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a b s t r a c t 

Common executive functioning (cEF) is a domain-general factor that captures shared variance in performance across diverse executive function tasks. To investigate 

the neural mechanisms of individual differences in cEF (e.g., goal maintenance, biasing), we conducted the largest fMRI study of multiple executive tasks to date 

( N = 546). Group average activation during response inhibition (antisaccade task), working memory updating (keep track task), and mental set shifting (number–letter 

switch task) overlapped in classic cognitive control regions. However, there were no areas across tasks that were consistently correlated with individual differences 

in cEF ability. Although similar brain areas are recruited when completing different executive function tasks, activation levels of those areas are not consistently 

associated with better performance. This pattern is inconsistent with a simple model in which higher cEF is associated with greater or less activation of a set of 

control regions across different task contexts; however, it is potentially consistent with a model in which individual differences in cEF primarily depend on activation 

of domain-specific targets of executive function. Brain features that explain commonalities in executive function performance across tasks remain to be discovered. 

1. Introduction 

Executive functions (EFs) are a family of cognitive processes that 
regulate goal-related behavior. Individual differences in EF abilities 
are "important to just about every aspect of life" ( Diamond, 2013 , p. 
137). The variance shared across diverse EF tasks, a Common Execu- 
tive Functioning (cEF) factor ( Friedman and Miyake, 2017 ), appears to 
be a particularly important dimension of individual differences, show- 
ing stronger relationships to outcomes compared to individual EF tasks. 
In particular, cEF is associated with important life outcomes including 
academic achievement (Cantin et al., 2016), self-regulation (Gustavson 
et al., 2015), subjective well-being (Toh et al., 2020), psychopathology 
( Friedman et al. (2008) ; Harden et al., 2020; McTeague, Goodkind, & 

Etkin, 2016; Snyder et al., 2015), and substance use ( Gustavson et al., 
2017 ; Jones et al., 2020). Despite this importance, we still know very 
little about the neural basis of individual differences in cEF. Although 
the areas that are typically more active during EF-demanding com- 
pared to baseline conditions across tasks are well documented (e.g., 
Niendam et al., 2012 ), it is not known whether activation differences 
in these areas or other areas across tasks are associated with better cEF 
ability. To date, only a handful of studies with modest N (for individual 
differences questions) have examined individual differences, and those 
tend to focus on individual tasks or EF abilities, such as a response inhi- 
bition or task set shifting ( Jamadar et al., 2010 ; Wager et al., 2005 a, b . 
Here, we investigate the neural correlates of a cEF factor score in the 
largest multi-task fMRI study ( N = 546) of EFs to date. We evaluate 

∗ Correspondence author at: Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States. 

E-mail address: andrew.reineberg@colorado.edu (A.E. Reineberg). 

whether individual differences in a highly stable cEF factor that captures 
shared variance in across three separable EF components (response in- 
hibition, working memory updating, and mental set shifting) are associ- 
ated with similar patterns of brain activation or functional connectivity 
across tasks tapping each of these EF components. 

Most neuroimaging studies have focused on the frontoparietal and 
cingulo-opercular areas that tend to activate across individuals during 
EF tasks ( Collette et al., 2005 ; Duncan, 2010 ; Fedorenko et al., 2013 ; 
Nee et al., 2013 ; Dosenbach et al., 2006 ; Niendam et al., 2012 ), rather 
than areas that distinguish between individuals as a function of their 
level of EF performance. Yet the brain regions that activate consistently 
across individuals for any given task may not necessarily be sensitive to 
individual differences ( Yarkoni and Braver, 2010 ). 

Of those studies that do investigate the neural basis of individual dif- 
ferences in EFs, there are two notable issues. First, they have focused on 
single EF tasks. One obstacle to understanding individual differences in 
EFs is that EFs are by definition domain general processes that control 
lower-level processes in diverse contexts. Any one EF task offers only 
a glimpse of this unobservable construct, in which the EF of interest 
cannot be separated from the particular context in which it is observed 
(e.g., a categorization task that also requires stimulus processing, re- 
sponse mappings, etc.). Thus, to get a full picture of an EF, one has to 
measure performance in multiple contexts or tasks and look at what is 
common across these contexts (Miyake et al., 2000). This multi-task ap- 
proach has become popular in the behavioral literature, but is rarely 
adopted within the neuroimaging literature. Most studies focus on a 
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single EF task (e.g., Ravizza & Carter, 2008, Jamadar et al., 2010 ; 
Burgess et al., 2011; Wager et al., 2005 a, Purkayastha et al., 2008 ). 

Second, most fMRI studies of EF individual differences to date are 
modest in sample size (e.g., N = 18, Jamadar et al., 2010 ; N = 43, 
Wager et al., 2005 a). Small sample sizes are particularly limiting for 
fMRI studies of individual differences, which require larger sample sizes 
to detect reliable and reproducible associations), compared to studies 
that focus on group mean effects ( Yarkoni, 2009 ). For example, nearly 
200 participants are required for 80% power to detect a small effect, 
r = 0.20, as is commonly observed in the imaging literature, at an al- 
pha = 0.05 (not accounting for multiple comparisons). Consortium-level 
and biobank-scale projects (such as the UK Biobank; Bycroft et al., 2018) 
are attempting to overcome the limits of small sample sizes. However, 
by design, they usually fall victim to the first concern by not measur- 
ing EFs with high resolution in an effort to maximize the sample size. 
To date, no study has simultaneously addressed both of these concerns 
by deeply phenotyping EFs in a sample that is appropriately sized for 
individual differences analyses. 

Here, we present the first large study ( N = 546) to investigate asso- 
ciations of task-related fMRI activations/connectivity in multiple tasks 
with individual differences in a highly reliable cEF factor ( Friedman and 
Miyake, 2017 ). We measured cEF with a battery of six tasks tapping 
response inhibition, working memory updating, and mental set shifting 
abilities. Three of these tasks (one per EF component) were adminis- 
tered in an fMRI context, and three were administered outside the scan- 
ner. This design allowed us to evaluate neural correlates of individual 
differences in cEF across multiple tasks that tap separable EF constructs. 

Specifically, we use activation and connectivity analyses to evaluate 
hypotheses related to the two main mechanisms proposed to drive cEF 
individuals differences: actively maintaining goals and using those goals 
to bias ongoing processing ( Friedman and Miyake, 2017 ). From a neural 
perspective, goal maintenance refers to sustained activation or attractor 
dynamics ( Braver and Cohen, 2000 ) in frontal areas that allow informa- 
tion to be held on-line so it is accessible in the focus of attention. The 
neural implementation of goals involves linking desired actions/states 
with the multimodal information relevant to those states, which is par- 
ticularly important in difficult EF tasks when the desired link between 
goals and sensory information rapidly changes based on tasks demands, 
or is poorly established by default ( Miller and Cohen, 2001 ). Goal main- 
tenance is hypothesized to be supported by lateral prefrontal cortex, 
whereas processing of lower-level information relevant to goals is dis- 
tributed across relevant portions of association cortex and thus should 
spatially vary based on the specifics of the task at hand. 

Hence, our first set of analyses leverages multi-task conjunctions to 
ask Question 1: Is variability in cEF associated with an overlapping 

or task-specific spatial pattern of activation across three EF tasks? 

