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Abstract

This thesis proves a general Thom Isomorphism in groupoid-equivariant K K-
theory. Through formalizing a certain pushforward functor, we contextualize the
Thom isomorphism to groupoid-equivariant representable K-theory with various
support conditions. Additionally, we explicitly verify that a Thom class, deter-
mined by pullback of the Bott element via a generalized groupoid homomorphism,
coincides with a Thom class defined via equivariant spinor bundles and Clifford
multiplication. The tools developed in this thesis are then used to generalize a
particularly interesting equivalence of two Thom isomorphisms on T'X, for a Rie-

mannian G-manifold X.
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1 Introduction

The primary objective of this thesis is to carefully prove a Thom isomorphism in groupoid-
equivariant K K-theory [11], and contextualize it to groupoid-equivariant representable
K-theory [10]. Generally speaking, a Thom isomorphism in a cohomology theory applies
to only certain types of vector bundles £ — X. For example, in ordinary (e.g., singular)
cohomology, a Thom isomorphism only exists for oriented vector bundles; bundles like the
Mébius bundle on S* do not admit a Thom isomorphism. To an oriented vector bundle
E — X, a Thom isomorphism identifies the cohomology of X with the cohomology (of
a fiberwise-compactification) of E. For other cohomology theories, the relevant vector
bundles are still called orientable, but this can mean very different things. In the context
of K-theory, a vector bundle is K-orientable iff it admits a Spin‘-structure. Examples
of bundles admitting a Spin“-structure include almost-complex vector bundles, complex
vector bundles, and real Spin-bundles, so each of these types of vector bundles admits a
Thom isomorphism in complex K-theory.

This thesis is written in the context of groupoid-equivariant K-theory, which is sub-
stantially more complicated than ordinary K-theory. One of the major complications
arises from the fact that spaces X, equipped with an action of a groupoid G, must be
fibered over the object space of G (loosely, in that there is a map p : X — G(®). When
trying to define groupoid equivariant K-theory out of vector bundles, there are often too
few equivariant vector bundles to get a decent theory. The only definition that seems
to give an acceptable generalization of ordinary K-theory passes through K-theory for
C*-algebras. Through the correspondence X « Cy(X), K-theory for C*-algebras indeed
generalizes K-theory for locally compact Hausdorff spaces. Even more general is Kas-
parov’s K K-theory (e.g., [15]), which is a bivariant K-homology and K-theory hybrid,
denoted by KK (A, B) for C*-algebras A and B. This theory has incredibly rich struc-
ture, specifically through the application of a certain cup/cap product. A generalization
of K K-theory to the groupoid-equivariant setting was worked out by Pierre-Yves Le
Gall [11]. Spaces equipped with a groupoid action correspond to C*-algebras that are
“fibered” over the object space of the groupoid, together with a system of =-isomorphisms
between fibers, which are continuously parameterized by the morphisms of the groupoid

G. These are called G-algebras, and Le Gall’s K K-theory is denoted by KKY9(A, B) for



G-algebras A and B. Heath Emerson and Ralf Meyer collaborated on several papers
relating to groupoid-equivariant K K-theory (e.g., [§], [9], [7], [10]). In [10], they define
the groupoid-equivariant representable K-theory of X with Y-compact support to be

REKgy(X) == KK (Co(Y), Co(X)).

This representable K-theory is more general than vector-bundle-defined counterparts,
and behaves better as a generalized cohomology theory. Therefore, it is an appropriate
generalization of ordinary K-theory to the groupoid-equivariant setting. A groupoid-
equivariant version of the Thom isomorphism in representable K-theory is generally
assumed to be true, despite a lack of suitable references in the literature. Specifically,
Emerson and Meyer use such an isomorphism extensively throughout their collaborations,
and it is integral to both their construction of a groupoid-equivariant geometric K K-
theory [7], and to their definition of an equivariant topological index formula [9]. For
their use of the Thom isomorphism, they implicitly reference Lemma 5.4 of [9], which
relies on their definition of orientation (|9], Definition 5.2). In this section, they state
that an analogue of the usual Thom class for a Spin® vector bundle 7 : E — X, of (real)
rank-k, will give an orientation class 7 € RK’g‘“’ +(E). They do not attempt to prove this,
nor do they elaborate upon the circumstances for which such a Thom isomorphism should
exist. Searching the literature more broadly, only a few papers seemed relevant. There is
a paper by Moutuou, |17], which develops a very different version of groupoid equivariant
K K-theory than the one introduced by LeGall in [11], and proves the Thom isomorphism
and twisted counterparts within that theory. However, the Thom isomorphism from
Moutuou’s work does not seem to restrict in a simple way to the Thom isomorphism
needed by Emerson and Meyer, who work in the context of LeGall’s definitions. Another
paper which deserves mentioning is [18], which proves a Thom isomorphism specifically
for groupoids arising as bundles of compact Lie groups, but does not provide us with a
sufficiently general result.

In addition to carefully proving a very general equivariant Thom isomorphism in this
thesis, we have included a few other details related to the Thom isomorphism. These
additional details are specifically included for the purpose of building the foundation

for eventually proving certain K-theoretic index theorems for groupoid-equivariant pseu-



dodifferential operators, specifically through generalizing the approach taken by Erik van
Erp and Paul Baum in their papers [2], [3], and [4]. A neat proof of the Atiyah-Singer
index theorem (see [1]) is given in [3]. An index theorem for a certain class of non-elliptic
operators on contact manifolds is proved in [4], relying on the formalism discussed in [3].
Since our motivation for this thesis project is to eventually generalize these index theo-
rems to the groupoid-equivariant setting, working within the context used by Emerson
and Meyer is highly advantageous. In particular, they have already proved equivariant
index theorems for Dirac operators (Theorem 6.1 of [9]), which is a necessary step in
proving index theorems for more general operators. In fact, the particular statements
of index theorems used in Baum and van Erp’s papers are often via a commutative dia-
gram involving geometric K-homology (e.g., Theorem 5.04 of [3] for Elliptic operators, or
Theorem 5.5.1 of [4] for Heisenberg-elliptic operators on contact manifolds). The appro-
priate groupoid-equivariant analogue of this commutative diagram naturally involves the
equivariant geometric K K-theory developed by Emerson and Meyer in [7]. Before study-
ing groupoid-equivariant index theorems, our original motivation was to see if the index
theorem of |4] is generalizable to families of operators (an open question), and the fact
that Emerson and Meyer’s geometric K K-theory is the only theory that reduces to the
families case, we were naturally led to try and understand the full groupoid-equivariant
families setting. Although our original motivation was to prove such index theorems,
the body of this thesis does not discuss index theory directly, and only focuses on one
key aspect of this problem. The Thom isomorphism is a key ingredient of index theory,
since it converts the X-compactly supported representable K-theory of T'X, a recepta-
cle for the topological data of an equivariant elliptic pseudodifferential operator, to the
X-compactly supported representable K theory of TTX. A detailed understanding of
this isomorphism, which involves equating two very different Thom isomorphisms for
TTX — TX through a rotation trick, was used in [3]| to prove the Atiyah Singer index
theorem. We use the formalism of this thesis to appropriately frame their rotation trick
within RKg in subsection [6.2]

In this thesis, we study the equivariant Thom class, denoted 7z, of a Spin“-G-bundle
E — X, which will be constructed in two very different ways. There is a rather direct
construction of 7g that relies on constructing spinor bundles over E out of a principal

Spin“-bundle, then identifying them outside the zero section of E via Clifford multiplica-
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tion. We will define 7 via this construction. Part of the benefit of a concrete realization
of the Thom class via vector bundles lies in the fact that not all representable K theory
classes can be expressed in terms of vector bundles. That is, RKgy (X) (which is defined
to be KK9*Y(Cy(Y),Co(X))) is generally strictly larger than V Kgy(X) (i.e., a group
involving vector bundles, similar to classical K-theory). Of particular importance is the
fact that VK is closed with respect to Kasparov products (Theorem , implying
that many Kasparov products involving the Thom class can be computed more readily
in terms of vector bundle constructions.

To prove the equivariant Thom isomorphism, we adapt a non-equivariant argument
used by Le-Gall for compact spaces X ([11], THEOREME 7.4). Le Gall’s proof in-
volves constructing an invertible K K-class via pullback of a model class, namely the
Bott-element on R”, through a generalized groupoid homomorphism. A generalized

groupoid homomorphism from G to H can be thought of as a diagram of the form

p*g XH

for some open surjection, p : Q — G© and some strict groupoid homomorphism f,
whose domain, Gq, is a groupoid formed by taking the object space €2 with morphisms
from w to w’ defined to be the groupoid elements v : p(w) — p(w’). For a generalized
groupoid-homomorphism ¢ : G — H, Le Gall works out what it means to pull back
classes 7 € KK™(A, B) to classes p*r € KK9(p*A, p*B). To prove the non-equivariant
Thom isomorphism for rank-k Spin“-bundles £ — X, Le Gall uses a generalized groupoid
homomorphism, ¢, from X (as a groupoid with no morphisms) to Spin®(k) to pull back
an invertible Spin®(k)-equivariant K K-class, called the Bott element, to an invertible
KK(Cy(X),Co(E))-class. We perform the same technique in a more general setting, and
since we do not require spaces to be compact, we further contextualize the approach to
the representable K-theory with Y-compact supports developed by Emerson and Meyer
in [10]. This contextualization requires formalizing something Emerson and Meyer refer
to as a forgetful functor, but is really more like a pushforward functor, which takes G x X
objects (e.g., algebras, modules, K K-classes), and pushes them down to G x Y objects
(algebras, modules, K K-classes) through a continuous G-map f : X — Y. We denote
this functor by §, and work out the details of this functor in Section [f] Intuitively, for a



G x X-object, A, § assembles all of the fibers A, for x € f~!(y), and treats it as a single
fiber over y € Y. Making this precise is not really that straightforward, so we dedicated
a whole section to it.

The specific version of the Thom isomorphism proved in this thesis is as follows.

Theorem 1.0.1 (Groupoid-Equivariant Thom Isomorphism). Assume all topologies are
second-countable and locally-compact Hausdorff. Let G be a topological groupoid, and let
X be a G-space. Suppose 7w : E — X is a continuous Spin°-G-bundle on X of rank k over
R.

Then the Thom class of E, T € RK’g“’X(E), satisfies: for any G-space Y, and contin-

wous G-map f: X —Y, the map

(-)C(?X)Sf(ﬂ : RKGy (X) — REGY(B)

s an isomorphism.

The body of this thesis is divided into 5 main sections. Section[2]is a terse compilation
of definitions and prerequisite knowledge. This section could be skipped and referred back
to if the need for clarification arises. Although nothing in this section is particularly new,
we provide explicit constructions for K K-products of V K-classes in Theorem [2.7.7]

In Section we define G-equivariant Spin‘-structures for G-bundles £ — X. Bundles
admitting such structure are the natural candidate for RKg-oriented vector bundles, and
we give a concrete definition for the Thom class corresponding to such a bundle. The
remainder of this section is dedicated to understanding the Bott generator element used
by Kasparov in [15], 3, € K K" ™)(C, Co(R")®CE(n)), so that we can eventually relate
Le Gall’s pullback construction to the concretely defined Thom class of subsection (3.2

Section {f is a recapitulation of the pullback constructions used in [11]. The lengthy
examples in subsection 4.1| can mostly be skipped, since the only necessary construc-
tion from this subsection takes r-open regular graphs (2,7, s) to the associated pre-

homomorphism (€2, r, f). However, in later subsections, the examples are entirely related

to the Thom isomorphism. In particular, examples [4.2.5| and 4.3.2 are necessary com-

putations. We end this section by stating the main theorem of [11], that the equivariant

Kasparov product commutes with pullback.



Section [o| is where we define §f, and we end this section by proving that Kasparov
product commutes with this functor.

Section [ combines the work from each of the previous sections to prove that the Thom
class of a rank-k Spin°-G-bundle £ — X, defined in Subsection [3.2] is an
invertible element of K K9*X(Cy(X), Co(E)). We apply the functor §; to this theorem
to contextualize it to representable K-theory with Y-compact supports, thereby proving
Theorem [1.0.1] stated above. We end this section by formalizing the rotation argument

of [3] within representable K-theory.



2 Prerequisite Definitions

2.1 Clifford Algebras

Clifford algebras are used extensively in K K theory. They are generally used to ma-
nipulate gradings, and their representation theory is essential to understanding Bott
Periodicity and the Thom isomorphism. The primary purpose of this subsection is to

establish notation.

Definition 2.1.1. The Clifford algebra of R", denoted C?(n), is the R-tensor algebra
of R™ modulo the ideal generated by elements of the form z®y + y® x + 2{z,y), where
{x,y) is the standard dot product of x and y in R™.

The complex Clifford algebra of R" is C/(n) := C¢(n)®g C. There is an inclusion
of R™ into C'¢(n), and an inclusion of C¢(n) into C¢(n). We sometimes write R" ® 1 for
the elements of C/(n) in the image of these inclusions, and 1 ® C for the image of the

natural inclusion of C into C/(n).

Proposition 2.1.2. The C-algebra Cl(n), together with involution and norm, defined

below, is a C*-algebra.

1. Define the involution to be the anti-multiplicative map generated by x* := —x, for

reR"®1 < Cl(n), and conjugation on 1 ® C < Cl(n).

2. Define the norm on Cl(n) by ||z]|* := z*=.

Because some references (specifically [15]) use a slightly different Clifford algebra in

certain constructions, we relate the two via the following proposition:

Proposition 2.1.3. Let @(n) be the (complexification of ) the tensor algebra of R™ mod-
ulo the ideal generated by elements of the form x ®y + y ® x — 2{x,y), with involution
induced by conjugation and x* = x on R*® 1 (and ||z||* = 2*z). Then Cl(n) is isomet-

rically «-isomorphic to @(n)

Proof. Let f be the C-algebra homomorphism induced by sending x®1 € R"®1 < Ce (n)
to r®i e Cl(n).



Since f(zy®1) = (z®1)(y ®1i) = zy ® (—1), it follows that
Jllzy +yr)©1) = (zy +y2) © (=1) = 2z, 1)) ® 1 = [(2(z,p));

hence, f is well defined on equivalence classes. Also, f((z®1)*) = f(—2®1) = -z ®
i = (r®i)* = f(r)*. The adjoint and multiplication on each algebra determine their
respective norms, so f is an isometric *-homomorphism. Since there is an obvious inverse

of f, it follows that f is an isometric *-isomorphism. O]

Note 2.1.4. The map induced by sending x ® 1 € @(n) to z ® (—i) € Cl(n) is also an

isometric *-isomorphism, but it will not preserve orientation (defined below).

Proposition 2.1.5. There exists an element € € CL(2r) (unique up to a sign), such that:

2. ¥ =¢, and

3. eej = —eje forall1 < j < 2r.



Proof. The element € := i"ejeq - - - €9, (or € := 1if r = 0) satisfies the following conditions.

