103:1 (Sup-
plementary Fig. 2b). In contrast, antibody in rectal mucosa was
undetectable in the 10 or 20 mg/kg dose 10E8v4 EFTAE groups
or in any 5 mg/kg dose groups (<1 ng/mg), as would be expected
if both variants were present in plasma/rectal mucosa
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Fig. 6 Effector activity in plasma at TOC. a Plasma ADCP activity determined by co-incubation with THP-1 monocytes and measured as internalization of
MPER-coated fluorescent beads. c C3b deposition to plasma antibody complexed with MPER-coated beads measured by SPR. e C’-mediated lysis of
SHIVSF162P3 virions incubated with heat-inactivated plasma supplemented with normal serum. Error bars in a, c, and e represent average values ± se with p
values from one-way ANOVA followed by Dunnett’s post-hoc test. b, d, f Correlation matrices between the indicated effector function and post-acute PVL
for each individual 10E8v4-treated macaque, with r and p calculated from one-tailed Spearman tests. Error band denotes best fit values ± se with 95%
confidence intervals. Symbols for animal IDs in a, c, and e are the same as those shown in Figs. 4 and 5. Data and analysis are derived from n= 6 animals
per group (5 mg/kg); n= 4 animals per group (10+mg/kg). Statistical significance was determined at the significant alpha level of 0.05 and performed in
GraphPad Prism 9. Data are representative of at least two independent experiments. Source data are provided in the Source Data file associated with this
manuscript. Animal symbols and group colors are consistent throughout the manuscript. ADCP antibody-dependent cellular phagocytosis, C’ complement,
ADCML antibody-dependent complement-mediated lysis, TOC time of challenge, PVL plasma viral load.
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concentration ratios similar to that of unmodified 10E8v4 (Fig. 5d
and Supplementary Fig. 2). Thus, it is unlikely that 10E8v4
EFTAE was preferentially routing to the mucosa.

While generally well tolerated, some macaques developed ADA
to human IgG1. Here, we found minimal ADA (OD < 2) occurred
in NHPs receiving unmodified 10E8v4 or 10E8v4 LALA (Fig. 7g,
h). Five of the ten 10E8v4 EFTAE-treated animals developed
modest ADA responses by study day 21 (24 days after delivery).
Only two of these had detectable ADA on day 7 (Fig. 7g, h), and
thus ADA did not account for the substantially reduced 10E8v4
EFTAE levels observed by that time point (Figs. 4a and 5a).

10E8v4 EFTAE can mediate antibody-dependent infection
enhancement (ADE) in vitro in the absence of lysis. The role of

antibody-mediated complement activity in HIV infection remains
controversial, with in vitro data suggesting both pro- and antiviral
contributions7,30–32. To further investigate the slightly enhanced
levels of virus in lymphoid tissues in the 5 mg/kg 10E8v4 EFTAE
group (Fig. 4j, k, n), we sought to determine its potential for
exacerbating viremia due to ADE. Using a model with primary
rhesus splenocytes enriched for either T cells or monocyte-
derived dendritic cells (MDCs), we found no evidence of ADE in
the presence of normal serum (Supplementary Fig. 6a, b). Within
MDC-enriched cultures that express high levels of complement
receptor-2 (CR2), however, pre-coating virus with heat-
inactivated serum followed by spinoculation of cells pretreated
with a low level (5 µg/ml) 10E8v4 EFTAE showed a dramatic and
reproducible enhancement of cell-associated virus
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(Supplementary Fig. 6a, c). Consistent with a hypothesized
mechanism of surface co-localization of 10E8v4 and virus
mediated by C’ receptors, cultures treated with two C’ knock-
down variants of 10E8v4, LALA and K322A (KA), showed
reduced cell-associated virus compared to unmodified 10E8v4.
This effect did not occur in splenocyte cultures enriched for
T cells (Supplementary Fig. 6b). Together, these data show that
within cell environments with high levels of CR2 expression and
in the absence of C’-mediated lysis, 10E8v4 EFTAE may facilitate
ADE, although it is unclear whether such conditions occur
in vivo.

The data presented here show that a single sub-protective dose
of 10E8v4 reduces post-acute plasma and tissue virus in
macaques challenged with SHIVSF162P3. This reduction was
dependent on intact Fc effector functions and inversely correlated
with FcγR-mediated ADCP by 10E8v4 at TOC. The functional
enhancement of C’-mediated virion lysis did not improve post-
acute viremic outcomes, and instead, enhanced C’ functions with
sub-optimal levels of 10E8v4 were associated with slightly higher
levels of tissue viral DNA in lymphoid tissues.