We are primarily interested in the spatial pattern of individual differ- 
ences results within frontoparietal regions that are commonly impli- 
cated in EF tasks. We propose four possible outcomes: (1a) If individ- 
ual differences in cEF reflect high-level goal maintenance, we should 
observe that cEF differences are related to activation of dorsolateral 
prefrontal cortex during all three tasks. (1b) If individual differences 
reflect variation in top-down attentional control, in a domain-general 
manner, to lower-level goal-related information (such as increasing ac- 
tivation to goal-relevant stimuli dimensions; Jessen et al., 1999 ), we 
might observe common activation in regions that are more proximal to 
the target/s of cognitive control, such as the lateral parietal cortex. (1c) 
If instead cEF differences reflect variation in processing of task-specific 
lower-level associative information, we would expect to see that acti- 
vation differences related to cEF are spatially inconsistent across tasks 
and include lower-level sensory areas. (1d) Finally, individual differ- 
ences in EF may be may be related to other brain regions not typically 
activated during goal-directed behavior. For example, some work sug- 
gests the default network may have functions complementary to those 
of the frontoparietal network such as formation of conceptual maps 
( Constantinescu et al., 2016 ) or integration of prior knowledge to in- 

form new situations ( Schlichting and Preston, 2015 ). That said, the in- 
ternal mentation functions commonly associated with the default net- 
work ( Andrews-Hanna, 2011 ) could also be seen as distracting in the 
context of demanding externally-directed tasks, so it is not yet clear 
whether more or less default activation will be associated with individ- 
ual differences in cEF. 

Goal maintenance and other mechanisms that could manifest in fMRI 
activations may not be the only mechanisms relevant to individual dif- 
ferences in EF. One can maintain the goal and yet fail to implement it 
when appropriate, as illustrated by “goal neglect ” ( Duncan et al., 1996 ). 
This observation is consistent with Friedman and Miyake (2017) sugges- 
tion that goal maintenance and the use of those goals to bias ongoing 
processing may be separable mechanisms, with the latter related to con- 
nectivity between brain regions. Specifically, in computational models 
of EF, individual differences in biasing are implemented by manipulat- 
ing connectivity strength between frontal maintenance areas and pos- 
terior areas that process lower-level information necessary for the task 
at hand (i.e., targets of control; Herd et al., 2014 ). An important area 
involved in such biasing is middle frontal gyrus (MFG), which can adap- 
tively connect to other cortical areas based on task demands ( Cole et al., 
2013 ; Depue et al., 2015 ). 

Thus, our second set of analyses used task-based functional connec- 
tivity analysis to evaluate Question 2: Is variability in cEF associated 

with connectivity of lateral prefrontal cortex across the three neu- 

roimaging tasks? If lateral prefrontal cortex is responsible for biasing 
the activity of other brain areas, task-based functional connectivity anal- 
yses should reveal that cEF is associated with change in connectivity of 
those areas involved in biasing (lateral prefrontal cortex) when tasks 
become more demanding. We propose three possible outcomes for the 
task-based functional connectivity analyses: 2a) Lateral prefrontal cor- 
tex biases processing in a posterior area common to all EF contexts. 2b) 
Lateral prefrontal cortex biases processing in task-specific posterior ar- 
eas. 2c) Lateral prefrontal cortex is not involved in biasing as measured 
by task-based functional connectivity. 

2. Methods 

2.1. Resource availability 

Data and Code Availability . All unthresholded statistical maps will be 
made available in Neurovault (neurovault.org) upon publication. Fur- 
ther information and requests for data should be directed to the lead 
contact, Andrew Reineberg (andrew.reineberg@colorado.edu). 

2.2. Participant details 

Analyses used data from a total of 546 individuals who had data for 
at least one task (237 male/309 female; M age = 28.67 years, SD age = 0.63 
years, range = 28 - 32 years): n = 443 for the antisaccade task, n = 488 
for the keep track task, and n = 480 for the number–letter task; 358 
participants had usable data for all three scanner tasks. These individu- 
als were a subset of the initial sample scanned (587 individuals), after 
data were removed due to incidental anatomical findings or excessive 
movement during the scanning session based on the criteria of greater 
than 3 mm translation (motion in x, y, or z plane) or 3° rotation (roll, 
pitch, or yaw motion). Participants were part of the Longitudinal Twin 
Study (LTS), a long-term longitudinal study of twins in Colorado re- 
cruited from the Colorado Twin Registry based on birth records (see 
Corley et al., 2019 ; Rhea et al., 2006 , 2013 ), for additional informa- 
tion). Of the 546 individuals, there were 119 pairs of monozygotic (MZ) 
twins, 109 pairs of dizygotic (DZ) twins, 41 MZ twin singletons, and 49 
DZ twin singletons. Singletons are members of twin pairs whose cotwins 
either did not participate or were excluded from analysis. Based on self- 
report, the entire LTS sample is 92.6% White, 5.0% more than one race, 
< 1% American Indian/Alaskan Native, < 1% Pacific Islander, and 1.2% 
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unknown/not reported. Hispanic individuals composed 9.1% of the sam- 
ple. Participants were paid $150 for participation in the study or $25 
per half an hour for those who did not finish the entire 3-hour session. 

Ethics Statement . All study procedures were approved by the Institu- 
tional Review Board of the University of Colorado Boulder. 

2.3. Procedure 

The study was run in a single 3-hour session. Following informed 
consent, participants were familiarized with the imaging procedures in- 
cluding practice versions of the tasks to ensure comprehension later in 
the scanner. They first completed a 1.5-h scanning session. The follow- 
ing scanning sequence order was used for all participants: scout localizer 
scan, 6-minute resting-state scan (not analyzed in the current study), 
structural scan, antisaccade task, keep track task, number–letter task, 
and a diffusion tensor imaging sequence (not analyzed in the current 
study). After the scans, participants returned to a behavioral testing 
room to complete three additional EF tasks – Stroop, category-switch, 
and letter memory, in that order. If both twins of a pair participated 
on the same day, the twins completed the protocol consecutively (twin 
order randomized) with the same ordering of behavioral testing and 
imaging acquisition. 

Participants were scanned in a Siemens Tim Trio 3T ( n = 259) 
or Prisma 3T ( n = 287) scanner (the Trio scanner was upgraded ap- 
proximately halfway through the study). Scanner type was included 
as a nuisance regressor in all analyses. Neuroanatomical data were ac- 
quired with T1-weighted magnetization prepared using rapid gradient 
echo magnetization sequence (acquisition parameters: repetition time 
(TR) = 2400 ms, echo time (TE) = 2.07, matrix size = 320 × 320 × 224, 
voxel size = 0.80 × 0.80 × 0.80 mm, flip angle (FA) = 8.00°, slice thick- 
ness = 0.80 mm). Functional data were acquired with T2 ∗ -weighted 
echo-planar functional scans. Acquisition parameters were: number of 
volumes = 966 for each run of the antisaccade task (2 runs total), 784 
for each run of the keep track task (3 runs total), 1588 for each run 
of the number–letter task (2 runs total); TR = 460 ms; TE = 27.2 ms; 
multi-band acceleration factor = 8; matrix size = 82 × 82 × 56; voxel 
size = 3.02 × 3.02 × 3.00 mm; FA = 44.0°; slice thickness = 3.00 mm; 
field of view (FOV) = 248 mm. 

Behavioral and Imaging Tasks 

The battery of six tasks is an abbreviated version of the nine-task 
battery used in the LTS study in prior waves of data collection (see 
Friedman et al., 2016). It contained two tasks from each of three EF 
components: response inhibition, working memory updating, and men- 
tal set shifting. One task from each component was administered during 
fMRI (antisaccade, keep track, and number–letter) and one task from 

each category was administered outside the scanner (Stroop, letter mem- 
ory, and category-switch). These tasks were chosen to align the current 
study with the rich longitudinal historical data available for LTS partici- 
pants and to allow for future longitudinal analyses. We have found these 
tasks effective at eliciting genetic and environmental individual differ- 
ences in prior waves of data collection (Friedman et al., 2016) and useful 
in prior individual differences analyses exploring EF relationships with 
psychopathology ( du Pont et al., 2019 ; Friedman et al., 2020), substance 
use ( Gustavson et al., 2017 ), and stressful life events ( Morrison et al., 
2020 ), among many other associations. To maintain continuity with our 
prior work with this sample and ensure that we did not change the con- 
structs of interest, we maintained key aspects of the tasks (such as the 
short trial times used in the antisaccade), even when those would not 
be considered typical for a scanner task (as most scanner tasks are not 
focused on eliciting individual differences in performance). 