£ = (~1)F el el -}
— (=1 (~1)Teq, -
= (—1)Tir(—€1€2)(—€3€4) T (_621"71627‘)
= (=1)""(—1)"erez - ear
=c

g2 = g*e

% 3k
= (=1)"i""e5, - - -eseferen - - eay

I
—_

T
€;€ =1 €61+ €op
-7 2r—1
=i"(=1)"er - - eg€;

= —¢ce; forany 1 < j <2r

Suppose S is another element satisfying the three conditions above. Then See; =
—Seje = e;S¢ for all j < 2r. So Se is in the center of C/(2r) (which is all multiples
of 1). Consequently, (Se)? = SeSe = S%? = 1 and Se = £1, which implies that
S=+4e! = +te. O

Definition 2.1.6. An element € € C/(n), satisfying the conditions of Proposition [2.1.5|

will be called an internal grading element.

Proposition 2.1.7. For any x € Cl(2r+1), the condition xe; = —e;x implies that v = 0

(i.e., no internal grading element exists).

Proof. Notice that € := i"ejey - - - €9,41 = €2r€2,41 commutes with e; for all 1 < j < 2r+1,
and hence with all of C/(2r + 1). Suppose an internal grading element S € C/(2r + 1)
exists. Then S commutes with €, but € is odd, so .S must anti-commute with €. This would

force us to conclude that S = 0; however, since S? = 1, we reach a contradiction. n



Although there is no internal grading element in C/(2r + 1), we still want to be able

to make certain choices canonically. To do this, we introduce the notion of orientation.

Definition 2.1.8. A orientation for a Clifford algebra C/(n) is a homogeneous element
w € Cl(n) such that w* = +w, w*w = 1, and for all homogeneous x € Cl(n), zw =
(_1)8x(6w+1)wx.

The standard orientation on C/(n) is w, := i"ejey - - - €,; the standard orientation

on @(n) is W, = e1eq - €.

The internal grading element ¢ is an orientation for C/(2r), and i"¢ is the standard

orientation.

Proposition 2.1.9. The isomorphism f : @(n) — Cl(n) defined in Proposition m

satisfies f(W,) = wy.

Theorem 2.1.10 (C-Clifford Periodicity). For any r € N, there exists graded C*-algebra

1somorphisms:

Cl(2r) = My (C),
Cl(2r + 1) = My (C) x Moy (C).

The grading on May-(C) is given by the splitting into the first and second halves:
C¥ = C¥ ' @C?'; the grading on My (C) x My (C) is given by the grading-operator
that switches the two copies of Mar(C).

Proof. We define maps ¢,, recursively (and prove they isomorphisms inductively) as fol-
lows. C/(0) = R®g C = M;(C). Denote this isomorphism by ¢g.

Cl(1) = (C@®Cle1])/ < €2 + 1 >. Define ¢, : Cl(1) — M;(C) x M;(C) by ¢;(e;) :=
(1, —1).

For the recursive step, assume o, : C£(2r) — Mor(C) and o, 11 — Mar(C) x Mo (C)
have been defined and are isomorphisms for all r < R.

Define o : CU(2R) — Myr(C) by{]

If R = 1, then ¢ = 1, and there are no e; with 1 < j < 2R—2. Therefore, when constructing ¢, only
use the last two cases in the recursive definition. One can verify the inductive step is a simplification of
the argument that follows.

10



0 ‘ 902R—2(@j)

par(e)) = for1<j<2R-2
Yar—2(e;) ‘ 0
0] -1 0 ‘ iYar-—2(€)
por(e2r—1) = and pog(eag) 1= :
1o i02r—2(€) ‘ 0

Because ¢or_2(¢) induces the usual grading on Myr-1(C) (by hypothesis, por_o is a

graded isomorphism), we see that

110 0 |5
S = @23_2(5) =+ s and (pQR(GQR) =
0—1 S| 0

It is easy to verify that @9 is a graded *-homomorphism. We will show that it is also
a C-vector space isomorphism. Let X* be the set of all strictly increasing multi-indices
from the set {1,2,...,2r}. Define e; for I = (i1, 1z, ...,7|7)) € X7 to be e, €4, - - - €;,. Denote
by I¢ the strictly increasing multi-index consisting of all integers (up to 2r) not in I.

Take ez = 1. For the following, let [ € ¥%_;.

0 A B 0
war(er) = for e; odd, and for e; even

A0 0 B
Note: A and B are both given by ¢og s(es), but for odd and even ey, respectively.
Therefore, A must be odd and B must be even, by inductive hypothesis. In what follows,
note that S is also of even-degree, and that i{SA and iSB are both given by

|1\+ZI)

iSar—a(er) = ipap—o(cer) = ((—1) ifoon_alere).

1SA 0 0 iSB
var(earer) = for e; odd, and for e; even
0 iSA 1SB 0
—-A 0 0 —-B
por(ear_1€5) = for e; odd, and for e; even
0 A B 0

11



0 1S A 1SB 0
war(earear_1e5) = for e; odd, and for e; even

—iSA 0 0 —iSB

These eight possibilities minimally (i.e., the collection is linearly independent) span all
combinations of even and odd block pairs, diagnonal and anti-diagonal block-pairs, and
alternating sign block-pairs. Together with the inductive hypothesis, this guarantees that
{war(er)}resy 1s a basis for My (C), concluding the proof that ¢op is a graded algebra
isomorphism. It is also a *-homomorphism due to the fact that all choices made in the
recursive definition are anti-Hermitian.

Since we are done with the even case, we will abuse notation slightly, and redefine
to be the internal grading element for C/(2R); S := @og(e). For wopi1 : CL2R+ 1) —
Myr(C) x Myr(C), we set:

par+1(e;) = (p2r(e;), p2r(e})), for 1< j<2R
<,02R+1(€2R+1) = (iS, —iS) .

It is easy to verify that pyp is indeed a graded *-homomorphism. Let I € ¥73,.

war(er) = (A, —A), for ey odd, and (B, B), for e; even.

Again, A must be odd-degree and B must be even-degree.

por(e2rr1er) = (1SA,1SA), for e; odd, and (iSB,—iSB), for er even.

These 4 possibilites minimally span all combinations of even and odd pairs, and

alternating-sign pairs. Consequently, @ogy1 18 an isomorphism. [

Corollary 2.1.11. Given an (a-priori ungraded) =-isomorphism ¢ : Cl(2r) — End(V),
the matriz () provides a compatible grading on both V' and on End(V'), and makes ¢

ito a graded x-isomorphism.

Proof. The grading on V' is determined by the +1 and -1 eigenspaces of the matrix S =
©(€). The grading on End(V), induced by S, is given by conjugation by §(A) = SAS.

12



Since ¢ anti-commutes with odd elements of C/(2r), so does S with the image of odd

elements under ¢; hence, ¢ is a graded #-isomorphism. O]

Theorem 2.1.12. Any unital x-isomorphism ¢ : CL(2r) — Mayr(C) is unitarily equivalent
to the isomorphism o, constructed above. That is, there exists U € U(2") such that

p(z) = Upar(z)U™.

Proof. Proof by induction. There is exactly one unital isomorphism C¢(0) — C. For

0 -1 0 i
Cl(2), we have that ¢s(e;) = and s (ez) = . Therefore, po(e1e5) =
1 0 1 0
—7 0 1 0
, and @o(e) = ipa(eren) = f o CU(2) —» My(C) is any other
0 =2 0 —1
isomorphism, define 5 := {b, p(e1)b}, where b is a +1 unit-eigenvector of ¢(g). Notice
that o(e)p(e1)b = —p(e1)(+b) = —p(e1)b is a -1 eigenvector for the unitary matrix
¢(g). The fact that (p(e1)b, p(e1)by = (b, —p(e2)by = ||b]|*> = 1, implies that 3 is an
0 —1
orthonormal basis that diagonalizes ¢(g), and represents ¢(e;) as . Since e;
1 0

and € generate C/(2) as an algebra, it follows that ¢ is unitarily equivalent to ¢y via the

unitary change of basis described above.

Assuming the statement is true for isomorphisms Cl(2r) — My-(C) forall 0 < r < R,
we will prove it for C/(2R). Choose an orthonormal basis, 3, := {b1,bs,...,bar_o} for
the +1 eigenspace of ¢(¢). By a similar argument as above, 5_ = p(eag_1)f3y+ is an

orthonotmal basis for the -1 eigenspace for ¢(g), and 5 := 5, U f_ is an orthonormal

I10 0| -1
basis for C2" which represents o(¢) as , and @(ear_1) as . Since

0| —1 I 0
each generator of C/(2R) permutes the two eigenspaces of p(¢) we get that:

0 —E}
Ej 0

[p(e;)]s = , where Ej € Myr-1(C).

The coefficients of £; are given by:

2R71

90(€j>bk = Z (Ej)é,k@(eﬂ%fl)bf
(=1

Multiplying that equation by —¢(ear—1) demonstrates that —EY = Ej for all j #
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2R — 1. Hence,
0 L
E; 0

[p(ei)ls =

And furthermore, the set of matrices £ := {E1, Es, ..., Ear_3, Eor—2, Ear} S Myr-1(C)

satisfies the following properties:
2 _
2. E;E, = —EE; for j # k.
3. B = —F

We can therefore define a *-homomorphism ¢ : C/(2R — 2) — Myr-1(C) determined
by v¢(e;) := E; (notice that Eyp is left out!). Define e Cl(2R — 2) — M,r(C) by
~ —¢(e;) 0 - .

P(ej) = [p(ear—1€;)]s = . This is a composition of the 1-1 map (mul-
0 ¥(e)
tiplication by esgr—1) Cl(2R — 2) — C/(2R) and the isomorphism ¢ (in S-coordinates).

Therefore, 15 is 1-1, implying that 1) is 1-1.

Since 1 is a one-to-one *-homomorphism, counting dimensions ensures that 1 is a *-
isomorphism. By our inductive hypothesis, we can find a unitary U € U(25%7!) such that
UypU* = pyp_o. Furthermore, iFsp is actually a ¢-compatible grading element, since it
is a self-adjoint unitary that anti-commutes with all other E;’s. By the uniqueness of
grading elements (modulo sign), it must be the case that UEogU* = tipor_o(car_2).

Let U e U(2R) be the matrix with U on the block diagonal, and define ¢ := [7[90]5(7*
Then, for all 1 < j < 2R,

U o 0 —E Us 0 0 —UEHU*
o UJ\E o0 0 U UE;U* 0

In particular, for 1 < j < 2R — 2,

0 Uile)U? 0 |panale)
Up(e;)U* 0 Yor—2(€;) ‘ 0

, and
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0 UDHU* 0| -1

@(62]{,1) = = s and
UU* 0 Il 0
~ 0 UEQRU* 0 ‘ ii@23_2<8)
P(ezr) = =
UEyrU* 0 +ipar—_2(€) ‘ 0

With the exception of the sign of @(esr), the theorem is proved. To determine the
sign, notice that U being block diagonal implies that:

1|0
P(e2r) =
0|—1
= @(iRel T €2R—2€2R—1€2R)
= p(icesr_162R)
B ipar_2(€) 0 0 —I 0 +ipar 2(€)
- 0 ipar—2(€) I 0 +ipar—2(€) 0
| ip2r-—2(e) 0 —(Fipar-2(€)) 0
- 0 ipor—2(e) 0 +ipar-_2(€)
[ —(EPpar—a(?)) 0
- 0 +20op_o(c2)
+1/
RS
Which implies that + = +1, and the sign of @(esr) matches pog. O

2.2 The Spin° Group
Definition 2.2.1. We define the Pin, Spin, and Spin® groups to be as follows.

1. The Pin group, denoted Pin(n), is the subgroup of C¢(n)* generated by unit vec-

tors.

2. The Spin group, denoted Spin(n), is the subgroup of Pin(n) consisting only of

even-graded elements.
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3. The Spin® group, denoted Spin®(n), is the subgroup of C/l(n)* generated by ele-
ments in Spin(n) ®g 1 and 1 ®g U(1).

These groups all naturally act on R™ by conjugation inside C'¢(n) (or C{(n), respec-
tively). If u € S"t € R" < C¥(n) is a unit vector, and z € R™ is any other vector, then

ux is equivalent to —xu — 2 {x, u); hence,

uru~t = uxu®

= —UuUru

(xu + 2{z,uy)u

= zu® + 2{z,u)u

—(x —2{x,uyu)

The expression (x,u)u is the orthogonal projection of x onto u; therefore, x — 2 {x,u)u
is the reflection of x across the subspace orthogonal to u. We denote this operation by
R, (). In this notation, uru™' = —R,1 ().

Therefore, conjugation by an element of Pin(n) yields an action on R™ by orthogonal
matrices. Because of the minus sign, the determinant of these matrices is difficult to
keep track of, so we instead define ¢ : Pin(n) — O(n) by ¢(u) = R,. for unit vectors u

(or equivalently, ¢(u)(z) = uxu). Since O(n) is generated by reflections, ¢ must be onto.

The next proposition verifies that ¢ is a 2-to-1 map.
Proposition 2.2.2. The kernel of ¢ is {£1} < Pin(n).
The proof here is based on [12] (Proposition 2.4).

Proof. At the very least, it is immediate that {+1} < ker ¢. We will exploit gradings here,
and it is helpful to notice that, because Pin(n) is generated by unit vectors (which are
homogeneous) under multiplication, every element in Pin(n) must be homogeneous. Since
the determinant is multiplicative, and the determinant of R,1 is —1 for all unit vectors

u, it follows that, for any element z € Pin(n) of degree 0z € {0,1}, det(4(2)) = (—1)%.
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Therefore, any element z € ker¢ = ¢ *({I}) must be homogeneous of degree 0, since
det [ = +1.
Suppose z € ker ¢, then z must be of even degree. Write z = 2125+ 29 for unit

vectors 21, ..., z95. Then

z = ¢(2)(z)
= Z1R2 "t ZopX 2okttt R2R1

= zrz !

Therefore, xz = zx. Since each z; can be written as a linear combination of ey, eg, ..., €y,
it follows that z can be expressed as a polynomial in ey, es, ..., e,. In reduced form, each
e; will occur at with multiplicity at most 1 in each term of z; so the distinct terms of z
can be labelled by subsets I < {1,2,...,n} with || even. Since z is even, each term, ey,
must be even-degree. Because distinct basis elements anti-commute, it follows that, for
J < n, ejer = ere; if and only if j ¢ I. Consequently, the polynomial expression for z
must have a coefficient of zero for any term containing e; (for any 1 < j < n). That is,

z must be a scalar; hence, z = +1. O

Similarly, restricting ¢ to a map ¢ : Spin(n) — SO(n) is a 2:1 map, and for n > 3,
Spin(n) is simply connected, and therefore, the universal covering space of SO(n).

Lifting ¢ to a map ¢ : Spin°(n) — SO(n) by sending everything in 1 ®g U(1) to
the identity matrix, and anything in Spin(n) ®g 1 to SO(n) via ¢ ® 1. In this case,
kero = U(1).