Discussion
The first efficacy trial for bNAb given as pre-exposure prophy-
laxis using moderately potent bNAb VRC01 provided proof-of-
concept that bNAbs can protect against susceptible viral strains33.
The multiplicity of circulating viral strains, with high genetic
diversity within (15–20%) and between (25–35%) subtypes34, will
necessitate multi-epitope targeting with cocktails of 2–3 bNAbs
and/or engineered bi/tri-specific Abs with heterologous Fab
domains35,36. In addition, maximizing effector contributions
against neutralization insensitive viruses may be needed to
achieve widespread efficacy. Since the initial report in 2007 on the
importance of Fc receptor binding in antibody-mediated pro-
phylaxis for HIV8, the relative antiviral contribution of effector
functions of bNAbs has garnered significant interest. Subsequent
loss-of-function studies in both humanized mice and NHPs have
confirmed an important role for antibody-FcR interaction,
demonstrating a 21–39% contribution toward plasma viral decay
slopes following treatment of established infection4,11,12.

A critical revelation from these studies exposes the contextual
dependency of effector contributions, with inconsistencies
occurring between different bNAb/virus combinations and, in the
case of PGT121, a negligible contribution against SHIVSF162P3 in
macaques13,14. This disparity is likely determined by multiple
variables impacting FcγR engagement and crosslinking in vivo,
including (1) steric hindrance to FcγRs, determined by bNAb
epitope and angle of approach37; (2) number of bNAb molecules
coating the virion, determined by bNAb dose, affinity for Env,
and Env frequency and proximity on the viral surface38; and (3)
affinity of FcγRs for immune complexes, which is influenced by
isotype, subclass, and Fc glycosylation39 and exhibits allele-
dependent fluctuation at both a species and individual level40,41.

Loss-of-function studies to date have used bNAbs with mod-
erate to high levels of ADCC activity, potentially obscuring the
respective contributions of ADCC, ADCP, and C’ functions.
Here, we report the first macaque study using Fc-modified var-
iants of bNAb 10E8v4 targeting the MPER region of HIV-1 Env
that shows no ADCC activity against the challenge virus in a cell-
based SHIV infection in vitro assay using macaque CD16 trans-
duced cells as effectors15,42. At sub-neutralizing concentrations
against the challenge virus, we find that other intact effector
functions of unmodified 10E8v4 are associated with a ~1 log10 or
78–88% reduction in average post-acute viremia when neu-
tralization is absent or insufficient to protect. In contrast, the
effector null Fc variant of 10E8v4 resulted in post-acute PVL and

tissue viremia that matched control viremia. The inverse corre-
lation between post-acute PVL and 10E8v4-mediated ADCP
activity at TOC, together with the lack of such association
between 10E8v4-mediated C’ deposition or lysis, or between
endogenous IgG or T cell responses, suggests that this effect may
be the result of phagocytic clearance mediated directly through
FcγRs that reduces tissue seeding during the early stages of
infection43,44. There is evidence that neutrophils and macro-
phages are among the first cell types to bind HIV-1 in the early
minutes to hours of transmission at mucosal surfaces45 and
macrophages and DCs subsequently become associated with
HIV-1 in germinal centers as the initial CD4 T cell reservoir is
established within the first few days43. In our study, a possible
mechanistic explanation for the reduced post-acute viremia is
that early monomeric recognition of 10E8v4-bound SHIV by
FcγRI on phagocytes reduced initial exposure of CD4+ T cell
targets, and thereby lessened initial reservoir seeding and miti-
gated post-acute viral loads46.