The design of the three non-scanner tasks was identical to that used 
in the age 23 battery administered to this sample (Friedman et al., 2016). 
All tasks included additional practice trials and "warm-up" trials at the 
beginning of each block that were not analyzed. 

The Stroop task (adapted from Stroop, 1935 ) captures the ability to 
stop a prepotent word reading response and instead name the color in 

which the words were printed. Participants voiced the color (red, blue, 
or green) of text presented on a black screen as quickly as possible. Re- 
action times (RTs) were measured with a ms-accurate voice key. There 
were three trial types: a block of 42 neutral trials in which 3–5 asterisks 
were presented in one of three colors (red, blue, and green); a block 
of 42 congruent trials in which color words were presented in matched 
font color (e.g., the word “RED ” displayed in red font); and two blocks 
of 42 trials each of incongruent trials in which color words were pre- 
sented in non-matched font color (e.g., the word “RED ” displayed in blue 
ink). Stimuli disappeared as soon as the voice key detected the response. 
Trials were separated by a 250 ms white fixation cross. The dependent 
measure was the mean RT difference between correct incongruent and 
neutral trials. 

The letter memory task (adapted from Morris and Jones, 1990 ) cap- 
tures the ability to maintain and update items in working memory. In 
each of 12 trials, participants viewed a series of 9, 11, or 13 consonants, 
with each letter appearing for 3 s. As each letter appeared, they had to 
say aloud the last four letters they viewed, including the current letter. 
The dependent measure was the proportion of 132 sets in which they 
reported the set of letters in the correct order. 

The category-switch task (adapted from Mayr and Kliegl, 2000 ) cap- 
tures the ability to shift between mental sets. In each trial, participants 
categorized a word according to animacy (i.e., living vs. non-living) or 
size (i.e., smaller or larger than a soccer ball), depending on a cue (heart 
or crossed arrows, respectively). The cue preceded the word by 350 ms 
and remained above the word until the participant responded with one 
of two buttons on a ms-accurate button box. The stimuli disappeared 
from the screen when the participant responded. There was a 350 ms 
delay between responses and the next trial. A 200-ms buzz sounded for 
errors. The task began with two single-task blocks of 32 trials each, 
in which participants categorized words only by animacy then only by 
size. Then participants completed two mixed blocks of 64 trials each, 
in which half the trials required switching the categorization criterion. 
The dependent measure was the local switch cost — the difference be- 
tween average response times on correct switch and no-switch trials 
within mixed blocks. RTs for trials following errors were also excluded 
from analysis, as the switch vs. repeat classification would be incorrect 
if participants were using the incorrect task set on those trials. 

Three tasks were adapted for fMRI from the versions used by Fried- 
man et al. (2016) with this sample. The antisaccade task ( Roberts et al., 
1994 ) requires inhibiting reflexive eye movements to a cue stimulus, 
instead saccading to the opposite side of the screen in time to see a 
briefly appearing target stimulus. Participants completed 20 s blocks of 
prosaccade, anti-saccade, and fixation trials (12 blocks of each across 
two runs; 5 trials per block for the prosaccade and antisaccade blocks). 
Each block was preceded by a jittered instruction (TOWARD, AWAY, 
or FIXATION for 2, 4, or 6 s) indicating the direction to which they 
should direct their attention relative to the cue. After a jittered fixation 
lasting 1–3 s, a small visual cue flashed on one side of the computer 
screen. The cue lasted for 234 ms, however, the duration of this cue was 
changed to 284 ms after the first 276 participants as we noticed low 

average performance in an interim analysis for another project. After 
the cue, a target (a digit from 0 to 9) appeared for 150 ms before being 
masked. The mask lasted 1650 ms, during which time the participant 
was instructed to vocalize the target. The cue and target appeared on 
the same side of the screen during prosaccade trials and opposite sides 
during anti-saccade trials. Hence, in order to identify the number on the 
antisaccade trials, participants had to avoid the tendency to saccade to 
the cue and instead immediately look in the opposite direction. The be- 
havioral dependent measure was the proportion of correctly identified 
targets on the 60 antisaccade trials. The main fMRI contrast of interest 
was antisaccade trials versus prosaccade trials. The antisaccade task was 
broken into 2 runs. 

The keep-track task ( Yntema, 1963 ) captures the ability to maintain 
and update information in working memory. Each trial was preceded 
by a 1500 ms instruction (REMEMBER, READ, or FIXATION) indicat- 
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ing the trial type. On each remember trial, 500 ms after the instruction 
disappeared, a fixation cross appeared in the center of the screen, and 
below it appeared 3 or 4 target categories (animals, colors, countries, 
distances, metals, or relatives). The categories remained on the screen 
throughout the trial. After a duration of 2, 4, or 6 s, a series of 16 words 
(2 s per word) appeared where the fixation was; each word belonged 
to one of the six categories. Participants had been shown the full list 
of words during the practice trials, so were familiar with them and the 
categories to which they belonged. After presentation of the words, a 
prompt ( “??? ”) appeared for 10 s and participants were instructed to 
orally recall the last exemplar of each target category. Because each 
list of 16 words contained 1–3 exemplars of each category, they had 
to update which words to remember and ignore words from irrelevant 
categories. In addition to these “Remember ” trials, the scanner version 
of the task included baseline conditions of “Read ” trials, in which par- 
ticipants just silently read the words without trying to remember them 

(followed by a 4 s " —" prompt during which they remained silent), and 
20 s rest (fixation) trials. The behavioral dependent measure was the 
proportion of the 45 words correctly recalled out of all trials where they 
were asked to remember words. The main fMRI contrast of interest was 
viewing the words in remember trials versus read trials. The keep track 
task was broken into 3 runs, each with 3 recall trials (two with 4 words 
to recall and one with 3), 3 read trials (also two with 4 categories and 
one with 3 categories present with the words), and 3 fixation trials. 

The number-letter task ( Rogers and Monsell, 1995 ) captures the abil- 
ity to shift between mental sets. In each trial, participants viewed a box 
sectioned into four quadrants. The borders of one quadrant were dark- 
ened as a cue for 350 ms before a number–letter or letter–number pair 
(e.g., 3F, G7) appeared inside. Participants were instructed to catego- 
rize the number as odd/even if the cued quadrant was one of the up- 
per 2 quadrants, or the letter as consonant/vowel if the cued quadrant 
was one of the lower 2 quadrants, using two buttons on a ms-accurate 
button box. The stimuli disappeared from the screen when categorized. 
There was 350 ms delay between response and the next trial. The trials 
were arranged in blocks, and rest blocks (20 s) were intermixed with 
the task blocks. Each block was preceded by a jittered instruction (TOP, 
BOTTOM, MIXED, or FIXATION for 2, 4, or 6 s) that indicated where 
the stimuli would appear for that block. In mixed blocks, half the trials 
were repeat trials in which the task stayed the same as the previous trial; 
the other trials required a switch in categorization task. Each block con- 
sisted of 13 trials. The first trial in each block was not counted because it 
was neither switch nor repeat. The behavioral dependent measure was 
the difference between average RTs on correct switch trials (i.e., trials 
in which a switch of mental set was made) versus correct trials in which 
no switch was made. As in the category-switch task, RTs for trials fol- 
lowing errors were also excluded from analysis, as the switch vs. repeat 
classification would be incorrect if participants were using the incor- 
rect task set on those trials. To equate all tasks based on the difficulty 
of their respective baseline conditions, the main contrasts of interest in 
the number-letter task analysis is switch vs. repeat trials in single-task 
blocks because repeat trials in the mixed context are more cognitively 
demanding than the baseline condition in the other imaging tasks. We 
also report results from the switch versus repeat trials in mixed blocks 
contrast (i.e., reflecting local switch cost) in the supplemental results 
for comparison to prior work that utilized this contrast. The task was 
broken into 2 runs, each containing eight mixed blocks, four single-task 
blocks (two number and two letter blocks), and four 20 s fixation blocks. 

