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Abstract

This thesis proves a general Thom Isomorphism in groupoid-equivariant KK-

theory. Through formalizing a certain pushforward functor, we contextualize the

Thom isomorphism to groupoid-equivariant representable K-theory with various

support conditions. Additionally, we explicitly verify that a Thom class, deter-

mined by pullback of the Bott element via a generalized groupoid homomorphism,

coincides with a Thom class defined via equivariant spinor bundles and Clifford

multiplication. The tools developed in this thesis are then used to generalize a

particularly interesting equivalence of two Thom isomorphisms on TX, for a Rie-

mannian G-manifold X.
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1 Introduction

The primary objective of this thesis is to carefully prove a Thom isomorphism in groupoid-

equivariant KK-theory [11], and contextualize it to groupoid-equivariant representable

K-theory [10]. Generally speaking, a Thom isomorphism in a cohomology theory applies

to only certain types of vector bundles E Ñ X. For example, in ordinary (e.g., singular)

cohomology, a Thom isomorphism only exists for oriented vector bundles; bundles like the

Möbius bundle on S1 do not admit a Thom isomorphism. To an oriented vector bundle

E Ñ X, a Thom isomorphism identifies the cohomology of X with the cohomology (of

a fiberwise-compactification) of E. For other cohomology theories, the relevant vector

bundles are still called orientable, but this can mean very different things. In the context

of K-theory, a vector bundle is K-orientable iff it admits a Spinc-structure. Examples

of bundles admitting a Spinc-structure include almost-complex vector bundles, complex

vector bundles, and real Spin-bundles, so each of these types of vector bundles admits a

Thom isomorphism in complex K-theory.

This thesis is written in the context of groupoid-equivariant K-theory, which is sub-

stantially more complicated than ordinary K-theory. One of the major complications

arises from the fact that spaces X, equipped with an action of a groupoid G, must be

fibered over the object space of G (loosely, in that there is a map ρ : X Ñ Gp0q). When

trying to define groupoid equivariant K-theory out of vector bundles, there are often too

few equivariant vector bundles to get a decent theory. The only definition that seems

to give an acceptable generalization of ordinary K-theory passes through K-theory for

C˚-algebras. Through the correspondence X Ø C0pXq, K-theory for C˚-algebras indeed

generalizes K-theory for locally compact Hausdorff spaces. Even more general is Kas-

parov’s KK-theory (e.g., [15]), which is a bivariant K-homology and K-theory hybrid,

denoted by KKpA,Bq for C˚-algebras A and B. This theory has incredibly rich struc-

ture, specifically through the application of a certain cup/cap product. A generalization

of KK-theory to the groupoid-equivariant setting was worked out by Pierre-Yves Le

Gall [11]. Spaces equipped with a groupoid action correspond to C˚-algebras that are

“fibered” over the object space of the groupoid, together with a system of ˚-isomorphisms

between fibers, which are continuously parameterized by the morphisms of the groupoid

G. These are called G-algebras, and Le Gall’s KK-theory is denoted by KKGpA,Bq for
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G-algebras A and B. Heath Emerson and Ralf Meyer collaborated on several papers

relating to groupoid-equivariant KK-theory (e.g., [8], [9], [7], [10]). In [10], they define

the groupoid-equivariant representable K-theory of X with Y -compact support to be

RKG,Y pXq :“ KKG˙Y
pC0pY q, C0pXqq.

This representable K-theory is more general than vector-bundle-defined counterparts,

and behaves better as a generalized cohomology theory. Therefore, it is an appropriate

generalization of ordinary K-theory to the groupoid-equivariant setting. A groupoid-

equivariant version of the Thom isomorphism in representable K-theory is generally

assumed to be true, despite a lack of suitable references in the literature. Specifically,

Emerson and Meyer use such an isomorphism extensively throughout their collaborations,

and it is integral to both their construction of a groupoid-equivariant geometric KK-

theory [7], and to their definition of an equivariant topological index formula [9]. For

their use of the Thom isomorphism, they implicitly reference Lemma 5.4 of [9], which

relies on their definition of orientation ([9], Definition 5.2). In this section, they state

that an analogue of the usual Thom class for a Spinc vector bundle π : E Ñ X, of (real)

rank-k, will give an orientation class τ P RKk
G,XpEq. They do not attempt to prove this,

nor do they elaborate upon the circumstances for which such a Thom isomorphism should

exist. Searching the literature more broadly, only a few papers seemed relevant. There is

a paper by Moutuou, [17], which develops a very different version of groupoid equivariant

KK-theory than the one introduced by LeGall in [11], and proves the Thom isomorphism

and twisted counterparts within that theory. However, the Thom isomorphism from

Moutuou’s work does not seem to restrict in a simple way to the Thom isomorphism

needed by Emerson and Meyer, who work in the context of LeGall’s definitions. Another

paper which deserves mentioning is [18], which proves a Thom isomorphism specifically

for groupoids arising as bundles of compact Lie groups, but does not provide us with a

sufficiently general result.

In addition to carefully proving a very general equivariant Thom isomorphism in this

thesis, we have included a few other details related to the Thom isomorphism. These

additional details are specifically included for the purpose of building the foundation

for eventually proving certain K-theoretic index theorems for groupoid-equivariant pseu-
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dodifferential operators, specifically through generalizing the approach taken by Erik van

Erp and Paul Baum in their papers [2], [3], and [4]. A neat proof of the Atiyah-Singer

index theorem (see [1]) is given in [3]. An index theorem for a certain class of non-elliptic

operators on contact manifolds is proved in [4], relying on the formalism discussed in [3].

Since our motivation for this thesis project is to eventually generalize these index theo-

rems to the groupoid-equivariant setting, working within the context used by Emerson

and Meyer is highly advantageous. In particular, they have already proved equivariant

index theorems for Dirac operators (Theorem 6.1 of [9]), which is a necessary step in

proving index theorems for more general operators. In fact, the particular statements

of index theorems used in Baum and van Erp’s papers are often via a commutative dia-

gram involving geometric K-homology (e.g., Theorem 5.04 of [3] for Elliptic operators, or

Theorem 5.5.1 of [4] for Heisenberg-elliptic operators on contact manifolds). The appro-

priate groupoid-equivariant analogue of this commutative diagram naturally involves the

equivariant geometric KK-theory developed by Emerson and Meyer in [7]. Before study-

ing groupoid-equivariant index theorems, our original motivation was to see if the index

theorem of [4] is generalizable to families of operators (an open question), and the fact

that Emerson and Meyer’s geometric KK-theory is the only theory that reduces to the

families case, we were naturally led to try and understand the full groupoid-equivariant

families setting. Although our original motivation was to prove such index theorems,

the body of this thesis does not discuss index theory directly, and only focuses on one

key aspect of this problem. The Thom isomorphism is a key ingredient of index theory,

since it converts the X-compactly supported representable K-theory of TX, a recepta-

cle for the topological data of an equivariant elliptic pseudodifferential operator, to the

X-compactly supported representable K theory of TTX. A detailed understanding of

this isomorphism, which involves equating two very different Thom isomorphisms for

TTX Ñ TX through a rotation trick, was used in [3] to prove the Atiyah Singer index

theorem. We use the formalism of this thesis to appropriately frame their rotation trick

within RKG in subsection 6.2.

In this thesis, we study the equivariant Thom class, denoted τE, of a Spinc-G-bundle

E Ñ X, which will be constructed in two very different ways. There is a rather direct

construction of τE that relies on constructing spinor bundles over E out of a principal

Spinc-bundle, then identifying them outside the zero section of E via Clifford multiplica-

3



tion. We will define τ via this construction. Part of the benefit of a concrete realization

of the Thom class via vector bundles lies in the fact that not all representable K theory

classes can be expressed in terms of vector bundles. That is, RKG,Y pXq (which is defined

to be KKG˙Y pC0pY q, C0pXqq) is generally strictly larger than V KG,Y pXq (i.e., a group

involving vector bundles, similar to classical K-theory). Of particular importance is the

fact that V K is closed with respect to Kasparov products (Theorem 2.7.7), implying

that many Kasparov products involving the Thom class can be computed more readily

in terms of vector bundle constructions.

To prove the equivariant Thom isomorphism, we adapt a non-equivariant argument

used by Le-Gall for compact spaces X ([11], THEORÈME 7.4). Le Gall’s proof in-

volves constructing an invertible KK-class via pullback of a model class, namely the

Bott-element on Rn, through a generalized groupoid homomorphism. A generalized

groupoid homomorphism from G to H can be thought of as a diagram of the form

GΩ

p˚

����

f

  

G H
for some open surjection, p : Ω Ñ Gp0q, and some strict groupoid homomorphism f ,

whose domain, GΩ, is a groupoid formed by taking the object space Ω with morphisms

from ω to ω1 defined to be the groupoid elements γ : ppωq Ñ ppω1q. For a generalized

groupoid-homomorphism φ : G Ñ H, Le Gall works out what it means to pull back

classes x P KKHpA,Bq to classes φ˚x P KKGpφ˚A,φ˚Bq. To prove the non-equivariant

Thom isomorphism for rank-k Spinc-bundles E Ñ X, Le Gall uses a generalized groupoid

homomorphism, φ, from X (as a groupoid with no morphisms) to Spinc
pkq to pull back

an invertible Spinc
pkq-equivariant KK-class, called the Bott element, to an invertible

KKpC0pXq, C0pEqq-class. We perform the same technique in a more general setting, and

since we do not require spaces to be compact, we further contextualize the approach to

the representable K-theory with Y -compact supports developed by Emerson and Meyer

in [10]. This contextualization requires formalizing something Emerson and Meyer refer

to as a forgetful functor, but is really more like a pushforward functor, which takes G˙X

objects (e.g., algebras, modules, KK-classes), and pushes them down to G ˙ Y objects

(algebras, modules, KK-classes) through a continuous G-map f : X Ñ Y . We denote

this functor by Ff , and work out the details of this functor in Section 5. Intuitively, for a
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G ˙X-object, A, Ff assembles all of the fibers Ax for x P f´1pyq, and treats it as a single

fiber over y P Y . Making this precise is not really that straightforward, so we dedicated

a whole section to it.

The specific version of the Thom isomorphism proved in this thesis is as follows.

Theorem 1.0.1 (Groupoid-Equivariant Thom Isomorphism). Assume all topologies are

second-countable and locally-compact Hausdorff. Let G be a topological groupoid, and let

X be a G-space. Suppose π : E Ñ X is a continuous Spinc-G-bundle on X of rank k over

R.

Then the Thom class of E, τ P RKk
G,XpEq, satisfies: for any G-space Y , and contin-

uous G-map f : X Ñ Y , the map

p¨q pb
C0pXq

Ff pτq : RKj
G,Y pXq Ñ RKj`k

G,Y pEq

is an isomorphism.

The body of this thesis is divided into 5 main sections. Section 2 is a terse compilation

of definitions and prerequisite knowledge. This section could be skipped and referred back

to if the need for clarification arises. Although nothing in this section is particularly new,

we provide explicit constructions for KK-products of V K-classes in Theorem 2.7.7.

In Section 3, we define G-equivariant Spinc-structures for G-bundles E Ñ X. Bundles

admitting such structure are the natural candidate for RKG-oriented vector bundles, and

we give a concrete definition for the Thom class corresponding to such a bundle. The

remainder of this section is dedicated to understanding the Bott generator element used

by Kasparov in [15], βn P KKSpincpnqpC, C0pRnqpbCℓpnqq, so that we can eventually relate

Le Gall’s pullback construction to the concretely defined Thom class of subsection 3.2.

Section 4 is a recapitulation of the pullback constructions used in [11]. The lengthy

examples in subsection 4.1 can mostly be skipped, since the only necessary construc-

tion from this subsection takes r-open regular graphs pΩ, r, sq to the associated pre-

homomorphism pΩ, r, fq. However, in later subsections, the examples are entirely related

to the Thom isomorphism. In particular, examples 4.2.5 and 4.3.2, are necessary com-

putations. We end this section by stating the main theorem of [11], that the equivariant

Kasparov product commutes with pullback.

5



Section 5 is where we define Ff , and we end this section by proving that Kasparov

product commutes with this functor.

Section 6 combines the work from each of the previous sections to prove that the Thom

class of a rank-k Spinc-G-bundle E Ñ X, defined in Subsection 3.2, is an

invertible element of KKG˙XpC0pXq, C0pEqq. We apply the functor Ff to this theorem

to contextualize it to representable K-theory with Y -compact supports, thereby proving

Theorem 1.0.1 stated above. We end this section by formalizing the rotation argument

of [3] within representable K-theory.

6



2 Prerequisite Definitions

2.1 Clifford Algebras

Clifford algebras are used extensively in KK theory. They are generally used to ma-

nipulate gradings, and their representation theory is essential to understanding Bott

Periodicity and the Thom isomorphism. The primary purpose of this subsection is to

establish notation.

Definition 2.1.1. The Clifford algebra of Rn, denoted Cℓpnq, is the R-tensor algebra

of Rn modulo the ideal generated by elements of the form xb y` yb x` 2 xx, yy, where

xx, yy is the standard dot product of x and y in Rn.

The complex Clifford algebra of Rn is Cℓpnq :“ CℓpnqbRC. There is an inclusion

of Rn into Cℓpnq, and an inclusion of Cℓpnq into Cℓpnq. We sometimes write Rn b 1 for

the elements of Cℓpnq in the image of these inclusions, and 1 b C for the image of the

natural inclusion of C into Cℓpnq.

Proposition 2.1.2. The C-algebra Cℓpnq, together with involution and norm, defined

below, is a C˚-algebra.

1. Define the involution to be the anti-multiplicative map generated by x˚ :“ ´x, for

x P Rn b 1 Ď Cℓpnq, and conjugation on 1 b C Ď Cℓpnq.

2. Define the norm on Cℓpnq by ||z||
2 :“ z˚z.

Because some references (specifically [15]) use a slightly different Clifford algebra in

certain constructions, we relate the two via the following proposition:

Proposition 2.1.3. Let ĂCℓpnq be the (complexification of) the tensor algebra of Rn mod-

ulo the ideal generated by elements of the form x b y ` y b x ´ 2 xx, yy, with involution

induced by conjugation and x˚ “ x on Rn b 1 (and ||z||
2

“ z˚z). Then Cℓpnq is isomet-

rically ˚-isomorphic to ĂCℓpnq.

Proof. Let f be the C-algebra homomorphism induced by sending xb1 P Rnb1 Ď ĂCℓpnq

to x b i P Cℓpnq.

7



Since fpxy b 1q “ px b iqpy b iq “ xy b p´1q, it follows that

fppxy ` yxq b 1q “ pxy ` yxq b p´1q “ p2 xx, yyq b 1 “ fp2 xx, yyq;

hence, f is well defined on equivalence classes. Also, fppx b 1q˚q “ fp´x b 1q “ ´x b

i “ px b iq˚ “ fpxq˚. The adjoint and multiplication on each algebra determine their

respective norms, so f is an isometric ˚-homomorphism. Since there is an obvious inverse

of f , it follows that f is an isometric ˚-isomorphism.

Note 2.1.4. The map induced by sending x b 1 P ĂCℓpnq to x b p´iq P Cℓpnq is also an

isometric ˚-isomorphism, but it will not preserve orientation (defined below).

Proposition 2.1.5. There exists an element ε P Cℓp2rq (unique up to a sign), such that:

1. ε2 “ 1,

2. ε˚ “ ε, and

3. εej “ ´ejε for all 1 ď j ď 2r.

8



Proof. The element ε :“ ire1e2 ¨ ¨ ¨ e2r (or ε :“ 1 if r “ 0) satisfies the following conditions.

ε˚
“ p´1q

rire˚
2re

˚
2r´1 ¨ ¨ ¨ e˚

1

“ p´1q
rirp´1q

2re2r ¨ ¨ ¨ e1

“ p´1q
rirp´e1e2qp´e3e4q ¨ ¨ ¨ p´e2r´1e2rq

“ p´1q
rirp´1q

re1e2 ¨ ¨ ¨ e2r

“ ε

ε2 “ ε˚ε

“ p´1q
ri2re˚

2r ¨ ¨ ¨ e˚
2e

˚
1e1e2 ¨ ¨ ¨ e2r

“ p´1q
2r

“ 1

ejε “ ireje1 ¨ ¨ ¨ e2r

“ irp´1q
2r´1e1 ¨ ¨ ¨ e2rej

“ ´εej for any 1 ď j ď 2r

Suppose S is another element satisfying the three conditions above. Then Sεej “

´Sejε “ ejSε for all j ď 2r. So Sε is in the center of Cℓp2rq (which is all multiples

of 1). Consequently, pSεq2 “ SεSε “ S2ε2 “ 1 and Sε “ ˘1, which implies that

S “ ˘ε´1 “ ˘ε.

Definition 2.1.6. An element ε P Cℓpnq, satisfying the conditions of Proposition 2.1.5,

will be called an internal grading element.

Proposition 2.1.7. For any x P Cℓp2r`1q, the condition xej “ ´ejx implies that x “ 0

(i.e., no internal grading element exists).

Proof. Notice that ε :“ ire1e2 ¨ ¨ ¨ e2r`1 “ ε2re2r`1 commutes with ej for all 1 ď j ď 2r`1,

and hence with all of Cℓp2r ` 1q. Suppose an internal grading element S P Cℓp2r ` 1q

exists. Then S commutes with ε, but ε is odd, so S must anti-commute with ε. This would

force us to conclude that S “ 0; however, since S2 “ 1, we reach a contradiction.

9



Although there is no internal grading element in Cℓp2r ` 1q, we still want to be able

to make certain choices canonically. To do this, we introduce the notion of orientation.

Definition 2.1.8. A orientation for a Clifford algebra Cℓpnq is a homogeneous element

ω P Cℓpnq such that ω˚ “ ˘ω, ω˚ω “ 1, and for all homogeneous x P Cℓpnq, xω “

p´1qBxpBω`1qωx.