A limitation of this study and similar pre-clinical in vivo stu-
dies in animal models is that while precise effector functions can
be qualitatively compared by use of in vitro assays, these assays do
not comprehensively reflect in vivo conditions and may conse-
quently bias interpretation toward activity favored in vitro. For
example, Ab activity can vary substantially across the numerous
ADCC assays that have been described47,48. Nevertheless, here,
we can reasonably conclude that in the absence of ADCC and
neutralization, the reduction in post-acute viremia was dependent
on other intact effector functions across groups. As a single factor,
the modest inverse correlation between phagocytosis (MPER-
coated beads in vitro) at TOC and reduced viremia (SIV viral
RNA in vitro) suggests the possible importance of in vivo pha-
gocytic activity on subsequent viremia. While such correlative
relationships cannot establish causation, it is noteworthy that
ADCP from vaccine-induced gp140-specific Ab has been linked
to protection or delayed SIV acquisition and lower peak viral
loads in macaques49–54. Similarly, vaccine-induced anti-gp41 and
anti-gp140 IgG-mediated antibody-dependent monocyte phago-
cytosis and FcγRIIa engagement correlate with reduced HIV-1
acquisition risk in humans55. As human and rhesus peripheral
blood monocytes display equivalent levels of ADCP with human
IgG1 bNAb in vitro56, these prior studies, combined with the data
presented here underscore a prospective clinical benefit of
administering bNAbs with favorable ADCP activity.

An outstanding question is whether Fc engineering can further
improve effector contributions. Evidence exists for greater ADCC
activity in vitro corresponding to better protection in humanized
mice12,57, but this outcome has not been recapitulated in NHPs
where hyperactivation of FcγRIII+ cells resulted in necroptosis
and a net loss of ADCC11. Here, we sought to improve antiviral
Fc contribution in the 10E8v4 EFTAE group, where the point
mutations yield an in vitro phenotype with three potential
advantages: (1) the addition of C’-mediated virion lysis; (2) faster
endocytosis of immune complexes through FcγRIIb58; and (3)
increased neutralization potency at the surface of FcγR+ cells. Of
these, we deemed the addition of lytic activity the most likely to
affect viremia in our model, as FcγRIIb-mediated clearance in
mice58 has yet to be shown in NHPs and 10E8v4 weakly neu-
tralizes SHIVSF162P3. It is important to note that while Hessell
et al. previously concluded that loss of C1q binding does not alter
protection with bNAb b128, more recent work nuances this
conclusion by demonstrating b12 does not mediate end-stage
lysis of either virions or infected cells59. We found that the
functional addition of ADCML in vitro with 10E8v4 EFTAE did
not improve in vivo viremic outcomes over that in the 10E8v4-
unmodified group. On the contrary, while higher dosing resulted
in a clear but smaller reduction in post-acute viremia (78%) than
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that found with high doses of unmodified 10E8v4, the 5 mg/kg
10E8v4 EFTAE group showed markedly elevated (103%) end-
point viral loads in lymphoid tissues compared to that in controls,
and, in the absence of lysis, was associated with ADE under high
CR2-expressing culture conditions in vitro. Whether 10E8v4
EFTAE-opsonized, CR-mediated ADE occurred in vivo is
unclear, but a similar mechanism has been described in other
settings30. The pro- and antiviral roles of complement in HIV
infection are complex and still being elucidated7,31,60; however,
we conclude from these data that antibody-mediated C’
enhancement is unlikely to improve bNAb efficacy and that
antibody-mediated C’-knockout studies to mitigate possible ADE
are warranted.

In conclusion, the data presented here show bNAb-mediated
ADCP activity associated with reduced post-acute viremia in a
neutralization insensitive context. Furthermore, they provide a
rationale for investigating ADCP effector enhancements, parti-
cularly by increasing accessibility to FcγRs by utilizing IgG1 hinge
extensions or the IgG3 subclass61 to circumvent unintended
consequences of point mutations enhancing FcγR affinity.
Together, these efforts advance bNAb cocktail design toward
achieving efficacious prophylaxis against the global diversity of
HIV-1 strains.

Methods
Animals and virus. Rhesus macaques of Indian origin were co-housed at the
Oregon National Primate Research Center and all care and experimental protocols
were approved by the Institutional Animal Care and Use Committee at Oregon
Health and Science University. Macaques double negative for MHC alleles Mamu-
B*08 and Mamu-B*17 were selected for challenge experiments. The ages of ani-
mals ranged from 2 to 10 years. Both male and female animals were used in this
study. Groups were balanced for gender and age. Viral challenges were performed
by intrarectal delivery of 1 ml diluted virus (ARP-6526, Lot# 170117) corre-
sponding to 300 TCID50 in rhesus PBMCs.