2.4. Statistical analyses 

Behavioral data were processed with the same pipeline we used in 
a previous manuscript ( Reineberg et al., 2018 ). Reaction times were 
trimmed within-subject to obtain the best measures of central tendency 
within conditions ( Wilcox and Keselman, 2003 ). Extreme high and low 

scores at the between-subjects level (greater than 3 SDs from the group 
mean) were Windsorized by replacing them with the cutoff value of 

3 SDs above or below the mean to improve normality and reduce the 
impact of extreme scores while maintaining these scores in the distri- 
bution. Behavioral data from the antisaccade task were z-scored within 
each version (234 and 284 ms cue versions) prior to between-subject 
trimming to remove mean differences due to cue duration. 

After the trimming procedures, behavioral data from all six tasks 
were input to a confirmatory factor analysis in Mplus. The model for 
these six tasks was similar to the one used in prior waves of this lon- 
gitudinal study with nine tasks (Friedman et al., 2016): There were 
three orthogonal factors: a cEF factor on which all 6 tasks loaded, an 
orthogonal Updating-specific factor on which the keep track and let- 
ter memory tasks loaded, and an orthogonal Shifting-specific factor on 
which the number–letter and category-switch tasks loaded. To identify 
the orthogonal 2-indicator specific factors, the loadings for each specific 
factor were constrained to be equal after first scaling the tasks vari- 
ances to be similar that the standardized loadings would be equal. The 
resulting model fit was reasonable according to recommended thresh- 
olds for confirmatory fit index (CFI > 0.95) and standardized root mean 
residual (SRMR < 0.08), although the chi-square statistic was significant 
and the root-mean squared error of approximation exceeded the recom- 
mended value (RMSEA < 0.06): 𝜒2 (7) = 33.74, p < 0.001, CFI = 0.954, 
RMSEA = 0.081, SRMR = 0.040. As a similar model fit well and was used 
in the two prior waves of this longitudinal study, we proceeded with this 
model as specified and extracted cEF, Updating-specific, and Shifting- 
specific factor scores using the “SAVE = FSCORES ” option in Mplus. 

Image processing and data analysis were implemented using FSL 
version 5.0.9 (FMRIB, Oxford, UK, http://www.fmrib.ox.ac.uk/fsl/ ). 
A standard pre-processing was applied: motion correction, brain ex- 
traction, high pass filter (0.01 Hz), 8 mm FWHM spatial smoothing, 
and registration and spatial normalization to the Montreal Neurolog- 
ical Institute (MNI) 152-T1 2-mm template. Additionally, we applied 
an ICA-based single-subject denoising procedure (implemented in FSL’s 
AROMA tool) to each participant’s functional scan to remove artifact 
signal associated with breathing, heartbeat, movement, and other noise 
sources. 

Data were analyzed using FSL’s general linear model tool. Lower- 
level model regressors were task-specific, with each task having regres- 
sors of interest (e.g., antisaccade trials, prosaccade trials) and confound 
regressors (e.g., inter-trial intervals, error trials) as well as 6 linear head 
movement parameters (X, Y, Z, roll, pitch, yaw) and their squared val- 
ues. Each task had several 20-second fixation blocks, which were left 
as the un-modeled baseline per standard FSL procedure. The main con- 
trast of interest for each of the three EF tasks was between demand- 
ing EF events (antisaccade trials for antisaccade, remember trials for 
keep-track, and switch trials for number–letter) and less demanding 
events (prosaccade trials, read trials, and repeat trials within the sin- 
gle trial blocks) or fixation blocks controlling for nuisance events (e.g., 
pre-stimulus fixation cross events). 

For each lower-level contrast, an intermediate model was used to 
combine multiple runs, and one-sample t-tests were performed at the 
highest level to obtain the group average activation. The main focus of 
the current study was an additional higher-level model with a covariate 
for cEF to obtain an estimate of which brain region’s activity during the 
demanding versus less demanding condition covaried with cEF factor 
scores. These covariate (individual differences) models ask about acti- 
vation differences for those who are different in their cEF ability and 
should not be confused with group average models. Task-specific co- 
variates were used in secondary analyses (i.e., antisaccade performance 
covariate for antisaccade task analysis, etc.). In addition to a gender 
covariate, all models included a scanner covariate to account for the 
fact that approximately 50% of the sample’s data was obtained using a 
Siemens Trio scanner before upgrading to a Siemens Prisma scanner. In 
post-hoc analyses suggested during review, we checked for significant 
motion-BOLD relationships in all areas with significant cEF-BOLD rela- 
tionships. A single region from the antisaccade task cEF covariate results 
had a significant motion-activation relationship, however the effect of 
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Table 1 

Descriptive statistics for behavioral variables. EF = Executive Functioning. ∗ Split-half reliability (odd/even for Stroop task and category-switch task or run1/run2 for 

antisaccade task and number–letter task), adjusted with the Spearman-Brown prophecy formula. ̂Cronbach’s alpha across 3 runs for keep-track and 4 sets of trials 

for letter memory. † Pearson’s r between behavioral performance at current time and prior wave of data collection. ° 6-year stability for antisaccade task calculated 

across 234 and 284 ms cue versions. 

n mean sd min max skew kurtosis Reliability 6-year stability † 

Antisaccade (234 ms cue) 276 44.42 21.03 6.67 96.67 0.35 − 0.70 0.94 ∗ 0.68°

Antisaccade (284 ms cue) 289 58.95 21.25 8.33 96.67 − 0.36 − 0.77 0.93 ∗ 

Stroop 580 145.93 75.09 − 163.32 373.03 0.55 0.84 0.96 ∗ 0.48 

Keep track 579 0.77 0.13 0.36 1.00 − 0.69 0.14 0.74ˆ 0.51 

Letter memory 585 73.28 13.97 35.61 100.00 − 0.05 − 0.97 0.93ˆ 0.84 

Number-letter 568 182.22 120.73 − 60.54 565.48 0.93 0.94 0.93 ∗ 0.55 

Category switch 583 180.32 149.90 − 103.05 664.08 1.22 1.55 0.93 ∗ 0.66 

Common EF 587 0.00 0.81 − 2.42 2.02 − 0.13 − 0.45 0.80 

Shifting-specific EF 586 0.00 0.65 − 2.11 1.70 − 0.32 − 0.26 0.62 

Updating-specific EF 584 0.00 0.73 − 2.52 1.73 − 0.81 0.65 0.68 

cEF persisted after statistically controlling for individual differences in 
motion. 

FSL’s PALM permutation testing tool was used to account for non- 
independence associated with twin pairs. This tool allowed targeted per- 
mutation between and within twin pairs. We used FDR-corrected out- 
put from PALM unless otherwise noted. For conjunction analysis of the 
group average and covariate results, we binarized FDR-corrected stat 
maps for each task at a p fdr < 0.05 threshold. Binary maps were over- 
lapped and any location in the brain with a sum of 3 was plotted as a 
three-way conjunction. 

In addition to the standard task activation analyses outlined above, 
we performed functional connectivity analyses via the psychophysio- 
logical interaction (PPI) framework ( Friston et al., 1997 ). We were in- 
terested in whether individual differences in cEF were associated with 
the change in MFG connectivity from the less demanding to the more 
demanding EF condition of each task. In particular, we were interested 
in whether cEF was related to MFG connectivity with the regions impli- 
cated by the individual differences models from the task activation anal- 
yses. To perform the PPI analyses, we first extracted the time course for 
a classic cognitive control region (MFG; mask taken from the Harvard- 
Oxford atlas) for each participant and run. A contrast-coded regressor 
was created for each run of each task for the demanding condition (1) 
versus the less demanding condition (–1). Additionally, a dummy-coded 
regressor for the combined demanding and less demanding (both coded 
as 1) conditions was created. Using FEAT, we prepared a new lower-level 
model for each run that included the new contrast and dummy-coded 
regressors, the MFG time course, a regressor of nuisance components, 
and the interaction of the MFG time course and the contrast-coded re- 
gressor. The interaction effect is the main component of interest in PPI 
analyses, as it represents the location in the brain where connectivity 
to MFG changes as a function of task demands. We subjected the lower- 
level PPI results to the same intermediate models (to combine runs) and 
higher-level group models (with cEF covariate and nuisance regressors) 
as described above. To ascertain whether the regions from the task ac- 
tivation analyses emerged in the task-based connectivity cEF covariate 
maps, we masked the results of the PPI models in each task by the re- 
spective individual differences maps from the task activations analyses. 
For this analysis, we did not utilize a correction for multiple compar- 
isons because we considered the masked areas from the task activation 
covariate maps a priori areas of interest. 