The standard orientation on Cℓpnq is ωn :“ ine1e2 ¨ ¨ ¨ en; the standard orientation

on ĂCℓpnq is Ăωn :“ e1e2 ¨ ¨ ¨ en.

The internal grading element ε is an orientation for Cℓp2rq, and irε is the standard

orientation.

Proposition 2.1.9. The isomorphism f : ĂCℓpnq Ñ Cℓpnq defined in Proposition 2.1.3

satisfies fpĂωnq “ ωn.

Theorem 2.1.10 (C-Clifford Periodicity). For any r P N, there exists graded C˚-algebra

isomorphisms:

Cℓp2rq – M2rpCq,

Cℓp2r ` 1q – M2rpCq ˆ M2rpCq.

The grading on M2rpCq is given by the splitting into the first and second halves:

C2r “ C2r´1
‘ C2r´1

; the grading on M2rpCq ˆ M2rpCq is given by the grading-operator

that switches the two copies of M2rpCq.

Proof. We define maps φn recursively (and prove they isomorphisms inductively) as fol-

lows. Cℓp0q “ R bR C – M1pCq. Denote this isomorphism by φ0.

Cℓp1q “ pC ‘ Cre1sq{ ă e21 ` 1 ą. Define φ1 : Cℓp1q Ñ M1pCq ˆ M1pCq by φ1pe1q :“

pi,´iq.

For the recursive step, assume φ2r : Cℓp2rq Ñ M2rpCq and φ2r`1 Ñ M2rpCq ˆM2rpCq

have been defined and are isomorphisms for all r ă R.

Define φ2R : Cℓp2Rq Ñ M2RpCq by:1

1If R “ 1, then ε “ 1, and there are no ej with 1 ď j ď 2R´2. Therefore, when constructing φ2, only
use the last two cases in the recursive definition. One can verify the inductive step is a simplification of
the argument that follows.

10



φ2Rpejq :“

¨

˝

0 φ2R´2pejq

φ2R´2pejq 0

˛

‚ for 1 ď j ď 2R ´ 2

φ2Rpe2R´1q :“

¨

˝

0 ´I

I 0

˛

‚ and φ2Rpe2Rq :“

¨

˝

0 iφ2R´2pεq

iφ2R´2pεq 0

˛

‚

Because φ2R´2pεq induces the usual grading on M2R´1pCq (by hypothesis, φ2R´2 is a

graded isomorphism), we see that

S :“ φ2R´2pεq “ ˘

¨

˝

I 0

0 ´I

˛

‚, and φ2Rpe2Rq “

¨

˝

0 iS

iS 0

˛

‚

It is easy to verify that φ2R is a graded ˚-homomorphism. We will show that it is also

a C-vector space isomorphism. Let Σ˚
r be the set of all strictly increasing multi-indices

from the set t1, 2, ..., 2ru. Define eI for I “ pi1, i2, ..., i|I|q P Σ˚
j to be ei1ei2 ¨ ¨ ¨ ei|I|

. Denote

by Ic the strictly increasing multi-index consisting of all integers (up to 2r) not in I.

Take eH “ 1. For the following, let I P Σ˚
R´1.

φ2RpeIq “

¨

˝

0 A

A 0

˛

‚ for eI odd, and

¨

˝

B 0

0 B

˛

‚ for eI even

Note: A and B are both given by φ2R´2peIq, but for odd and even eI , respectively.

Therefore, A must be odd and B must be even, by inductive hypothesis. In what follows,

note that S is also of even-degree, and that iSA and iSB are both given by

iSφ2R´2peIq “ iφ2R´2pεeIq “
`

p´1q
|I|`

ř

I
˘

iRφ2R´2peIcq.

φ2Rpe2ReIq “

¨

˝

iSA 0

0 iSA

˛

‚ for eI odd, and

¨

˝

0 iSB

iSB 0

˛

‚ for eI even

φ2Rpe2R´1eIq “

¨

˝

´A 0

0 A

˛

‚ for eI odd, and

¨

˝

0 ´B

B 0

˛

‚ for eI even
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φ2Rpe2Re2R´1eIq “

¨

˝

0 iSA

´iSA 0

˛

‚ for eI odd, and

¨

˝

iSB 0

0 ´iSB

˛

‚ for eI even

These eight possibilities minimally (i.e., the collection is linearly independent) span all

combinations of even and odd block pairs, diagnonal and anti-diagonal block-pairs, and

alternating sign block-pairs. Together with the inductive hypothesis, this guarantees that

tφ2RpeIquIPΣ˚
R
is a basis for M2rpCq, concluding the proof that φ2R is a graded algebra

isomorphism. It is also a ˚-homomorphism due to the fact that all choices made in the

recursive definition are anti-Hermitian.

Since we are done with the even case, we will abuse notation slightly, and redefine ε

to be the internal grading element for Cℓp2Rq; S :“ φ2Rpεq. For φ2R`1 : Cℓp2R ` 1q Ñ

M2RpCq ˆ M2RpCq, we set:

φ2R`1pejq :“
`

φ2Rpejq, φ2Rpe˚
j q

˘

, for 1 ď j ď 2R

φ2R`1pe2R`1q :“ piS,´iSq .

It is easy to verify that φ2R is indeed a graded ˚-homomorphism. Let I P Σ˚
R.

φ2RpeIq “ pA,´Aq, for eI odd, and pB,Bq, for eI even.

Again, A must be odd-degree and B must be even-degree.

φ2Rpe2R`1eIq “ piSA, iSAq, for eI odd, and piSB,´iSBq, for eI even.

These 4 possibilites minimally span all combinations of even and odd pairs, and

alternating-sign pairs. Consequently, φ2R`1 is an isomorphism.

Corollary 2.1.11. Given an (a-priori ungraded) ˚-isomorphism φ : Cℓp2rq Ñ EndpV q,

the matrix φpεq provides a compatible grading on both V and on EndpV q, and makes φ

into a graded ˚-isomorphism.

Proof. The grading on V is determined by the +1 and -1 eigenspaces of the matrix S “

φpεq. The grading on EndpV q, induced by S, is given by conjugation by pSpAq :“ SAS.
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Since ε anti-commutes with odd elements of Cℓp2rq, so does S with the image of odd

elements under φ; hence, φ is a graded ˚-isomorphism.

Theorem 2.1.12. Any unital ˚-isomorphism φ : Cℓp2rq Ñ M2rpCq is unitarily equivalent

to the isomorphism φ2r constructed above. That is, there exists U P Up2rq such that

φpxq “ Uφ2RpxqU˚.

Proof. Proof by induction. There is exactly one unital isomorphism Cℓp0q Ñ C. For

Cℓp2q, we have that φ2pe1q “

¨

˝

0 ´1

1 0

˛

‚and φ2pe2q “

¨

˝

0 i

i 0

˛

‚. Therefore, φ2pe1e2q “

¨

˝

´i 0

0 i

˛

‚, and φ2pεq “ iφ2pe1e2q “

¨

˝

1 0

0 ´1

˛

‚. If φ : Cℓp2q Ñ M2pCq is any other

isomorphism, define β :“ tb, φpe1qbu, where b is a +1 unit-eigenvector of φpεq. Notice

that φpεqφpe1qb “ ´φpe1qp`bq “ ´φpe1qb is a -1 eigenvector for the unitary matrix

φpεq. The fact that xφpe1qb, φpe1qby “ xb,´φpe21qby “ ||b||2 “ 1, implies that β is an

orthonormal basis that diagonalizes φpεq, and represents φpe1q as

¨

˝

0 ´1

1 0

˛

‚. Since e1

and ε generate Cℓp2q as an algebra, it follows that φ is unitarily equivalent to φ2 via the

unitary change of basis described above.

Assuming the statement is true for isomorphisms Cℓp2rq Ñ M2rpCq for all 0 ď r ă R,

we will prove it for Cℓp2Rq. Choose an orthonormal basis, β` :“ tb1, b2, ..., b2R´2u for

the +1 eigenspace of φpεq. By a similar argument as above, β´ :“ φpe2R´1qβ` is an

orthonotmal basis for the -1 eigenspace for φpεq, and β :“ β` Y β´ is an orthonormal

basis for C2R which represents φpεq as

¨

˝

I 0

0 ´I

˛

‚, and φpe2R´1q as

¨

˝

0 ´I

I 0

˛

‚. Since

each generator of Cℓp2Rq permutes the two eigenspaces of φpεq we get that:

rφpejqsβ “

¨

˝

0 ´E˚
j

Ej 0

˛

‚, where Ej P M2R´1pCq.

The coefficients of Ej are given by:

φpejqbk “

2R´1
ÿ

ℓ“1

pEjqℓ,kφpe2R´1qbℓ

Multiplying that equation by ´φpe2R´1q demonstrates that ´E˚
j “ Ej for all j ‰
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2R ´ 1. Hence,

rφpejqsβ “

¨

˝

0 Ej

Ej 0

˛

‚

And furthermore, the set of matrices E :“ tE1, E2, ..., E2R´3, E2R´2, E2Ru Ď M2R´1pCq

satisfies the following properties:

1. E2
j “ ´I

2. EjEk “ ´EkEj for j ‰ k.

3. E˚
j “ ´Ej

We can therefore define a ˚-homomorphism ψ : Cℓp2R ´ 2q Ñ M2R´1pCq determined

by ψpejq :“ Ej (notice that E2R is left out!). Define pψ : Cℓp2R ´ 2q Ñ M2RpCq by

pψpejq :“ rφpe2R´1ejqsβ “

¨

˝

´ψpejq 0

0 ψpejq

˛

‚. This is a composition of the 1-1 map (mul-

tiplication by e2R´1) Cℓp2R ´ 2q Ñ Cℓp2Rq and the isomorphism φ (in β-coordinates).

Therefore, pψ is 1-1, implying that ψ is 1-1.

Since ψ is a one-to-one ˚-homomorphism, counting dimensions ensures that ψ is a ˚-

isomorphism. By our inductive hypothesis, we can find a unitary U P Up2R´1q such that

UψU˚ “ φ2R´2. Furthermore, iE2R is actually a ψ-compatible grading element, since it

is a self-adjoint unitary that anti-commutes with all other Ej’s. By the uniqueness of

grading elements (modulo sign), it must be the case that UE2RU
˚ “ ˘iφ2R´2pε2R´2q.

Let pU P Up2Rq be the matrix with U on the block diagonal, and define pφ :“ pU rφsβ pU˚.

Then, for all 1 ď j ď 2R,

pφpejq “

¨

˝

U 0

0 U

˛

‚

¨

˝

0 ´E˚
j

Ej 0

˛

‚

¨

˝

U˚ 0

0 U˚

˛

‚“

¨

˝

0 ´UE˚
j U

˚

UEjU
˚ 0

˛

‚.

In particular, for 1 ď j ď 2R ´ 2,

pφpejq “

¨

˝

0 UψpejqU
˚

UψpejqU
˚ 0

˛

‚“

¨

˝

0 φ2R´2pejq

φ2R´2pejq 0

˛

‚, and
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pφpe2R´1q “

¨

˝

0 Up´IqU˚

UpIqU˚ 0

˛

‚“

¨

˝

0 ´I

I 0

˛

‚, and

pφpe2Rq “

¨

˝

0 UE2RU
˚

UE2RU
˚ 0

˛

‚“

¨

˝

0 ˘iφ2R´2pεq

˘iφ2R´2pεq 0

˛

‚.

With the exception of the sign of pφpe2Rq, the theorem is proved. To determine the

sign, notice that pU being block diagonal implies that:

pφpε2Rq “

¨

˝

I 0

0 ´I

˛

‚

“ pφpiRe1 ¨ ¨ ¨ e2R´2e2R´1e2Rq

“ pφpiεe2R´1e2Rq

“

¨

˝

iφ2R´2pεq 0

0 iφ2R´2pεq

˛

‚

¨

˝

0 ´I

I 0

˛

‚

¨

˝

0 ˘iφ2R´2pεq

˘iφ2R´2pεq 0

˛

‚

“

¨

˝

iφ2R´2pεq 0

0 iφ2R´2pεq

˛

‚

¨

˝

´p˘iφ2R´2pεqq 0

0 ˘iφ2R´2pεq

˛

‚

“

¨

˝

´p˘i2φ2R´2pε
2qq 0

0 ˘i2φ2R´2pε
2q

˛

‚

“

¨

˝

˘I

´p˘Iq

˛

‚.

Which implies that ˘ “ `1, and the sign of pφpe2Rq matches φ2R.

2.2 The Spinc Group

Definition 2.2.1. We define the Pin, Spin, and Spinc groups to be as follows.

1. The Pin group, denoted Pinpnq, is the subgroup of Cℓpnqˆ generated by unit vec-

tors.

2. The Spin group, denoted Spinpnq, is the subgroup of Pinpnq consisting only of

even-graded elements.
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3. The Spinc group, denoted Spinc
pnq, is the subgroup of Cℓpnqˆ generated by ele-

ments in Spinpnq bR 1 and 1 bR Up1q.

These groups all naturally act on Rn by conjugation inside Cℓpnq (or Cℓpnq, respec-

tively). If u P Sn´1 Ď Rn Ď Cℓpnq is a unit vector, and x P Rn is any other vector, then

ux is equivalent to ´xu ´ 2 xx, uy; hence,

uxu´1
“ uxu˚

“ ´uxu

“ pxu ` 2 xx, uyqu

“ xu2 ` 2 xx, uyu

“ ´px ´ 2 xx, uyuq

The expression xx, uyu is the orthogonal projection of x onto u; therefore, x ´ 2 xx, uyu

is the reflection of x across the subspace orthogonal to u. We denote this operation by

RuKpxq. In this notation, uxu´1 “ ´RuKpxq.

Therefore, conjugation by an element of Pinpnq yields an action on Rn by orthogonal

matrices. Because of the minus sign, the determinant of these matrices is difficult to

keep track of, so we instead define ϕ : Pinpnq Ñ Opnq by ϕpuq “ RuK for unit vectors u

(or equivalently, ϕpuqpxq “ uxu). Since Opnq is generated by reflections, ϕ must be onto.

The next proposition verifies that ϕ is a 2-to-1 map.

Proposition 2.2.2. The kernel of ϕ is t˘1u Ď Pinpnq.

The proof here is based on [12] (Proposition 2.4).

Proof. At the very least, it is immediate that t˘1u Ď kerϕ. We will exploit gradings here,

and it is helpful to notice that, because Pinpnq is generated by unit vectors (which are

homogeneous) under multiplication, every element in Pinpnq must be homogeneous. Since

the determinant is multiplicative, and the determinant of RuK is ´1 for all unit vectors

u, it follows that, for any element z P Pinpnq of degree Bz P t0, 1u, detpϕpzqq “ p´1qBz.
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Therefore, any element z P kerϕ “ ϕ´1ptIuq must be homogeneous of degree 0, since

det I “ `1.

Suppose z P kerϕ, then z must be of even degree. Write z “ z1z2 ¨ ¨ ¨ z2k for unit

vectors z1, ..., z2k. Then

x “ ϕpzqpxq

“ z1z2 ¨ ¨ ¨ z2kxz2k ¨ ¨ ¨ z2z1

“ zxz´1

Therefore, xz “ zx. Since each zj can be written as a linear combination of e1, e2, ..., en,

it follows that z can be expressed as a polynomial in e1, e2, ..., en. In reduced form, each

ej will occur at with multiplicity at most 1 in each term of z; so the distinct terms of z

can be labelled by subsets I Ď t1, 2, ..., nu with |I| even. Since z is even, each term, eI ,

must be even-degree. Because distinct basis elements anti-commute, it follows that, for

j ď n, ejeI “ eIej if and only if j R I. Consequently, the polynomial expression for z

must have a coefficient of zero for any term containing ej (for any 1 ď j ď n). That is,

z must be a scalar; hence, z “ ˘1.

Similarly, restricting ϕ to a map ϕ : Spinpnq Ñ SOpnq is a 2:1 map, and for n ě 3,

Spinpnq is simply connected, and therefore, the universal covering space of SOpnq.

Lifting ϕ to a map ϕ : Spinc
pnq Ñ SOpnq by sending everything in 1 bR Up1q to

the identity matrix, and anything in Spinpnq bR 1 to SOpnq via ϕ b 1. In this case,

kerϕ – Up1q.

Therefore, ϕ : Spinc
pnq Ñ SOpnq Ď GLnpRq is a (real) representation of Spinc

pnq.

Among complex representations, of particular importance is the irreducible represen-

tation φ2r : Cℓp2rq Ñ M2rpCq, which restricts to the unitary representation φ2r :

Spinc
p2rq Ñ Up2rq. Since ε P Spinc

p2rq (see Proposition 2.1.5), the representation space

C2r can be graded by φ2rpεq. In the odd case, the only distinct irreducible unitary ˚-

representations of Cℓp2r ` 1q are π0 ˝ φ2r`1 and π1 ˝ φ2r`1 (acting on C2r). Both of

these representation spaces necessarily carry a trivial grading on C2r . Consequently,

πj ˝φ2r`1 : Spin
c
p2r`1q Ñ Up2rq are irreducible unitary representations in the odd case.
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2.3 Groupoids

Definition 2.3.1. Let X,Y and Z be sets and f : X Ñ Z, g : Y Ñ Z be functions. We

define the set X ˆf,g Y (sometimes denoted X ˆZ Y , if the maps are understood) to be

the subset of X ˆ Y consisting of points px, yq satisfying fpxq “ gpyq. If X, Y , and Z

are topological spaces with f, g continuous maps, then X ˆZ Y is topologized as a subset

of X ˆ Y .

Proposition 2.3.2. Let X, Y , and Z be LCH spaces, and let f : X Ñ Z and g : Y Ñ Z

be continuous. Then X ˆZ Y is a closed subset of X ˆ Y .