Therefore, ¢ : Spin‘(n) — SO(n) < GL,(R) is a (real) representation of Spin‘(n).
Among complex representations, of particular importance is the irreducible represen-
tation o, : Cl(2r) — May-(C), which restricts to the unitary representation ¢y, :
Spin‘(2r) — U(2"). Since € € Spin®(2r) (see Proposition [2.1.5)), the representation space
C?% can be graded by o,.(g). In the odd case, the only distinct irreducible unitary -
representations of C/(2r + 1) are 7y o 9,41 and m; o 9,1 (acting on C*). Both of
these representation spaces necessarily carry a trivial grading on C?". Consequently,

Tj 0 Yarg1 1 Spin®(2r +1) — U(2") are irreducible unitary representations in the odd case.
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2.3 Groupoids

Definition 2.3.1. Let XY and Z be sets and f: X — Z, g : Y — Z be functions. We
define the set X x;,Y (sometimes denoted X x; Y, if the maps are understood) to be
the subset of X x Y consisting of points (z,y) satisfying f(z) = g(y). If X, Y, and Z
are topological spaces with f, g continuous maps, then X x 7Y is topologized as a subset

of X xY.

Proposition 2.3.2. Let X, Y, and Z be LCH spaces, and let f : X — Z andg:Y — Z

be continuous. Then X xzY is a closed subset of X x Y.

Proof. Let (z9,y0) € X x Y and suppose that f(xg) # g(yo). Since Z is Hausdorff, we
can choose neighborhoods U, < Z of f(zy) and U, < Z of g(yo) such that U, n U, = &.
Pulling back the open sets, we get that V := f~1(U,) x ¢g~*(U,) is an open subset of
X xY. If (x,y) e V, then f(x) € U, and ¢(y) € Uy, which implies that f(z) # g(y). We
conclude that V n (X xzY) = . O

Corollary 2.3.3. Let X, Y, and Z be LCH spaces, and let f : X — Z andg:Y — Z be

continuous. Suppose K € X and C' €'Y are compact subsets. Then K x5 C is compact.

Proof. By the previous proposition, K x; C' is a closed subset of K x C, which is a

compact space. Since X x Y is Hausdorff, K x; C' is compact. O]

Definition 2.3.4. A groupoid is the set of isomorphisms in a small catergory, equipped

with the structure of morphism composition.

Let G be a groupoid. We denote the set of identity morphisms in G by Z (or G
if further specificity is needed). We refer to Z as either the object space of G or as
the base space of G. The notation GV for morphisms will not be used, since we will
abuse notation and write G for the morphism set, identifying GO < G via the identity
morphisms on each object. For all v € G, let s(y) be the identity morphism on the
domain of v; (), the identity morphism on the codomain of . We refer to s,r : G — Z

as the source and range maps, respectively.

Definition 2.3.5. A topological groupoid is a groupoid equipped with a topology so
that composition G x, ;G — G, inversion G — G, and the range and source maps G — Z
are all continuous. We will not require that the range and source maps are open unless

otherwise indicated.
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Definition 2.3.6. A groupoid G is proper if the map (r,s) : G — G© x G is proper.

A proper groupoid is one where the collection of morphisms between any two com-
pact subsets of G is compact. In particular, proper LCH groupoids have compact

automorphism groups.

Definition 2.3.7. A (left) G-action on a topological space X consists of an anchor
map p : X — Z, and maps a, : p~(s(v)) = p~L(r(y)), for all v € G, subject to the

conditions:
1. ayy =ayoay,
2. a,(x) =z for all zp€ Z and z € p~1(z).

3. a: G x5, X — X, sending (v, z) to a,(z), is a continuous map

Topological spaces equipped with a G-action are called G-spaces.

Definition 2.3.8. A G-map between G-spaces X and Y is a continuous function f :
X — Y that is G-equivariant. That is, given anchor maps px : X — Z and py : Y — 7,
the function f must satisfy px = py o f and v.f(x) = f(y.2) for all (v,2) € G x,,, X.

Definition 2.3.9. A G-space X is cocompact (or G-compact) if any cover of X by

G-invariant open sets has a finite subcover.

Definition 2.3.10. Let G and H be topological groupoids. A strict groupoid homo-
morphism from G to H is a covariant functor, f : G — H. That is, (g,¢’) € G» implies

(f(9), f(g") e H® and f(gg') = f(9)f(d).

Definition 2.3.11. If f : A — B is a G-map between G-spaces, then a subset K < A is

B-compact if f restricted to K is proper.

Definition 2.3.12. Given a G-space X, the action groupoid G x X is the groupoid
with object space X, and morphisms from = to z’ given by the elements v € G with
v.x = 2’. This groupoid is identified with the set G x, , X together with the operation
(v,z)(n,y) = (yn,y), whenever x = s(n). The topology on G x X is induced by this

identification.
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Please note: a right G-action, on a space X with anchor map p, will have action
groupoid denoted by X x G. For right actions, an element v € G maps p~'(r(y)) —
p~(s(7)); therefore, X x G will denote the space X x,, G (not X x,,G), with the
composition (y,7)(y',7') = (¥,77)-

Definition 2.3.13. Let X be a G-space, then X is a proper G-space if G x X is a

proper groupoid.

Example 2.3.14. Let f : A — B be a map between LCH spaces. Let Gg be the set
B as a groupoid (only objects). Then A being B-compact means that f is proper. A
being Gp-proper means that (r,s) : Gg x A — B x B is proper. Since the diagram below
commutes, and inclusion by the diagonal (1) is proper, the notions of Gg-proper and

B-compact are the same.

G A B x B

A — B
However, if A is Gg-compact (i.e., A is cocompact as a Gg-space), it follows that A is
compact, since every subset of A is Gg-invariant. Consequently, B-compact spaces need
not be Gg-compact. Because of this issue, we will prefer to use the terminology cocom-

pact, rather than Gg-compact, to avoid confusion with the concept of B-compactness.

Proposition 2.3.15. If G is a proper locally compact Hausdorff groupoid, and X is a
LCH G-space with continuous anchor map p : X — GO, then X is automatically a proper

G-space.
Proof. Let K < X x X be compact, and consider the following commutative diagram:

G X X v x

ml k

_—
g = 7 x Z

A diagram chase will verify

(e, 50) " (K) < my ((r,8) 7 (p(K))).

Since (rx,sx)(7,z) = (y.z,z), the following is also true:

(vasz)_l(K) < g Xs.p WQ(K).
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Consequently,

(e, 80) " (K) € 0 ((r,9) 71 (p(K)) 0 G X ma(K)
< (r,5) " (p(K)) x5, ma(K).

The set (r,s) ' (p(K)) is compact from the continuity of p, the compactness of K, and
the properness of G. The set my(K) is compact from the continuity of m, and lastly
(r,8) " (p(K)) x5, m2(K) is compact from Proposition [2.3.2] and using the fact that
closed subsets of compact Hausdorff spaces are compact. Since (rx,sx) ' (K) is also a

closed subset of a compact Hausdorff space, it is also compact.

Definition 2.3.16. We will say that a G-space X is a smooth G-manifold if

1. the fibers of p : X — Z are smooth manifolds determined by an atlas for X,
consisting of open sets V' € X and homeomorphisms ¢ : V' — p(V) x R" satisfying

T 0P =p.
2. the change of coordinate functions are continuous,

3. all fiber-wise derivatives of change of coordinate functions should exist and be

continuous

4. elements vy € G should act as diffeomorphisms 7. : p~(s(7)) — p~1(r(7)).

Notice that this definition implies that smooth G-manifolds have open anchor maps.

Definition 2.3.17. Let X and Y be smooth G-manifolds with anchor maps px and
py, respectively. A smooth G-map from X to Y is a G-map ¢ : X — Y such that if
p € X, then there exists a coordinate neighborhood U of ¢(p) in Y and a coordinate
neighborhood U of p in ¢~*(U), with coordinate charts ¢¥x : U — px(U) x R¥ and
Yy : U — py(U) xR, such that all fiber-wise derivatives of 1y ogo (1x) ! are continuous

maps from px(U) x R¥ — py(U) x R

Definition 2.3.18. A G-bundle on a second-countable locally compact Hausdorftf G-

space X will be a vector bundle 7 : E — X, equipped with a fiberwise linear G-action
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such that 7 is a G-equivariant continuous map. The G-bundle is smooth if £ and X are

also G-manifolds and 7 is a smooth G-map.

Definition 2.3.19. A smooth section of a G-vector bundle E. is a continuous section
of m : E — X, which is a smooth map from X to E (as G-manifolds). We denote
smooth sections of E by I'°(E), or I'?(m, X, E) if the bundle structure needs specification.
Furthermore, if € I®(F), then we say that n is G-equivariant if v~ (n(y.x)) = n(z)
for all (v,2) € G x,, X.

Note: We will use the notation I'. to refer to sections with compact support, I'y to
refer to sections which vanish at infinity, and L?(E) to refer to L?-sections of F, with
respect to a given G-invariant Hermitian metric on £. These invariant metrics do not

always exist.

2.4 G-algebras

Definition 2.4.1. Let X be a locally compact Hausdorff space. A Cy(X)-algebra is a
pair (A, 6) consisting of a C*-algebra A and a homomorphism 0 : Cy(X) — ZM(A) such
that 0(Co(X)) - A = A.

Note: Explicit reference to € is dropped if no ambiguity is present. For example,

(0(f))(a) is written as fa, for f € Co(X) and a € A.

Definition 2.4.2. If A is a Cy(X)-algebra, the fiber of A above x € X is defined to be
A, = AJILA, where I, := {f € Co(X) : f(x) = 0}. The subscripts b and ¢ are reserved
for the bounded and compactly supported counterparts of A, respectively. These algebras
are defined by Ay := {a € M(A) : Vo € Cy(X),pa e A}, and A, := C.(X) - A.

Example 2.4.3. Suppose A = Cy(Y) where Y is second-countable LCH and p: Y — X
is a continuous function. Then M(A) = Cp(Y) = ZM(A), and 0 : f — p*(f) = (f o p).
For x € X, define Y, := p~'({z}). Then

A, = Co(Y)/LCo(Y) = Co(Y)/{f € Co(Y) : fly, = 0} = Cy(Y2).
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Additionally,

Ay ={feCy(Y):Vhe Co(X), f-(hop)eCy(Y)}
={feCy(Y): Ve > 0,3X-compact set A =Y such that ||f|ac|| <&}
A= Cu(X) - A

= {f e Co(Y) : 3 compact K < X such that supp(f) < p*(K)}.

In the particular case where Y = X x X’ maps to X via the coordinate projection

p: X x X' — X, then

A= Cy(X x X') = Cy(X) ® Co(X"),
Ay = Co(X),
Ay = Cy(X) @ Co(X'), and
Ae = Co(X) - (Co(X) ® Co (X))

Note: The “compactly supported” elements can’t really be written as C.(X) ® Cy(X'),
since C.(X) isn’t a C*-algebra.

Definition 2.4.4. Let A be a Cy(X)-algebra. Assume X is LCH.

1. Restriction: If U is an open subset of X, then Ay is defined to be the Cy(U)-
algebra Co(U)A. If F is a closed subset of X, then Ap is defined to be the Cy(F)-
algebra A/IpA, where Ir < Cy(X) is the ideal of functions vanishing on F. Ay
and Ap are called A restricted to U and A restricted to F, respectively.

2. Product: Suppose B is also a Cy(X)-algebra. Then A ®q B is a Cop(X x X)-
algebra. By restricting A ®,,q.. B to the diagonal Axy € X x X, we get a Cy(X)-
algebra, which we denote A ®c,x) B or A®x B. See [5], section 3.2.

3. Pullback: Let p : Y — X be a continuous function between LCH-spaces. Then
define p* A to be the Cy(Y')-algebra obtained by restricting the Co(X x Y')-algebra
A Qmaz Co(Y) to the pullback X x4, Y € X x Y.

The definition of product over Cy(X), given above, will be denoted with a hat, ®,
X
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if graded products are being used. If necessary, we will explicitly indicate the Cy(X)-
structure that is being used for balancing the tensor product. For example: A ®x B is

sometimes denoted A ® B.

04,08
Example 2.4.5. Let X7, X5, and Y be locally compact Hausdorff spaces, and f; : X; —
Y continuous functions. The usual isomorphism Cp(X7) ® Cp(X2) = Co(X; x X3) is
Co(Y x Y)-linear. The Cy(Y x Y) action on Cy(X; x X3) is by pullback through the
map (7 f1,73 f2) : X1 x Xp =V x Y taking (77 f1, 75 f2) (21, 2) = (f1(21), f2(22)). This

function satisfies (7§ f1, 75 f2) 1 (Ay) = X; xy Xo; consequently,

Co(Xl) @Co(XQ) N CO(Xl X XQ) .
GO0 By Q%) = L TG00 ® G ~ T, Gl < Xy~ P )

We will use this fact repeatedly without explicit reference.

Proposition 2.4.6. (Corollaire 3.16 from [5]) Let A be a Co(X)-algebra; B, a Cy(Y)-
algebra. Then (A Qmaz B)(ay) = Az Qmaz By-

Corollary 2.4.7. Let A and B be Cy(X) algebras. Denote by In, S Co(X x X) the
ideal of functions vanishing on the diagonal Ax € X x X, and Js € AQ® ez B the closed
ideal gemerated by simple tensors of the form ga @b — a® gb for alla € A, b e B, and

g€ Co(X). Then In, (A Qmaz B) = Js.
Proof. This is proved in, for instance, [6], Lemma 2.4. ]

We will also use this equivalence without explicit reference.
Maximal tensor products are used in this paper because spacial (minimal) tensor
products do not satisfy many desirable properties, such as associativity. See section 3.3.

of [5] for some counterexamples pertaining to minimal tensor products.

Proposition 2.4.8. Let A and B be Cy(X)-algebras, and letp:Y — X andq: Z - Y

be continuous functions.
1. p*A®y p*B = p*(A®x B)
2. q*(p*A) = (pog)*A

Definition 2.4.9. A homomorphism of Cy(X)-algebras, ¢ : A — B, is a * homo-

morphism that is also a morphism of Cy(X)-modules.
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To every Cp(X)-algebra morphism ¢ : A — B, there corresponds a family of -

homomorphisms ¢, : A, — B,.

Definition 2.4.10. Let G be a locally compact topological groupoid with base space Z,
and let A be a Cy(Z)-algebra. Then an action of G on A is a family of #-isomorphisms
oyt Ayy) = A(y), indexed by v € G, such that for any composable pair (v,7') € G,
Qyoy = iy © ayr. The action of G on A is called continuous if it can be obtained by
restricting an isomorphism of Cy(G)-algebras, « : s*A — r*A, to the fibers above each
v e G. If Aisa C*-algebra with a continuous action of G, then we call A a G-algebra

(sometimes G-C*-algebra).

The word “action” will be used to refer exclusively to continuous actions. Any possibly

discontinuous action will be clearly indicated as such.

2.5 Hilbert Modules over G-algebras

Definition 2.5.1. Let B be a Cy(X)-algebra, and let € be a Hilbert B-module. The
fiber of £ over z € X is the Hilbert B,-module &, := £ ®p B, (the internal tensor
product of Hilbert B-modules).

Identifying & = EB, we can define a homomorphism from Cy(X) to the center of
L(E) by ¥ e Co(X) — [€ € & — & € E]. This homomorphism can be used to equip
K(€) with the structure of a Cy(X)-algebra.

Definition 2.5.2. Let A and B be Cy(X)-algebras, and £ a Hilbert B-module. A -
representation 7 : A — L£(&) is called a representation of Cy(X)-algebras if m(pa)f =
m(a)(&p) for allae A, p € Cy(X), and £ € £.