C1q binding and C3 deposition (ADCD). Analytical flow cytometry was used to
assess the ability of the 10E8v4 panel to recruit C1q and activate complement on
the surface of antigen-coated beads. Antigen-coated beads were prepared by
covalently coupling NeutrAvidin protein (31000, ThermoFisher Scientific) to coded
MagPlex® superparamagnetic carboxylated magnetic microparticles (Luminex
Corp.) using carbodiimide crosslinking chemistry as previously described62, and
then mixed with a 34-residue biotinylated MPER peptide (RRR-NEQELLELDK-
WASLWNWFDITNWLWYIR-RRR-biotin, GenScript) containing the linear epi-
tope recognized by 10E8v418 at 100 nM for at least 20 min at room temperature.

Assessment of C1q binding was carried out as previously described62. Briefly,
antibodies were first incubated with beads overnight at 4 °C with shaking. Plates
were washed five times on an automated magnetic plate washer (405, BioTek) with
assay buffer (1X PBS, 0.1% BSA, 0.05% Tween-20) and subsequently incubated
with 1.0 µg/ml biotinylated human C1q for 1 h at RT, followed by washing and
incubation with 1:500 streptavidin-PE (PJRS25, Prozyme) for 30 min at RT. Beads
were washed and resuspended in xMAP Sheath Fluid (Luminex Corp) before
acquisition on the MAGPIX® System (Luminex Corp.).

For C3d deposition (ADCD), human complement serum (S174, Sigma-Aldrich)
diluted 1:100 in gelatin veronal buffer supplemented with Ca2+ and Mg2+ (GVB+
+, G6514, Sigma-Aldrich) was incubated with antibody-complexed antigen beads
for 30 min at 37 °C, placed on ice to stop complement activation reactions, washed,
and incubated with 0.1 µg/ml biotinylated anti-human C3d (A702, Quidel) for 1 h
at RT with shaking. Following washes, bound anti-C3d antibodies were detected by
incubation with 1.0 µg/ml streptavidin-PE (PJRS25, Prozyme) for 20 min at RT,
washed, and data reported as median fluorescent intensity (MFI) were acquired on
the FLEXMAP 3D® system (Luminex Corp.).

Data shown are representative of at least two independent experiments. Assay
wells containing assay buffer in lieu of antibody were used to assess background
C1q association or complement deposition driven by antibody-independent
pathways.

Virion ADCML. Complement lysis of SHIVSF162P3 virions was assessed by mea-
surement of capsid protein p27, released following viral membrane disruption as
previously described63. In 96-well polystyrene tissue-culture-treated microplates
(6916A05, Corning), 2 ng/ml [p27] of SHIVSF162P3 virus and a 1:50 dilution of
human complement serum (S1764, Sigma-Aldrich) were mixed with IgG in GVB+
+ for a total volume of 150 µl. To generate a p27 standard curve for interpolation of
percent lysis, disruption buffer (5421, ABL, Inc.) was added at a 1:10 dilution to
serially-diluted virions, whereas other samples received an equivalent volume of

GVB++. Heat-inactivated complement serum (56 °C, 30 min) and wells containing
active complement serum without antibody served as negative controls for baseline
p27 concentrations and complement-mediated lysis via antibody-independent
pathways, respectively. Plates were incubated at 37 °C for 1.5 h with gentle shaking
before transferring 80 µl to black 96-well clear flat-bottom plates (655906, Greiner
Bio-One) for quantification.

Quantification of released p27 was carried out using a bead-based sandwich
assay. Briefly, MagPlex® beads covalently coupled to an anti-SIVmac251 p27
monoclonal antibody (ARP-13443, HIV Reagent Program) were incubated with
each sample for 1 h at RT with gentle orbital shaking (600 rpm), followed by five
washes on an automated plate washer. The degree of p27 bound to the beads was
detected via incubation with 1.0 µg/ml biotin-anti-SIVmac p27 (ARP-1610, HIV
Reagent Program) for 1 h at room temperature with shaking, and subsequent
staining with streptavidin-PE (PJRS25, Prozyme). After incubation and washing
steps, beads were resuspended in xMAP® sheath fluid (Luminex Corp), and MFI
values were recorded by the MAGPIX® System (Luminex Corp).

For bNAb prospecting, 2 ng/ml [p24] of aldrithiol-2-inactivated HIV-1BaL virus
was used, and released p24 was captured using MagPlex® beads conjugated with
two monoclonal murine anti-p24 antibodies (ab9072 and ab9044, Abcam),
detected via 0.5 µg/ml polyclonal rabbit anti-p24 (NBP2-41214, Novus Biologicals),
and stained with 0.6 µg/ml R-PE-conjugated rat-anti-rabbit Ig (4065-09, Southern
Biotech). Data reported as mean and standard deviation of three technical
replicates, and are representative of at least two independent experiments.