Proof. Let px0, y0q P X ˆ Y and suppose that fpx0q ‰ gpy0q. Since Z is Hausdorff, we

can choose neighborhoods Ux Ď Z of fpx0q and Uy Ď Z of gpy0q such that Ux XUy “ H.

Pulling back the open sets, we get that V :“ f´1pUxq ˆ g´1pUyq is an open subset of

X ˆ Y . If px, yq P V , then fpxq P Ux and gpyq P Uy, which implies that fpxq ‰ gpyq. We

conclude that V X pX ˆZ Y q “ H.

Corollary 2.3.3. Let X, Y , and Z be LCH spaces, and let f : X Ñ Z and g : Y Ñ Z be

continuous. Suppose K Ď X and C Ď Y are compact subsets. Then K ˆZ C is compact.

Proof. By the previous proposition, K ˆZ C is a closed subset of K ˆ C, which is a

compact space. Since X ˆ Y is Hausdorff, K ˆZ C is compact.

Definition 2.3.4. A groupoid is the set of isomorphisms in a small catergory, equipped

with the structure of morphism composition.

Let G be a groupoid. We denote the set of identity morphisms in G by Z (or Gp0q

if further specificity is needed). We refer to Z as either the object space of G or as

the base space of G. The notation Gp1q for morphisms will not be used, since we will

abuse notation and write G for the morphism set, identifying Gp0q Ď G via the identity

morphisms on each object. For all γ P G, let spγq be the identity morphism on the

domain of γ; rpγq, the identity morphism on the codomain of γ. We refer to s, r : G Ñ Z

as the source and range maps, respectively.

Definition 2.3.5. A topological groupoid is a groupoid equipped with a topology so

that composition G ˆr,s G Ñ G, inversion G Ñ G, and the range and source maps G Ñ Z

are all continuous. We will not require that the range and source maps are open unless

otherwise indicated.
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Definition 2.3.6. A groupoid G is proper if the map pr, sq : G Ñ Gp0q ˆ Gp0q is proper.

A proper groupoid is one where the collection of morphisms between any two com-

pact subsets of Gp0q is compact. In particular, proper LCH groupoids have compact

automorphism groups.

Definition 2.3.7. A (left) G-action on a topological space X consists of an anchor

map ρ : X Ñ Z, and maps αγ : ρ´1pspγqq Ñ ρ´1prpγqq, for all γ P G, subject to the

conditions:

1. αγγ1 “ αγ ˝ αγ1

2. αz0pxq “ x for all z0 P Z and x P ρ´1pz0q.

3. α : G ˆs,ρ X Ñ X, sending pγ, xq to αγpxq, is a continuous map

Topological spaces equipped with a G-action are called G-spaces.

Definition 2.3.8. A G-map between G-spaces X and Y is a continuous function f :

X Ñ Y that is G-equivariant. That is, given anchor maps ρX : X Ñ Z and ρY : Y Ñ Z,

the function f must satisfy ρX “ ρY ˝ f and γ.fpxq “ fpγ.xq for all pγ, xq P G ˆs,ρX X.

Definition 2.3.9. A G-space X is cocompact (or G-compact) if any cover of X by

G-invariant open sets has a finite subcover.

Definition 2.3.10. Let G and H be topological groupoids. A strict groupoid homo-

morphism from G to H is a covariant functor, f : G Ñ H. That is, pg, g1q P Gp2q implies

pfpgq, fpg1qq P Hp2q and fpgg1q “ fpgqfpg1q.

Definition 2.3.11. If f : A Ñ B is a G-map between G-spaces, then a subset K Ď A is

B-compact if f restricted to K is proper.

Definition 2.3.12. Given a G-space X, the action groupoid G ˙ X is the groupoid

with object space X, and morphisms from x to x1 given by the elements γ P G with

γ.x “ x1. This groupoid is identified with the set G ˆs,ρ X together with the operation

pγ, xqpη, yq “ pγη, yq, whenever x “ spηq. The topology on G ˙ X is induced by this

identification.
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Please note: a right G-action, on a space X with anchor map ρ, will have action

groupoid denoted by X ¸ G. For right actions, an element γ P G maps ρ´1prpγqq Ñ

ρ´1pspγqq; therefore, X ¸ G will denote the space X ˆρ,r G (not X ˆρ,s G), with the

composition py, γqpy1, γ1q “ py, γγ1q.

Definition 2.3.13. Let X be a G-space, then X is a proper G-space if G ˙ X is a

proper groupoid.

Example 2.3.14. Let f : A Ñ B be a map between LCH spaces. Let GB be the set

B as a groupoid (only objects). Then A being B-compact means that f is proper. A

being GB-proper means that pr, sq : GB ˙A Ñ BˆB is proper. Since the diagram below

commutes, and inclusion by the diagonal (ι∆) is proper, the notions of GB-proper and

B-compact are the same.

GB ˙ A
pr,sq

//

–

��

B ˆ B

A
f

//

pf,fq

99

B

ι∆

OO

However, if A is GB-compact (i.e., A is cocompact as a GB-space), it follows that A is

compact, since every subset of A is GB-invariant. Consequently, B-compact spaces need

not be GB-compact. Because of this issue, we will prefer to use the terminology cocom-

pact, rather than GB-compact, to avoid confusion with the concept of B-compactness.

Proposition 2.3.15. If G is a proper locally compact Hausdorff groupoid, and X is a

LCH G-space with continuous anchor map ρ : X Ñ Gp0q, then X is automatically a proper

G-space.

Proof. Let K Ď X ˆ X be compact, and consider the following commutative diagram:

G ˙ X

π1

��

prX ,sXq
// X ˆ X

ρ

��

G
pr,sq

// Z ˆ Z

A diagram chase will verify

prx, sxq
´1

pKq Ď π´1
1 ppr, sq´1

pρpKqqq.

Since prX , sXqpγ, xq “ pγ.x, xq, the following is also true:

prx, sxq
´1

pKq Ď G ˆs,ρ π2pKq.
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Consequently,

prx, sxq
´1

pKq Ď π´1
1 ppr, sq´1

pρpKqqq X G ˆs,ρ π2pKq

Ď pr, sq´1
pρpKqq ˆs,ρ π2pKq.

The set pr, sq´1pρpKqq is compact from the continuity of ρ, the compactness of K, and

the properness of G. The set π2pKq is compact from the continuity of π2, and lastly

pr, sq´1pρpKqq ˆs,ρ π2pKq is compact from Proposition 2.3.2, and using the fact that

closed subsets of compact Hausdorff spaces are compact. Since prX , sXq´1pKq is also a

closed subset of a compact Hausdorff space, it is also compact.

Definition 2.3.16. We will say that a G-space X is a smooth G-manifold if

1. the fibers of ρ : X Ñ Z are smooth manifolds determined by an atlas for X,

consisting of open sets V Ď X and homeomorphisms φ : V Ñ ρpV q ˆRn satisfying

π1 ˝ φ “ ρ.

2. the change of coordinate functions are continuous,

3. all fiber-wise derivatives of change of coordinate functions should exist and be

continuous

4. elements γ P G should act as diffeomorphisms γ. : ρ´1pspγqq Ñ ρ´1prpγqq.

Notice that this definition implies that smooth G-manifolds have open anchor maps.

Definition 2.3.17. Let X and Y be smooth G-manifolds with anchor maps ρX and

ρY , respectively. A smooth G-map from X to Y is a G-map ϕ : X Ñ Y such that if

p P X, then there exists a coordinate neighborhood U of ϕppq in Y and a coordinate

neighborhood rU of p in ϕ´1pUq, with coordinate charts ψX : rU Ñ ρXp rUq ˆ Rk and

ψY : U Ñ ρY pUqˆRℓ, such that all fiber-wise derivatives of ψY ˝ϕ˝pψXq´1 are continuous

maps from ρXp rUq ˆ Rk Ñ ρY pUq ˆ Rℓ.

Definition 2.3.18. A G-bundle on a second-countable locally compact Hausdorff G-

space X will be a vector bundle π : E Ñ X, equipped with a fiberwise linear G-action
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such that π is a G-equivariant continuous map. The G-bundle is smooth if E and X are

also G-manifolds and π is a smooth G-map.

Definition 2.3.19. A smooth section of a G-vector bundle E, is a continuous section

of π : E Ñ X, which is a smooth map from X to E (as G-manifolds). We denote

smooth sections of E by Γ8pEq, or Γ8pπ,X,Eq if the bundle structure needs specification.

Furthermore, if η P Γ8pEq, then we say that η is G-equivariant if γ´1
. pηpγ.xqq “ ηpxq

for all pγ, xq P G ˆs,ρ X.

Note: We will use the notation Γc to refer to sections with compact support, Γ0 to

refer to sections which vanish at infinity, and L2pEq to refer to L2-sections of E, with

respect to a given G-invariant Hermitian metric on E. These invariant metrics do not

always exist.

2.4 G-algebras

Definition 2.4.1. Let X be a locally compact Hausdorff space. A C0pXq-algebra is a

pair pA, θq consisting of a C˚-algebra A and a homomorphism θ : C0pXq Ñ ZMpAq such

that θpC0pXqq ¨ A “ A.

Note: Explicit reference to θ is dropped if no ambiguity is present. For example,

pθpfqqpaq is written as fa, for f P C0pXq and a P A.

Definition 2.4.2. If A is a C0pXq-algebra, the fiber of A above x P X is defined to be

Ax :“ A{IxA, where Ix :“ tf P C0pXq : fpxq “ 0u. The subscripts b and c are reserved

for the bounded and compactly supported counterparts of A, respectively. These algebras

are defined by Ab :“ ta P MpAq : @φ P C0pXq, φa P Au, and Ac :“ CcpXq ¨ A.

Example 2.4.3. Suppose A “ C0pY q where Y is second-countable LCH and p : Y Ñ X

is a continuous function. Then MpAq “ CbpY q “ ZMpAq, and θ : f ÞÑ p˚pfq “ pf ˝ pq.

For x P X, define Yx :“ p´1ptxuq. Then

Ax “ C0pY q{IxC0pY q “ C0pY q{tf P C0pY q : f |Yx ” 0u – C0pYxq.
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Additionally,

Ab “ tf P CbpY q : @h P C0pXq, f ¨ ph ˝ pq P C0pY qu

“ tf P CbpY q : @ε ą 0, DX-compact set A Ď Y such that ||f |Ac || ă εu.

Ac “ CcpXq ¨ A

“ tf P C0pY q : D compact K Ď X such that supppfq Ď p´1
pKqu.

In the particular case where Y “ X ˆ X 1 maps to X via the coordinate projection

p : X ˆ X 1 Ñ X, then

A “ C0pX ˆ X 1
q – C0pXq b C0pX

1
q,

Ax – C0pX
1
q,

Ab – CbpXq b C0pX
1
q, and

Ac – CcpXq ¨ pC0pXq b C0pX
1
qq

Note: The “compactly supported” elements can’t really be written as CcpXq b C0pX
1q,

since CcpXq isn’t a C˚-algebra.

Definition 2.4.4. Let A be a C0pXq-algebra. Assume X is LCH.

1. Restriction: If U is an open subset of X, then AU is defined to be the C0pUq-

algebra C0pUqA. If F is a closed subset of X, then AF is defined to be the C0pF q-

algebra A{IFA, where IF Ď C0pXq is the ideal of functions vanishing on F . AU

and AF are called A restricted to U and A restricted to F , respectively.

2. Product: Suppose B is also a C0pXq-algebra. Then A bmax B is a C0pX ˆ Xq-

algebra. By restricting A bmax B to the diagonal ∆X Ď X ˆ X, we get a C0pXq-

algebra, which we denote A bC0pXq B or A bX B. See [5], section 3.2.

3. Pullback: Let p : Y Ñ X be a continuous function between LCH-spaces. Then

define p˚A to be the C0pY q-algebra obtained by restricting the C0pX ˆ Y q-algebra

A bmax C0pY q to the pullback X ˆid,p Y Ď X ˆ Y .

The definition of product over C0pXq, given above, will be denoted with a hat, pb
X
,
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if graded products are being used. If necessary, we will explicitly indicate the C0pXq-

structure that is being used for balancing the tensor product. For example: A bX B is

sometimes denoted A b
θA,θB

B.

Example 2.4.5. Let X1, X2, and Y be locally compact Hausdorff spaces, and fi : Xi Ñ

Y continuous functions. The usual isomorphism C0pX1q b C0pX2q – C0pX1 ˆ X2q is

C0pY ˆ Y q-linear. The C0pY ˆ Y q action on C0pX1 ˆ X2q is by pullback through the

map pπ˚
1f1, π

˚
2f2q : X1 ˆX2 Ñ Y ˆY taking pπ˚

1f1, π
˚
2f2qpx1, x2q :“ pf1px1q, f2px2qq. This

function satisfies pπ˚
1f1, π

˚
2f2q

´1p∆Y q “ X1 ˆY X2; consequently,

C0pX1q bY C0pX2q “
C0pX1q b C0pX2q

I∆Y
pC0pX1q b C0pX2qq

–
C0pX1 ˆ X2q

I∆Y
C0pX1 ˆ X2q

“ C0pX1 ˆY X2q

We will use this fact repeatedly without explicit reference.

Proposition 2.4.6. (Corollaire 3.16 from [5]) Let A be a C0pXq-algebra; B, a C0pY q-

algebra. Then pA bmax Bqpx,yq – Ax bmax By.

Corollary 2.4.7. Let A and B be C0pXq algebras. Denote by I∆X
Ď C0pX ˆ Xq the

ideal of functions vanishing on the diagonal ∆X Ď X ˆX, and Js Ď AbmaxB the closed

ideal generated by simple tensors of the form ga b b ´ a b gb for all a P A, b P B, and

g P C0pXq. Then I∆X
pA bmax Bq “ Js.

Proof. This is proved in, for instance, [6], Lemma 2.4.

We will also use this equivalence without explicit reference.

Maximal tensor products are used in this paper because spacial (minimal) tensor

products do not satisfy many desirable properties, such as associativity. See section 3.3.

of [5] for some counterexamples pertaining to minimal tensor products.

Proposition 2.4.8. Let A and B be C0pXq-algebras, and let p : Y Ñ X and q : Z Ñ Y

be continuous functions.

1. p˚A bY p
˚B – p˚pA bX Bq

2. q˚pp˚Aq “ pp ˝ qq˚A

Definition 2.4.9. A homomorphism of C0pXq-algebras, φ : A Ñ B, is a ˚- homo-

morphism that is also a morphism of C0pXq-modules.
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To every C0pXq-algebra morphism φ : A Ñ B, there corresponds a family of ˚-

homomorphisms φx : Ax Ñ Bx.

Definition 2.4.10. Let G be a locally compact topological groupoid with base space Z,

and let A be a C0pZq-algebra. Then an action of G on A is a family of ˚-isomorphisms

αγ : Aspγq Ñ Arpγq, indexed by γ P G, such that for any composable pair pγ, γ1q P Gp2q,

αγ˝γ1 “ αγ ˝ αγ1 . The action of G on A is called continuous if it can be obtained by

restricting an isomorphism of C0pGq-algebras, α : s˚A Ñ r˚A, to the fibers above each

γ P G. If A is a C˚-algebra with a continuous action of G, then we call A a G-algebra

(sometimes G-C˚-algebra).

The word “action” will be used to refer exclusively to continuous actions. Any possibly

discontinuous action will be clearly indicated as such.

2.5 Hilbert Modules over G-algebras

Definition 2.5.1. Let B be a C0pXq-algebra, and let E be a Hilbert B-module. The

fiber of E over x P X is the Hilbert Bx-module Ex :“ E bB Bx (the internal tensor

product of Hilbert B-modules).

Identifying E “ EB, we can define a homomorphism from C0pXq to the center of

LpEq by ψ P C0pXq ÞÑ rξ P E ÞÑ ξψ P Es. This homomorphism can be used to equip

KpEq with the structure of a C0pXq-algebra.

Definition 2.5.2. Let A and B be C0pXq-algebras, and E a Hilbert B-module. A ˚-

representation π : A Ñ LpEq is called a representation of C0pXq-algebras if πpφaqξ “

πpaqpξφq for all a P A,φ P C0pXq, and ξ P E .

In this case, for all x P X, πpIxAq Ď EpIxBq. Therefore, a representation of C0pXq-

algebras decomposes into a family of ˚-representations πx : Ax Ñ LpExq.

Proposition 2.5.3. Let E be a Hilbert A-module, F a Hilbert B-module, and π : A Ñ

LpFq a representation of C0pXq-algebras.

1. For all x P X, pE bA Fqx “ Ex bAx Fx.

2. Suppose R P LpEq, and S P LpFq satisfies πpaqS “ Sπpaq for all a P A. Then the

operator RbS : ξbη ÞÑ RpξqbSpηq defines an element of LpEbAFq. Furthermore,

for all x P X, pR b Sqx “ Rx b Sx.
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Proof. This is proved as Proposition 4.1 of [11].

Definition 2.5.4. Let B and D be C0pXq-algebras, E a Hilbert B-module, and F a

Hilbert D-module. The external tensor product of E and F over X is defined to be:

E bX,ext F :“ pE bmax Fq bBbmaxD pB bX Dq

In other words, E bX,ext F is the completion of the algebraic tensor product (of C0pXq-

modules) with respect to the B bmax D-valued norm: xξ b η, ν b ζy :“ qpxξ, νy bmax

xη, ζyq, where q : B bmax D Ñ B bX D is the quotient map.

Note: The fiber of E bX,ext F above x P X is canonically isomorphic to Ex bext Fx as

Hilbert Ax b Bx-modules.

Definition 2.5.5. If p : Y Ñ X is a continuous function, then we define p˚E to be the

Hilbert p˚B-module E bX,ext C0pY q.

Equivalently, p˚E – E bB p
˚B.