In this case, for all x € X, n(I,A) < £(1,B). Therefore, a representation of Cy(X)-

algebras decomposes into a family of =representations 7, : A, — L(&,).

Proposition 2.5.3. Let £ be a Hilbert A-module, F a Hilbert B-module, and w : A —
L(F) a representation of Co(X)-algebras.

1. Forallz e X, (EQRaAF)s = E: ®a, Fu-

2. Suppose R € L(E), and S € L(F) satisfies w(a)S = Sw(a) for all a € A. Then the
operator RRS : ERQn — R(§)®S(n) defines an element of LIEQF). Furthermore,
forallze X, (R®S), = R, ®S,.
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Proof. This is proved as Proposition 4.1 of [11]. O

Definition 2.5.4. Let B and D be Cy(X)-algebras, £ a Hilbert B-module, and F a
Hilbert D-module. The external tensor product of £ and F over X is defined to be:

5 ®X,ext F = (5 ®maz f) ®B®ma$D (B ®X D)

In other words, £ ®x ¢t F is the completion of the algebraic tensor product (of Co(X)-
modules) with respect to the B ®pq D-valued norm: (€ ®@n,v® () = q({&, V) Qmas
(n,()), where q : B®uqx D — B®x D is the quotient map.

Note: The fiber of £ ®x ¢+ F above o € X is canonically isomorphic to &, ®eqt iz as
Hilbert A, ® B,-modules.

Definition 2.5.5. If p: Y — X is a continuous function, then we define p*€ to be the
Hilbert p* B-module € ®x ¢t Co(Y).

Equivalently, p*€ =~ £ ®p p*B.

Definition 2.5.6. Let G be a locally compact topological groupoid, B a G-algebra, and
& a Hilbert B-module. A continuous action of G on & is a unitary V € L(s*E,1*E)
such that, for all (y,7') € G®, V,V,, = V.., and V-1 = V. If this is the case, we call
£ a Hilbert G- B-module.

Definition 2.5.7. If £ is a (right) Hilbert G-B-module satisfying the property: for all
€ e s*E, and b e s*B, V(£.b) = V(§).a(b), then we call £ a G-equivariant Hilbert

B-module.

Definition 2.5.8. Let B be a G-algebra. A representation, 7 : A — L(E), of a G-algebra
A on a G-equivariant Hilbert B-module £ is a G-equivariant representation if, for all

v € G and all ay,) € Ay,

V(s (@sen)) VS = Ty (a1

2.6 Equivariant Kasparov Groups

Definition 2.6.1. Let A and B be G-algebras. A G-equivariant A-B-bimodule is a

pair (£,m), where & is a Z/2Z-graded and G-equivariant Hilbert B-module and 7 is a
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G-equivariant and degree-preserving representation of A into £(€) (all G-actions are also

degree-preserving).

Definition 2.6.2. Let A and B be graded G-algebras. A G-equivariant Kasparov
A-B-bimodule (or Kasparov G-A-B-module) is a triple (€, 7, F') composed of a G-
equivariant A-B-bimodule (£, ) and an odd-degree operator F' € £L(€) such that

1. Vae A, (F? — Dn(a) € K(€)

2. Vae A, (F— F*)r(a) € K()

3. Vae A, [F,n(a)] € K(€)

4. Yaer*A, m(a)(V(s* F)V* — r*F) e r*K(£).

Definition 2.6.3. Two Kasparov G-A-B-modules, (€, 7, F) and (', 7', F'), are unitar-
ily equivalent if there exists a G-equivariant unitary U € L(E,E&’) of degree 0 such
that UFU* = F’ and, for all a € A, Un(a)U* = 7'(a). We denote the set of unitary
equivalence classes of Kasparov G-A-B-modules by EY(A, B).

Definition 2.6.4. We say (&, 7o, Fy), (1,71, F1) € E9(A, B) are homotopic if there
exists a class (€,m, F) € E9(A, B[0,1]) such that for ¢ € {0,1}, £ Qp].err B = &, and
under these isomorphisms, ™ ®p[o,1],e0, 1 = 7, and F ®p[o1],e0, 1 = Fy. The action, V', of

G on &€ must restrict to the actions, V¢, of G on & according to the commutative diagram

below:
s*E v r*&
s*¢ ® s*Bl r* ® r*BI
s*BI r¥BI
1®evt 1®evt
s*¢ ® s*B r*¢ ® r*B
s* Bl ,evt r* Bl evs
*(E B *(E B
s*( B%t ) r( B%t )
5 (6) ————— (&)



Definition 2.6.5. Homotopy equivalence classes of elements in E9(A, B) is denoted by
KK9A,B) or KKJ(A,B). The odd KK groups will be defined by KKY(A, B) :=
KK9(A, BRCL(1)).

In the usual way, E9(A, B) is an abelian semigroup under the direct sum operation, and

KKY9(A, B) happens to be an abelian group.

Definition 2.6.6. Let A and B be G-algebras, define E9 (A, B) to be the set of all triples

(€, m, F) consisting of an ungraded G-equivariant A-B-bimodule, where 7 and F' satisfy

—g
the conditions of definition [2.6.2 but are ungraded. Let K K (A, B) be the abelian group

of homotopy equivalence classes of elements in EQ(A, B).

Proposition 2.6.7. Let A and B be G-algebras, then there is a well-defined group ho-
momorphism ™ : l?}/(g(A, B) - KKY(A, B).

Proof. For now, assume that A and B are trivially graded. Let (€, 7,F) e EY(A, B).
Through a standard simplification, it is sufficient to assume F' = F™*. Since this simplifica-
tion is via a compact perturbation of F', and the almost-equivariance condition (part 4. of
definition does not distinguish between compact perturbations of F', this standard
simplification can be done in the equivariant setting. Define a (graded) G-equivariant A-
B-bimodule & := E®E , graded via the direct sum, and where G acts diagonally on &. De-
fine a BRCL(1) action on € via (&, &).(b&1) := (£.b,£.b) and (&, &).(b®e) 1= (—€.b, £.b).
A compatible BRC/(1)-valued inner product on £ is given by

(&,€), ('), == (&m +L ) @1+ (& n) =& ) @e.

This structure allows us to take & as a right Hilbert B&C/(1)-module. Define an odd-

0 F
—iF 0
a representation 7 : A — 5(5 ) by diagonal action by 7. Observe that (f 7 F ) satisfies

degree operator F := . Notice that F is indeed BRC/(1)-linear. Define

all of the requirements in definition (recall that we are assuming F* = F'). Thus,
(7?,5, F ) e E9(A, BRC/(1)). Since a homotopy can also suffer this procedure, this

construction forms a well-defined map on homotopy equivalence classes. O

Interestingly, the B&C(1)-linearity of operators in previous proof implies that general

~

operators 1" € L(€) look like
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A B
—iB A

T:

Even homogeneous operators, T', have B = 0; odd operators have A = 0. There is a
trade-off between the grading chosen for £ and the induced grading and general form
of operators in E(EA) At the end of Section , we show this construction is unitarily
equivalent to taking 5 , with a grading induced by swapping copies of £, and where E(EA )
only consists of block diagonal operators.

There are likely conditions under which the map *: KK — KK 1 is an isomorphism,
but it is not relevant for this thesis.

In section 6 of [11], LeGall verifies that the Kasparov product construction can be
performed equivariantly. We will only state the definition, and direct the reader to [11]
for the statements and proofs of the typical properties of the Kasparov product, such
as the equivariant technical theorem and the existence and associativity of equivariant

products.
Definition 2.6.8. Let T = (51,7T1,F1) € Eg(A, B) and To = (52,7T2,F2) S Eg(B,D)
Then z3 = (51®52,7r1®1, F3> e E9(A, D) is a (cap) product of z; and z if

B

1. (Connexion) Tj is a Th-connexion for & 5 := E1RE,. That is, for all £ € &,
B
95 o) T2 — (_1)096(')T2T3 @) 95 € ’C((C;Q,SLQ);

T2 o) 9; — (_1)096('/’T262< @) T3 € IC(SLQ,(C;Q),
where the operator ¢ : £, — & 2 maps 7 to £®n. The adjoint sends a simple tensor
B
771%)772 to (&, m)p - N2
2. (Positivity) For all a € A, 7(a)[Ty®1, Ts]w(a)* = 0 modulo K(&; ).

We sometimes write F3 € Fy#F5 if F3 is an operator satisfying this definition. On

K K-classes, we write [2]®[y].
B

Definition 2.6.9. Let G be a second-countable locally compact Hausdorff groupoid with
object space X. Suppose A, B, and D are G-algebras, and assume D has a countable

approximate unit. Define the D-tensor operator

29



op: KK9(A, B) - KKY (A(;?;D, B()??D)

by the formula on cycles: op(&E, 7, F) := (€®D, T®1, T@l).
X

Definition 2.6.10. Let G be a second-countable locally compact Hausdorff groupoid
with object space X. Suppose A;, Bj, and D are G-algebras, and assume A,, B; have
countable approximate units. Let z; € KKY (Al, B@E}D) and 75 € KKY <D®A2, Bg).
Then the (cup/cap) product of x and y is defined by the cap product:

l’@y =04, (l‘) A®A 0By (y)
D B1®D®A2

2.7 The Groups VKgy and RKgy

Definition 2.7.1 (See [10]). Let G be a LCH topological groupoid, and let X, Y be LCH
G-spaces with a G-map f : X — Y. Define the representable K-theory of X with
Y-compact support to be

RKgy(X) = KK (Co(Y), Co(X)),

representable K-theory of X (with no support conditions) to be RKg(X) := RKg x(X) =
KK9X(Cy(X),Co(X)). Suppose G has a compatible Haar system, then define Kg(X) :=
KK(C,G x Cy(X)).

The following definition is partly motivated by Chapter 5 of [14].

Definition 2.7.2. 1. For a LCH and second-countable G-space X, define the cate-
gory RVectg(X) to be the category of pairs (E,0), where E — X is a complex
7,/2Z-graded G-bundle with a Hermitian metric under which G acts on the fibers
of E through a unitary action, and o is a self-adjoint degree-1 G-equivariant endo-
morphism of E. The morphisms, from (E, o) to (E’,¢’), will be given by G-bundle
maps ¢ : £ — FE’' satisfying ¢ o 0 = ¢’ 0 .

2. Denote by Vectg(X) the subcategory of pairs (E, o) € RVectg(X) with 6% = 1 and

outside some G-compact subset of X.
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3. If Y is a second-countable LCH G-space, and f : X — Y is a G-map, then denote
by RVectgy(X) the subcategory of pairs (F,0) € RVectg(X) satisfying 0? = 1
outside a Y-compact subset of X. If ambiguity is present, we will use the notation

RVectg ;(X) for this category.

This definition could be simplified by restricting to a situation where all G-bundles
can be equipped with such a metric. For example, Emerson and Meyer typically work
under several assumptions with respect to the groupoid action. See section 2 of [9] for
more details on useful conditions for G-bundles to be well-behaved; of specific relevance

would be, for example, Definition 2.11, Proposition 2.19 of [9).

Definition 2.7.3. An element (E,0) € RVectgy(X) is degenerate if o is globally an
automorphism. Given (Ey, 0y), (E1,01) € RVectg(X) (or Vectg(X), or RVectgy (X)),
we say that (FEp, 0g) is homotopic to (Ey, 07) iff there exists (F,Y) € RVectg(X x [0, 1])
(respectively, Vectg(X x[0,1]), RVectgy (X x[0,1])) with E|x,(;; = E; and X|xx;} = 0
for j = 0,1. Two elements (Ey, 0¢) and (FE4,0,) are equivalent if they are homotopic
after possibly adding degenerate elements to each. We will write (Ey, 0g) ~p, (E4, 0y) for

this notion of equivalence.

Definition 2.7.4. The set of ~j,-equivalence classes of elements in RVectg(X), Vectg(X),
and RVectgy (X)) will be denoted respectively by VKg(X), Vg(X) and VKgy(X).

Proposition 2.7.5. There is a well-defined map vgyx : VKgy(X) —» RKgy(X).

Proof. Let (E,0) € RVectgy(X), where 7 : E — X is the projection. Then I'j(E)
is a Hilbert Cy(X)-module with respect to its fiber-wise Hermitian product. We will
treat Cp(X) as a G x Y-algebra via f* : Co(Y) — Cp(X) and through the G x YV
action on X given by (v,y).(z) := 7.z for any (v,y) € G x Y and z € f~!(y). Extend
the G action on E to a G x Y action in the same fashion. Because the G-action on
E is unitary with respect to the Hermitian product, I'o(E) has an action of G x YV
satisfying definition . Since 7 is G-equivariant, ['((EF) is a G x Y-equivariant Hilbert
Co(X)-module. The adjointable operators, L(I'¢(F)), is isomorphic to I',(End(FE)), and
K(To(E)) = To(End(E)). Since 0?—1 and o* — o are zero outside of a Y-compact subset,
pointwise scalar multiplication with a function f*g for g € Cy(Y") will yield an element in

Fo(End(E)). Therefore, the triple vgy x(o, E) := (I'o(£), f*, o) satisfies the conditions
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of Definition and determines a class in K K9*Y (Cy(Y), Co(X)) = RKgy(X). This
construction works on homotopies (definition [2.7.3)), and yields homotopies (definition
2.6.4). Adding degenerate cycles is trivial in K K theory, so this construction produces

a well-defined map on ~j-equivalence classes, vgy x : VKgy(X) — RKgy(X). O

This map need not be surjective, even for relatively nice examples. Some conditions
for surjectivity are given in [10]. Even restricting to groups, VK and RK are not nec-
essarily the same. Juliane Sauer gives a nice example of when VK # RK for a space
equipped with a proper smooth action of a totally disconnected group in [21]. See also

[19] and [16].

Definition 2.7.6. We define VK&Y(X ) to ungraded-homotopy equivalence classes of
pairs (o, E) satisfying all conditions of Definition except that E and o are ungraded.

Combining the construction of Proposition [2.7.5| with the construction of Proposition

2.6.7 yields a map 1}y x : VK§ (X)) > KK (Co(Y), Co(X)) =: RK( y(X).