ADCML of Raji cells. Lysis of Raji cells transduced to express HIV-1YU-2b Env was
assessed as described previously7. Transduced Raji cells were sorted for Env
expression via a GFP reporter signal followed by clonal expansion to obtain cells
expressing intermediate or high Env levels. Env+ cells were then mixed with 50%
normal human serum or 50% heat-inactivated human serum and 15 µg/ml 10E8v4
for 24 h at 37 °C. Complement-mediated lysis was measured with live/dead fixable
aqua dead cell marker (L34957; Life Technologies) prior to fixation and flow
cytometric analysis (Attune NxT; Invitrogen). Results are reported as the percen-
tage of dead cells above that in wells without antibody, with biological replicates
from three independent serum donors.

Affinity to soluble FcγRs and FcRn. BLI using the Octet RED96 system (Sartorius
AG) was used to characterize the 1:1 biophysical interaction between 10E8v4
antibodies with human Fc gamma receptors (FcγRIIA-H131, FcγRIIB, FcγRIIIA-
V158, and FcγRIIIB-SH40), rhesus Fc gamma receptors (FcγRIIA-1, FcγRIIA-2,
FcγRIIA-3, FcγRIIB, FcγRIIIA-141), and both human and rhesus neonatal Fc
receptors (FcRn). For the measurement of biophysical interaction between the test
antibodies with FcRn, protocols provided by the manufacturer of biotinylated
recombinant human (AcroBiosystems, Cat. #FCM-H82W4) and rhesus (Acro-
Biosystems, Cat. #FCM-C82W5) FcRn were followed.

All kinetic experiments were performed in freshly prepared and filtered kinetics
buffer (1X PBS, 0.1% BSA, 0.05% Tween-20) at 30 °C. Biotinylated receptors were
immobilized using streptavidin-coated biosensors (Sartorius AG, Item #18-5019)
via a loading step with a 0.3 nm response unit threshold. Following a 60-s baseline
step in kinetics buffer, loaded biosensors were dipped into two-fold serially-diluted
antibody samples (1000–15.63 nM) for a 60-s association step and subsequently for
60 s in kinetics buffer to measure dissociation. Immobilized receptors were
regenerated between antibody analytes by dipping 3 × 5 s into regeneration buffer
(10 mM Glycine, pH 1.7).

Binding sensorgrams were aligned to the beginning of the association step for
inter-step correction and Y-aligned to the pre-association baseline step, and
following single reference subtraction consisting of immobilized receptor dipped
into kinetics buffer, processed sensorgrams were globally fit to a 1:1 binding
isotherm on ForteBio HT Analysis Software (version 11.1.1.39) to determine
kinetic constants. Two experiments using streptavidin-coated biosensors (Sartorius
AG, Item #18-5019) were conducted to account for variability between sets of
biosensors.

10E8v4 binding to rhesus PBMCs. To determine bNAb binding to FcγRs on
PBMCs, fluorophores were directly conjugated to 10E8v4 (PacBlue), 10E8v4 LALA
(APC), and 10E8v4 EFTAE (FITC) using standard antibody labeling kits (Invi-
trogen). Cells from four different rhesus macaques were divided into cluster tubes
(Corning; 1 × 105 cells/tube) and washed twice with staining buffer (1 ml
phosphate-buffered saline supplemented with 1% fetal bovine serum (FBS) and
1 mM EDTA). Live/Dead dye (Fixable Blue, Invitrogen) was added according to the
manufacturer’s directions and incubated for 15 min at 4 °C protected from light.
After washing, 10 µg/ml of each bNAb was added to separate cluster tubes con-
taining PBMCs from each animal, along with surface markers CD64:BV605,
CD32:PE, and CD16:BV711 then incubated for 30 min as before. Cells were then
washed twice and analyzed on a FACSymphony A5 (BD Biosciences). Data were
analyzed in FlowJo and reported as the percent of live single lymphocytes binding
the bNAb variant of interest normalized to the percent of cells binding unmodified
10E8v4.
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ADCC. Determination of ADCC was performed as described previously42. In brief,
CD4+CCR5+ NKR24 target cells that express luciferase under the control of a tat-
dependent promoter were infected with replication-competent SHIVSF162P3 or
SHIVBaL (200 ng/ml p27) by spinoculation at 1200 × g for 2 h with 40 μg/ml
polybrene. Three days post spinoculation, 1 × 104 target cells/well were co-
incubated with effector KHYG-1 NK cells at an effector to target ratio of 10:1 with
or without serial Ab dilutions in 200 μl assay media (RPMI supplemented with 5 U/
ml IL-2) in round bottom 96-well plates at 37 °C and 5% CO2. All Ab and plasma
dilutions were plated in duplicate. Effector KHYG-1 NK cells expressing macaque
or human CD16 were used for assays with plasma or cloned Ab, respectively. After
8 h co-incubation, each assay well was mixed by pipetting and 150 μl transferred to
black flat-bottom plates containing 50 μl Bright-Glo (Promega) and incubated for
2 min at 25 °C. Luminescence was measured on a Victor X Light plate reader
(Perkin Elmer) and relative light units (RLU) were normalized according to the
following formula: [sample mean – background (mock-infected targets and effec-
tors)] / [maximum (SHIV-infected targets and effectors, no mAb – back-
ground)] × 100. ADCC activity is reported as the percentage loss of RLU.