Definition 2.5.6. Let G be a locally compact topological groupoid, B a G-algebra, and

E a Hilbert B-module. A continuous action of G on E is a unitary V P Lps˚E , r˚Eq

such that, for all pγ, γ1q P Gp2q, VγVγ1 “ Vγ˝γ1 and Vγ´1 “ V ˚
γ . If this is the case, we call

E a Hilbert G-B-module.

Definition 2.5.7. If E is a (right) Hilbert G-B-module satisfying the property: for all

ξ P s˚E , and b P s˚B, V pξ.bq “ V pξq.αpbq, then we call E a G-equivariant Hilbert

B-module.

Definition 2.5.8. Let B be a G-algebra. A representation, π : A Ñ LpEq, of a G-algebra

A on a G-equivariant Hilbert B-module E is a G-equivariant representation if, for all

γ P G and all aspγq P Aspγq,

VγpπspγqpaspγqqqV ˚
γ “ πrpγqpαγaspγqq

2.6 Equivariant Kasparov Groups

Definition 2.6.1. Let A and B be G-algebras. A G-equivariant A-B-bimodule is a

pair pE , πq, where E is a Z{2Z-graded and G-equivariant Hilbert B-module and π is a

26



G-equivariant and degree-preserving representation of A into LpEq (all G-actions are also

degree-preserving).

Definition 2.6.2. Let A and B be graded G-algebras. A G-equivariant Kasparov

A-B-bimodule (or Kasparov G-A-B-module) is a triple pE , π, F q composed of a G-

equivariant A-B-bimodule pE , πq and an odd-degree operator F P LpEq such that

1. @a P A, pF 2 ´ Iqπpaq P KpEq

2. @a P A, pF ´ F ˚qπpaq P KpEq

3. @a P A, rF, πpaqs P KpEq

4. @a P r˚A, πpaqpV ps˚F qV ˚ ´ r˚F q P r˚KpEq.

Definition 2.6.3. Two Kasparov G-A-B-modules, pE , π, F q and pE 1, π1, F 1q, are unitar-

ily equivalent if there exists a G-equivariant unitary U P LpE , E 1q of degree 0 such

that UFU˚ “ F 1 and, for all a P A, UπpaqU˚ “ π1paq. We denote the set of unitary

equivalence classes of Kasparov G-A-B-modules by EGpA,Bq.

Definition 2.6.4. We say pE0, π0, F0q, pE1, π1, F1q P EGpA,Bq are homotopic if there

exists a class pE , π, F q P EGpA,Br0, 1sq such that for t P t0, 1u, E bBr0,1s,evt B – Et, and

under these isomorphisms, π bBr0,1s,evt 1 “ πt, and F bBr0,1s,evt 1 “ Ft. The action, V , of

G on E must restrict to the actions, V t, of G on Et according to the commutative diagram

below:

s˚E
–

��

V // r˚E
–

��

s˚E b
s˚BI

s˚BI

1bevt
��

r˚E b
r˚BI

r˚BI

1bevt
��

s˚E b
s˚BI,evt

s˚B

–

��

r˚E b
r˚BI,evt

r˚B

–

��

s˚pE b
BI,evt

Bq

–
��

r˚pE b
BI,evt

Bq

–
��

s˚pEtq
V t

// r˚pEtq
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Definition 2.6.5. Homotopy equivalence classes of elements in EGpA,Bq is denoted by

KKGpA,Bq or KKG
0 pA,Bq. The odd KK groups will be defined by KKG

1 pA,Bq :“

KKGpA,BpbCℓp1qq.

In the usual way, EGpA,Bq is an abelian semigroup under the direct sum operation, and

KKGpA,Bq happens to be an abelian group.

Definition 2.6.6. Let A and B be G-algebras, define qEGpA,Bq to be the set of all triples

pE , π, F q consisting of an ungraded G-equivariant A-B-bimodule, where π and F satisfy

the conditions of definition 2.6.2, but are ungraded. Let }KK
G

pA,Bq be the abelian group

of homotopy equivalence classes of elements in qEGpA,Bq.

Proposition 2.6.7. Let A and B be G-algebras, then there is a well-defined group ho-

momorphism p̈ : }KK
G

pA,Bq Ñ KKG
1 pA,Bq.

Proof. For now, assume that A and B are trivially graded. Let pE , π, F q P EG
1 pA,Bq.

Through a standard simplification, it is sufficient to assume F “ F ˚. Since this simplifica-

tion is via a compact perturbation of F , and the almost-equivariance condition (part 4. of

definition 2.6.2) does not distinguish between compact perturbations of F , this standard

simplification can be done in the equivariant setting. Define a (graded) G-equivariant A-

B-bimodule pE :“ E‘E , graded via the direct sum, and where G acts diagonally on pE . De-

fine a BpbCℓp1q action on pE via pξ, ξ1q.pbpb1q :“ pξ.b, ξ1.bq and pξ, ξ1q.pbpbeq :“ p´ξ1.b, ξ.bq.

A compatible BpbCℓp1q-valued inner product on pE is given by

xpξ, ξ1
q, pη, η1

qy
^
:“ pxξ, ηy ` xξ1, η1

yq b 1 ` pxξ, η1
y ´ xξ1, ηyq b e.

This structure allows us to take pE as a right Hilbert BpbCℓp1q-module. Define an odd-

degree operator pF :“

¨

˝

0 iF

´iF 0

˛

‚. Notice that pF is indeed BpbCℓp1q-linear. Define

a representation pπ : A Ñ Lp pEq by diagonal action by π. Observe that p pE , pπ, pF q satisfies

all of the requirements in definition 2.6.2 (recall that we are assuming F ˚ “ F ). Thus,
´

pπ, pE , pF
¯

P EGpA,BpbCℓp1qq. Since a homotopy can also suffer this procedure, this

construction forms a well-defined map on homotopy equivalence classes.

Interestingly, theBpbCℓp1q-linearity of operators in previous proof implies that general

operators T P Lp pEq look like
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T “

¨

˝

A iB

´iB A

˛

‚.

Even homogeneous operators, T , have B “ 0; odd operators have A “ 0. There is a

trade-off between the grading chosen for pE and the induced grading and general form

of operators in Lp pEq. At the end of Section 3, we show this construction is unitarily

equivalent to taking pE , with a grading induced by swapping copies of E , and where Lp pEq

only consists of block diagonal operators.

There are likely conditions under which the map p̈ : }KK Ñ KK1 is an isomorphism,

but it is not relevant for this thesis.

In section 6 of [11], LeGall verifies that the Kasparov product construction can be

performed equivariantly. We will only state the definition, and direct the reader to [11]

for the statements and proofs of the typical properties of the Kasparov product, such

as the equivariant technical theorem and the existence and associativity of equivariant

products.

Definition 2.6.8. Let x1 “ pE1, π1, F1q P EGpA,Bq and x2 “ pE2, π2, F2q P EGpB,Dq.

Then x3 “

ˆ

E1pb
B
E2, π1pb1, F3

˙

P EGpA,Dq is a (cap) product of x1 and x2 if

1. (Connexion) T3 is a T2-connexion for E1,2 :“ E1pb
B
E2. That is, for all ξ P E1,

θξ ˝ T2 ´ p´1q
BxBT2T3 ˝ θξ P KpE2, E1,2q;

T2 ˝ θ˚
ξ ´ p´1q

BxBT2θ˚
ξ ˝ T3 P KpE1,2, E2q,

where the operator θξ : E2 Ñ E1,2 maps η to ξpb
B
η. The adjoint sends a simple tensor

η1pb
B
η2 to xξ, η1yB ¨ η2.

2. (Positivity) For all a P A, πpaqrT1pb1, T3sπpaq˚ ě 0 modulo KpE1,2q.

We sometimes write F3 P F1#F2 if F3 is an operator satisfying this definition. On

KK-classes, we write rxspb
B

rys.

Definition 2.6.9. Let G be a second-countable locally compact Hausdorff groupoid with

object space X. Suppose A, B, and D are G-algebras, and assume D has a countable

approximate unit. Define the D-tensor operator
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σD : KKG
pA,Bq Ñ KKG

ˆ

Apb
X
D,Bpb

X
D

˙

by the formula on cycles: σDpE , π, F q :“

ˆ

E pb
X
D, πpb1, T pb1

˙

.

Definition 2.6.10. Let G be a second-countable locally compact Hausdorff groupoid

with object space X. Suppose Aj, Bj, and D are G-algebras, and assume A2, B1 have

countable approximate units. Let x1 P KKG
ˆ

A1, B1pb
X
D

˙

and x2 P KKG
ˆ

DpbA2, B2

˙

.

Then the (cup/cap) product of x and y is defined by the cap product:

xpb
D
y :“ σA2pxq pb

B1 pbDpbA2

σB1pyq

2.7 The Groups V KG,Y and RKG,Y

Definition 2.7.1 (See [10]). Let G be a LCH topological groupoid, and let X, Y be LCH

G-spaces with a G-map f : X Ñ Y . Define the representable K-theory of X with

Y -compact support to be

RKG,Y pXq :“ KKG˙Y
pC0pY q, C0pXqq,

representableK-theory ofX (with no support conditions) to beRKGpXq :“ RKG,XpXq “

KKG˙XpC0pXq, C0pXqq. Suppose G has a compatible Haar system, then defineKGpXq :“

KKpC,G ˙ C0pXqq.

The following definition is partly motivated by Chapter 5 of [14].

Definition 2.7.2. 1. For a LCH and second-countable G-space X, define the cate-

gory RVectGpXq to be the category of pairs pE, σq, where E Ñ X is a complex

Z{2Z-graded G-bundle with a Hermitian metric under which G acts on the fibers

of E through a unitary action, and σ is a self-adjoint degree-1 G-equivariant endo-

morphism of E. The morphisms, from pE, σq to pE 1, σ1q, will be given by G-bundle

maps φ : E Ñ E 1 satisfying φ ˝ σ “ σ1 ˝ φ.

2. Denote by VectGpXq the subcategory of pairs pE, σq P RVectGpXq with σ2 “ 1 and

outside some G-compact subset of X.
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3. If Y is a second-countable LCH G-space, and f : X Ñ Y is a G-map, then denote

by RVectG,Y pXq the subcategory of pairs pE, σq P RVectGpXq satisfying σ2 “ 1

outside a Y -compact subset of X. If ambiguity is present, we will use the notation

RVectG,f pXq for this category.

This definition could be simplified by restricting to a situation where all G-bundles

can be equipped with such a metric. For example, Emerson and Meyer typically work

under several assumptions with respect to the groupoid action. See section 2 of [9] for

more details on useful conditions for G-bundles to be well-behaved; of specific relevance

would be, for example, Definition 2.11, Proposition 2.19 of [9].

Definition 2.7.3. An element pE, σq P RVectG,Y pXq is degenerate if σ is globally an

automorphism. Given pE0, σ0q, pE1, σ1q P RVectGpXq (or VectGpXq, or RVectG,Y pXq),

we say that pE0, σ0q is homotopic to pE1, σ1q iff there exists pE,Σq P RVectGpXˆr0, 1sq

(respectively, VectGpXˆr0, 1sq,RVectG,Y pXˆr0, 1sq) with E|Xˆtju – Ej and Σ|Xˆtju – σj

for j “ 0, 1. Two elements pE0, σ0q and pE1, σ1q are equivalent if they are homotopic

after possibly adding degenerate elements to each. We will write pE0, σ0q „h pE1, σ1q for

this notion of equivalence.

Definition 2.7.4. The set of „h-equivalence classes of elements inRVectGpXq, VectGpXq,

and RVectG,Y pXq) will be denoted respectively by V KGpXq, VGpXq and V KG,Y pXq.

Proposition 2.7.5. There is a well-defined map νG,Y,X : V KG,Y pXq Ñ RKG,Y pXq.

Proof. Let pE, σq P RVectG,Y pXq, where π : E Ñ X is the projection. Then Γ0pEq

is a Hilbert C0pXq-module with respect to its fiber-wise Hermitian product. We will

treat C0pXq as a G ˙ Y -algebra via f˚ : C0pY q Ñ CbpXq and through the G ˙ Y

action on X given by pγ, yq.pxq :“ γ.x for any pγ, yq P G ˙ Y and x P f´1pyq. Extend

the G action on E to a G ˙ Y action in the same fashion. Because the G-action on

E is unitary with respect to the Hermitian product, Γ0pEq has an action of G ˙ Y

satisfying definition 2.5.6. Since π is G-equivariant, Γ0pEq is a G ˙Y -equivariant Hilbert

C0pXq-module. The adjointable operators, LpΓ0pEqq, is isomorphic to ΓbpEndpEqq, and

KpΓ0pEqq – Γ0pEndpEqq. Since σ2´1 and σ˚ ´σ are zero outside of a Y -compact subset,

pointwise scalar multiplication with a function f˚g for g P C0pY q will yield an element in

Γ0pEndpEqq. Therefore, the triple νG,Y,Xpσ,Eq :“ pΓ0pEq, f˚, σq satisfies the conditions
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of Definition 2.6.2, and determines a class in KKG˙Y pC0pY q, C0pXqq “ RKG,Y pXq. This

construction works on homotopies (definition 2.7.3), and yields homotopies (definition

2.6.4). Adding degenerate cycles is trivial in KK theory, so this construction produces

a well-defined map on „h-equivalence classes, νG,Y,X : V KG,Y pXq Ñ RKG,Y pXq.

This map need not be surjective, even for relatively nice examples. Some conditions

for surjectivity are given in [10]. Even restricting to groups, V K and RK are not nec-

essarily the same. Juliane Sauer gives a nice example of when V K ‰ RK for a space

equipped with a proper smooth action of a totally disconnected group in [21]. See also

[19] and [16].

Definition 2.7.6. We define V K1
G,Y pXq to ungraded-homotopy equivalence classes of

pairs pσ,Eq satisfying all conditions of Definition 2.7.2 except that E and σ are ungraded.

Combining the construction of Proposition 2.7.5 with the construction of Proposition

2.6.7 yields a map ν1G,Y,X : V K1
G,Y pXq Ñ KKG˙Y

1 pC0pY q, C0pXqq “: RK1
G,Y pXq.

Theorem 2.7.7. Let X1 and X2 be spaces over Y . Suppose v1 P V KG,Y pX1q and v2 P

V KG,Y pX2q, then there exists a class z P V KG,Y pX1 ˆY X2q satisfying

νpzq “ νpxq pb
C0pY q

νpyq

Proof. Let x “ rpσ,Eqs P V KG,Y pX1q and y “ rpη, F qs P V KG,Y pX2q. Consider the

projection maps πj : X1 ˆY X2 Ñ Xj, and define the operator σ b η P Endpπ˚
1Epbπ˚

2F q

by

σ b η :“
1

?
2

ˆ

π˚
1σpb1 ` 1pbπ˚

2η

˙

then pσ b η, π˚
1Epbπ˚

2F q P RVectG,Y pX1 ˆY X2q, since

pσ b ηq
2

“
1

2

ˆ

π˚
1σ

2
pb1 ` p1 ` p´1q

BσBη
qpπ˚

1σpbπ˚
2ηq ` 1pbπ˚

2η
2

˙

,

which outside of some Y -compact neighborhood K1 ˆK2, is p1{2qp1pb1 ` 1pb1q “ 1. We

will now verify that νpσ b η, π˚
1Epbπ˚

2F q P RKG,Y pX1 ˆY X2q from Proposition 2.7.5 is a

homotopic to a product of νpσ,Eq and νpη, F q (Definition 2.6.8). The homotopy is
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ht :“

ˆ

tM `
p1 ´ tq

2

˙1{2

π˚
1σpb1 `

ˆ

tN `
p1 ´ tq

2

˙1{2

1pbπ˚
2η,

where M,N “ p1 ´ Mq P ΓbpEndpπ˚
1Epbπ˚

2F qq are chosen by the Kasparov Technical

lemma so thatM1{2π˚
1σpb1`N1{21pbπ˚

2η P σ#η, such as in THEOREMÈ 6.2 of [11]. Such

M and N must exist since all spaces are second-countable locally compact Hausdorff.

Although we will not be using this theorem in any integral way in this thesis, we

prove it here to demonstrate why having representatives in V KG,Y is nice for computing

KK-products. Since we will show that the Thom class is an element τE P V KG,XpEq, this

means that computations involving Kasparov product with τE will be often be simpler

to carry out explicitly.
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3 Bott Periodicity

3.1 Spinc-G-Bundles

Throughout, G will denote a second-countable LCH groupoid. The object space of G will

be denoted by Z (or Gp0q if specificity is required). Let X be a second-countable LCH

G-space, and suppose π : E Ñ X is a G-bundle on X of (real) rank k.

Definition 3.1.1. The bundle E is said to be a Spinc-G-bundle if there exists a principal

Spincpkq-bundle2 p : P Ñ X and bundle map η : P Ñ FpEq (where FpEq is the principal

GLpk,Rq-bundle of frames on E) satisfying:

1. commutativity of the diagram:

P ˆ Spinc
pkq

ηˆϕ

��

// P

η

��

FpEq ˆ GLpk,Rq // FpEq

where ϕ : Spinc
pkq Ñ GLpk,Rq is the usual lift of the covering map Spinpkq Ñ

SOpkq, and the horizontal arrows represent group actions.

2. There is a (left) G-action on P (commuting with the action of Spinc
pkq), such that

p : P Ñ X and η : P Ñ FpEq are both G-equivariant.

Note: G acts on E, which lifts to an action of G on FpEq. This lifted action automatically

commutes with the action of GLpk,Rq.