Theorem 2.7.7. Let X, and Xy be spaces over Y. Suppose v; € VKgy(X;) and vy €
VKgy(X2), then there exists a class z € VKgy (X1 xy Xa) satisfying

Proof. Let © = [(0,E)] € VKgy(X1) and y = [(n,F)] € VKgy(Xs). Consider the
projection maps 7; : X; xy X9 — Xj;, and define the operator o X7 € End(r* EQniF)
by
1 * S Sk
oXn = \/—5 T o®1 + 1®m5n

then (o0 X n, 7 EQniF) € RVeclgy (X1 xy X), since

1 Py N Py
(cXn)* = 3 <7r;‘<72®1 + (14 (=) (rFo®@min) + 1®7r§772> ,

which outside of some Y-compact neighborhood K x Kj, is (1/2)(1®1 + 1®1) = 1. We

will now verify that v(o X n, 7¥ EQniF) € RKgy (X1 xy X5) from Proposition [2.7.5]is a
homotopic to a product of v(o, E) and v(n, F') (Definition [2.6.8). The homotopy is

32



-0\ , . 11—\ .
hy == (tM+( 5 >) 7T>1k0®1+<tN+( 5 )) 1®73n,

where M, N = (1 — M) € Ty (End(n* EQniF)) are chosen by the Kasparov Technical
lemma so that M27¥o®1+ NY21®m3n € o4, such as in THEOREME 6.2 of [11]. Such

M and N must exist since all spaces are second-countable locally compact Hausdorff. [J

Although we will not be using this theorem in any integral way in this thesis, we
prove it here to demonstrate why having representatives in V' Kg y is nice for computing
K K-products. Since we will show that the Thom class is an element 75 € V K¢ x(F), this
means that computations involving Kasparov product with 7z will be often be simpler

to carry out explicitly.
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3 Bott Periodicity

3.1 Spin“G-Bundles

Throughout, G will denote a second-countable LCH groupoid. The object space of G will
be denoted by Z (or G if specificity is required). Let X be a second-countable LCH
G-space, and suppose 7 : £ — X is a G-bundle on X of (real) rank k.

Definition 3.1.1. The bundle F is said to be a Spin®~-G-bundle if there exists a principal
Spin®(k)-bundld’|p : P — X and bundle map 1 : P — F(E) (where F(E) is the principal
GL(k,R)-bundle of frames on E) satisfying:

1. commutativity of the diagram:
P x Spin‘(k) —— P
S
F(E) x GL(k,R) — F(F)
where ¢ : Spin°(k) — GL(k,R) is the usual lift of the covering map Spin(k) —

SO(k), and the horizontal arrows represent group actions.

2. There is a (left) G-action on P (commuting with the action of Spin®(k)), such that
p: P— X and n: P — F(FE) are both G-equivariant.

Note: G acts on E, which lifts to an action of G on F(E). This lifted action automatically
commutes with the action of GL(k, R).

If r is defined by k = 2r or k = 2r + 1, then there are interesting representations of
Spin®(k) on both R* (via ¢ : Spin°(k) — SO(k)), and C*". The action of Spin®(k) on C*
is induced by one of the following:

Spin‘(2r) < Cl(2r) =~ My (C)
Spin®(2r + 1) € Cl(2r + 1) = My (C x C) =222 My (C)

As in [2.1.5] the grading on C/(2r) is recovered by the element ¢ := i"ejeq- - - ey, €
Spin®(2r) < C{(2r). However, no such element exists in C¢(2r + 1) (2.1.7)). Therefore, a

2 Assumed to be locally trivial. In later sections, groupoid principal bundles are defined in such a way
that they are not necessarily locally trivial.
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representation o of Spin®(2r) on C*" is automatically graded. That is, ¢(g) grades C*" so
that Spin(2r) acts by grading-preserving linear maps. However, for any representation
of Spin®(2r + 1) on C*, there is no grading on C? by which Spin®(2r + 1) acts by
grading-preserving linear maps.

Fixing representations ¢ : Spin®(k) — SO(k) and v, : Spin°(k) — GL(C?*") (k = 2r
or k = 2r + 1), we can form bundles on X using the G-Spin®(k)-datum on a G-bundle E.

E~P x RF
Spin® (k)

$:=P x C¥
Spin¢ (k)

If £ = 2r, then $ is actually a graded C-G-bundle via the bundle map (p,v) —
(p, o(e)(v)) = (p.€,v). Additionally, through these identifications we can guarantee the
existence of invariant metrics. This is rather important, since the existence of invariant

metrics on general G-bundles is not usually guaranteed (see, section 2 of [9]).

Theorem 3.1.2. If 7 : E — X is a real Spin®-G-bundle, then there exists a G-invariant
inner product on the fibers of E, and a G-invariant Hermitian product on the fibers of

the associated spinor bundle $ such that G acts on the fibers of $ through unitary maps.

3.2 The Thom Class of a Spin°~-G-Bundle

If ' — X is any (real) rank k& G-bundle with an invariant metric, we denote by C/(F')
the G-bundle of Clifford algebras FO(F') xou) Cl(k), where O(k) acts on Cl(k) by
orthonormal change of basis on R¥.

If £ — X is a Spin°-G-bundle with Spin®-Datum (P, n), then

CUE)=P x Clk)=P x M,y (C*2+D)
Spin® (k) Spin® (k)

where Spin©(k) acts on Cl(k) by conjugation (i.e., through 1), and on Mar(C) (or My-(C x
C)) similarly under the isomorphism .

In the case where k is even, then C¢(E) =~ End($). Otherwise, C/(E) =~ End($)®(C x
C, Sswap)-

We can always define a map F — C{(F) by inclusion of R* into Cl(k) (this is O(k)-

equivariant, and therefore Spin‘(k)-equivariant). If k is even, this determines a map
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¢: E — End($), whose image is specifically contained in the odd-elements of End($).
However, if & is odd, then the inclusion defines a map F — C{(E) ~ P X Mo (C %
C). Composing with a projection to the diagonal in C x C would result inS illr;e( kz)ero map,
since the image of F in C/(E) is odd, so we just project to the first component of C x C
instead, yielding a map c¢: £ — ( P X Moy (C)) ~ FEnd($). There is no grading on
$ here, and projecting via m will oftsgmgi(ff)e an inequivalent class.
Roughly, we want to make (¢, 7*$) into a VK§ y(E) class, but ¢ needs to be modified

to satisfy the requirements of definition 2.7.2] Define m : E — R by

1 if |lv]] <1

m(v) 1=
ol 7" if ol > 1

Using m and i € C, we can define Ag := [(ime, 7*8)] € VKE «(E).

Definition 3.2.1. We define the Thom class of the Spin“-G-bundle of E to be the class

S w [(zmcw_$>] e VEgx(E) € KK9X(Co(X), Co(E)).

Here, 7*$ is the complex conjugate of 7*$. That is, if b : 7*$ — 7*$ is the identity

map, then for all v € E, (imc)(v) = im(v)e(v) : 7*3, — 7*$, acts by im(v)c(v)b(s) :=

ib(m(v)c(v)s).

3.3 Bott Periodicity in K K

In this section, we follow the construction in section 5 of |15] to define the Bott element,

and the inverse Bott element
B, € KK M)/(C, Cy(RMQCTL(n)),

oy, € KKSP ) (Cy(RM&C(n), C).
The Bott-Periodicity theorem can be stated in K K as follows:

Theorem 3.3.1 (Bott-Periodicity). The elements o, and 3, are inverses in K KSP®",

That is:
1. Oén%)ﬁn = lgyrn) € KK (Cy(R™), Co(R™))
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2. B ® o, =1ce KKS™(C,C).
Co(R™)

Compare this statement with Theorem 7 of |15].

3.4 Kasparov’s Construction of o, and 3,

In this subsection, we contextualize constructions made in [15] to our slightly different

definitions.

Define a function f : R™ — Cl(n) by

T

1@ = i eme

The function f is bounded (||f(z)||* = ||z]|* /(1 +||z|[*) < 1; therefore, can be viewed
as an element of M(Cy(R")®Cl(n)) = L(CoH(R™)®CL(n)). It satisfies the following two

conditions:
1=y —1- e el e o com)
1+ ||| 1+ || 1+ |||
iy (=)
f(@__O+HﬂW”2 f(z).

Furthermore, f is Spin®(n)-equivariant (taking Spin®(n) to act on Cl(n) by conjuga-
tion).

Consequently, (Co(R™) ® Cl(n), f) forms a class in KK ™)(C, Cy(R") @ Cl(n)),
where Cy(R") ® Cl(n) is graded in the usual way. We denote this K K-class by 3,. In
Kasparov’s paper [15], he defines KK~"(A, B) := KK (A, BRC{(n)), but we want to
relate these classes back to KKy and K K;. This identificaiton is made explicit in the

next subsection.

3.5 Equivalent Representatives for «, and (3,

We inevitably wish to prove that a Thom class generated via generalized groupoid-
homomorphism pullback of 3, is the same (perhaps with a sign difference) as the Thom

class of Definition B.2.1]
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Let n = 2r > 0, and recall from Theorem that ¢, : Cl(n) — End(C*) is
a graded #-isomorphism with respect to the induced grading on C?" from ¢y,(¢). The
element f € L(Cy(R")QCl(n)) defining /3, determines an element in ¢, (f) € L(Co(R")®
C?"). Since the image of f is contained within Cf(n)®), it follows that the image of
©n(f) acts on C?" by an odd automorphism. Taking Spin‘(n) to act on C?" through
multiplication under ¢,,, the function ¢, (f) : R® — End(C?") is Spin‘(n)-equivariant,
and therefore, 3, := [(Co(R™) ® C¥", 0, (f))] € KKSP“®™)(C, Co(R™)). To simplify some
notation, let G := Spin‘(n), and let S := C?".

Lemma 3.5.1. With the notation in the previous paragraph, there is an invertible class

por := [(S,0)] e KKY(C,Cet(2r)).

Proof. One can view S as a Z/2Z-graded imprimitivity C-C{(n)-bimodule, with the
following structure. For clarity, let b : C* — C2?" = S be the identity map (which
is an even-graded conjugate-linear isomorphism). The right action of z € Cl(n) on
b(v) € S is given by b(v).x := b(p,(x)*v). The Cl(n)-valued inner product will be given
by (&, Y)ep = o (Ory), where O, is the matrix representation of the linear map
(from C*" to C*") given by (z) — x{y, z)c. With these definitions, we check the only

non-obvious condition (in our case) for an imprimitivity bimodule:

(). OY),2(2Deymy = 2(7)-05 " (Oy.2)
2(en(0, (6] )))
(

(2

(0, )
b(2 (Y, T)¢)
= (2, y)c(2)
= c0(@),0(y))b(2)

The action of g € Spin‘(n) on C is trivial, on A € Cl(n) is through conjugation
(9.A = gAg™), and on v € S is via ¢g.b(v) = b(p2,(g7!).v) (note that this action
is through unitaries, since g=' = g¢* for g € Spin°(n)). We check that S is indeed a

38



Spin(n)-equivariant Hilbert C¢(n)-module (see definition [2.5.7)):

9-(0(v).A) = g.b(pn(A)*v)
= b(pn(g*A%)v)
= 2(pn(949%) Pn(g")v)
= b(en(g")v).(9-A)
= (95(v)).(g-4)

The inverse of pg, is the class 5! := [(C?", ¢o,,0)] € KK9(Cl(2r),C). This is an inverse

since the map S ® C? — C defined by b(z) & y — {x,y)¢ is an isomorphism. An
ce(2r) Ce(2r)

intuitive way to see this is to think of C2° ® C?" as the space of C{(2r)-linear maps
Ce(2r)

(i.e, My (C)-linear maps) on C?" which can only consist of multiples of the identity. The
induced action of Spin®(2r) on C is trivial. Hence, g, ® g = lc. The product in
Ce(2r)

the opposite order gives the class [(Cl(2r),0)] € KK%(Cl(2r), Cl(2r)), which is clearly

Leery = Ugazr) (1c). O

Lemma 3.5.2. Let n = 2r. Using the cup/cap product,
Bor = B’QT%M% e KK%(C, Co(RMQCTL(2r)).
Proof. By definition [2.6.10]
Bzr%ﬂzr = gQTCO%n)UCO(R")(MQT)

The class ooy gny(p2-) is given by [(0,S®Co(R™))] = [(0,Co(R™, S)] with the obvious
Co(R™)-module action. The Hilbert Cy(R™) ® C¢(n)-module associated with the product

of §2T and g, is

Co(R",C*") %?) )OO(R", S) = Cy(R", CTRCT) = Cy(R™, End(C?)) = Cy(R™, CL(n)).
Co (R

The operator @, (f)®1 € po.(f)#0, under these identifications, is equivalent to pointwise
multiplication by f in Cy(R", Cl(n)). Similarly, the somewhat awkward right module ac-
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tion of Cl(n) on S recovers the right-module action of Cy(R™)®CF(n) on itself by right
multiplication. This is because the natural isomorphism (i.e., through the Riesz repre-
sentation) between S and (C?")* relates left multiplication by s, (A)* to pre-composition

with ¢o,.(A). Consequently,

527@#27« = [(Co(R", CLl(n)), f)] = Par.
L]

Let b, := [(R™ x C* imc)] € VK2

Spin¢(n

nition [3.2.1)) , then v(by,) = For € KKSP°)(C, Cy(R*)) via a homotopy between

J(R™) (see the discussion preceeding defi-

the following two functions from R™ to R™ [v — v - m(v)] and [v — f(v)]. Since

by € valpinc(Z’r‘ H)(]Rz”“) is ungraded, we define

52r+1 — V(b2r+1) c I(I(lSpinc(%—&-l)((C7 CO(R2T+1>) = }(}(Spinc(2r+1)((c7 CO(R”“)CQ)(CE(D)

Theorem 3.5.3. Letn=2r orn=2r+1. Then

BBz, = B € KIS 0)(C, Co(RM)ECH(n))

Proof. The even case has been proved in Lemma [3.5.2 Let n = 2r + 1, and consider
b, € VKslpmc(n)’,(R”) given above. Suppressing the left action by scalar multiplication

and denoting v := m; 0 V9,41,

—— Spin®(n)

v(ba) = [(Co(R",C*),ime)] = [(Co(R",C*),v(f))] € KK (C, Co(R™))

is an ungraded K K-class. Using the construction from proposition [2.6.7, we pass to the

odd K K-class:

~ —

By = v(by) € KKP™ (€, Co(R™)) := KKSP0)(C, Co(RMECTCL(1)).

Represented by

i (f)
—w(f) 0

B =| | Co®™,C* @C?),

40



Denote the Hilbert module & := Cy(R", C* @ C?*'), which is graded with respect to the

I 0
grading operator Sp(z) := ? . The right action of e € C{(1) on & is by
0 —Iy
0 —1
left multiplication with the operator [e]; = . Consider & := &, but with
I 0
_ 0 I : : :
grading operator Sy(z) = and matrix representation of e given by [e]s =
Irr O
il A
These Hilbert Co(R")®C/(1)-modules are unitarily equivalent through
0 —f

the unitary:

1 ol 1
U:=— Igg—>(91
I il

2
That is, U*S1U = Sy and U*[e],U = [e]z. Furthermore,

U* . U=
—i(f) 0 0 —u(h)

So, again suppressing the obvious representation of C on &, an equivalent representative

of 5, can be given by

B | e[ VW0 & (D).

0 —v(f)

The last equality holds because 1) = m 0 9,11 and ms 0 o, 1 are negatives of each other
on odd-homogeneous elements of C¢(2r+1), and consequently s, 1 and (¢, —1) coincide
on odd-homogeneous elements. Using the Hilbert Co(R™)®C/(1)-module & instead of
& is nice in that all operators T € £(&;) must be block diagonal (in order to commute
with [e]y). In this picture, (o7 1) : & — Co(R™, C¥'®CL(1)), where C?" is treated as a
trivially graded vector-space.

