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Abstract

The human gut microbiome is a complex and dynamic ecosystem, featuring a mul-

titude of microbes all interacting with their hosts in an elaborate manner. Even

though this exchange is often mediated through microbial metabolic and functional

outputs, such as the production of certain metabolites, environmental exposures and

host lifestyle are highly influential in shaping the presence of microbial species ir-

respective of their individual roles. As such, a comprehensive understanding of the

microbiome requires researchers to examine the relationship between taxonomic abun-

dance and function simultaneously. Assessing microbial contributions to important

ecosystem services can enable identification of robust functions supported by a va-

riety of species, or to identify important keystone taxa that are associated with a

disease-causing biochemical pathway. The primary objective of this thesis is to assess

different approaches for investigating the taxa-function relationship and evaluate its

value in providing unique biological insights. First, we leveraged densely collected

multi-omics data from the New Hampshire Birth Cohort Study to identify genus-

metabolite pairs that are core to infant gut microbiomes. Second, we developed a

novel statistical method that enable integrating taxa-function relationships in epi-

demiological studies. Third, we assessed microbial phenotypic traits as a potential

source for defnining interpretable and human-centric microbiome functions.
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Chapter 1

Introduction

Section 1.1

The human gut microbiome and population

health

1.1.1. Overview of the human gut microbiome

The human microbiome is the collection of microorganisims (which includes bacteria,

protozoa, archaea, fungi, viruses, and their genes) that participates in a symbiotic

co-existence with their hosts [289]. It is difficult to study human microbiomes outside

the host due to difficulties in being able to culture the majority of organisms [298].

However, advances in sequencing technologies have allowed researchers to glimpse the

inner workings of these complex communities via their genomes [345]. Researchers

found that different body sites harbor unique environmental determinants that give

rise to distinct groups of microbes [59]. For example, in the oral microbiome, oral

surfaces have different surface receptors [102], promoting only microbes with specific

adhesins that are complementary [1]. This results in differences such as Streptococcus

mitis bv.2 species being represented in the tongue dorsum but not even detected in
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1.1 The human gut microbiome and population health

the related lateral tongue surface [1]. Even though the degree of diversity across body

sites extend across the entire tree of life, most studies so-far have focused on profiling

bacteria, which exists in high-abundance and is relatively easy to profile [41].

The gut environment specifically promotes a consortium of microbes that varies

across the digestive track [185, 70]. Most microbiome research has been focused on

the colon via fecal samples [278], where it has been estimated to contain the highest

microbial density recorded in any habitat [267]. The gut microbiome is initially

acquired at birth via maternal transfer [266, 15, 333]. The community matures over

time, increasing in diversity and reaching an adult-like state in around 2-3 years of

age, where it is characterized mainly by members of the Firmicutes, Actinobacteria,

and Bacteroidetes phyla, with Bacteroides, Faecalibacterium, and Bifidobacterium as

the most abundant genera [142, 200]. Many of the species identified to be in the gut

cannot be found in other habitats, suggesting a strong co-evolutionary relationship

with human hosts [164].

Various environmental factors can shape the composition of the gut microbiome.

In early life, the mode of delivery and breastfeeding status are significant modifiers of

composition. Infants who were born via vaginal delivery have increased abundances

of Bacteroides, Pectobacterium, and Bifidobacterium genera, while those born via

Cesarian section have decreased diversity and higher propensity to be colonized by

Staphylococcus and members of the Clostridum cluster [183, 141, 274]. Breastfeeding

is associated with lower levels of Escherichia coli, Tyzzerella nexilis, and Roseburia

intestinalis while on the other hand promoting the coloization of various Bifidobac-

terium species such as B. breve and B. dentium which harborsspecific genes that help

in digesting complex oligosaccharides [274, 291]. Among adults, diet is of particular

interest. Studies have shown that the Western diet, high in saturated and trans fats

while low in mono and polyunsaturated fats, is associated with decreased abundance
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in Bifidobacterium, Eubacterium, and Lactobacillus genera [325]. Other extrinsic and

intrinsic factors such as smoking status [27] and alcohol consumption [74] also con-

tribute to microbiome modulation (reviewed in [263]). This demonstrates that the

microbiome is likely to be highly variable in composition as it is sensitive to changes

in host physiology.