If r is defined by k “ 2r or k “ 2r ` 1, then there are interesting representations of

Spinc
pkq on both Rk (via ϕ : Spinc

pkq Ñ SOpkq), and C2r . The action of Spinc
pkq on C2r

is induced by one of the following:

Spinc
p2rq Ď Cℓp2rq – M2rpCq

Spinc
p2r ` 1q Ď Cℓp2r ` 1q – M2rpC ˆ Cq

π1 or π2
ÝÝÝÝÑ M2rpCq

As in 2.1.5, the grading on Cℓp2rq is recovered by the element ε :“ ire1e2 ¨ ¨ ¨ e2r P

Spinc
p2rq Ď Cℓp2rq. However, no such element exists in Cℓp2r ` 1q (2.1.7). Therefore, a

2Assumed to be locally trivial. In later sections, groupoid principal bundles are defined in such a way
that they are not necessarily locally trivial.
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representation φ of Spinc
p2rq on C2r is automatically graded. That is, φpεq grades C2r so

that Spinc
p2rq acts by grading-preserving linear maps. However, for any representation

of Spinc
p2r ` 1q on C2r , there is no grading on C2r by which Spinc

p2r ` 1q acts by

grading-preserving linear maps.

Fixing representations ϕ : Spinc
pkq Ñ SOpkq and ψk : Spinc

pkq Ñ GLpC2rq (k “ 2r

or k “ 2r` 1), we can form bundles on X using the G-Spinc
pkq-datum on a G-bundle E.

E – P ˆ
Spincpkq

Rk

$ :“ P ˆ
Spincpkq

C2r

If k “ 2r, then $ is actually a graded C-G-bundle via the bundle map pp, vq ÞÑ

pp, φpεqpvqq “ pp.ε, vq. Additionally, through these identifications we can guarantee the

existence of invariant metrics. This is rather important, since the existence of invariant

metrics on general G-bundles is not usually guaranteed (see, section 2 of [9]).

Theorem 3.1.2. If π : E Ñ X is a real Spinc-G-bundle, then there exists a G-invariant

inner product on the fibers of E, and a G-invariant Hermitian product on the fibers of

the associated spinor bundle $ such that G acts on the fibers of $ through unitary maps.

3.2 The Thom Class of a Spinc-G-Bundle

If F Ñ X is any (real) rank k G-bundle with an invariant metric, we denote by CℓpF q

the G-bundle of Clifford algebras FOpF q ˆOpkq Cℓpkq, where Opkq acts on Cℓpkq by

orthonormal change of basis on Rk.

If E Ñ X is a Spinc-G-bundle with Spinc-Datum pP, ηq, then

CℓpEq – P ˆ
Spincpkq

Cℓpkq – P ˆ
Spincpkq

M2r
`

Cpk´2r`1q
˘

where Spinc
pkq acts on Cℓpkq by conjugation (i.e., through η), and onM2rpCq (orM2rpCˆ

Cq) similarly under the isomorphism φk.

In the case where k is even, then CℓpEq – Endp$q. Otherwise, CℓpEq – Endp$qpbpCˆ

C, Sswapq.

We can always define a map E Ñ CℓpEq by inclusion of Rk into Cℓpkq (this is Opkq-

equivariant, and therefore Spinc
pkq-equivariant). If k is even, this determines a map
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c : E Ñ Endp$q, whose image is specifically contained in the odd-elements of Endp$q.

However, if k is odd, then the inclusion defines a map E Ñ CℓpEq – P ˆ
Spincpkq

M2rpCˆ

Cq. Composing with a projection to the diagonal in CˆC would result in the zero map,

since the image of E in CℓpEq is odd, so we just project to the first component of CˆC

instead, yielding a map c : E Ñ

ˆ

P ˆ
Spincpkq

M2rpCq

˙

– Endp$q. There is no grading on

$ here, and projecting via π1 will often give an inequivalent class.

Roughly, we want to make pc, π˚$q into a V Kk
G,XpEq class, but c needs to be modified

to satisfy the requirements of definition 2.7.2. Define m : E Ñ R by

mpvq :“

$

&

%

1 if ||v|| ă 1

||v||
´1 if ||v|| ě 1

Using m and i P C, we can define λE :“ rpimc, π˚$qs P V Kk
G,XpEq.

Definition 3.2.1. We define the Thom class of the Spinc-G-bundle of E to be the class

τE :“ λE :“
”´

imc, π˚$
¯ı

P V KG,XpEq Ď KKG˙X
pC0pXq, C0pEqq.

Here, π˚$ is the complex conjugate of π˚$. That is, if 5 : π˚$ Ñ π˚$ is the identity

map, then for all v P E, pimcqpvq “ impvqcpvq : π˚$v Ñ π˚$v acts by impvqcpvq5psq :“

i5pmpvqcpvqsq.

3.3 Bott Periodicity in KK

In this section, we follow the construction in section 5 of [15] to define the Bott element,

and the inverse Bott element

βn P KKSpincpnq
pC, C0pRn

qpbCℓpnqq,

αn P KKSpincpnq
n pC0pRn

qpbCℓpnq,Cq.

The Bott-Periodicity theorem can be stated in KK as follows:

Theorem 3.3.1 (Bott-Periodicity). The elements αn and βn are inverses in KKSpinc.

That is:

1. αnpb
C
βn “ 1C0pRnq P KKSpincpC0pRnq, C0pRnqq
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2. βn pb
C0pRnq

αn “ 1C P KKSpincpC,Cq.

Compare this statement with Theorem 7 of [15].

3.4 Kasparov’s Construction of αn and βn

In this subsection, we contextualize constructions made in [15] to our slightly different

definitions.

Define a function f : Rn Ñ Cℓpnq by

fpxq :“
ix

p1 ` ||x||
2
q1{2

.

The function f is bounded (||fpxq||
2

“ ||x||
2

{p1` ||x||
2
q ă 1; therefore, can be viewed

as an element of MpC0pRnq bCℓpnqq – LpC0pRnq bCℓpnqq. It satisfies the following two

conditions:

1 ´ f 2
pxq “ 1 ´

´xx

1 ` ||x||
2 “

p1 ` ||x||
2
q ´ ||x||

2

1 ` ||x||
2 “

1

1 ` ||x||
2 P KpC0pRn

q b Cℓpnqq;

f˚
pxq “

p´iqp´xq

p1 ` ||x||
2
q1{2

“ fpxq.

Furthermore, f is Spinc
pnq-equivariant (taking Spinc

pnq to act on Cℓpnq by conjuga-

tion).

Consequently, pC0pRnq b Cℓpnq, fq forms a class in KKSpincpnqpC, C0pRnq b Cℓpnqq,

where C0pRnq b Cℓpnq is graded in the usual way. We denote this KK-class by βn. In

Kasparov’s paper [15], he defines KK´npA,Bq :“ KKpA,BpbCℓpnqq, but we want to

relate these classes back to KK0 and KK1. This identificaiton is made explicit in the

next subsection.

3.5 Equivalent Representatives for αn and βn

We inevitably wish to prove that a Thom class generated via generalized groupoid-

homomorphism pullback of βn is the same (perhaps with a sign difference) as the Thom

class of Definition 3.2.1.
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Let n “ 2r ą 0, and recall from Theorem 2.1.10 that φn : Cℓpnq Ñ EndpC2rq is

a graded ˚-isomorphism with respect to the induced grading on C2r from φ2rpεq. The

element f P LpC0pRnqbCℓpnqq defining βn determines an element in φnpfq P LpC0pRnqb

C2rq. Since the image of f is contained within Cℓpnqp1q, it follows that the image of

φnpfq acts on C2r by an odd automorphism. Taking Spinc
pnq to act on C2r through

multiplication under φn, the function φnpfq : Rn Ñ EndpC2rq is Spinc
pnq-equivariant,

and therefore, Ăβn :“ rpC0pRnq b C2r , φnpfqqs P KKSpincpnqpC, C0pRnqq. To simplify some

notation, let G :“ Spinc
pnq, and let S :“ C2r .

Lemma 3.5.1. With the notation in the previous paragraph, there is an invertible class

µ2r :“ rpS, 0qs P KKGpC,Cℓp2rqq.

Proof. One can view S as a Z{2Z-graded imprimitivity C-Cℓpnq-bimodule, with the

following structure. For clarity, let 5 : C2r Ñ C2r “ S be the identity map (which

is an even-graded conjugate-linear isomorphism). The right action of x P Cℓpnq on

5pvq P S is given by 5pvq.x :“ 5pφnpxq˚vq. The Cℓpnq-valued inner product will be given

by xx, yyCℓn :“ φ´1
2r pΘx,yq, where Θx,y is the matrix representation of the linear map

(from C2r to C2r) given by pzq ÞÑ x xy, zyC. With these definitions, we check the only

non-obvious condition (in our case) for an imprimitivity bimodule:

5pxq. x5pyq, 5pzqyCℓpnq
“ 5pxq.φ´1

n pΘy,zq

“ 5pφnpφ´1
n pΘ˚

y,zqqxq

“ 5pΘz,yxq

“ 5pz xy, xyCq

“ xx, yyC 5pzq

“ Cx5pxq, 5pyqy 5pzq

The action of g P Spinc
pnq on C is trivial, on A P Cℓpnq is through conjugation

(g.A “ gAg´1), and on v P S is via g.5pvq :“ 5pφ2npg´1q.vq (note that this action

is through unitaries, since g´1 “ g˚ for g P Spinc
pnq). We check that S is indeed a
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Spinc
pnq-equivariant Hilbert Cℓpnq-module (see definition 2.5.7):

g.p5pvq.Aq “ g.5pφnpAq
˚vq

“ 5pφnpg˚A˚
qvq

“ 5pφnpgAg˚
q

˚φnpg˚
qvq

“ 5pφnpg˚
qvq.pg.Aq

“ pg.5pvqq.pg.Aq

The inverse of µ2r is the class µ
´1
2r :“ rpC2r , φ2r, 0qs P KKGpCℓp2rq,Cq. This is an inverse

since the map S pb
Cℓp2rq

C2r Ñ C defined by 5pxq pb
Cℓp2rq

y ÞÑ xx, yyC is an isomorphism. An

intuitive way to see this is to think of C2r
pb

Cℓp2rq

C2r as the space of Cℓp2rq-linear maps

(i.e, M2rpCq-linear maps) on C2r , which can only consist of multiples of the identity. The

induced action of Spinc
p2rq on C is trivial. Hence, µ2r pb

Cℓp2rq

µ´1
2r “ 1C. The product in

the opposite order gives the class rpCℓp2rq, 0qs P KKGpCℓp2rq,Cℓp2rqq, which is clearly

1Cℓp2rq “ σG
Cℓp2rq

p1Cq.

Lemma 3.5.2. Let n “ 2r. Using the cup/cap product,

β2r “ rβ2r pb
C
µ2r P KKG

pC, C0pRn
qpbCℓp2rqq.

Proof. By definition 2.6.10,

rβ2r pb
C
µ2r :“ rβ2r pb

C0pRnq

σC0pRnqpµ2rq

The class σC0pRnqpµ2rq is given by rp0, SpbC0pRnqqs “ rp0, C0pRn, Sqs with the obvious

C0pRnq-module action. The Hilbert C0pRnq bCℓpnq-module associated with the product

of rβ2r and µ2r is

C0pRn,C2r
q pb
C0pRnq

C0pRn, Sq – C0pRn,C2r
pbC2rq – C0pRn, EndpC2r

qq – C0pRn,Cℓpnqq.

The operator φ2rpfqb1 P φ2rpfq#0, under these identifications, is equivalent to pointwise

multiplication by f in C0pRn,Cℓpnqq. Similarly, the somewhat awkward right module ac-
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tion of Cℓpnq on S recovers the right-module action of C0pRnqpbCℓpnq on itself by right

multiplication. This is because the natural isomorphism (i.e., through the Riesz repre-

sentation) between S and pC2rq˚ relates left multiplication by φ2rpAq˚ to pre-composition

with φ2rpAq. Consequently,

rβ2r pb
C
µ2r “ rpC0pRn,Cℓpnqq, fqs “ β2r.

Let bn :“ rpRn ˆ C2r , imcqs P V Kn
Spincpnq

pRnq (see the discussion preceeding defi-

nition 3.2.1) , then νpb2rq “ rβ2r P KKSpincp2rqpC, C0pR2rqq via a homotopy between

the following two functions from Rn to Rn: rv ÞÑ v ¨ mpvqs and rv ÞÑ fpvqs. Since

b2r`1 P V K1
Spincp2r`1q

pR2r`1q is ungraded, we define

rβ2r`1 :“ {νpb2r`1q P KK
Spincp2r`1q

1 pC, C0pR2r`1
qq :“ KKSpincp2r`1q

pC, C0pR2r`1
qpbCℓp1qq.

Theorem 3.5.3. Let n “ 2r or n “ 2r ` 1. Then

Ăβnpb
C
µ2r “ βn P KKSpincpnq

pC, C0pRn
qpbCℓpnqq

Proof. The even case has been proved in Lemma 3.5.2. Let n “ 2r ` 1, and consider

bn P V K1
Spincpnq,¨pRnq given above. Suppressing the left action by scalar multiplication

and denoting ψ :“ π1 ˝ φ2r`1,

νpbnq “ rpC0pRn,C2r
q, imcqs “ rpC0pRn,C2r

q, ψpfqqs P }KK
Spincpnq

pC, C0pRn
qq

is an ungraded KK-class. Using the construction from proposition 2.6.7, we pass to the

odd KK-class:

Ăβn :“ zνpbnq P KK
Spincpnq

1 pC, C0pRn
qq :“ KKSpincpnq

pC, C0pRn
qpbCℓp1qq.

Represented by

rβn “

»

–

¨

˝C0pRn,C2r
‘ C2r

q,

¨

˝

0 iψpfq

´iψpfq 0

˛

‚

˛

‚

fi

fl
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Denote the Hilbert module E1 :“ C0pRn,C2r ‘ C2rq, which is graded with respect to the

grading operator S1pxq :”

¨

˝

I2r 0

0 ´I2r

˛

‚. The right action of e P Cℓp1q on E1 is by

left multiplication with the operator res1 “

¨

˝

0 ´I

I 0

˛

‚. Consider E2 :“ E1, but with

grading operator S2pxq :”

¨

˝

0 I2r

I2r 0

˛

‚ and matrix representation of e given by res2 “

¨

˝

iI 0

0 ´iI

˛

‚. These Hilbert C0pRnqpbCℓp1q-modules are unitarily equivalent through

the unitary:

U :“
1

?
2

¨

˝

iI I

I iI

˛

‚: E2 Ñ E1

That is, U˚S1U “ S2 and U˚res1U “ res2. Furthermore,

U˚

¨

˝

0 iψpfq

´iψpfq 0

˛

‚U “

¨

˝

ψpfq 0

0 ´ψpfq

˛

‚

So, again suppressing the obvious representation of C on E2, an equivalent representative

of βn can be given by

rβn “

»

–

¨

˝E2,

¨

˝

ψpfq 0

0 ´ψpfq

˛

‚

˛

‚

fi

fl “ rpE2, φ2r`1pfqqs .

The last equality holds because ψ “ π1 ˝φ2r`1 and π2 ˝φ2r`1 are negatives of each other

on odd-homogeneous elements of Cℓp2r`1q, and consequently φ2r`1 and pψ,´ψq coincide

on odd-homogeneous elements. Using the Hilbert C0pRnqpbCℓp1q-module E2 instead of

E1 is nice in that all operators T P LpE2q must be block diagonal (in order to commute

with res2). In this picture, pφ´1
1 q˚ : E2

–
ÝÑ C0pRn, C2r

pbCℓp1qq, where C2r is treated as a

trivially graded vector-space.

Now consider

σC0pRn,Cℓ1qpµ2rq “ rpC0pRn, SpbCℓ1q, 0qs P KKSpincpnq
pC0pRn

qpbCℓ1, C0pRn
qpbCℓnq.
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Fix graded isomorphisms

¨

˝C2r
‘ C2r , grading “

¨

˝

0 1

1 0

˛

‚

˛

‚

pb
Cℓp1q

pSpbCℓp1qq – pC2r
pbCℓp1qq pb

Cℓp1q

pSpbCℓp1qq

– pC2r
pbSqpbCℓp1q

– EndpC2r
qpbCℓp1q

– Cℓp2rqpbCℓp1q

– Cℓp2r ` 1q

Notice that, through this composition of isomorphisms, acting by φ2r`1pfpxqq pb
Cℓp1q

1,

for some x P Rn, becomes multiplication by fpxq. Consequently,

rβnpb
C
µ2r “ rpC0pRn,Cℓpnqq, fqs “ βn P KKSpincpnq

pC, C0pRn
qpbCℓpnqq

The purpose of this theorem is to express βn as a class in either KK0 or KK1 rather

than a class in KKn.

Definition 3.5.4. For n “ 2r or n “ 2r ` 1, Let αn P KKSpincpnqpCℓpnqpbC0pRnq,Cq

be the class defined in section 5 of [15]. In the odd-case, fix some orientation preserving

identification Cℓp2r ` 1q – Cℓp2rqpbCℓp1q, and define Ăαn :“ µ´1
2r

pb
Cℓp2rq

αn.

We won’t go into too much detail for αn, and we will use Theorem 3.3.1, proved in [15],

applied to Ăαn and Ăβn. In the odd cases, we will suppress explicit mention of the identifi-

cations KKpCℓp1qpb
A
, BpbCℓp1qq – KKpA,Bq and KKpCℓp1qpb

A
, Bq – KKpA,BpbCℓp1qq,

as was done in the statement of Theorem 3.3.1.
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4 Groupoid Homomorphisms and Pullback Construc-

tions

This section on generalized groupoid homomorphisms is broken up into four subsections.

The first subsection will recall the notion of generalized groupoid homomorphism and

work through some important examples. These generalized homomorphisms are often

called Hilsum-Skandalis morphisms. The next three sections recount the constructions

outlined in LeGall’s work [11], for pulling back H-algebras to G-algebras, H-Hilbert mod-

ules to G-Hilbert modules, and KKH-classes to KKG-classes via a generalized groupoid

homomorphism from G to H.