Now consider

Oenancen(iar) = [(Co(R™, SECE),0)] € KK 0(Cy(RMBCL, Co(RMECTL, ).
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Fix graded isomorphisms

. . , 01 ~ A - A A
C* @ C*, grading = ® (S®CL(1)) = (C*®CL(1)) ® (S®CL(1))
10 ce(1) Ce(1)

~ (C¥®S)®CL(1)
~ End(C*)®CL(1)
~ CL(2r)QCL(1)

~ Cl(2r+1)

Notice that, through this composition of isomorphisms, acting by @a..1(f(z)) ® 1,
ce(1)

for some x € R™, becomes multiplication by f(x). Consequently,

B@ar = [(Co(®", CU(m)). £)] = B € KK (T, Co(R")BCH(n)
O

The purpose of this theorem is to express 3, as a class in either K Ky or K K; rather

than a class in KK,,.

Definition 3.5.4. For n = 2r or n = 2r + 1, Let a,, € KK (") (Cl(n)RCy(R™), C)
be the class defined in section 5 of [15]. In the odd-case, fix some orientation preserving

~

identification CA(2r + 1) = C£(2r)®CL(1), and define @y, := 5, @ .
Ce(2r)

We won’t go into too much detail for «,, and we will use Theorem [3.3.1] proved in [15],
applied to a,, and E; In the odd cases, we will suppress explicit mention of the identifi-
cations K K (Cl(1)®, BRC((1)) = KK(A, B) and KK (C/(1)®, B) = KK (A, BRC/(1)),

A A

as was done in the statement of Theorem [B.3.11
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4 Groupoid Homomorphisms and Pullback Construc-
tions

This section on generalized groupoid homomorphisms is broken up into four subsections.
The first subsection will recall the notion of generalized groupoid homomorphism and
work through some important examples. These generalized homomorphisms are often
called Hilsum-Skandalis morphisms. The next three sections recount the constructions
outlined in LeGall’s work [11], for pulling back H-algebras to G-algebras, H-Hilbert mod-
ules to G-Hilbert modules, and K K™-classes to K K9-classes via a generalized groupoid

homomorphism from G to H.

4.1 Generalized Groupoid Homomorphisms

This section takes definitions from [11] and expands on some examples and arguments.
The examples are somewhat detailed, and only serve as examples of manipulating the
somewhat awkward definitions. The essential content of this subsection, for the Thom

isomorphism, is entirely contained in the material preceding Example [4.1.10]

Definition 4.1.1. Let Y be a LCH space and let Q2 be a LCH (right) #H-space, where H
is a LCH topological groupoid. We say that f : {2 — Y is a principal H-bundle if

1. f:Q — Y is an H-invariant continuous surjection,
2. the action of H on € is free and proper,

3. whenever f(w) = f(n), there exists (an implicitly unique) v € H with w.y = n

(f-fiberwise transitive).

Notice that this definition of principal bundle does not automatically guarantee that
f Q2 — Y admits local sections, nor does it guarantee local triviality. Worse yet, the
fibers over f might not be homeomorphic to all of H, but merely a sub-groupoid of H.
More specifically, if H is not a transitive groupoid, then a single fiber of f is necessarily

homeomorphic to a transitive sub-groupoid of H.

Example 4.1.2. Let H be a LCH groupoid, and let f : {2 — Y be a principal H-bundle.
For another LCH groupoid G, define H o= H ]G, whose object space consists of the
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two disjoint object spaces of H. Let the anchor map p: 2 — HO be the composition of
the original anchor map to H(® followed by inclusion into H©® = H© [1G6©®. Then G
simply does not act on 2 at all. Therefore, freeness, properness, and transitivity are not

affected by G, and 2 is a principal H-bundle simply because it is a principal H-bundle.

Definition 4.1.3. If G and ‘H are LCH topological groupoids, then a graph from G to
H is topological space € together with continuous maps 7 : Q — G© and s : Q — HO©
such that:

1. G acts on  on the left so that w € Q2 and v € G are composable whenever sg(vy) =

r(w),

2. H acts on €) on the right so that w € Q and v € H are composable whenever

s(w) = ru(7),
3. the right H-action equips 7 : Q — G with the structure of a principal H-bundle.

acts on Q acts principally on

Definition 4.1.4. A graph Q from G to H is called regular if there exists a LCH space
Z and a surjective, open, and continuous map ¢ : Z — G© that admits a lift via r to a

map ¢ : Z — S

Proposition 4.1.5. Let G be a LCH topological groupoid, and w: P — X be a locally-
trivial principal G-bundle on the second-countable and LCH space X . If the anchor map
for the (right) G action on P is denoted by p, then the triple (P, m, p) is a regular graph
from X to G.

Proof. Since it is immediate that (P,r,p) is a graph from X to G, it suffices to show
regularity. In fact, we show that 7 itself is open, as a consequence of local triviality:
Assume U < P is an open set, and z € w(U). Then for any y € 7~ !(z) n U, there
exists, under a local trivialization (V, 1) of P above x € V' < X a product neighborhood
WyxW; €V xGwithy € =1 (W, x W;) € U and therefore z € 7 (=1 (W), x Wy)) = Wy,

which is an open neighborhood of x and a subset of 7p(U). O
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Definition 4.1.6. Two graphs Q and ' from G to H are equivalent if there is a

homeomorphism between them that is both G and H equivariant.

Definition 4.1.7. A generalized groupoid homomorphism from G to H is an

equivalence class of regular graphs [2] from G to H.

Definition 4.1.8. Let G be a LCH topological groupoid and Y a LCH space. If p: Y —

GO is a continuous function, we define

Gy = <Y x G x Y) ={(w,7Y)eY xGxY :ply) =r(v);ply) =s07)}.

p?/r. S7p

The source and range maps on Gy are given by s(y,7v,v') = v and r(y,7v,v") = v.
Composition is given by (y,7,¥)(y'.7,y") :== (v,v o7, y")
Notice that Gy makes sense for spaces Y that are not equipped with a G-action. In

the case where Y is equipped with a G-action, G x Y can be naturally identified with a

proper (w.r.t. containment) subgroupoid of Gy.

Definition 4.1.9. A pre-morphism of groupoids from G to H is a triple (Y,p, f)
consisting of a LCH space Y, a continuous open surjection p : ¥ — G© and a strict

groupoid homomorphism f : Gy — H.

Let (Y,p, f) be a pre-homomorphism from G to H, and denote by ¢ : Y — Gy the
inclusion defined by ¢(y) := (y,p(y),y) € Gy. We will construct a graph corresponding
to (Y,p, f) as follows. Let Q=Y fof,(m H. Let Qs be the quotient of O by the
equivalence relation (y, h) ~ (', h') if and only if p(y) = p(y') and b’ = f(v/,p(y),y)h.
Define r ([(y, h)]) := p(y) € G© and s ([(y, h)]) := rx(h) € H®. On the left, v € G acts
by: v.[(y,h)] := [(¢/, f(¥/,7,y)h)], where / is any element of p~*(rg(7)) (the choice of
y' does not matter). On the right, a € H acts by: [(y,h)].a := [(y, ha)]. With these
definitions, one can show that (y,, sy is a regular graph with p open.

Conversely, if (€2, 7, s) is a graph from G to ‘H, then we can form a strict homomorphism
f: Go — H as follows. Given (z,7,y) € Gq, we have that r(z) = rg(v) = r(v.y);
therefore, (by principality) there exists a unique h € H with zh = ~.y. Define f(z,7,y) :=
h. If Q is a regular graph, then there exists Z and ¢ : Z — G©, a continuous open

surjection that lifts to ¢ : Z — Q; therefore, (Z, q, f o q) is a pre-homomorphism, where
f :Gq — H is defined above.
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Example 4.1.10. Suppose (2,7, s) is a regular graph from G to H with  an open map.
Then the corresponding pre-homomorphism is (2,7, f), where f : Go — H is defined by
f(w,y,w’) = h for the unique h € H satisfying wh = qw’. Consider the construction
of the graph corresponding to this pre-homomorphism. Since f(w,r(w),w) = h must
satisfy wh = r(w)w = w, it follows that h = s(w). Therefore, f ot = s, and consequently
Q x H=Q x H. Consider the function ¢ : Q x H — Q by ¢¥(w,h) := w.h. The
eqfl(;i;?y (w, h)s’ri (W', h') holds if and only if whsin/h’. Denote 1 := f(w',r(w),w).
Applying the definition of f, (w)h = (w'n)h. So wh = 'K if and only if nh = R/
(and 7(w) = r(w’)). In summary, ¥(w,h) = (', k') if and only if (w,h) ~ (W', 1).
Consequently, ¥ passes to an injective function on the ~ equivalence classes in €2 x40 H.
It is clearly surjective, since 1(w, s(w)) = w. Therefore, the regular graph corresponding
to the pre-homomorphism (€, r, f) is equivalent to (€2,r,s). That is, the composition
of constructions (r-open regular graphs) — (pre-homomorphisms) — (r-open regular

graphs) is the identity modulo graph equivalences.

Definition 4.1.11. Let (Y, p, f) be a pre-homomorphism from G to G: (Y. p', f), a pre-
homomorphism from QN to H. Recall the inclusion ¢ : Y — Gy. The composition of
pre-homomorphisms is given by (Z, p, f’of), where Z :=Y x Y’and f: Gz — Hy

fou, p’
takes ((yv y/)a Y, ('27 Z,)) to (y/? f((ya Y5 Z))a Z,)'

Example 4.1.12. Suppose that (£2,7,s) is a regular graph from G to G such that r an
open map (i.e., r:Q — G is a continuous open surjection lifting to the identity map).
Let (€,7',5") be a regular graph from G to H, similarly assuming that ' is an open
map. The composition of (2, r, f) and (¥,7', f') is given by the pre-homomorphism
(Q S>;l Q. f’of) from G to H. Recall that f : G — G sends (w,v,w") € Gq to

~

the unique element n € G satisfying wn = ~w’. The strict groupoid homomorphism
1 Go — H is defined similarly. A natural choice for the composite graph might look
like

Qx

s,r!



However, the space Q) x €)' is not a graph from G to H. However, modding out

s,r!

by the relation (w¥,w') ~' (w,jw') for any § € G from source r'(w') to range s(w) is

actually a regular graph from G to H. The range and source maps for this G-balanced
Cartesian product (denoted by r and s', respectively), along with the G and H actions,

are the obvious choices. We will now show that

(Q x Q/ ~') ~ <<Q X Q’) x H/ ~).
s,/ s,r’ s ry
Define ) : Q2 x Q@ —-Q x Q' x H/~ by

! /
S, s’ ry

w(w> w/> = [(wv w/’ 3/<wl>>]

The equality ¥ (w,w’) = 1(n,n’) holds if and only if (w,w’, s'(w)) ~ (n,7,s'(n')). By

definition of ~, this occurs if and only if

~

r(w) =r(mn) and (W) = (f o f)((w,o"),r(n), (n,7)s'(n').

Define v := f(w,r(n),n) € G. and by definition of f, w7y = n. Similiarly, define h to be

the following element:

~

(f, © f)((ww w/)7 7"(77)7 (77’ 77/)) = f/(w/v f(w’ 7”(77)a n)v 77/)
= /(w7 n)

=heH

Based on these definitions, w'h = 0’ and s'(w') = hs'(n'). The second equality is
equivalent to h = §'(w’), and the the first equality translates to w’ = v1’. In summary,
P(w,w’) =¥(n,n') if and only if (n,n') = (wvy,y ') (ie., (n,7) ~' (w,w')). So 1 defines
an injective function on ~'-equivalence classes. For surjectivity, notice that (w,w’, h) ~

(w,w'h, sy (h)), since
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f(W'h, flw,r(w),w),)h = f(W'h,s(w),w)h
= f(Wh,r"(W),w)h
=h7'h

= SH(h)

The conclusion of this example is that the composition of pre-homomorphisms, cor-
responding to (r-open) regular graphs, corresponds to the G-balanced Cartesian product

of the composite graphs.

4.2 Pullback of Algebras

Consider a strict homomorphism between LCH groupoids, f : G — H, and an H-algebra
D with action o : s*D — r*D. Define f*D to be the Cy(G®)-algebra gotten by pullback
of D (as a Cy(H®)-algebra) by f|gw, equipped with the G action f*a : f*(s*D) —
f*(r*D) defined by (f*a), 1= apy).

If ¢ = (Y,p, f) is a pre-homomorphism from G to H, we want to define a G-algebra
©*D, whenever D an H-algebra. Taking f*D yields a Gy-algebra; however, we need to
use p: Y — GO to push this down to a G-algebra. The fact that p is an open surjection
will be required in order for the propositions in this section to hold.

Let B be a Cy(Z)-algebra; p: Y — Z, a continuous open surjection. Fix a continuous
family of measures with compact support (alternatively, proper support), {i.}.cz, on the
fibers p~'({z}) of p. For any element § = {,},ey € (p*B)s, we can construct an element

{(0).},ez = 0 € D, (alternatively, in D;) by integration:

O= | sy
yep~t(2)

Again, we want to be able to push a Gy-algebra, D, down to a G-algebra, and this
requires something like averaging elements over the induced Y x, Y-action on D. This
induced action is given by restricting the action of Gy to just those elements (y,~,y’)
where v € GO,

Denote by a : s*D — r*D the action of Y x,, Y on D, and suppose x € D,. Then we
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consider the family of elements (p * x), € D, given by

(1= )y = f Uy (g ) dpip(y) ()
Y'€Yp(y)

Lemma 4.2.1. Consider the C*-algebra of Y x, Y -invariant elements of Dy given by
DYV :={de Dy :Y(y,y) € Y x, Y,y (dy) = dy}. Then the family {(p * ), }yey,

defined above, forms an element yu+ x € DY*»Y  whenever x € Dy,

The proof of this Lemma is in [11].
Since p*x is Y x, Y-invariant, we could define, for any z € Z, (u+z), := (u*x),, for
an arbitrary y € p~'(z). For similar reasons, Co(Y)¥ *r¥ =~ Cy(Z), so the algebra DY *»Y

has a natural action of Cy(Z).

Definition 4.2.2. If p : Y — Z is a continuous open surjection between LCH and
o-compact spaces Y and Z, and D is a Y X, Y-algebra, then denote by piD the Cy(Z)-
algebra Cy(Z) - DY *»Y.

Proposition 4.2.3 (See [L1] Proposition 3.2). With the situation of Definition [{.2.5,

(a) D is canonically isomorphic to p*pD as Y x, Y -algebras

(b) If p : D — D" is a Y x, Y -algebra homomorphism, then there exists pip : pD —
p D’ such that p*pip = .

Considering the relevant case where D is a Gy-algebra and Z = G we consider
Ay @ D — D for (y,v,y") € Gy. Since piaqy,y) does not depend on the particular
choice of y € p~'(r(7)) nor y' € p~'(s(7)), we can define a G-action on p,D, denoted by

pic.

Definition 4.2.4. Let ¢ = (Y,p, f) be a pre-homomorphism from G to H. If D is an
‘H-algebra, then ¢*D is defined to be the G-algebra p f*D.