3. Results 

3.1. Behavioral results 

Descriptive statistics for all six behavioral tasks and three factor 
scores are provided in Table 1 . The 234- and 284-ms cue versions of 
the antisaccade task differed in mean accuracy but not reliability. cEF, 
Shifting-specific, and Updating-specific latent variables are orthogonal. 

However, their factor scores are moderately correlated because they are 
imperfect approximations of latent variables due to factor score inde- 
terminacy. Factor score determinacy estimates for the complete data 
pattern were 0.815, 0.652, and 0.733 for cEF, Updating-specific, and 
Shifting-specific factors respectively. cEF factor scores positively cor- 
related with Updating-specific ( r = 0.360, p < 0.001) and Shifting- 
specific ( r = 0.253, p < 0.001) scores, whereas Updating-specific and 
Shifting-specific factor scores were negatively correlated ( r = − 0.317, p 
< 0.001). Regarding correlations of the behavioral scores from the three 
scanner tasks, antisaccade performance was positively correlated with 
keep track performance ( r = 0.34, p < 0.001). After reverse scoring the 
category–switch task so that higher scores would indicate better perfor- 
mance (lower shift costs), category-switch performance was positively 
correlated with Antisaccade performance ( r = 0.34 p < 0.001) and keep 
track performance ( r = 0.21, p < 0.001). Descriptive statistics, reliabil- 
ity, and the pattern of relationship among cEF, Updating-specific and 
Shifting-specific factor scores closely replicate the results of an identical 
analysis of EF behavior in the first 250 participants of the current wave 
of data collection in the LTS sample ( Reineberg et al., 2018 ). 

Because the ability to measure robust intercorrelations among cog- 
nitive tasks depends, in part, on the reliability of the individual tasks 
(Draheim et al., 2021, Hedge et al., 2018 ), we assessed the internal re- 
liability ( Table 1 ) and 6-year test-retest reliability of our tasks. Internal 
reliability was high for all tasks (0.74 to 0.96). Consistent with our goal 
of measuring the same individual differences constructs we had previ- 
ously measured in this sample, performance in the three scanner tasks 
correlated well with the behavioral versions of the same tasks admin- 
istered 6 years earlier (Friedman et al., 2016), r s = 0.51 to 0.68, p s < 

0.001. These correlations were comparable to the 6-year test-retest cor- 
relations of the 3 behavioral tasks we administered outside of the scan- 
ner, r s = 0.48 to 0.84, p s < 0.001. cEF, Updating-specific, and Shifting- 
specific factor scores for this assessment also showed strong correlations 
with those from the prior wave (based on 9 tests): r s = 0.796, 0.683, and 
0.624, respectively, all p s < 0.001. 

3.2. fMRI group average activation 

Group average maps for the main contrast of interest (i.e., demand- 
ing versus less demanding trials) for all three EF tasks and the three-way 
conjunction of these maps can be found in the left-hand column of Fig. 1 . 
The group average maps for all three tasks ( Fig. 1 a–c) were very simi- 
lar. The three-way conjunction of group average maps ( Fig. 1 d) revealed 
clusters of peak activation common to all tasks and included classic fron- 
toparietal and cingulo-opercular activations as well as default network 
deactivations. 

Because we tried to equate all contrasts in the main analysis based 
on the difficulty of the baseline conditions, we focused on the global 
switch cost contrast for the number–letter task based on the easier base- 
line condition of repeat trials in a single task context. However, we pro- 
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Fig. 1. fMRI results . a-c. Group average activation for antisaccade, keep track, and number–letter tasks. d. Conjunction of group average map from all three tasks. 

e-g. Common Executive Functioning (cEF) covariate analyses. Individual differences maps for antisaccade, keep track, and number–letter tasks. h. Conjunction of 

individual differences maps for antisaccade, keep track, and number–letter tasks. Input maps are thresholded at p fdr < �0.05 = 0.368 rather than p fdr < 0.05 as in 

panels e, f, and g. red = positive activation or covariate association, blue = negative activation or covariate association. 

vide an analysis of the local switch cost contrast (switch versus repeat 
trials in the mixed context in the number–letter task) in a supplemental 
analysis for comparison to prior work ( Fig. S1 ). Activation for the local 
switch cost contrast was very similar to activation in the main contrast 
of switch (during mixed context) versus repeat (in single-task blocks), 
with additional sensory-somatomotor and insular activity in the latter. 

A comparison of unthresholded or minimally thresholded maps 
could be a useful alternative to a conjunction analysis, similar to how 

meta-analysis of unthresholded maps has utility over meta-analysis of 
foci when investigating consistency in effects across many studies in 
fMRI meta-analysis ( Salimi-Khorshidi et al., 2009 ). The statistical maps 
( Table 2 ) showed moderate to strong correlations ( r s = 0.39–0.77) when 
utilizing the subthreshold information (i.e., below the threshold for cor- 
recting for multiple comparisons). Although the group average activa- 
tion maps were very similar overall, there are notable differences across 
the three group average maps, which were most pronounced in posterior 
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Table 2 

Spatial correlation (Pearson’s r ) of all unthresholded z -statistic maps. Red = positive correlation, Blue = negative correlation. GLM = general linear 

model results; PPI = psychophysiological interaction analyses; cEF = Common Executive Functioning scores. 

cingulate cortex and the visual processing stream. The antisaccade task 
had more posterior cingulate cortex (PCC) deactivation and less visual 
activation than the other two tasks. The number–letter task had more 
visual activation and less PCC deactivation than the other tasks. 

To explore whether there might be heterogeneity across tasks for dif- 
ferent functional networks, we also looked at similarity of the statistic 
map after assigning voxels to one of 7 bins based on its functional net- 
work assignment derived from a commonly used parcellation ( Yeo et al., 
2011 ). This analysis allows us to assess whether correlation of group av- 
erage statistic maps ( Table 2 ) are driven by particular networks or are 
representative of a whole brain effect. For example, the overall correla- 
tion among the three tasks could be misleading if, for example, fron- 
toparietal, dorsal attention, and ventral attention network activation 
were extremely correlated across all tasks but the default network was 
not. The distribution of voxel activations by functional network and 
correlation of the group average statistic maps by functional network 
is described in detail in Fig. S2 . This analysis predominantly revealed 
agreement in the correlation of per-network activations across the three 
task maps; however, the whole brain correlation ( Table 2 ) of antisac- 
cade and keep track maps may be suppressed because of heterogeneity 
across functional networks (e.g., there is a correlation of activity in the 
two tasks for all networks except the default network). 

3.3. Is variability in cEF associated with an overlapping versus task-specific 

spatial patterns of activation across three tasks? 

To investigate question 1, we used covariate models to quantify 
the relationship between cEF and change in activity from the less de- 
manding to higher demanding task conditions. The cEF covariate re- 
sults are shown in Fig. 1 e–g and described in Tables 3 –5 for the anti- 
saccade, keep track, and number–letter tasks, respectively. These maps 
were much less spatially consistent than the group average maps ( Fig. 1 , 
left hand column). 