ADCP. The phagocytic potential 10E8v4 Fc variants were assessed by a method
adapted from Ackerman et al.64. Fluorescent antigen beads were prepared by
coupling biotinylated MPER peptide to neutravidin conjugated low-intensity yel-
low fluorescent polystyrene beads (Spherotech Inc., CFL-0852-2), and were con-
firmed to be properly functionalized by assessing anti-MPER antibody staining
alongside negative isotype controls. To measure ADCP, 10E8v4 variants were
three-fold serially-diluted to achieve a final concentration range of 3 nM to 4 pM in
96-well tissue culture treated microplates (Corning®, CLS3596), followed by the
addition of a homogenous solution of a 1:20 ratio of effector THP-1 monocyte-like
cells (ATCC® [TIB-202™]) to target fluorescent antigen beads. Following a 4 h
incubation at 37 °C and 5% CO2, the sampled contents of each well were analyzed
by flow cytometry, and ADCP results were reported as a phagocytosis score (P-
score) metric, defined as the product of the percentage of THP-1 monocytes that
engulfed at least one fluorescent bead (the percentage of gated THP-1 cells with
FITC signal above a threshold MFI) and the average number of beads engulfed (the
MFI signal of the FITC+ gated THP-1 cells).

Neutralization assays. Neutralization assays were performed in TZM-bl cells
expressing luciferase under the control of the HIV tat promoter as standardized by
Wei et al. using replication-competent SHIVSF162P3 stocks expanded in CD4-
enriched rhesus splenocytes or single cycle competent pseudoviruses65,66. For
pseudovirus assays, three-fold serial dilutions of Ab were incubated in 150 µl with
the indicated pseudovirus for 1 h in cDMEM (DMEM [Gibco] supplemented with
4.5 g/l D-glucose, 10% heat-inactivated FBS, 1% L-glutamine, 1% penicillin, and 1%
streptomycin) at 37 °C and 5% CO2. Next, 1 × 104 cells/well were added in 50 µl
media further supplemented with 7.5 μg/ml DEAE-dextran to aid viral entry. After
48 h co-incubation, 140 µl of media was gently removed from each well and
adherent cells were lysed by the addition of 60 μl Bright-Glo (Promega) for 2 min.
Eighty microliter was then transferred to black plates and viral infection was
determined as the relative level of luciferase activity measured on a Victor X Light
plate reader (Perkin Elmer). All experimental samples were plated in duplicate and
the percent neutralizing activity was calculated using the following formula: [Mean
no Ab (i.e., virus and cells minus cells only background) –Mean sample (i.e.,
sample value minus cells only background)] / [mean no Ab] × 100. Isotype and
positive control Abs were included on all assay runs. Assays with replication-
competent virus were performed similarly but read after 24 h instead of 48 h.