4.1 Generalized Groupoid Homomorphisms

This section takes definitions from [11] and expands on some examples and arguments.

The examples are somewhat detailed, and only serve as examples of manipulating the

somewhat awkward definitions. The essential content of this subsection, for the Thom

isomorphism, is entirely contained in the material preceding Example 4.1.10.

Definition 4.1.1. Let Y be a LCH space and let Ω be a LCH (right) H-space, where H

is a LCH topological groupoid. We say that f : Ω Ñ Y is a principal H-bundle if

1. f : Ω Ñ Y is an H-invariant continuous surjection,

2. the action of H on Ω is free and proper,

3. whenever fpωq “ fpηq, there exists (an implicitly unique) γ P H with ω.γ “ η

(f -fiberwise transitive).

Notice that this definition of principal bundle does not automatically guarantee that

f : Ω Ñ Y admits local sections, nor does it guarantee local triviality. Worse yet, the

fibers over f might not be homeomorphic to all of H, but merely a sub-groupoid of H.

More specifically, if H is not a transitive groupoid, then a single fiber of f is necessarily

homeomorphic to a transitive sub-groupoid of H.

Example 4.1.2. Let H be a LCH groupoid, and let f : Ω Ñ Y be a principal H-bundle.

For another LCH groupoid G, define pH :“ H
š

G, whose object space consists of the
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two disjoint object spaces of pH. Let the anchor map ρ : Ω Ñ pHp0q be the composition of

the original anchor map to Hp0q followed by inclusion into pHp0q “ Hp0q
š

Gp0q. Then G

simply does not act on Ω at all. Therefore, freeness, properness, and transitivity are not

affected by G, and Ω is a principal pH-bundle simply because it is a principal H-bundle.

Definition 4.1.3. If G and H are LCH topological groupoids, then a graph from G to

H is topological space Ω together with continuous maps r : Ω Ñ Gp0q and s : Ω Ñ Hp0q

such that:

1. G acts on Ω on the left so that ω P Ω and γ P G are composable whenever sGpγq “

rpωq,

2. H acts on Ω on the right so that ω P Ω and γ P H are composable whenever

spωq “ rHpγq,

3. the right H-action equips r : Ω Ñ Gp0q with the structure of a principal H-bundle.

G acts on //

sG

  

Ω
r

~~

s

!!

oo
acts principally on H

rH

}}

Gp0q Hp0q

Definition 4.1.4. A graph Ω from G to H is called regular if there exists a LCH space

Z and a surjective, open, and continuous map q : Z Ñ Gp0q that admits a lift via r to a

map rq : Z Ñ Ω.

Proposition 4.1.5. Let G be a LCH topological groupoid, and π : P Ñ X be a locally-

trivial principal G-bundle on the second-countable and LCH space X. If the anchor map

for the (right) G action on P is denoted by ρ, then the triple pP, π, ρq is a regular graph

from X to G.

Proof. Since it is immediate that pP, π, ρq is a graph from X to G, it suffices to show

regularity. In fact, we show that π itself is open, as a consequence of local triviality:

Assume U Ď P is an open set, and x P πpUq. Then for any y P π´1pxq X U , there

exists, under a local trivialization pV, ψq of P above x P V Ď X, a product neighborhood

WbˆWf Ď V ˆG with y P ψ´1pWbˆWf q Ď U and therefore x P π pψ´1pWb ˆ Wf qq “ Wb,

which is an open neighborhood of x and a subset of πP pUq.
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Definition 4.1.6. Two graphs Ω and Ω1 from G to H are equivalent if there is a

homeomorphism between them that is both G and H equivariant.

Definition 4.1.7. A generalized groupoid homomorphism from G to H is an

equivalence class of regular graphs rΩs from G to H.

Definition 4.1.8. Let G be a LCH topological groupoid and Y a LCH space. If p : Y Ñ

Gp0q is a continuous function, we define

GY :“

ˆ

Y ˆ
p,r

G ˆ
s,p
Y

˙

“ tpy, γ, y1
q P Y ˆ G ˆ Y : ppyq “ rpγq; ppy1

q “ spγqu .

The source and range maps on GY are given by spy, γ, y1q “ y1 and rpy, γ, y1q “ y.

Composition is given by py, γ, y1qpy1, γ1, y2q :“ py, γ ˝ γ1, y2q

Notice that GY makes sense for spaces Y that are not equipped with a G-action. In

the case where Y is equipped with a G-action, G ˙ Y can be naturally identified with a

proper (w.r.t. containment) subgroupoid of GY .

Definition 4.1.9. A pre-morphism of groupoids from G to H is a triple pY, p, fq

consisting of a LCH space Y , a continuous open surjection p : Y Ñ Gp0q and a strict

groupoid homomorphism f : GY Ñ H.

Let pY, p, fq be a pre-homomorphism from G to H, and denote by ι : Y Ñ GY the

inclusion defined by ιpyq :“ py, ppyq, yq P GY . We will construct a graph corresponding

to pY, p, fq as follows. Let rΩ :“ Y ˆ
f˝ι,rH

H. Let ΩpY,p,fq be the quotient of rΩ by the

equivalence relation py, hq „ py1, h1q if and only if ppyq “ ppy1q and h1 “ fpy1, ppyq, yqh.

Define r prpy, hqsq :“ ppyq P Gp0q and s prpy, hqsq :“ rHphq P Hp0q. On the left, γ P G acts

by: γ. rpy, hqs :“ rpy1, fpy1, γ, yqhqs, where y1 is any element of p´1prGpγqq (the choice of

y1 does not matter). On the right, α P H acts by: rpy, hqs .α :“ rpy, hαqs. With these

definitions, one can show that ΩpY,p,fq is a regular graph with p open.

Conversely, if pΩ, r, sq is a graph from G toH, then we can form a strict homomorphism

f : GΩ Ñ H as follows. Given pz, γ, yq P GΩ, we have that rpzq “ rGpγq “ rpγ.yq;

therefore, (by principality) there exists a unique h P H with zh “ γ.y. Define fpz, γ, yq :“

h. If Ω is a regular graph, then there exists Z and q : Z Ñ Gp0q, a continuous open

surjection that lifts to rq : Z Ñ Ω; therefore, pZ, q, f ˝ rqq is a pre-homomorphism, where

f : GΩ Ñ H is defined above.
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Example 4.1.10. Suppose pΩ, r, sq is a regular graph from G to H with r an open map.

Then the corresponding pre-homomorphism is pΩ, r, fq, where f : GΩ Ñ H is defined by

fpω, γ, ω1q “ h for the unique h P H satisfying ωh “ γω1. Consider the construction

of the graph corresponding to this pre-homomorphism. Since fpω, rpωq, ωq “ h must

satisfy ωh “ rpωqω “ ω, it follows that h “ spωq. Therefore, f ˝ ι “ s, and consequently

Ω ˆ
f˝ι,rH

H “ Ω ˆ
s,rH

H. Consider the function ψ : Ω ˆ
s,rH

H Ñ Ω by ψpω, hq :“ ω.h. The

equality ψpω, hq “ ψpω1, h1q holds if and only if ωh “ ω1h1. Denote η :“ fpω1, rpωq, ωq.

Applying the definition of f , pωqh “ pω1ηqh. So ωh “ ω1h1 if and only if ηh “ h1

(and rpωq “ rpω1q). In summary, ψpω, hq “ ψpω1, h1q if and only if pω, hq „ pω1, h1q.

Consequently, ψ passes to an injective function on the „ equivalence classes in ΩˆH0 H.

It is clearly surjective, since ψpω, spωqq “ ω. Therefore, the regular graph corresponding

to the pre-homomorphism pΩ, r, fq is equivalent to pΩ, r, sq. That is, the composition

of constructions (r-open regular graphs) Ñ (pre-homomorphisms) Ñ (r-open regular

graphs) is the identity modulo graph equivalences.

Definition 4.1.11. Let pY, p, fq be a pre-homomorphism from G to rG; pY 1, p1, f 1q, a pre-

homomorphism from rG to H. Recall the inclusion ι : Y Ñ GY . The composition of

pre-homomorphisms is given by pZ, p, f 1 ˝ rfq, where Z :“ Y ˆ
f˝ι, p1

Y 1 and rf : GZ Ñ HY 1

takes ppy, y1q, γ, pz, z1qq to py1, fppy, γ, zqq, z1q.

Example 4.1.12. Suppose that pΩ, r, sq is a regular graph from G to rG such that r an

open map (i.e., r : Ω Ñ Gp0q is a continuous open surjection lifting to the identity map).

Let pΩ1, r1, s1q be a regular graph from rG to H, similarly assuming that r1 is an open

map. The composition of pΩ, r, fq and pΩ1, r1, f 1q is given by the pre-homomorphism
ˆ

Ω ˆ
s,r1

Ω1, r, f 1 ˝ rf

˙

from G to H. Recall that f : GΩ Ñ rG sends pω, γ, ω1q P GΩ to

the unique element η P rG satisfying ωη “ γω1. The strict groupoid homomorphism

f 1 : rGΩ1 Ñ H is defined similarly. A natural choice for the composite graph might look

like

Ω ˆ
s,r1

Ω1

|| ""

Ω
r

~~

s

##

Ω1

r1

{{

s1

!!

Gp0q
rGp0q Hp0q
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However, the space Ω ˆ
s,r1

Ω1 is not a graph from G to H. However, modding out

by the relation pωrγ, ω1q „1 pω, rγω1q for any rγ P rG from source r1pω1q to range spωq is

actually a regular graph from G to H. The range and source maps for this rG-balanced

Cartesian product (denoted by r and s1, respectively), along with the G and H actions,

are the obvious choices. We will now show that

ˆ

Ω ˆ
s,r1

Ω1
{ „

1

˙

–

ˆ

´

Ω ˆ
s,r1

Ω1
¯

ˆ
s1,rH

H{ „

˙

.

Define ψ : Ω ˆ
s,r1

Ω1 Ñ Ω ˆ
s,r1

Ω1 ˆ
s1,rH

H{ „ by

ψpω, ω1
q :“ rpω, ω1, s1

pω1
qqs

The equality ψpω, ω1q “ ψpη, η1q holds if and only if pω, ω1, s1pω1qq „ pη, η1, s1pη1qq. By

definition of „, this occurs if and only if

rpωq “ rpηq and s1
pω1

q “ pf 1
˝ rfqppω, ω1

q, rpηq, pη, η1
qqs1

pη1
q.

Define γ :“ fpω, rpηq, ηq P rG, and by definition of f , ωγ “ η. Similiarly, define h to be

the following element:

pf 1
˝ rfqppω, ω1

q, rpηq, pη, η1
qq “ f 1

pω1, fpω, rpηq, ηq, η1
q

“ f 1
pω1, γ, η1

q

“: h P H

Based on these definitions, ω1h “ γη1 and s1pω1q “ hs1pη1q. The second equality is

equivalent to h “ s1pω1q, and the the first equality translates to ω1 “ γη1. In summary,

ψpω, ω1q “ ψpη, η1q if and only if pη, η1q “ pωγ, γ´1ω1q (i.e., pη, η1q „1 pω, ω1q). So ψ defines

an injective function on „1-equivalence classes. For surjectivity, notice that pω, ω1, hq „

pω, ω1h, sHphqq, since
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f 1
pω1h, fpω, rpωq, ωq, ω1

qh “ f 1
pω1h, spωq, ω1

qh

“ f 1
pω1h, r1

pω1
q, ω1

qh

“ h´1h

“ sHphq.

The conclusion of this example is that the composition of pre-homomorphisms, cor-

responding to (r-open) regular graphs, corresponds to the rG-balanced Cartesian product

of the composite graphs.

4.2 Pullback of Algebras

Consider a strict homomorphism between LCH groupoids, f : G Ñ H, and an H-algebra

D with action α : s˚D Ñ r˚D. Define f˚D to be the C0pGp0qq-algebra gotten by pullback

of D (as a C0pHp0qq-algebra) by f |Gp0q , equipped with the G action f˚α : f˚ps˚Dq Ñ

f˚pr˚Dq defined by pf˚αqγ :“ αfpγq.

If φ “ pY, p, fq is a pre-homomorphism from G to H, we want to define a G-algebra

φ˚D, whenever D an H-algebra. Taking f˚D yields a GY -algebra; however, we need to

use p : Y Ñ Gp0q to push this down to a G-algebra. The fact that p is an open surjection

will be required in order for the propositions in this section to hold.

Let B be a C0pZq-algebra; p : Y Ñ Z, a continuous open surjection. Fix a continuous

family of measures with compact support (alternatively, proper support), tµzuzPZ , on the

fibers p´1ptzuq of p. For any element δ “ tδyuyPY P pp˚Bqb, we can construct an element

tprδqzuzPZ “ rδ P Dc (alternatively, in Db) by integration:

prδqz :“

ż

yPp´1pzq

δydµzpyq

Again, we want to be able to push a GY -algebra, D, down to a G-algebra, and this

requires something like averaging elements over the induced Y ˆp Y -action on D. This

induced action is given by restricting the action of GY to just those elements py, γ, y1q

where γ P Gp0q.

Denote by α : s˚D Ñ r˚D the action of Y ˆp Y on D, and suppose x P Db. Then we
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consider the family of elements pµ ˚ xqy P Dy given by

pµ ˚ xqy :“

ż

y1PYppyq

αpy,y1qpxy1qdµppyqpy
1
q

Lemma 4.2.1. Consider the C˚-algebra of Y ˆp Y -invariant elements of Db given by

DY ˆpY :“ td P Db : @py, y1q P Y ˆp Y, αpy,y1qpdy1q “ dyu. Then the family tpµ ˚ xqyuyPY ,

defined above, forms an element µ ˚ x P DY ˆpY , whenever x P Db.

The proof of this Lemma is in [11].

Since µ ˚x is Y ˆp Y -invariant, we could define, for any z P Z, pµ ˚xqz :“ pµ ˚xqy, for

an arbitrary y P p´1pzq. For similar reasons, C0pY qY ˆpY – CbpZq, so the algebra DY ˆpY

has a natural action of C0pZq.

Definition 4.2.2. If p : Y Ñ Z is a continuous open surjection between LCH and

σ-compact spaces Y and Z, and D is a Y ˆp Y -algebra, then denote by p!D the C0pZq-

algebra C0pZq ¨ DY ˆpY .

Proposition 4.2.3 (See [11] Proposition 3.2). With the situation of Definition 4.2.2,

(a) D is canonically isomorphic to p˚p!D as Y ˆp Y -algebras

(b) If φ : D Ñ D1 is a Y ˆp Y -algebra homomorphism, then there exists p!φ : p!D Ñ

p!D
1 such that p˚p!φ “ φ.

Considering the relevant case where D is a GY -algebra and Z “ Gp0q, we consider

αpy,γ,y1q : D Ñ D for py, γ, y1q P GY . Since p!αpy,γ,y1q does not depend on the particular

choice of y P p´1prpγqq nor y1 P p´1pspγqq, we can define a G-action on p!D, denoted by

p!α.

Definition 4.2.4. Let φ “ pY, p, fq be a pre-homomorphism from G to H. If D is an

H-algebra, then φ˚D is defined to be the G-algebra p!f˚D.

Example 4.2.5. Suppose E is a vector bundle, of real rank k, on a second-countable

LCH space X. The frame bundle of E, denoted FpEq, is a fibre bundle on X, whose fiber

above a point x P X is the space of all ordered vector-space bases for the vector space Ex.
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One can identify FpEq with a sub-fibre-bundle of
Àk

ℓ“1E. Suppose β “ tb1, b2, ..., bku is

an element of FpEq, and A “ pai,jqi,j P GLpRkq. The right-action of A on β is given by:

β.A :“

#

k
ÿ

ℓ“1

bℓaℓ,1,
k

ÿ

ℓ“1

bℓaℓ,2, ...,
k

ÿ

ℓ“1

bℓaℓ,k

+

.

If β.A “ β1, then the jth column of A returns the β-coordinates of b1
j P β1. Therefore,

A must be the matrix which changes β1-coordinate vectors to β-coordinate vectors (i.e.,

Arxsβ1 “ rxsβ), which we will denote by either rIs
β1

β or Qβ1

β .

With these definitions, r : FpEq Ñ X forms a regular graph from X to GLkpRq (see

Proposition 4.1.5). Denote by φ :“ pFpEq, r, fq the pre-homomorphism associated to

FpEq. In this case,

GY “ XFpEq “ tpβ, x, β1
q P FpEq ˆ X ˆ FpEq : β, β1 bases for Exu

Since x P X acts trivially on bases, the map f : XFpEq Ñ GLkpRq sends pβ, x, β1q to rIs
β1

β .

Consider C0pRkq as a GLkpRq-algebra with αApϕq :“ ϕ ˝ A´1 for any ϕ P C0pRkq and

A P GLkpRq. Then

f˚C0pRk
q “ C0pRk

q b
C
C0pFpEqq – C0pRk

ˆ FpEqq

as an XFpEq-algebra. At β
1, the fiber is given by

pf˚C0pRk
qqβ1 “ C0pRk

q b pC0pFpEqq{Iβ1q – C0pRk
q b C – C0pRk

q.

Under this identification, the action of XFpEq on fibers is given by

pf˚αqpβ,x,β1q “ αfpβ,x,β1q “ α
rIs

β1

β

.
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Now we need to push down f˚C0pRkq by r : FpEq Ñ X:

φ˚C0pRk
q :“ r!f

˚C0pRk
q

– r!C0pFpEq ˆ Rk
q

:“ C0pXq ¨ C0pFpEq ˆ Rk
q
FpEqˆrFpEq

Since FpEq ˆr FpEq acts on FpEq by pβ, β1q.β1 “ β “ β1.rIs
β
β1 , and on Rk by pβ, β1q.v “

fpβ, rpβ1q, β1q.v “ rIs
β1

β .v, it follows that h P pC0pFpEq ˆ Rkqqb (‰ CbpFpEq ˆ Rkq, see

Definition 2.4.2) is FpEq ˆr FpEq-invariant if and only if hpβ1, vq “ hpβ1.A´1, A.vq for

all β1 P FpEq, v P Rk, and A P GLkpRq. Consequently,

φ˚C0pRk
q – C0pXq ¨ C0pFpEq ˆ Rk

q
FpEqˆrFpEq

– C0

ˆ

FpEq ˆ
GLkpRq

Rk

˙

– C0pEq.