The three individual differences maps had no areas of three-way 
overlap based on our a priori analysis plan for conjunctions (overlap 
of the three FDR-corrected maps presented in Fig. 2 ). Upon loosening 
the threshold for significance so the joint probability was less than 0.05 
in the three-way conjunction (i.e., each individual map thresholded at 
p fdr < �0.05 = 0.368), there were several small areas of overlap. Across 
tasks, higher levels of cEF were associated with increased activation of 
bilateral precuneus, left posterior cingulate cortex, left lateral parietal 
cortex, and left anterior middle temporal gyrus ( Fig. 1 h ). These areas 
of weak overlap tend to be in the default mode network, supporting 
the fourth proposed mechanism for cEF individual differences (associ- 
ation with regions not typically during goal-directed behavior such as 
the default network). However, the directionality was such that higher 
cEF was associated with less deactivation of the default mode network 
during more demanding conditions. 

Although there were no regions in the three-way overlap of the 
FDR-corrected cEF individual differences maps, there were overlapping 
regions when ignoring directionality of effects. Upon absolute value 
transformation of the cEF covariate maps, clusters of overlap ( Fig. 

S5 ) included bilateral MFG, medial superior frontal gyrus, left angu- 
lar/superior parietal cortex, and the cerebellum. These areas were all at 
the anatomical borders between major functional networks. 

We were mindful that conjunctions are sensitive to thresholding deci- 
sions. To determine how similar the cEF covariate maps were, including 
all subthreshold information in the map and not just the information 
that exceeded our threshold for statistical significance, we correlated 
all pairwise combinations of the three maps as we did previously for the 
group average maps. The whole brain spatial correlation of unthresh- 
olded cEF covariate statistic maps for the three tasks is described overall 
in Table 2 . Correlations between tasks were moderate-to-strong for all 
pairs of tasks (| r | = 0.21 - 0.60). However, these correlations varied in 
direction, with a positive correlation between the cEF-related pattern 
for keep track and category-switch, but negative correlations of those 
two patterns with the cEF-related pattern for antisaccade. The opposite 
direction of these correlations is inconsistent with a simple model in 
which higher cEF is associated with greater or less activation of a set of 
regions across different task contexts. 

Additionally, to explore whether cEF-related activations show con- 
sistency across all three tasks for all networks, we calculated correlations 
between pairs of tasks after grouping voxels by functional network as- 
signment as described by Yeo et al. (2011) ( Fig. S3 ). There appeared to 
be some heterogeneity: For example, although the whole brain correla- 
tion of antisaccade with keep track cEF covariate maps is only moder- 
ate overall, the cEF-related sensory-somatomotor network activation is 
more correlated than the overall correlation suggests. 

A final question of interest was whether the brain areas that are ac- 
tive on average in the EF tasks are the same areas that are associated 
with individual differences in the cEF covariate. When comparing the 
cEF-covariate analysis maps to the group-average activation within each 
task, many areas involved in individual differences in cEF reside in ar- 
eas active in the group on average. In fact, Table 2 and Fig. S4a re- 
veal the group average and cEF covariate maps are strongly correlated 
(| r | = 0.60 - 0.68) within task when examining the unthresholded statis- 
tic maps. As in the cross-task correlations, group average activation in 
antisaccade was negatively correlated with cEF covariate-related acti- 
vation. That is, voxels positively activated in the group average analy- 
sis tended to have negative activations associated with cEF individual 
differences. 

Due to task impurity, performance on any given EF task is driven by 
cEF as well as additional constructs. Therefore, a covariate statistic map 
based on performance on each task performed in the scanner should 
be a combination of cEF-covariate regions and additional task-specific 
regions. We derived covariate maps for in-scanner performance to com- 
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Table 3 

Composition of significant Individual differences clusters for keep track, number-letter, and antisaccade tasks . Each significant individual difference cluster (columns) was composed 

of voxels from one to several functional subareas (rows). Region labels taken from Harvard-Oxford cortical atlas (top series of rows), Harvard-Oxford subcortical atlas (middle series of row), 

and Diedrichsen cerebellar atlas (bottom series of rows; Diedrichsen et al., 2009 ). To be included as a column, a threshold of 100 contiguous voxels was used. To be included as a row, a 

threshold of 50 voxels was used. grey highlighted rows are regions with significant individual differences activations across all three tasks. Note, however, that antisaccade activations are 

negative whereas activations in the keep track and number–letter task are positive. 

Keep Track task Number-letter task Antisaccade task 

Region 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Frontal Pole 4489 

Insular Cortex 615 

Superior Frontal 

Gyrus 

180 122 623 2952 

Middle Frontal 

Gyrus 

217 220 84 204 740 3821 

Inferior Frontal 

Gyrus, pars tri. 

509 

Inferior Frontal 

Gyrus, pars oper. 

162 1302 

Precentral Gyrus 71 322 271 512 1406 

Temporal Pole 58 

Superior Temporal 

Gyrus, ant. 

63 

Superior Temporal 

Gyrus, post. 

93 513 54 101 

Middle Temporal 

Gyrus, post. 

306 174 379 

Middle Temporal 

Gyrus, temp. 

124 634 668 

Inferior Temporal 

Gyrus, ant. 

84 

Inferior Temporal 

Gyrus, temp. 

58 

Postcentral Gyrus 55 

Superior Parietal 

Lobule 

73 110 381 265 

Supramarginal 

Gyrus, ant. 

86 87 229 

Supramarginal 

Gyrus, post. 

68 87 514 760 362 1024 

Angular Gyrus 57 803 194 1211 

Lateral Occipital 

Cortex, sup. 

73 165 716 2844 54 660 1290 

Lateral Occipital 

Cortex, inf. 

1232 

Intracalcarine Cortex 685 231 

Juxtapositional 

Lobule Cortex 

125 146 308 

Paracingulate Gyrus 1578 

Cingulate Gyrus, ant. 804 

Cingulate Gyrus, 

post. 

233 

( continued on next page ) 
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Table 3 ( continued ) 

Keep Track task Number-letter task Antisaccade task 

Region 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Precuneous Cortex 2081 2833 54 

Cuneal Cortex 140 157 

Frontal Orbital 

Cortex 

995 

Lingual Gyrus 278 52 502 

Temporal Occipital 

Fusiform Cortex 

106 84 

Occipital Fusiform 

Gyrus 

187 710 

Frontal Operculum 

Cortex 

516 

Supracalcarine 

Cortex 

98 137 

Occipital Pole 107 372 

Left Lateral Ventrical 65 

Left Thalamus 330 72 145 

Left Caudate 119 343 

Left Putamen 217 

Brain-Stem 187 109 106 60 

Right Lateral 

Ventricle 

56 

Right Thalamus 226 226 

Right Caudate 57 344 

Right Putamen 166 

Left I-IV 835 63 105 343 635 843 

Right I-IV 708 302 250 422 

Left V 622 160 222 383 

Right V 597 150 69 121 

Left VI 357 131 

Vermis VI 196 100 

Right VI 179 96 

Left Crus I 172 74 

Vermis Crus I 161 62 

Right Crus I 155 

Left Crus II 114 

Vermis Crus II 102 

Right Crus II 68 

Left VIIb 60 

Vermis VIIb 58 

Right VIIb 57 

Left VIIIa 54 

Vermis VIIIa 52 
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Fig. 2. Task-based functional connectivity results . Individual differences in Common Executive Functioning (cEF) were associated with change in middle frontal 

gyrus (MFG; green) connectivity from the less demanding to the more demanding condition in each task. Connectivity result are masked by task activation cEF 

covariate maps and uncorrected for multiple comparisons. Connectivity beta values for the largest cluster for each task were extracted as examples. Scatterplots those 

connectivity betas versus cEF scores (residualized on age, sex, and scanner) are shown on the right for example clusters from maps on the left (black circles). 

pare them to the cEF maps as an exploratory look at regions relevant for 
task-specific individual differences (see Fig. S6a–c ). If the task-specific 
performance covariate maps are very similar to the cEF covariate maps, 
then cEF-related neural mechanisms explain most of the behavioral vari- 
ation for that task. This exploratory analysis suggests the localization of 
cEF and task-specific performance effects is largely the same in the brain 
(for details see Supplementary Information and Fig. S6c ). 