ELISAs. Assays were performed largely as described by Malherbe et al.67. Plates
were coated with either: (1) MPER for 10E8v4 Fab binding, (2) anti-10E8v4
idiotype mAb 2D1 for 10E8v4 in plasma or tissues (3) recombinant monomeric
HIVSF162 gp140 for native autologous plasma responses, or (4) plasma matched
10E8v4 variant for measuring ADA. Flat-bottom plates were coated with the
antigen of interest by incubating 0.5–1 μg/ml in 0.2 M H2CO3 buffer pH 9.4 at 4 °C
overnight. Plates were then washed in binding buffer (PBS pH 7.4+ 0.1% Triton X-
100) and blocked with 150 μl PBS containing 5% dried milk and 1% goat serum for
1 h at room temperature. Blocking buffer was discarded and three-fold serial
dilutions of plasma or mAb were added to unwashed cells in 50 μl binding buffer.
After 1 h at room temperature, plates were washed 3× and then incubated for 1
additional hour with 50 μl 1:5000 dilution of goat anti-human H&L (Jackson
Laboratories) (assays 1–3) or 50 µl 1:3000 dilution of mouse anti-macaque IgG
mAb 1B3 (assay 4) conjugated to horse radish peroxidase (from Invitrogen and
NIH AIDS Reagents program, respectively). Plates were then washed 5×, and
bound Ab was visualized by the addition of 50 μl tetramethylbenzidine (Southern
Biotech) for 10 min before stopping the reaction with 50 μl 1 N H2SO4. Optical
density was immediately quantified on a SoftMax® Pro 5 microplate reader
(Molecular Devices) at 450 nm.

Quantification of plasma and tissue viral load. Plasma and CAVLs were
determined by quantifying SIVgag vRNA from nucleic acid in plasma or PBMCs
by quantitative reverse transcription-PCR (RT-PCR) as detailed previously67. In
brief, 2 µg nucleic acid was amplified for 45 cycles in 30 µl Fast Advanced

Mastermix on a QuantStudio 6 Flex instrument (Applied Biosystems, Life Tech-
nologies) and virus copy numbers estimated by comparison to a pBSII-SIVgag
standard curve. To measure reservoir virus in tissues from biopsies or necropsy,
tissues were homogenized by bead beating. The nucleic acid in tissue homogenates
was then analyzed for reservoir virus measured as the SIVgag DNA per µg tissue
DNA amplified using ultrasensitive nested quantitative PCR and RT-PCR as
detailed previously67,68. The following primers and probe were used for all pro-
tocols to amplify and detect a conserved region in SIVgag: SGAG21 forward primer
(GTCTGCGTCATPTGGTGCATTC), SGAG22 reverse primer (CACTAGKT
GTCTCTGCACTATPTGTTTTG), and pSGAG23 probe (5′-6-carboxyfluorescein
[FAM]-CTTCPTCAGTKTGTTTCACTTTCTCTTCTGCG-black hole quencher
[BHQ1]-3′).

Immune cell subsets. Relative composition of immune cell subsets was deter-
mined by flow cytometry on freshly thawed cryopreserved PBMCs. Cells from four
different rhesus macaques were divided into cluster tubes (Corning™ 4410; 1 × 105

cells/tube) and washed twice with staining buffer (1 ml phosphate-buffered saline
supplemented with 1% FBS and 1mM EDTA). Live/Dead dye (Fixable Blue,
Invitrogen) was added according to the manufacturer’s directions and incubated
for 15 min at 4 °C protected from light. Cells were then stained for surface markers
using the following panel: CD3:BB660, CD4:BUV395, CD8:BUV805, CD14:BV510,
CD16:BV711, CD20:PE-Cy594, CD45:PE-Cy7, and HLA-DR:BV650. Cells were
then washed twice and analyzed as described above.

Intracellular cytokine staining. Specific T cell activity was determined on PBMCs
collected at study day 56. PBMCs from each macaque were divided into three
polypropylene cluster tubes (Corning™ 4410; 1 × 106 cells/tube) and washed 2×
with cRPMI. Each set of cells was then incubated for 1 h at 37 °C, 5% CO2, and
100% humidity in 125 µl cRPMI supplemented with 3 µg/ml anti-CD28, 3 µg/ml
anti-CD49d, and either (A) 0.5% DMSO (mock), (B) 5 µg/ml/peptide of SIVmac239