A similar, but slightly easier computation yields

φ˚C – C0pFpEq{GLkpRqq – C0pXq.

Additionally, if pP, ηq is a Spinc-structure for E, and the associated pre-homomophism is

denoted φP : X Ñ Spinc
pkq, then a similar computation demonstrates

φ˚
PC0pRk

q – C0

ˆ

P ˆ
Spincpkq

Rk

˙

– C0pEq;

φ˚
PC – C0pXq

4.3 Pullback of Hilbert Modules

Let G and H be LCH groupoids, and φ “ pY, p, fq a pre-homomorphism from G to

H. Given an H-algebra, B, and an H-equivariant Hilbert B-module E , this subsection

outlines the construction of φ˚E given in [11].
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If f : G Ñ H is a strict groupoid homomorphism, then f˝sG “ sH˝f and f˝rG “ rH˝f .

The pullback of E is defined to be f˚E :“ E b
C0pHp0qq,ext

C0pGp0qq, equipped with the

continuous action by unitaries defined by the diagram below:

s˚
Gpf˚Eq

–

��

f˚V
// r˚

Gpf˚pEqq

–

��

f˚ps˚
HEq

V b1
// f˚pr˚

HEq

Definition 4.3.1. Let p : Y Ñ Gp0q be a continuous map, and let E be a GY -equivariant

Hilbert D-module. Then define the following:

Eb :“ tR P LpD, Eq|R˚R P Dbu, as a GY -equivariant Hilbert Db-module;

EY ˆpY :“ tξ P Eb|@py1, yq P Y ˆp Y, Vpy1,ppyq,yqpξyq “ ξy1u;

p!E :“ EY ˆpY p!D.

The Hilbert p!D-module, p!E , is equipped with an action of G through pp!V qγ –

Vpy1,γ,yq, where y, y
1 P Y are any points satisfying ppyq “ spγq and ppy1q “ rpγq.

Example 4.3.2. Let k “ 2r or k “ 2r ` 1. Consider the Spinc
pkq-equivariant Hilbert

C0pRkq-module of functions E :“ C0pRk,C2rq, where Spinc
pkq acts on Rk via the covering

map ϕ : Spinc
pkq Ñ SOpkq, and on C2r via the composition ψ : Spinc

pkq Ď Cℓpkq –

M2rpCpk´2rq`1q Ñ M2rpCq – EndpC2rq, and on ξ P E by Vgpξq :“ ψpgqpξ ˝ ϕpg´1qq.

Suppose πE : E Ñ X is a rank-k vector bundle with Spinc-structure pπ : P Ñ X, ηq, and

denote by φP :“ pP, π, fq the associated pre-homomophism from X to Spinc
pkq. That is,

f : XP Ñ Spinc
pkq maps pp2, x, p1q P XP to the unique element h P Spinc

pkq satisfying

p2.h “ p1. Then

f˚E :“ E b C0pP q

“ C0pRk,C2r
q b C0pP q

– C0pP ˆ Rk,C2r
q

The XP -action on f˚E is given by the commutative diagram:
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C0pP ˆ Rk,C2rqp1

–

��

pf˚V qpp2,x,p1q
// C0pP ˆ Rk,C2rqp2

–

��

C0pRk,C2rq
Vfpp2,x,p1q

// C0pRk,C2rq

Similar to Example 4.2.5, f˚C0pRkq – C0pP ˆRkq as a C0pP q-algebra, which acts on

f˚E in the obvious way. Now we need to push down E via π:

pf˚Eqb :“ tR P LpC0pP ˆ Rk
q, C0pP ˆ Rk,C2r

qq : R˚R P C0pP ˆ Rk
qbu

– tR P LpC0pRk
q b C0pP q, E b C0pP qq : R˚R P C0pRk

q b CbpP qu

– tR P LpC0pRk
q, Eq b LpC0pP qq : R˚R P C0pRk

q b CbpP qu

– E b CbpP q

Therefore,

pf˚Eq
PˆπP :“ tξ P pf˚Eqb : pf˚V qpp2,πpp1q,p1qξp1 “ ξp2u

– tξ P C0pP ˆ Rk,C2r
qb|@p1, p2 P P, @v P Rk, ph “ fpp2, πpp1q, p1qq ùñ

ùñ ψphqpξpp1, ϕph´1
qvqq “ ξpp2, vqu

To simplify this further, notice that functions ξ : PˆRk Ñ C2r can be lifted uniquely to a

continuous map pξ : PˆRk Ñ PˆC2r , satisfying π1˝ pξpp, vq “ p, via pξpp, vq :“ pp, ξpp, vqq.

Let g P Spinc
pkq act on PˆRk via g.pp, vq :“ pp.g´1, g.vq, and similarly for PˆC2r . From

above, the ξ, corresponding to elements of pf˚EqPˆπP , satisfy ξpp.g´1, g.vq “ g.ξpp, vq for

all g P Spinc
pkq. Therefore, the pξ, corresponding to elements of pf˚EqPˆπP , are Spinc

pkq-

equivariant; hence, we can view pξ as a continuous map on the quotients:

rξ : E – P ˆ
Spincpkq

Rk
Ñ P ˆ

Spincpkq

C2r
– $,

which fibers over X. The continuous maps rξ, corresponding to elements of pf˚EqPˆπP ,

can therefore be viewed as bounded sections of the bundle π˚
E$ Ñ E. In conclusion,
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φ˚E :“ π!f
˚E

:“ pf˚Eq
PˆπP ¨ π!f

˚
pC0pRk

qq

– pf˚Eq
PˆπP ¨ C0pEq

– Γ0pπ˚
E$q,

where Γ0 is used to denote sections of a bundle vanishing at infinity.

4.4 Pullbacks in KKG
˚

Given an H-equivariant Kasparov A-B-bimodule pE , π, F q P EHpA,Bq (2.6.2), and a

generalized homomorphism φ : G Ñ H, Le Gall defines φ˚pE , π, F q :“ pφ˚E , φ˚π, φ˚F q P

EGpφ˚A,φ˚Bq ([11]). The main result in Le Gall’s work is the following theorem:

Theorem 4.4.1 ([11] THEORÈME 7.2). Let G and H be topological groupoids that are

second-countable and LCH. Suppose φ is a generalized groupoid homomorphism from G

to H.

1. For any H-algebras A (separable), B,D and for any x P KKHpA,Bq and y P

KKHpB,Dq,

φ˚x pb
φ˚B

φ˚y “ φ˚
pxpb

B
yq P KKG

pφ˚A,φ˚Dq.

2. For any H-algebra A, φ˚p1Aq “ 1φ˚A.

3. If ψ : rG Ñ G is another generalized groupoid homomorphism (rG second countable,

LCH), then

ψ˚φ˚
pxq “ pφ ˝ ψq

˚
pxq P KK

rG
pψ˚φ˚A,ψ˚φ˚Bq.

Le Gall uses this theorem to prove a non-equivariant Thom isomorphism for Spinc

bundles on compact spaces, X. We are going to combine this approach with the results

of the next section to get an equivariant version that works with various types of support

conditions.
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5 The Ff Functor

Emerson and Meyer refer to a particular type of forgetful functor throughout their work,

but such a functor does not appear to be defined anywhere in the literature. However,

this functor is evidently non-trivial, since the structure being forgotten is integral to

other structures. Essentally, given a map f : X Ñ Y , we want to take objects fibered

over X and combine all of the fibers together over f´1pyq, for every y P Y , to get

objects fibered over Y . In this sense, it might be better to refer to this functor as a

pushforward functor. More specifically, for a continuous G-map between second-countable

LCH spaces f : X Ñ Y , we use this section to define functors, all denoted Ff , which take

G ˙ X-algebras into G ˙ Y -algebras, G ˙ X-equivariant Hilbert B-modules into G ˙ Y -

equivariant Hilbert Ff pBq-modules, and classes x P KKG˙XpA,Bq into classes Ff pxq P

KKG˙Y pFf pAq,Ff pBqq. We also discuss the relationship between pullback and forgetful

functors. As it is necessary to prove the Thom isomorphism, the primary objective of

this subsection is to verify that the Kasparov product commutes with forgetful functors.

Understanding this functor is additionally beneficial in formalizing the exact relationship

between the two different Thom classes used in Lemma 4.0.2 of [3]. This relationship is

explained in Subsection 6.2.

5.1 Ff for Algebras

Definition 5.1.1. Given a continuous G-map f : X Ñ Y , we define a strict groupoid

homomorphism, G ˙ f : G ˙ X Ñ G ˙ Y , via

pG ˙ fqpγ, xq :“ pγ, fpxqq.

Lemma 5.1.2. Let A be a C0pXq-algebra. Then A – A b
C0pXq

C0pXq.

More generally, if A is a G-algebra, then A – A b
C0pGp0qq

C0pGp0qq as G-algebras.

Proof. Let X :“ Gp0q. The proof follows from the requirement that θpC0pXqq ¨ A is

dense in A. Observe that the function ψ : A d
C0pXq

C0pXq Ñ θpC0pXqq ¨ A, defined by a

lift of the bilinear map pa, gq ÞÑ θpgqa, identifies the algebraic balanced tensor product

A d
C0pXq

C0pXq isometrically with θpC0pXqq ¨ A. A sequence pxnqnPN P A d
C0pXq

C0pXq is
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Cauchy if and only if pψpxnqqnPN is Cauchy in θpC0pXqq ¨ A. Mapping the limit of pxnq,

in the completed tensor product, to the limit of pψpxnqq in A, extends ψ to an isometric

isomorphism pψ : A b
C0pXq

C0pXq Ñ A.

By 2.4.6, pA bX C0pXqqx – Ax b C – Ax, so G acts on A bX C0pXq through this

isomorphism.

Definition 5.1.3. Let f : X Ñ Y be a continuous function between LCH spaces. Let

A be a C0pXq-algebra. We define Ff pAq to be the C0pY q-algebra with the following

structure:

1. As a C˚-algebra, Ff pAq :“ A.

2. Define Ff pθq : C0pY q Ñ ZpMpFf pAqqq via the identification A – A b
C0pXq

C0pXq,

and letting h P C0pY q act, on AbX C0pXq, by multiplication with 1MpAq b ph ˝ fq.

Notice that Ff pθqpC0pY qqpFf pAqq “ Ff pAq, since f˚pC0pY qq ¨ C0pXq “ C0pXq. The

definition we give here is one of many possible equivalent definitions. One can view

ZpMpAqq as CbpPrimpAqq via the Dauns-Hofmann theorem. Denoting the isomorphism

by ψ : ZpMpAqq Ñ CbpPrimpAqq, the ˚-homomorphism ψ ˝ θ : C0pXq Ñ CbpPrimpAqq

can be viewed as pullback via a continuous function σA : PrimpAq Ñ X; i.e., θpgq “

ψ´1pg ˝ σAq for any g P C0pXq. Then, for h P C0pY q, Ff pθqphq “ ψ´1ph ˝ f ˝ σAq.

This could be used as an equivalent definition. Another equivalent approach would be

using something like Proposition 2.50 of [20], to uniquely lift θ : C0pXq Ñ MpAq to a

compatible map θ : CbpXq Ñ MpAq. Then Ff pθq “ θ ˝ f˚ : C0pY q Ñ CbpXq Ñ MpAq.

We will not rely on these equivalent definitions in this thesis.

In the following proposition, we extend the definition of Ff to a functor, from C0pXq-

algebras to C0pY q-algebras, by setting Ff pψq :” ψ for C0pXq-morphisms ψ.

Proposition 5.1.4. If ψ : A Ñ B is a morphism of C0pXq-algebras, then taking Ff pψq :

Ff pAq Ñ Ff pBq to be the same set-function as ψ, yields a C0pY q-algebra morphism.

Proof. Let pajq Ď A and phjq Ď C0pXq. Since ψ is C0pXq-linear, it has a well-defined

counterpart:

ψ b 1 : A b
X
C0pXq Ñ B b

X
C0pXq.
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Given any g P C0pY q,

Ff pθBqpgq

˜

pψ b 1q

˜

ÿ

j

aj b
X
hj

¸¸

“ Ff pθBqpgq

˜

ÿ

j

ψpajq b
X
hj

¸

“
ÿ

j

ψpajq b
X

phj ¨ pg ˝ fqq

“ pψ b 1q

˜

ÿ

j

aj b
X

phj ¨ pg ˝ fqq

¸

“ pψ b 1q

˜

Ff pθAqpgq

˜

ÿ

j

aj b
X
hj

¸¸

The reason that the Ff -functors are not completely trivial to define is that, for an

action, α, of G ˙ X on A, αpγ,xq : Ax Ñ Aγ.x could be a completely different map than

αpγ,x1q : Ax1 Ñ Aγ.x1 , even if fpxq “ fpx1q in Y . The fiber of Ff pAq over y P Y is A|f´1pyq.

So how exactly does one define the isomorphism Ff pαqpγ,yq : A|f´1pyq Ñ A|f´1pγ.yq, when

“γ” acts differently on Ax than Ax1? Perhaps, one could argue that A|f´1pyq Ď
ś

fpxq“y

Ax,

and we could define Ff pαqpγ,yq by applying αpγ,xq component-wise:

A|f´1pyq Ď
ź

fpxq“y

Ax

ś

αpγ,xq

ÝÑ
ź

fpxq“y

Aγ.x Ě A|f´1pγ.yq.

The most pressing issue is that the image of A|f´1pyq under this component-wise

map needs to lie entirely within A|f´1pγ.yq, otherwise this construction does not make

sense. One can view C0pXq-algebras as algebras of upper semicontinuous sections (see,

for example, Lemma 2.1 of [13]). Continuity of the G ˙ X action would be required for

this map to be well-defined. Interestingly, discontinuous actions do not generally allow

for the application of a forgetful functor. This interpretation of C0pXq-algebras is only

used here for motivation, and this thesis will continue to avoid using this interpretation

explicitly. Instead, we will characterize the source and range pullbacks of Ff pAq in a

convenient way:

Proposition 5.1.5. Let G be a locally compact Hausdorff groupoid, and let A be a G˙X-

algebra. Denote the continuous pG ˙ Xq-action by α : s˚
XA Ñ r˚

XA, and consider a

continuous G-map, f : X Ñ Y , between locally compact Hausdorff G-spaces. There exist
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C0pG ˙ Y q-algebra isomorphisms:

s˚
Y pFf pAqq – FG˙f ps˚

XAq

r˚
Y pFf pAqq – FG˙f pr˚

XAq.

Proof. Firstly, by a routine diagram chase, the following diagram (in the category of

topological spaces) commutes:

X X

X ˆ
f,sY

pG ˙ Y q
„ //

π1

OO

π2
��

G ˙ X

sX

OO

pG˙fq

��

G ˙ Y G ˙ Y

The middle homeomorphism in the above diagram yields an isomorphism of C˚-

algebras:

C0pXq b
f˚,s˚

Y

C0pG ˙ Y q – C0

ˆ

X ˆ
f,sY

pG ˙ Y q

˙

– C0pG ˙ Xq.

Furthermore, the C0pXq and C0pG ˙ Y q structural homomorphisms, for each C˚-

algebra, are given by pullbacks of the corresponding vertical arrows in the commutative

diagram above. Tracking the structure carefully, we verify the claim:

s˚
Y pFf pAqq :“

˜

Ff pAq b
Ff pθq,s˚

Y

C0pG ˙ Y q, 1 b id˚
G˙Y

¸

:“

˜˜

A b
θ,id˚

X

C0pXq

¸

b
1bf˚,s˚

Y

C0pG ˙ Y q, 1 b 1 b id˚
G˙Y

¸

–

˜

A b
θ,id˚

Xb1

˜

C0pXq b
f˚,s˚

Y

C0pG ˙ Y q

¸

, 1 b 1 b id˚
G˙Y

¸

–

˜

A b
θ,s˚

X

C0pG ˙ Xq, 1 b pG ˙ fq
˚

¸

– FpG˙fqps
˚
XAq
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The associativity used here can be verified carefully, as is done in Lemma 2.4 of [13].

Their lemma is proved for separable A and surjective f , but their argument does not rely

on these hypotheses.

A similar argument, with the diagram below, gives the other equivalence.

X X

X ˆ
f,rY

pG ˙ Y q
„ //

π1

OO

π2
��

G ˙ X

rX

OO

pG˙fq

��

G ˙ Y G ˙ Y

Note: the homeomorphism in the middle of this diagram maps px, pγ, yqq, satisfying

fpxq “ γ.y, to pγ, γ´1.xq P G ˙ X.

Definition 5.1.6. Let A be a pG ˙Xq-algebra, with a continuous G ˙X action denoted

by α : s˚
XA Ñ r˚

XA. Given a continuous G-map, f : X Ñ Y , between locally compact

Hausdorff spaces, we define Ff pAq to be the pG ˙ Y q-algebra, whose underlying C0pY q-

structure is given by Ff pθq, and whose continuous action, denoted Ff pαq, is determined

by the diagram:

s˚
Y pFf pAqq

–

��

Ff pαq
// r˚

Y pFf pAqq

–

��

FpG˙fqps
˚
XAq

FpG˙fqpαq
// FpG˙fqpr

˚
XAq

Note 1: the bottom horizontal arrow is the forgetful functor applied to the C0pG˙Xq-

algebra homomorphism α (see Proposition 5.1.4). The vertical isomorphisms are the

specific identifications used in the proof of Proposition 5.1.5.