3.4. Is variability in cEF associated with connectivity of lateral prefrontal 

cortex across three tasks? 

To investigate question 2, we evaluated PPI models. The PPI re- 
sults presented below were not significant when conducting a whole- 

brain analysis and correcting for multiple comparisons across the brain, 
suggesting they should be interpreted as preliminary evidence of a 
connectivity-based basis of individual differences in cEF. 

We measured changes in task-based connectivity of our a priori area 
of interest, MFG, from the less demanding to the more demanding con- 
dition in each task. We masked the PPI analysis results by the maps 
from Fig. 1 e–g to constrain our analysis to just those areas we previ- 
ously demonstrated to be related to individual differences in cEF. For all 
three tasks, some of the same areas from the GLM cEF covariate results 
described above emerged in this targeted task-based functional connec- 
tivity analysis. These results provide some support for our hypothesis 
that lateral prefrontal cortex may have a role in biasing processing in 
task-specific areas (via the observed connectivity) even though lateral 
prefrontal cortex itself did not emerge as a predictor of cEF individual 
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differences in the activation-based GLM analyses. Connectivity results 
and example scatterplots are provided in Fig. 2 . 

For antisaccade, higher cEF was associated with increased MFG con- 
nectivity from the harder to easier condition to inferior MFG/inferior 
frontal gyrus, sensory cortex, frontal pole, medial frontal cortex, and de- 
creased connectivity to lateral parietal cortex. For keep track, higher cEF 
was associated with increased MFG connectivity to visual cortex, motor 
cortex, and lateral parietal cortex. Finally, for number–letter, higher cEF 
was associated with decreased MFG connectivity to visual cortex, lat- 
eral parietal cortex, and precuneus. The spatial pattern of PPI and task 
activation covariate results was similar across the whole brain when 
considering all subthreshold (i.e., threshold for correction for multiple 
comparisons) information ( Fig. S4b ). 

4. Discussion 

This study is the largest multi-task fMRI study ( N = 587) of EFs to 
date, and was uniquely designed to determine if there is a set of brain 
regions that are commonly engaged across EF tasks as a function of in- 
dividual differences in cEF. We found robust group average activations 
within each of three task contexts as well as conjunction of the three 
tasks’ group average results. We also found robust activations associ- 
ated with individual differences in cEF in each individual task. However, 
there was no significant three-way conjunction of these individual dif- 
ferences results. Of several possibilities ( hypotheses 1a-1d in Introduc- 

tion ), our results for task activation analyses suggest the neural basis 
of cEF individual differences is spatially inconsistent ( hypothesis 1c ) and 
not restricted to frontal areas. Utilizing a lower threshold for statistical 
significance revealed default network activation may also be relevant to 
individual differences in cEF ( hypothesis 1d ). Although individual differ- 
ences in activation of frontal maintenance areas were not consistently 
associated with cEF individual differences across all task contexts, pre- 
liminary results suggested task-based connectivity of lateral prefrontal 
cortex may be associated with individual differences in cEF across all 
task contexts ( hypothesis 2b ). However, because the connectivity results 
did not survive whole-brain correction for multiple testing, future work 
is required to more fully understand the role of prefrontal biasing in in- 
dividual differences in cEF. Individual differences in cEF are primarily 
reflected in activation of task-specific areas. 

Although our key finding, the lack of conjunction of the individ- 
ual differences covariate maps, is a null result, it is striking in the con- 
text of this study. We scanned a very large sample, assessed cEF per- 
formance rigorously with a factor scores of 6 reliable tasks, found a 
robust conjunction of activation at the group-level, and found robust 
patterns of cEF-related activation differences within each task. Never- 
theless, these robust cEF-related differences did not overlap across tasks, 
and in some cases reflected opposing patterns of associations. Similar 
null results have been briefly mentioned in prior reports: For example, 
Engelhardt et al. (2019) reported “no significant clusters of accuracy- 
correlated activity shared by the three tasks ” (p. 486) in their fMRI 
study of three EF tasks in 117 children, although they did observe signif- 
icant accuracy associations within each task. As unsatisfying as such a 
null result is, it is nevertheless informative. It challenges the somewhat 
prevalent, and very reasonable, assumption (evidenced by popular ROI 
approaches) that individual differences in cEF reflect variation in recruit- 
ment of the common cognitive control networks that are so strongly ac- 
tivated at the group level. Brain features that explain commonalities in 
EF performance across tasks remain to be discovered, and doing so will 
likely require alternative approaches to testing for spatial commonality, 
or alternative interpretations of task-specific associations. 

4.1. Support for task-specific neural correlates 

Our group-average results for each of the three tasks contained 
classic frontoparietal and cingulo-opercular activation as well as de- 
fault network deactivations. This pattern is consistent with prior 

group-average results from single tasks ( Duncan, 2010 ; Duncan and 
Owen, 2000 ; Kimberg et al., 2000 ; Luna et al., 2001 ; Wager et al., 2004 ; 
Wager and Smith, 2003 ), multi-task conjunctions ( Collette et al., 2005 ; 
Engelhardt et al., 2019 ), and meta-analyses of EF tasks ( McKenna et al., 
2017 ; Nee et al., 2013 ; Niendam et al., 2012 ; Owen et al., 2005 ). As 
such, it appears that our tasks successfully engaged brain regions typi- 
cally associated with EFs. 

Notably, however, individual differences in the extent to which these 
areas were activated was only weakly related to cEF ability. When con- 
sidering only cEF-related activation that met or exceeded our threshold 
for statistical significance (accounting for multiple comparisons), there 
was no three-way overlap, suggesting the most powerful correlates of EF 
are task-specific activations. Differences in activation in association cor- 
tex were the dominant feature in cEF covariate maps for the keep track 
and number–letter task. In addition, both the antisaccade task and keep 
track task had frontal activations associated with individual differences. 
Although this pattern of results was unexpected, it is not incompatible 
with existing theories of the neural basis of EF, such as the multiple de- 
mand network ( Duncan and Owen, 2000 ), the cascade of control model 
( Banich et al., 2000 ), and the hierarchical control model ( Christoff and 
Gabrieli, 2000 ). These theories focus on neural machinery necessary to 
complete particular cognitive tasks rather than how individual differ- 
ences in activations lead to differences in performance. 

Our results suggest researchers interested in activation related to in- 
dividual differences should be aware that task selection can critically 
affect the spatial pattern of results. Here we showed different EF tasks 
can even have individual differences activations in opposing directions. 
In the antisaccade task, high EF individuals were those who showed 
less activation in lateral frontal, superior medial, and anterior cingulate 
regions for the more demanding as compared to the less demanding con- 
dition. In the keep track task, higher cEF was associated with increased 
activation of frontal cortex for the more demanding compared to less 
demanding condition. A similar pattern was seen in the unthresholded 
maps: Although the covariate maps showed low to moderate correla- 
tions across tasks, the antisaccade cEF map was negatively correlated 
with the cEF maps for the other two tasks. When considering conjunc- 
tions regardless of directionality (i.e., in an absolute value analysis), we 
did see overlap in the fully corrected cEF covariate maps in several loca- 
tions at the borders of the dorsal/ventral attention, frontoparietal, and 
default networks. In this case, activation in similar areas was associated 
with individual differences in cEF, but the directionality of the effect 
changed with different task demands. No prior work led us to predict 
this differential pattern. If this pattern is not specific to this speeded an- 
tisaccade task but instead reflects a general property of inhibitory tasks, 
future work will be needed to determine why inhibitory task contexts 
may lead to cEF-associated deactivations while other EF task contexts 
lead to cEF-associated activations. 