Example 4.2.5. Suppose E is a vector bundle, of real rank k, on a second-countable
LCH space X. The frame bundle of E, denoted F(FE), is a fibre bundle on X, whose fiber

above a point x € X is the space of all ordered vector-space bases for the vector space E,.
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One can identify F(E) with a sub-fibre-bundle of @}_, E. Suppose 8 = {b, by, ..., by} is
an element of F(E), and A = (a;;);; € GL(RF). The right-action of A on j is given by:

k k k
ﬁA = {Z bgam, Z bgagjg, ceey Z bga&k} .
(=1 (=1 (=1

If B.A = (', then the j column of A returns the 3-coordinates of v; € . Therefore,
A must be the matrix which changes f’-coordinate vectors to S-coordinate vectors (i.e.,
Alz]p = [z]p), which we will denote by either [/ ]g/ or le.

With these definitions, r : F(E) — X forms a regular graph from X to GLg(R) (see
Proposition [4.1.5). Denote by ¢ := (F(E),r, f) the pre-homomorphism associated to
F(E). In this case,

Gy = Xz ={(B,2,8) e F(E) x X x F(E) : 8,/ bases for E,}

Since x € X acts trivially on bases, the map f : Xz — GLi(R) sends (5, z, ') to [I]g/.
Consider Cy(R*) as a GL.(R)-algebra with as(¢) := ¢ o A7 for any ¢ € Cy(R*) and
A € GLg(R). Then

f*Co(R¥) = Co(R) % Co(F(E)) = Co(R* x F(E))
as an Xr(p)-algebra. At §', the fiber is given by
(f*Co(R))s = Co(R*) @ (Co(F(E))/1y) = Co(R*) ® C = Cy(R").
Under this identification, the action of Xz on fibers is given by

([ @) pap) = Qpgap) = e
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Now we need to push down f*Cy(R*) by r : F(F) — X:

©*Cy(RF) := 7 f*Cy(RF)
= TlC(](f(E) X Rk)
= Cy(X) - Co(F(E) x RF)FEF(E)

Since F(E) x, F(E) acts on F(E) by (8,5).8' = 8 = 8'.[I]3,, and on R* by (B, 3").v =
F(B,r(B), B)v = [I]7 v, it follows that h € (Co(F(E) x RF)), (# Cy(F(E) x R¥), see
Definition is F(E) x, F(E)-invariant if and only if h(3',v) = h(f.A™', Aw) for
all B e F(E), veRF and A e GLy(R). Consequently,

" Co(R¥) = Co(X) - Co(F(B) x RE)FE-HE)
= Cy (]—"(E) X ]Rk>
GLk(R)

A similar, but slightly easier computation yields

¢*C = Co(F(F)/ GLE(R)) = Co(X).

Additionally, if (P,n) is a Spin“structure for E, and the associated pre-homomophism is

denoted pp : X — Spin(k), then a similar computation demonstrates

k

Spin®

opC = Cy(X)

4.3 Pullback of Hilbert Modules

Let G and H be LCH groupoids, and ¢ = (Y,p, f) a pre-homomorphism from G to
H. Given an H-algebra, B, and an H-equivariant Hilbert B-module &, this subsection

outlines the construction of p*& given in [11].
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If f: G — Hisastrict groupoid homomorphism, then fosg = syof and forg = ryof.
The pullback of £ is defined to be f*€ = & ® Co(G), equipped with the

Co(H(0) ext
continuous action by unitaries defined by the diagram below:

s5(£7€) T ra(£(€))

% l;

F*(53%8) v F1(r3E)

Definition 4.3.1. Let p: Y — G© be a continuous map, and let £ be a Gy-equivariant

Hilbert D-module. Then define the following:
& :={Re L(D,E)|R*R € Dy}, as a Gy-equivariant Hilbert Dj-module;

EVY = {Ee &IV Y) €Y %, Y. Viy piym (&) = Evts
né = EYXpr!D.

The Hilbert piD-module, p&, is equipped with an action of G through (pV), =
Viy v.y), Where y,y' € Y are any points satisfying p(y) = s(vy) and p(y') = r(v).

Example 4.3.2. Let k = 2r or k = 2r + 1. Consider the Spin®(k)-equivariant Hilbert
Co(R¥)-module of functions € := Cy(R*, C*"), where Spin‘(k) acts on R* via the covering
map ¢ : Spin®(k) — SO(k), and on C* via the composition v : Spin°(k) < Cl(k) =~
My (CH2971) — My (C) = Fnd(C?), and on € € £ by Vy(€) = $(g)(€ o d(g™)).
Suppose 7 : B — X is a rank-k vector bundle with Spin‘-structure (7 : P — X, ), and
denote by ¢p := (P, 7, f) the associated pre-homomophism from X to Spin®(k). That is,
f: Xp — Spin°(k) maps (ps,z,p1) € Xp to the unique element h € Spin®(k) satisfying
pa-h = p1. Then

f*€:=E®Cy(P)
= Co(R*,C*") ® Cy(P)
= CO(P X Rk7c27ﬂ)

The Xp-action on f*£ is given by the commutative diagram:
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r F*V)(po,ap .
Co(P x R¥,C?),, AR 1 Cy(P x R, C¥),,

:| E

Co(RF, C?") Co(R¥,C*")
Vitpa,ep1)
Similar to Example [4.2.5, f*Co(RF) =~ Co(P x R¥) as a Cy(P)-algebra, which acts on

f*& in the obvious way. Now we need to push down & via 7:

(f*€)y := {R e L(Cy(P x R¥), Cy(P x R¥,C*)) : R*R e Cy(P x R¥),}
~ {R e L(Cy(R*) ® Cy(P),E ® Cy(P)) : R*R e Cy(R*) ® Cy(P)}
=~ {Re L(Cy(R"),E) @ L(Cy(P)) : R*R e Co(R*) ® Cy(P)}
~ EQ Cy(P)

Therefore,

(fE)7 = {ee (f* ) (F*V)pamtmon&o = Ep}
=~ {{ € Cy(P x Rk,CT)bWPl,m €P Yve Rk7 (h = f(p2,7(p1), 1)) =

= D(h)(E(pr, o(h ")) = &(p2.v)}

To simplify this further, notice that functions ¢ : P xRF — C?" can be lifted uniquely to a
continuous map 5: PxRF — PxC?, satisfying m; og(p, v) = p, via g(p, v) = (p,&(p,v)).
Let g € Spin‘(k) act on P xR* via g.(p,v) := (p.g~!, g.v), and similarly for P x C?". From
Px=P “satisfy £(p.g™!, g.v) = ¢g.£(p,v) for
all g € Spin‘(k). Therefore, the ¢, corresponding to elements of (f*&)F*=P are Spin®(k)-

above, the £, corresponding to elements of (f*E)

equivariant; hence, we can view £ as a continuous map on the quotients:

~

E:E~P x RFSP x C¥=z§,
Spin®(k) Spin€(k)

which fibers over X. The continuous maps E , corresponding to elements of (f*&£)7*~"

can therefore be viewed as bounded sections of the bundle 75$ — E. In conclusion,
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gp*g = Tyf*g
= (f*g)PX“P . mf*(CO(Rk))
~ (f*g)PxTrP . Co(E)

= F0(7T2‘$),

where I’y is used to denote sections of a bundle vanishing at infinity.

4.4 Pullbacks in KKY

Given an H-equivariant Kasparov A-B-bimodule (&€, 7, F) € E*(A, B) (2.6.2), and a
generalized homomorphism ¢ : G — H, Le Gall defines o*(E, 7, F) := (¢*E, p*m, *F) €
E9(¢*A, ¢*B) ([11]). The main result in Le Gall’s work is the following theorem:

Theorem 4.4.1 ([11] THEOREME 7.2). Let G and H be topological groupoids that are
second-countable and LCH. Suppose ¢ is a generalized groupoid homomorphism from G

to H.

1. For any H-algebras A (separable), B,D and for any * € KK"(A,B) and y €
KK™(B,D),

P ® oty = p*(a®y) e KK9(p* A, " D).
p*B B
2. For any H-algebra A, ¢*(14) = 1yxa.

3. If - G — G is another generalized groupoid homomorphism ((3 second countable,

LCH), then
VFo* () = (p o) (z) € KK p* A, 4*0*B).

Le Gall uses this theorem to prove a non-equivariant Thom isomorphism for Spin®
bundles on compact spaces, X. We are going to combine this approach with the results
of the next section to get an equivariant version that works with various types of support

conditions.
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5 The §; Functor

Emerson and Meyer refer to a particular type of forgetful functor throughout their work,
but such a functor does not appear to be defined anywhere in the literature. However,
this functor is evidently non-trivial, since the structure being forgotten is integral to
other structures. Essentally, given a map f : X — Y, we want to take objects fibered
over X and combine all of the fibers together over f~!(y), for every y € Y, to get
objects fibered over Y. In this sense, it might be better to refer to this functor as a
pushforward functor. More specifically, for a continuous G-map between second-countable
LCH spaces f : X — Y, we use this section to define functors, all denoted §, which take
g x X-algebras into G x Y-algebras, G x X-equivariant Hilbert B-modules into G x Y-
equivariant Hilbert §(B)-modules, and classes * € KK9*X (A, B) into classes §(z) €
KK9Y (F;(A),§(B)). We also discuss the relationship between pullback and forgetful
functors. As it is necessary to prove the Thom isomorphism, the primary objective of
this subsection is to verify that the Kasparov product commutes with forgetful functors.
Understanding this functor is additionally beneficial in formalizing the exact relationship
between the two different Thom classes used in Lemma 4.0.2 of [3]. This relationship is

explained in Subsection [6.2]

5.1 §; for Algebras

Definition 5.1.1. Given a continuous G-map f : X — Y, we define a strict groupoid

homomorphism, G x f:Gx X - G x Y, via

(G x f)(v,z) = (7, f(2)).

Lemma 5.1.2. Let A be a Cy(X)-algebra. Then A=A ® Co(X).
Co(X)

More generally, if A is a G-algebra, then A ~ A ®( : Co(G9)) as G-algebras.
Co(G®)
Proof. Let X := G©. The proof follows from the requirement that 6(Cy(X)) - A is
dense in A. Observe that the function ¢ : A © Cy(X) — 0(Co(X)) - A, defined by a
Co(X)
lift of the bilinear map (a, g) — 6(g)a, identifies the algebraic balanced tensor product

A O Cy(X) isometrically with (Cy(X)) - A. A sequence (T,)peny € A © Co(X) is
Co(X) Co(X)
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Cauchy if and only if (¢(z,))nen is Cauchy in 6(Cy(X)) - A. Mapping the limit of (),
in the completed tensor product, to the limit of (¢)(z,)) in A, extends ¥ to an isometric

isomorphism ¢ : A ® Co(X) — A.

Co(X)
By 2.4.6] (A®x Cop(X)), = A, ®C = A,, so G acts on A ®@x Cy(X) through this
isomorphism. O

Definition 5.1.3. Let f : X — Y be a continuous function between LCH spaces. Let
A be a Cy(X)-algebra. We define F(A) to be the Cy(Y)-algebra with the following

structure:

1. As a C*-algebra, §f(A) := A.

2. Define §¢(0) : Co(Y) — Z(M(F;(A))) via the identification A =~ A (>(§ | Co(X),
Co(X

and letting h € Cy(Y') act, on A®x Co(X), by multiplication with 1y ® (ho f).

Notice that §(0)(Co(Y))(Fs(A)) = §;(A), since f*(Co(Y)) - Co(X) = Co(X). The
definition we give here is one of many possible equivalent definitions. One can view
Z(M(A)) as Cyp(Prim(A)) via the Dauns-Hofmann theorem. Denoting the isomorphism
by ¢ : Z(M(A)) — Cp(Prim(A)), the »-homomorphism ¢ o 6 : Cy(X) — Cp(Prim(A))
can be viewed as pullback via a continuous function o4 : Prim(A) — X; ie., 0(g) =
(g ooy) for any g € Co(X). Then, for h € Co(Y), F(0)(h) = v (ho fooan).
This could be used as an equivalent definition. Another equivalent approach would be
using something like Proposition 2.50 of [20], to uniquely lift 6 : Co(X) — M(A) to a
compatible map 6 : Cy(X) — M(A). Then F((0) = 0o f*: Co(Y) — Cp(X) — M(A).
We will not rely on these equivalent definitions in this thesis.

In the following proposition, we extend the definition of §¢ to a functor, from Cp(X)-

algebras to Cy(Y')-algebras, by setting §(¢) := ¢ for Cy(X)-morphisms .

Proposition 5.1.4. If¢ : A — B is a morphism of Co(X)-algebras, then taking §¢(¢) :
§r(A) = F#(B) to be the same set-function as v, yields a Cy(Y')-algebra morphism.

Proof. Let (a;) < A and (h;) < Cp(X). Since ¢ is Cy(X)-linear, it has a well-defined
counterpart:

v@®1: AQCy(X) — B® Co(X).

X
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Given any g € Cy(Y),

The reason that the §s-functors are not completely trivial to define is that, for an
action, a, of G x X on A, oy ) : Ay — A, could be a completely different map than
Qyary t Ay — Ay, even if f(x) = f(2') in Y. The fiber of F(A) over y € Y is Alp-1(y).

So how exactly does one define the isomorphism §(a)(y,y) : Al 1) = Als-1¢ when

YY)

[P

7" acts differently on A, than A, ? Perhaps, one could argue that Al;1,y = [] A,
f@)=y

and we could define §¢(a)(,) by applying a(, ) component-wise:

[T )
Alp-1y) < H Ay — H Aya 2 Alp-1(1)-
fa)= f(@)=

y y
The most pressing issue is that the image of A|f-1(, under this component-wise

map needs to lie entirely within A - otherwise this construction does not make

Y(y-y)s
sense. One can view Cy(X)-algebras as algebras of upper semicontinuous sections (see,
for example, Lemma 2.1 of [13]). Continuity of the G x X action would be required for
this map to be well-defined. Interestingly, discontinuous actions do not generally allow
for the application of a forgetful functor. This interpretation of Cy(X)-algebras is only
used here for motivation, and this thesis will continue to avoid using this interpretation

explicitly. Instead, we will characterize the source and range pullbacks of F;(A) in a

convenient way:

Proposition 5.1.5. Let G be a locally compact Hausdorff groupoid, and let A be a G x X -
algebra. Denote the continuous (G x X)-action by « : s%A — r¥A, and consider a

continuous G-map, f : X =Y, between locally compact Hausdorff G-spaces. There exist
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Co(G x Y)-algebra isomorphisms:

sy (87(A)) = Fgur(sxA)

ry ($7(A)) = Tgws(riA).

Proof. Firstly, by a routine diagram chase, the following diagram (in the category of

topological spaces) commutes:

X X

™ SX

X x (GxY)———Gx X
fisy

(Gxf)

™2

GgxY gxY

The middle homeomorphism in the above diagram yields an isomorphism of C*-

algebras:

Co(X) @ Co(GxY)=Cy <X x (G x Y))

f*.s% fisy

= Co(g X X)

Furthermore, the Cy(X) and Cy(G x Y') structural homomorphisms, for each C*-
algebra, are given by pullbacks of the corresponding vertical arrows in the commutative

diagram above. Tracking the structure carefully, we verify the claim:

gf(e)ysy

sy (85(A4)) = <3f(A) ® Co(G x Y)71®id2xY>

(A ® CO(X)> ® CO(QMY),1®1®z'd2w>

1®f*,sy

A ® (CO(X) ® CO(QMY)>,1®1®z‘d2xy>

< 0,id% @1 [*s%

A ® Co(gx X),1® (G x f)*)

%
0,s%

~

= Sgup)(sxA)
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The associativity used here can be verified carefully, as is done in Lemma 2.4 of [13].
Their lemma is proved for separable A and surjective f, but their argument does not rely

on these hypotheses.