gag pooled peptides (ARP-12364;), or (C) 1 µg/ml ionomycin (Sigma) and 40 pg/ml
phorbol 12-myristate 13-acetate (Sigma) as a positive control. Following 1 h
incubation, 0.25 µl GolgiStop™ and 0.25 µl GolgiPlug™ (BD Biosciences) in 50 µl
cRPMI were added to each tube. Cells were incubated as before for an additional
8 h, then stored at 4 °C for up to 10 h prior staining. For analysis, cells were washed
twice with staining buffer then incubated for 15 min at 4 °C protected from light
with Live/Dead dye (Fixable Blue, Invitrogen). Surface markers were then stained
using the following panel: CD3:BV510, CD4:BUV395, CD8:BUV805, CD45RA:PE-
Cy7, CD95:BV786, CD107a:FITC. Following fixation in 1% PFA (20 min at 4 °C
and permeabilization with 0.5% saponin in staining buffer, cells were stained for
intracellular markers as follows: CD69:ACP-H7, IL-2:PE, IL-4:BV421, IL-21:APC,
IFNγ:BV711, and TNFα:BV650. Stained cells were analyzed on a FACSymphony
A5 (BD Biosciences) and data were analyzed with FlowJo software.

Splenocyte infection assays. Cryopreserved macaque splenocytes were washed
twice with RPMI, then resuspended at a concentration of 1 × 106 cells/ml in RPMI
supplemented with 4.5 g/l D-glucose, 10% heat-inactivated FBS, 1% L-glutamine,
1% penicillin, and 1% streptomycin (cRPMI) plus either 300 U/ml recombinant
rhesus IL-4 and 150 U/ml granulocyte-macrophage colony-stimulating factor to
enrich macrophage-derived dendritic cells or with 10 µg/ml phytohemagglutinin to
expand T cells. Stimulated splenocytes were incubated for 4 days at 37 °C with 5%
CO2 and 100% humidity and then refreshed with new cRPMI plus growth factors.
Seven days after stimulation, T cell and MDC-enriched splenocytes were collected
for assay setup, using a 7 min incubation with TrypLE Express (Fisher) to dis-
sociate adherent cells from flasks. Cells were washed twice with serum-free cRPMI
(no FBS), resuspended at 2 × 106 cell/ml in cRPMI-no FBS, and 0.5 ml was added
to each well of a 24-well culture plate. The indicated mAb was diluted in cRPMI-no
FBS to 100 µg/ml and 50 µl mAb then added to the appropriate well for 30 min to
pre-load cells with mAb. Separately, SHIVSF162P3 virus stock (p27 concentration of
788 ng/ml) was incubated with 22.2% either heat-inactivated or normal macaque
serum pooled from ten macaques for 30 min at room temperature using a ratio of
350 µl virus and 100 µl serum per assay well. After separate cell-mAb and virus-
serum incubations, 450 µl of the virus-serum mixture was added to the appropriate
well, giving a final assay concentration of 1 × 106 cells/5 µg mAb/275 ng p27 virus/
10% heat-inactivated or normal macaque serum/ml/well. Splenocyte cultures were
then incubated as above and infection monitored longitudinally by flow cytometry
staining for viability (Live/Dead Fixable Yellow; Fisher), surface markers CD3:PB
(BD-558124), CD4:APC (Miltenyi-130-091-232), CD11b/CD18:PE-Cy7
(eBioscience-25-0118-42), and CD11c:PerCP (Invitrogen-MA1-10087), and intra-
cellular p27:FITC (ARP-1610). All test conditions were plated in duplicate and
similar results were obtained from repeating the experiment two additional times
with splenocytes from different macaques.

Statistical analysis. Statistical analysis was performed as indicated in the figure
legends. Ordinary one-way ANOVAs followed by Tukey’s post-hoc test for mul-
tiple comparisons were used to analyze data in Figs. 4b, c and 5b, c, g, h, followed
by Dunnett’s post-hoc test for comparison to control group in Figs. 4f, h, 5g, and
7e, f. Two-way ANOVA was used to analyze data in Figs. 4i–l and 5h followed by
Tukey’s post-hoc test for multiple comparisons. Differences in individual tissues in
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Fig. 4m were analyzed by two-way repeated-measures ANOVA followed by
Tukey’s post-hoc test for multiple comparisons. Correlation plots in Figs. 6b, d, f
and 7e, f were analyzed by one-tailed Spearman tests and visualized with a simple
linear regression line. Viral load is presented and analyzed using log10 transformed
data. Statistical significance was determined at the significant alpha level of 0.05. All
statistical analysis was performed in GraphPad Prism 9.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets analyzed during this study are included in this published manuscript and
its Supplementary Information. Source data for all figures and supplementary materials
are provided with this paper. All other data are available from the corresponding author
on reasonable request. Source Data are provided with this paper.
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