Note 2: the definition of Ff can be extended to a functor from the category of G ˙X-

algebras to the category of G ˙Y -algebras by defining Ff pψq to be the same set function

as ψ : A Ñ B, for any G ˙ X-equivariant homomorphism. This definition is justified by

the fact that FG˙f pαq ” α, as a set-function, and ψ “commutes” with the action α.

Proposition 5.1.7. Let f : X Ñ Y be a continuous function between LCH spaces.

1. Let A be a C0pXq-algebra. Then

f˚Ff pAq –

˜

A b
θ,π˚

1

C0

ˆ

X ˆ
Y
X

˙

, 1 b π˚
2

¸

,
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where π˚
i : C0pXq Ñ CbpX ˆY Xq is the pullback of functions via the ith-coordinate

projection πi : X ˆY X Ñ X.

2. Let B be a C0pY q-algebra. Then

Ff pf˚Bq –

ˆ

B b
C0pY q

C0pXq, 1 b f˚

˙

.

Proof. Applying definitions and carefully tracking the relevant actions,

f˚Ff pAq –

ˆˆ

A b
X
C0pXq

˙

, 1 b f˚

˙

b
Y,f˚

pC0pXq, id˚
Xq

–

ˆ

pA bX C0pXqq b
1bf˚,f˚

C0pXq, 1 b id˚
X

˙

“

˜

A b
θ,id˚

Xb1

ˆ

C0pXq b
C0pY q

C0pXq

˙

, 1 b p1 b id˚
Xq

¸

“

˜

A b
θ,π˚

1

C0

ˆ

X ˆ
Y
X

˙

, 1 b π˚
2

¸

In the other order,

Ff pf˚
pBqq –

˜

pB bY C0pXqq b
1bid˚

X ,id˚
X

C0pXq, p1 b 1q b f˚

¸

“

ˆ

B b
θB ,f˚b1

pC0pXq bX C0pXqq , 1 b p1 b f˚
q

˙

“

˜

B b
θB ,π˚

1 f
˚

C0pX ˆX Xq, 1 b π˚
2f

˚

¸

“

ˆ

B b
θB ,f˚

C0pXq, 1 b f˚

˙

5.2 Ff for Hilbert Modules

Let E be a (right) Hilbert B-module, where B is a C0pXq-algebra. The fibers of E are

given by Ex :“ E b
B
Bx, but there isn’t really any additional C0pXq-structure for E that

needs to be specified. Since the underlying C˚-algebra of B and Ff pBq are the same, there
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really isn’t much difference between E as a Hilbert B-module vs. E as a Hilbert Ff pBq-

module, except that the relevant fibers, after forgetting f , are Ey :“ E b
Ff pBq

Ff pBqy –

E b
B
B|f´1pyq. Consequently, for any adjointable operator, ϕ, between Hilbert B-modules,

Ff pϕq :“ ϕ is also the appropriate definition.

If E has the additional structure of a continuous G˙X-action by unitaries, V : s˚
XE Ñ

r˚
XE , we want to define Ff pEq :“ E and Ff pV q : s˚

Y Ff pEq Ñ r˚
Y Ff pEq in a way similar

to Definition 5.1.6. If E is G ˙ X-equivariant, then from section 4.2 of [11], one can

view continuous actions of E , in an equivalent way, as continuous actions of KpE ‘ Bq

as a C0pXq-algebra. Consequently, we could define Ff pV q : s˚
Y Ff pEq Ñ r˚

Y Ff pEq via

Ff pαq : s˚
Y Ff pKpE ‘ Bqq Ñ r˚

Y Ff pKpE ‘ Bqq for those Hilbert Modules. Alternatively,

we could try to define Ff pV q directly. Unsurprisingly, these approaches are equivalent.

Proposition 5.2.1. Let E be a right Hilbert B-module, where B is a G ˙ X-algebra. If

f : X Ñ Y is a G-map between LCH, G-spaces, then

s˚
Y Ff pEq – FG˙f ps˚

XpEqq;

r˚
Y Ff pEq – FG˙f pr˚

XpEqq.

Proof. By definition of pullback, and applying Proposition 5.1.5, we have that

s˚
Y Ff pEq “ Ff pEq b

Ff pAq

s˚
Y pFf pAqq

– Ff pEq b
Ff pAq

FG˙f ps˚
XAq

“ E b
A
FG˙f ps˚

XAq

– FG˙f ps˚
XEq

The verification for range map pullbacks is identical.

Intuitively, propositions 5.1.5 and 5.2.1 are saying that pulling back from C0pY q to

C0pG ˙ Y q is the same operation as pulling back from C0pXq to C0pG ˙ Xq.

In the same way that we defined Ff pαq for G ˙ X actions α on C0pXq-algebras, we

can now define Ff pV q for Hilbert B-modules:
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Definition 5.2.2. Let E be a right Hilbert B-module, where B is a G ˙ X-algebra. If

f : X Ñ Y is a G-map between LCH, G-spaces, then we define Ff pV q to be the map

given by the diagram below:

s˚
Y pFf pEqq

–

��

Ff pV q
// r˚

Y pFf pEqq

–

��

FpG˙fqps
˚
XEq

FpG˙fqpV q

V
// FpG˙fqpr

˚
XEq

The bottom map is FG˙f pV q, treating V as an adjointable operator, which is the same

set function as V . The vertical isomorphisms are the specific isomorphisms described in

Proposition 5.2.1.

Proposition 5.2.3. Let B be a G ˙X-algebra. If pE , V q is a G ˙X-equivariant Hilbert

B-module, then pFf pEq,Ff pV qq is a G ˙ Y -equivariant Hilbert Ff pBq-module.

Proof. Let ξ P s˚
Y pFf pEqq correspond to ξ1 P FG˙f ps˚

XEq as in Proposition 5.2.1, and let

b P s˚
Y pFf pBqq correspond to b1 P FG˙f ps˚

XBq as in Proposition 5.1.5. Then Ff pV qpξ.bq P

r˚
Y pFf pEqq corresponds to V pξ1.b1q “ V pξ1q.αpb1q P FG˙f pr˚

XEq, which corresponds to

Ff pV qpξq.Ff pαqpbq.

Proposition 5.2.4. If α is an action on KpE‘Bq that makes the first diagram commute,

s˚
XE� _
ι
s˚
X

E
��

V // r˚
XE� _

ι
r˚
X

E
��

s˚
XKpE ‘ Bq α

// r˚
XKpE ‘ Bq

then Ff pαq is an action on Ff pKpE ‘ Bqq that makes the following diagram commute:

s˚
Y Ff pEq
� _

ι
s˚
Y

Ff pEq

��

Ff pV q
// r˚

Y Ff pEq
� _

ι
r˚
Y

Ff pEq

��

s˚
Y Ff pKpE ‘ Bqq

Ff pαq

// r˚
Y Ff pKpE ‘ Bqq

Proof. Apply the FG˙f functor to the first diagram, and use propositions 5.1.5 and 5.2.1.

Note that the map ιs˚
Y Ff pEq makes sense because Ff pKpE ‘Bqq “ KpFf pEq ‘ Ff pBqq.

5.3 Ff for KK-classes

Recall that elements x P EG˙XpA,Bq are triples x “ pE , φ, F q, where E is a Z{2Z-

graded G˙X-equivariant right Hilbert B-module, φ is a G˙X equivariant (even-degree)
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representation of A on LpEq, and F is an (odd-degree) adjointable operator on E satisfying

the four conditions of Definition 2.6.2. We define Ff pxq :“ pFf pEq,Ff pφq,Ff pF qq.

Lemma 5.3.1. Let A and B be G ˙ X-algebras, where G is a LCH groupoid acting

on LCH spaces X and Y . If f : X Ñ Y is a G-map, and x P EG˙XpA,Bq, then

Ff pxq P EG˙Y pFf pAq,Ff pBqq.

Proof. It suffices to show that Ff pF q satisfies the usual axioms. The Kasparov axioms

require that, for all a P A, rF, φpaqs, pF 2´Iqφpaq, pF´F ˚qφpaq P KpEq. Since KpFf pEqq “

KpEq, and Ff pF q and Ff pφq are the same set functions as F and φ (respectively), these

three conditions are automatic. The only condition that remains to be verified is the

almost G ˙ Y -equivariance of Ff pF q. The almost equivariance condition for EG˙XpA,Bq

is the following: for any a P r˚
XA,

r˚
XpφqpaqpV s˚

XpF qV ˚
´ r˚

XF q P r˚
XKpEq.

To make identifications more explicit, we will use the following notation:

ψr : r
˚
Y Ff pAq

„
ÝÑ FG˙f pr˚

XAq, ψs : s
˚
Y Ff pAq

„
ÝÑ FG˙f ps˚

XAq

xψr : r
˚
Y Ff pEq

„
ÝÑ FG˙f pr˚

XEq, xψs : s
˚
Y Ff pEq

„
ÝÑ FG˙f ps˚

XEq

We will also use ϕV :“ V when we want to treat V as a module homomorphism rather

than an action. In this notation, Ff pV q “ xψr

´1
˝FG˙f pϕV q˝xψs. Additionally, s

˚
Y pFf pF qq “

xψs

´1
˝ FG˙f ps˚

XF q ˝ xψs. Therefore,

Ff pV qs˚
Y Ff pF qFf pV ˚

q “

“

´

xψr

´1
˝ FG˙f pϕV q ˝ xψs

¯

˝

´

xψs

´1
˝ FG˙f ps˚

XF q ˝ xψs

¯

˝

´

xψs

´1
˝ FG˙f pϕV ˚q ˝ xψr

¯

“ xψr

´1
˝ FG˙f pϕV ˝ s˚

XF ˝ ϕV ˚q ˝ xψr

“ xψr

´1
˝ FG˙f pV ps˚

XF qV ˚
q ˝ xψr
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Furthermore, for any a P r˚
Y Ff pAq,

pr˚
Y Ff pφqqpaq “ xψr

´1
˝ FG˙f

´

r˚
Xφpψrpaqq

¯

˝ xψr

as an adjointable operator on r˚
Y Ff pEq. Applying the almost G ˙ X equivariance, and

combining the identifications made so far, we conclude the proof by verifying the almost

G ˙ Y equivariance of Ff pF q below:

r˚
Y Ff pφqpaq

´

Ff pV qs˚
Y Ff pF qFf pV ˚

q ´ r˚
Y Ff pF q

¯

“

“ xψr

´1
˝ FG˙f

´

r˚
Xφpψrpaqq

¯

˝ xψr

˜

xψr

´1
˝ FG˙f

´

V ps˚
XF qV ˚

´ r˚
XF

¯

˝ xψr

¸

“ xψr

´1
˝ FG˙f

˜

´

r˚
Xφpψrpaqq

¯´

V ps˚
XF qV ˚

´ r˚
XF

¯

¸

˝ xψr

P Kpr˚
Y Ff pEqq – r˚

Y Ff pKpEqq

Theorem 5.3.2. Let A,B, and D be G˙X-algebras, and suppose f : X Ñ Y is a G-map

between LCH G-spaces. Then if x1 P KKG˙XpA,Bq and x2 P KKG˙XpB,Dq, admit a

Kasparov product, then so do Ff px1q and Ff px2q, and

Ff px1pb
B
x2q “ Ff px1q pb

Ff pBq

Ff px2q.

Proof. If xj “ rpEj, φj, Fjqs, and x1pb
B
x2 “ rpE1,2, φ1b1, F1,2qs. Recall that E1,2 :“ E1bB,φ2

E2 and F1,2 P F1#F2, i.e., F1,2 is an F2 connexion for E1,2 and for any a P A, φ1paqrF1 b

1, F1,2sφpa˚q ě 0 modulo KpE1,2q. From Lemma 5.3.1, pFf pE1,2q,Ff pφ1 b 1q,Ff pF1,2qq P

EG˙Y pA,Dq, and since being a connexion and satisfying the positivity requirement have

nothing to do with the C0pXq-structure, Ff pF1,2q P Ff pF1q#Ff pF2q.
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6 The G-Equivariant Thom Isomorphism

6.1 Thom Isomorphism

The following theorem constructs an invertible element of KKG˙X
k pC0pXq, C0pEqq for a

Spinc-G-bundle E Ñ X, and proves that this class is the same as the one introduced in

Definition 3.2.1. For convenience of notation, let βn denote the conjugate of the class rβn

defined in subsection 3.5, and let αn be the conjugate of rαn of definition 3.5.4.

Theorem 6.1.1. Let G be a second-countable LCH groupoid, and let π : E Ñ X be a

(real) rank-k Spinc-G-bundle on a second-countable, LCH G-space X. Then any Spinc-

data pP, ηq for E forms a generalized groupoid homomorphism φP , from G˙X to Spinc
pkq,

satisfying:

1. φ˚
PC0pRkq – C0pEq,

2. φ˚
PC – C0pXq, and

3. φ˚
Pβk P KKG˙X

k pC0pXq, C0pEqq and φ˚
Pαk P KKG˙X

k pC0pEq, C0pXqq are inverse

elements in KKG˙X (see Section 3.3).

4. φ˚
Pβk “ τE (see Definition 3.2.1).

Proof. The principal Spinc
pkq-bundle P is equipped with a left G action commuting with

the projection P Ñ X; hence, induces a left action of G ˙ X commuting with the right

action of Spinc
pkq on P . Therefore, P determines a graph from G ˙X to Spinc

pkq. Since

P is locally trivializable, Proposition 4.1.5 guarantees that the projection map π : P Ñ X

is open; therefore, P determines a regular graph from G ˙ X to Spinc
pkq. We define φP

to be the corresponding generalized groupoid homomorphism. Statements 1 and 2 follow

from Example 4.2.5. Statement 3 is a consequence of Theorems 3.3.1 and 4.4.1, since

φ˚
Pβk pb

C0pEq

φ˚
Pαk “ φ˚

P pβk pb
C0pRkq

αkq

“ φ˚
P p1Cq

“ 1C0pXq P KKG˙X
pC0pXq, C0pXqq,
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and similarly, φ˚
Pαk pb

C0pXq

φ˚
Pβk “ 1C0pEq P KKG˙XpC0pEq, C0pEqq. Statement 4 is a

consequence of Subsection 3.5 together with Example 4.3.2.

We now restate and prove the version of the Thom isomorphism from the introduction:

Theorem 1.0.1 Assume all topologies are second-countable and locally-compact Haus-

dorff. Let G be a topological groupoid, and let X be a G-space. Suppose π : E Ñ X is a

continuous Spinc-G-bundle on X of rank k over R.

Then the Thom class of E, τ P RKk
G,XpEq, satisfies: for any G-space Y , and contin-

uous G-map f : X Ñ Y , the map

p¨q pb
C0pXq

Ff pτq : RKj
G,Y pXq Ñ RKj`k

G,Y pEq

is an isomorphism.

Proof of Theorem 1.0.1. From Theorem 6.1.1, we have that τ “ φ˚
Pβk P RKk

G,XpEq is

invertible. From Theorem 5.3.2, Ff pτq and Ff pφ˚
Pαkq are inverses in KKG˙Y ; hence the

map (from RK˚
G,Y pXq to RK˚`k

G,Y pEq):

ξ ÞÑ ξ pb
C0pXq

Ff pτq

is an isomorphism.

6.2 A Rotation between two Thom Classes

In this subsection, we contextualize the rotation trick, used by Erik van Erp and Paul

Baum in [3], to equivariant representable K-theory.

Let G be a second-countable LCH groupoid. Let X be a G-manifold equipped with

a G-invariant Riemannnian metric. Then TTX can be equipped with the structure of

a Spinc-G-bundle in two different ways. Let π : TX Ñ X and π0 : TTX Ñ TX be

the usual projections, and let π1 :“ dπ : TTX Ñ TX. Using the invariant Riemannian

metric, we can equip π1 : TTX Ñ TX with the structure of a Spinc-G-bundle via an

equivariant almost complex structure. Denote the C0pTXq-algebra pC0pTTXq, π˚
i q by Bi.

Since π ˝ π0 “ π ˝ π1, it follows that Fπ0pB0q “ Fπ1pB1q. Let τi P KKG˙TXpC0pTXq, Biq

be the Thom class for each bundle.

To prove that π0 and π1 induce the same Thom isomorphism (in the non-equivariant
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setting), Baum and van Erp construct a diffeomorphism, ρ : TTX Ñ TTX, in section

4 of [3], satisfying π0 ˝ ρ “ π1, and then they construct an explicit homotopy from the

identity map to ρ, denoted by ρt. However, π0 ˝ ρt ‰ π1, so we cannot form a homotopy

in KKG˙TX between τ0 and τ1 via ρ˚
t . However, π ˝ π0 ˝ ρt “ π ˝ π1, so we can deduce

the following result:

Proposition 6.2.1. With the notation and assumptions of the preceding paragraph,

Fπ0pτ0q “ Fπ1pτ1q P KKG˙X
pC0pTXq, C0pTTXqq

Proof. From Theorem 6.1.1, 4., the Thom class τi can be represented as an element in

V K0
G,TXpTTXq. The representative of this class is exactly the same as described in [3].

The proof of Lemma 4.0.2. in [3] will automatically pass to our equivariant setting, since

the homotopy preserves fibers over X, and all G actions on these bundles are induced

by differentiating the G-action on X. This argument contextualised to our case will

explicitly demonstrate that our specified representative of Fπ0pτ0q is homotopic to our

specified representative of Fπ1pτ1q via eiπt{2ρ˚
t .

This type of rotation was used in [3] as a key ingredient for a proof of the K-theoretic

index theorem for elliptic pseudodifferential operators. The version stated here is one

step in generalizing Baum and van Erp’s argument to a groupoid-equivariant setting.
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