A similar argument, with the diagram below, gives the other equivalence.

X X

! rX

X x (GxY)———Gx X
fory

(Gxf)

™2

GxY GxY

Note: the homeomorphism in the middle of this diagram maps (z,(7y,y)), satisfying
f(z) =~y, to (v,7v ter)egx X. O

Definition 5.1.6. Let A be a (G x X)-algebra, with a continuous G x X action denoted
by a @ s%5A — r}A. Given a continuous G-map, f : X — Y, between locally compact
Hausdorff spaces, we define §(A) to be the (G x Y)-algebra, whose underlying Cy(Y)-
structure is given by §(#), and whose continuous action, denoted §s(«), is determined

by the diagram:

SH((A)) s 1 (5p(4)

! |

Bion (55A) 2 B gy (i A)

Note 1: the bottom horizontal arrow is the forgetful functor applied to the Cy(G x X)-
algebra homomorphism « (see Proposition . The vertical isomorphisms are the
specific identifications used in the proof of Proposition [5.1.5]

Note 2: the definition of §; can be extended to a functor from the category of G x X-
algebras to the category of G x Y-algebras by defining § (1)) to be the same set function
as 1 : A — B, for any G x X-equivariant homomorphism. This definition is justified by

the fact that §gx () = a, as a set-function, and ¢ “commutes” with the action a.

Proposition 5.1.7. Let f : X — Y be a continuous function between LCH spaces.

1. Let A be a Cy(X)-algebra. Then

F5(A) = (A ® Cy (X x X) ,1@7@) :
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where wF : Co(X) — Cy(X xy X) is the pullback of functions via the i

projection m; : X Xy X — X.

2. Let B be a Co(Y)-algebra. Then
§i(f*B) = (B ® Co(X),1®f*>.
Co(Y)

Proof. Applying definitions and carefully tracking the relevant actions,

[*5¢(A) = ((A@CO(X)) 1® f* > (Co( ), id%)

(A®x Co(X ® CO( )1®id§<>

( X) ® co<X>> 1@ <1®z~d;z>)
9@d§‘(®1 Co(Y)

A@C{) X X X>,]_®7T;k)

97r1

In the other order,

(By Co(X)) ® Co(X),(1®1) ®f*>

1Qid% id%

B ® <00<X>®Xco<x>>,1®<1®f*>)

Op,m f*

(
(B ® Co(X xx X), 1®7r2f>
(

5.2 §y for Hilbert Modules

-coordinate

Let € be a (right) Hilbert B-module, where B is a Cy(X)-algebra. The fibers of £ are

given by &, := £ ® B,, but there isn’t really any additional Cy(X)-structure for £ that
B

needs to be specified. Since the underlying C*-algebra of B and §(B) are the same, there
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really isn’t much difference between £ as a Hilbert B-module vs. £ as a Hilbert §(B)-
module, except that the relevant fibers, after forgetting f, are £, :== &€ ® Ff(B), =
§r(B)
E® B|f-1(y). Consequently, for any adjointable operator, ¢, between Hilbert B-modules,
B

§¢(¢) := ¢ is also the appropriate definition.

If £ has the additional structure of a continuous G x X-action by unitaries, V' : s%,& —
%€, we want to define §¢(€) := &€ and §;(V) : s38,(E) — ryFs(€) in a way similar
to Definition . If £ is G x X-equivariant, then from section 4.2 of [11], one can
view continuous actions of £, in an equivalent way, as continuous actions of K(€ @ B)
as a Cp(X)-algebra. Consequently, we could define §;(V) : s38;(E) — m$8,(E) via
Srla) : s35(K(E @ B)) — ry5¢(K(E @ B)) for those Hilbert Modules. Alternatively,
we could try to define §;(V') directly. Unsurprisingly, these approaches are equivalent.

Proposition 5.2.1. Let £ be a right Hilbert B-module, where B is a G x X -algebra. If
f: X —>Y is a G-map between LCH, G-spaces, then

sy S£(E) = Tgws(sx(E));

Ty 81 (E) = Faur(r(€)).

Proof. By definition of pullback, and applying Proposition [5.1.5, we have that

The verification for range map pullbacks is identical. ]

Intuitively, propositions [5.1.5] and [5.2.1] are saying that pulling back from Cy(Y") to

Co(G x Y') is the same operation as pulling back from Cy(X) to Co(G x X).

In the same way that we defined §y(a) for G x X actions o on Cy(X)-algebras, we
can now define §;(V') for Hilbert B-modules:
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Definition 5.2.2. Let £ be a right Hilbert B-module, where B is a G x X-algebra. If
f X — Y is a G-map between LCH, G-spaces, then we define §F¢(V') to be the map

given by the diagram below:

l ,,,,,,,,,,, Sf(v)....wy(g[( )
) Siowp)(V )
Sioxp(sk L)Sg“f k€)

The bottom map is §gx r(V), treating V' as an adjointable operator, which is the same

set function as V. The vertical isomorphisms are the specific isomorphisms described in
Proposition [5.2.1]

Proposition 5.2.3. Let B be a G x X-algebra. If (E£,V) is a G x X -equivariant Hilbert
B-module, then (§;(E),F¢(V)) is a G x Y -equivariant Hilbert §;(B)-module.

Proof. Let & € s3(F7(€)) correspond to & € Fguy(s%E) as in Proposition [5.2.1] and let
be sy (§s(B)) correspond to b’ € Fgus(s% B) as in Proposition . Then §;(V)(€.0) €
3 (§¢(E)) corresponds to V(£'.0) = V(¢).alt!) € Foxr(rk€), which corresponds to
§r(V)()-8r(a)(b)-

[

Proposition 5.2.4. If « is an action on K(E® B) that makes the first diagram commute,

* V *
-
vag T‘X(c:

‘[\Ls;kgg f’T§£
SYK(E® B) ——riK(E @ B)
then §¢(a) is an action on §;(K(E @ B)) that makes the following diagram commute:
§r(V)
F8(E) ————115,(€)
LsEspe) REA 0]

$Y8(C(E @ B)) — i 81 (K(E @ B)

Proof. Apply the §gx s functor to the first diagram, and use propositions [5.1.5[and [5.2.1]

Note that the map ¢4 5 (¢) makes sense because §¢(K(€ @ B)) = K(§¢(€) ®F¢(B)). U

5.3 §y for KK-classes

Recall that elements z € E9%X(A, B) are triples # = (€, ¢, F), where £ is a Z/2Z-

graded G x X-equivariant right Hilbert B-module, ¢ is a G x X equivariant (even-degree)
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representation of A on £(€), and F' is an (odd-degree) adjointable operator on & satisfying
the four conditions of Definition 2.6.2 We define §¢(z) := (§¢(E), S (v), F¢(F)).

Lemma 5.3.1. Let A and B be G x X-algebras, where G is a LCH groupoid acting
on LCH spaces X and Y. If f : X — Y is a G-map, and v € E9"X(A, B), then

r(x) € B ((A), §(B))-

Proof. 1t suffices to show that §;(F') satisfies the usual axioms. The Kasparov axioms
require that, for all a € A, [F, p(a)], (F?=1)¢(a), (F—F*)p(a) € K(E). Since K(F(E)) =
KC(E), and §¢(F) and Ff(p) are the same set functions as F' and ¢ (respectively), these
three conditions are automatic. The only condition that remains to be verified is the

almost G x Y-equivariance of §;(F). The almost equivariance condition for E9** (A, B)

is the following: for any a € ri A,
rx()(a)(Vsx (F)V* —rx F) e rxK(E).
To make identifications more explicit, we will use the following notation:

U 138 (A) = Four(rXA), Ui syTr(A) — Fous(skA)

Uy TETHE) =5 Faus (1), st sEFH(E) = Faus(s%E)

We will also use ¢y := V when we want to treat V' as a module homomorphism rather
—~—=1 —

than an action. In this notation, F;(V) = ¢, oFgx(¢v)ots. Additionally, s3(F(F)) =

—~—1 —

Vs 0 Fgnr(sKF) o). Therefore,

Sr(V)sySp(F)g(VF) =

—~—1 — —~—1 P P
— (& o Baus(@v) 0 0s) o (ds 0 Faws(skF) o) o (s
=0 oFans (dv o sLF o dyx) o
— Gy 0 Bgus (V(SKF)V) o 0y

‘o Tows(py=) o @E)
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Furthermore, for any a € 1§35 7(A),

(1385e)(@) = & 0 Fgus (r5e(n(a)) o 4

as an adjointable operator on r3§¢(£). Applying the almost G x X equivariance, and
combining the identifications made so far, we conclude the proof by verifying the almost

G x Y equivariance of §;(F) below:

R 8() @) (S (V)i (F)S(V*) = 1§85 (F) ) =
ZQZJOSWfO§W¢K®»Oizczqosaq(V@§Fﬂ”—w§F)o%)

—~

ﬂw%&w«@wmmXW$MW—@®)di
€ K(ry§1(8) = 11,(K ()

]

Theorem 5.3.2. Let A, B, and D be G x X -algebras, and suppose f : X — Y is a G-map
between LCH G-spaces. Then if 11 € KK9*X(A, B) and x5 € KK9X(B, D), admit a
Kasparov product, then so do §s(x1) and §s(x3), and

5}‘(1‘1%@) = 3f(I1)S§B)3f($2)‘

PTOOf. If ZL’j = [(gj, (pj, F})], and Ilg)xg = [(51’2, Q01®1, F1,2>]. Recall that 81’2 = 51@37902
& and Fyy € Fi#F,, ie., Fi, is an I, connexion for &£ 5 and for any a € A, ¢;(a)[F1 ®
1, Fi5]p(a*) = 0 modulo (& 2). From Lemma m (F7(&12), (1 ®1),F(Fr2)) €

E9*Y (A, D), and since being a connexion and satisfying the positivity requirement have

nothing to do with the Co(X)-structure, §¢(Fi2) € F¢(F1)#Sr(F2). O
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6 The G-Equivariant Thom Isomorphism

6.1 Thom Isomorphism

The following theorem constructs an invertible element of KK7"**(Cy(X), Co(E)) for a
Spin“-G-bundle £ — X, and proves that this class is the same as the one introduced in
Definition m For convenience of notation, let (,, denote the conjugate of the class Bn
defined in subsection [3.5, and let «, be the conjugate of &, of definition [3.5.4]

Theorem 6.1.1. Let G be a second-countable LCH groupoid, and let 7 : E — X be a
(real) rank-k Spin°-G-bundle on a second-countable, LCH G-space X. Then any Spin‘-
data (P,n) for E forms a generalized groupoid homomorphism pp, from Gx X to Spin‘(k),
satisfying:

1. ppCo(R*) = Co(E),
2. o3C = Cy(X), and

3. ohBy € KKJ**(Co(X),Co(E)) and phay € KK{**(Co(E),Co(X)) are inverse
elements in KK9*X (see Section .

4. ©pBr = TE (see Definition M)

Proof. The principal Spin(k)-bundle P is equipped with a left G action commuting with
the projection P — X; hence, induces a left action of G x X commuting with the right
action of Spin®(k) on P. Therefore, P determines a graph from G x X to Spin‘(k). Since
P is locally trivializable, Proposition [4.1.5|guarantees that the projection map 7 : P — X
is open; therefore, P determines a regular graph from G x X to Spin®(k). We define pp
to be the corresponding generalized groupoid homomorphism. Statements 1 and 2 follow

from Example Statement 3 is a consequence of Theorems [3.3.1] and [4.4.1], since

(P;ﬁk @ 80}30% = @?(ﬁk @ Oék)
Co(E) Co(RF)

= p(lc)
= Ly € KK9"¥(Cy(X), Co(X)),
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and similarly, phar, ® @hBy = loym € KK9*X(Co(E),Co(E)). Statement 4 is a
Co(X)
consequence of Subsection [3.5] together with Example [4.3.2] O

We now restate and prove the version of the Thom isomorphism from the introduction:
Theorem Assume all topologies are second-countable and locally-compact Haus-
dorff. Let G be a topological groupoid, and let X be a G-space. Suppose m: E — X is a
continuous Spin°-G-bundle on X of rank k over R.

Then the Thom class of E, T € RK’§7X(E), satisfies: for any G-space Y, and contin-
wous G-map f: X —Y, the map

F¢(7): RKZ (X)) —» RKZH(E
ColX) f( ) g,y( ) g,y( )

()

18 an isomorphism.

Proof of Theorem . From Theorem , we have that 7 = L0 € RK&X(E) is
invertible. From Theorem 5s(7) and F;(phay) are inverses in K K9*Y; hence the
map (from RK, (X) to RKGF(E)):

E— & Q Fy(n)

is an isomorphism.

6.2 A Rotation between two Thom Classes

In this subsection, we contextualize the rotation trick, used by Erik van Erp and Paul
Baum in [3], to equivariant representable K-theory.

Let G be a second-countable LCH groupoid. Let X be a G-manifold equipped with
a G-invariant Riemannnian metric. Then TTX can be equipped with the structure of
a Spin“-G-bundle in two different ways. Let 7 : TX — X and my : TTX — TX be
the usual projections, and let m := dm : TTX — TX. Using the invariant Riemannian
metric, we can equip m : TTX — TX with the structure of a Spin“-G-bundle via an
equivariant almost complex structure. Denote the Cy(T'X)-algebra (Co(TTX), 7¥) by B;.
Since 7oy = 7 o 7y, it follows that F,,(Bo) = §x, (B1). Let 7, € KK9TX(Co(T X), B;)
be the Thom class for each bundle.

To prove that my and m; induce the same Thom isomorphism (in the non-equivariant
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setting), Baum and van Erp construct a diffeomorphism, p : TTX — TTX, in section
4 of [3], satisfying my o p = m, and then they construct an explicit homotopy from the
identity map to p, denoted by p;. However, 7y o p; # 71, so we cannot form a homotopy
in KK9“TX between 15 and 7, via p;. However, m o my o p, = m o 7y, so we can deduce

the following result:

Proposition 6.2.1. With the notation and assumptions of the preceding paragraph,

Fro (70) = §my (1) € KK9*X(Co(TX), Co(TTX))

Proof. From Theorem [6.1.1], 4., the Thom class 7; can be represented as an element in
VKg}TX (TTX). The representative of this class is exactly the same as described in [3].
The proof of Lemma 4.0.2. in [3] will automatically pass to our equivariant setting, since
the homotopy preserves fibers over X, and all G actions on these bundles are induced
by differentiating the G-action on X. This argument contextualised to our case will
explicitly demonstrate that our specified representative of §,,(70) is homotopic to our

Pt 0

specified representative of §, (1) via eimt/2

This type of rotation was used in [3] as a key ingredient for a proof of the K-theoretic
index theorem for elliptic pseudodifferential operators. The version stated here is one

step in generalizing Baum and van Erp’s argument to a groupoid-equivariant setting.
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