Our results are also consistent with computational models of EF 
tasks. Computational models encode source-target relationships be- 
tween frontal cortex maintenance functions (e.g., attractor dynamics; 
Hazy et al., 2007 ) and association cortex that encodes sensory and mo- 
tor information relevant to the current goal ( Banich, 2009 ; Miller and 
Cohen, 2001 ; Munakata et al., 2011 ; Posner and Driver, 1992 ). Rela- 
tionships between sources and targets of control are often modified via 
changes in biasing, or connections between areas representing frontal 
cortex and posterior areas ( Herd et al., 2014 ). As in such models, in- 
dividual differences in biasing are reflected in task-based connectivity 
between frontal cortex and posterior areas as opposed to observing indi- 
vidual differences in task-set maintenance which would be detected by 
activation levels in GLM analyses. Consistent with this hypothesis that 
control is implemented via connectivity from frontal regions to poste- 
rior regions involved in goal-relevant processes, our task-based func- 
tional connectivity results indicated that individual differences in cEF 
were also related to the modulation of the spatially diverse task-specific 
regions by the same MFG region during each task, although these results 
were not significant at the whole-brain corrected level. Prior individual 
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differences work supports the idea that MFG is involved in flexible bi- 
asing ( Cole et al., 2015 ; Depue et al., 2015 ; Panikratova et al., 2020 ), 
perhaps due to its unique ability to fluidly connect to nearly all cortical 
areas ( Cole et al., 2013 ; Ito et al., 2017 ). 

Based on our results, future work might focus on connectivity of the 
lateral prefrontal cortex rather than exploring the complex spatial pat- 
tern of individual differences activations that may depend on task de- 
mands. However, connectivity of lateral prefrontal cortex may be only 
part of the story of individual differences. To make the best predictions 
about cognition using task-based activations, future studies may con- 
sider combining metrics from a priori areas such as lateral prefrontal 
cortex with information from across the whole brain. If a whole brain 
search is not desired, the current study suggests lateral parietal cortex, 
sensory cortex, and the default network are additionally involved in in- 
dividual differences, and as such should be considered as regions of in- 
terest for future work. 

The role of the default network in EF is particularly interesting 
given that the default network is typically associated with a variety 
of internally-directed functions ( Andrews-Hanna, 2011 ) and that de- 
crease in activation of this network is observed when participants are 
engaged in an externally-directed task ( Spreng et al., 2009 ). However, 
task-positive and task-negative networks can work synergistically under 
certain circumstances. For example, activation in the default mode net- 
work along with activation in the frontoparietal network can support 
goal-oriented behavior, as in autobiographical planning ( Spreng et al., 
2010 ). When we relaxed the threshold for conjunction significance for 
the input maps to a liberal threshold (so the probability of the product of 
significance across the three tasks was < 0.05) we also found evidence of 
common individual differences activation across all three tasks. In this 
relaxed conjunction analysis, we saw overlap across tasks for associa- 
tions with cEF in bilateral precuneus, left posterior cingulate cortex, left 
lateral parietal cortex, and left anterior middle temporal gyrus. These 
regions span all three major subdivisions of the default network, the 
hub regions, the medial temporal lobe subsystem, and the dorsal medial 
prefrontal subsystem, which are involved in valuation of motivationally 
salient information, memory-based simulation functions, and introspec- 
tion, respectively, among other functions ( Andrews-Hanna, 2011 ). Our 
results suggest these regions are important for individual differences in 
cognitive ability. Specifically, higher cEF was associated with higher de- 
fault network activity across the three EF tasks. One possibility is that 
high EF individuals could adaptively utilize the internal mentation func- 
tions of the default network highlighted above, such as memory-based 
simulation, to assist them in performance. However, there are other 
explanations. For example, high EF individuals may be able to toler- 
ate more noise from internal mentation while performing EF tasks and 
hence exhibit more activation of these regions during task contexts than 
those with low EF. Future work is needed to test these hypotheses. 

4.2. Strengths and limitations 

Our primary conjunction analyses assumed that activation in dif- 
ferent brain areas reflects different functions, which may be invalid. 
Specifically, we searched for conjunction of individual differences as an 
indicator of seemingly centralized functions such as goal maintenance, 
assuming such maintenance happens in one location. Maintenance of an- 
tisaccade related goals and keep track related goals could be localized 
in different places; however, there is little external evidence to support 
this claim. 

The current study reports an initial analysis of the neural basis of 
individual differences in cEF. The GLM and connectivity results pre- 
sented here do not represent all the possible neural implementations of 
individual differences in cEF or all the possible ways to test the goal 
maintenance and biasing hypotheses posed in the current manuscript. 
For example, the tasks we used were designed primarily to isolate 
sources of executive function. Future work could, for example, utilize 
multi-voxel pattern analysis ( Norman et al., 2006 ) to isolate and track 

variability in the strength of targets of control to an extent we were 
not able to in the current study. Additionally, individual differences 
in cEF may manifest via alternative measures we did not test here. 
For example, in our prior resting-state work, network-to-network con- 
nectivity ( Reineberg et al., 2018 ) as well as graph-theoretic properties 
( Reineberg and Banich, 2016 ) of several brain regions were associated 
with individual differences in executive functions. These and other mea- 
sures could be considered in future task-based fMRI studies of individual 
differences. 

A strength of our approach was the specialized design of the tasks 
to elicit individual differences. For example, we maintained the same 
temporal structure in the scanner that has been used in the past in a 
purely behavioral context. The time pressure adds difficulty that may 
not normally be present in scanning studies that have long inter-trial in- 
tervals. However, the speeded nature of the tasks means that our tasks 
may not be as comparable to prior imaging work in which individual 
differences were not the main focus. Arguing against this possibility, 
our group average activation results suggest the areas necessary to per- 
form our tasks are highly comparable to what is found in the existing 
literature as summarized above, both in terms of the task-specific re- 
sults, conjunctions, and meta-analyses. Thus, these versions of the tasks 
seem to be generally comparable to versions designed without regard to 
individual differences. 

Finally, our experiment was not designed to differentiate between 
differences in strategy selection versus differences in neural mecha- 
nisms. Experimenter instructions only communicated the goals for each 
EF task but did not instruct individuals on how to implement the goals 
cognitively. High cEF individuals may adopt different strategies in the 
three EF tasks compared to their lower-performing counterparts. Differ- 
ences in strategies across individuals are not out of the question and 
are a topic of interest in the aging literature, where older adults lower 
performance may be driven by adoption of less demanding (but less ef- 
fective) cognitive strategies ( Cabeza et al., 2018 ). Such differences are 
an issue for future exploration. 

5. Conclusion 

The current study is the first task-based activation study to examine 
the neural basis of individual differences in a cEF factor derived from 

performance on multiple EF tasks and in multiple task contexts. Al- 
though we found robust cEF-related activations in each task and sub- 
threshold patterns of cEF-related activation were correlated across task, 
the peak cEF-related activations after correcting for multiple compar- 
isons for each of three different EF tasks did not have any three-way 
conjunction. The role of the default network as observed in the analysis 
of individual differences in which we relaxed the significance thresh- 
old is a potentially novel mechanism to be explored in the future. cEF 
was not associated with the degree of lateral frontal activation in every 
task, although there was weak evidence for the hypothesis that cEF was 
associated with the functional connectivity of lateral prefrontal cortex 
to diverse task-specific areas, albeit at a much less rigorous standard of 
statistical significance when compared to the GLM analyses. Thus, there 
may be multiple contributors to good performance – quality of repre- 
sentations, default network activation to aid in internal mentation that 
may support task goals or task sub-processes, and strength of biasing 
towards domain-specific targets of control. 

These insights would not be possible without this rich dataset from 

multiple fMRI tasks completed by a large sample of participants. Had 

we observed how individual differences in cEF or task performance predicted 

activity in one task, as is typically done in prior studies, we would have ar- 

rived at very different conclusions about the areas associated with individual 

differences, depending on which task we had chosen ( e.g. , potentially mis- 

localizing a locus of goal maintenance). Thus, although the results of this 
conjunction analysis are complex, this complexity advances the litera- 
ture and may help resolve inconsistency in past studies with individual 
tasks. 
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