1.1.2. Outcomes associated with changes in gut microbiome composition

Observed shifts in gut microbiome composition are often associated with adverse

health outcomes. As such, there is a great interest in epidemiological applications,

where the microbiome can be identified as either a marker or as a causal agent in

human disease [90]. Observational studies have linked changes in the gut microflora to

various metabolic and infectious diseases. This is because host inflammation responses

can be linked to the microbiome’s role in mediating immune function (reviewed in

[302]). Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are

metabolic products of microbiota digestion from dietary fiber and resistant starches.

These compounds bind to G-protein-coupled receptor 43 expressed in immune cells, an

effect that allows for immune responses to resolve post-infection, thereby preventing

persistent inflammation. As such, the gut microbiome is found to be associated with

inflammation-related diseases such as colorectal cancer [49, 336] and inflammatory

bowel disease [101, 93, 174]. There are many other conditions (reviewed in [52]) that

can be linked to changes in the gut microbiome, such as Clostridium difficile infection

[306] and obesity [288, 9].

Additionally, the gut microbiome is also linked to other conditions that are not

localized in the intestinal tract. The gut-brain axis refers to how residential gut mi-

crobes are involved in regulating host cognition, mood, and behavior [207]. There

are established links, for example, between the gut microbiome and neurological con-

ditions such as autisum spectrum disorder (ASD), where individuals with ASD have
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different gut microbial signatures (an increase in several mucosa-associated Clostridi-

ales) compared to neurotypical controls [179]. Another instance of the gut micro-

biome’s overarching impact on human physiology is the gut-lung axis [83], where the

crosstalk between gut and lung communities is linked to chronic and acute respiratory

conditions. For example, a study from the Canadian Healthy Infant Longitudinal De-

velopment cohort identified decreases in Lachnospira, Veillonella, Faecalibacterium,

and Rothia genera among children at risk of asthma attacks [11].

1.1.3. Challenges in determining potential microbial biomarkers

Despite the wealth of microbiome association studies, there still exist considerable

challenges in identifying consistent microbial markers that have meaningful associa-

tions with health outcomes [76]. In a meta-analysis of 10 studies for inflammatory

bowel disease and obesity [300], no individual microbe was consistently associated

with subject case status. Even though false discoveries are expected since population-

level studies are indeed only exploratory and hypothesis generating, the practice of

interpreting differentially abundant taxa lists using post-hoc literature searches makes

results unreliable and biased. As a result, validating these markers proves to be ardu-

ous as it is impossible to disentangle which hypotheses are more contextually probable

to follow-up in expensive in vitro or in vivo laboratory experiments.

Statistical and computational difficulties remain one of the major hurdles towards

this replication issue [165, 169]. A mainstay of research in the field is the usage of

high-throughput sequencing technologies to profile microbial communities taxonom-

ically and genomically. Various steps within the sample processing protocol such as

storage, DNA extraction, and library preparation, can contribute to differences in

results between studies [55]. Contamination is also a big issue [65], especially in en-

vironments where there is low total microbial load [81], thereby producing erroneous

results. Additionally, bioinformatic analyses and use of different databases may also
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cause divergences in observations [206]. For example, when 16S rRNA gene ampli-

con sequencing is used for taxonomic profiling, choosing to cluster amplicon sequence

variants (ASVs) to operational taxonomic units (OTUs) using a sequence similarity

threshold can yield radically different observed community profiles [50, 206].

In addition to issues pertaining to converting raw sequence data to named mi-

crobes, statistical analyses used to identify relevant candidates also suffer from incon-

sistencies. Microbiome taxonomic data, like other sequencing data sets, is composi-

tional [104, 249] and constrained by the total number of reads (or library size). This

constraint induces spurious negative correlations between variables, whereby changes

in true absolute counts might not be accurately reflected at the observed relative

scale [172, 212]. Microbiome data is sparse, containing a mixture of both structural

zeroes (true absence of a taxon), and technical zeroes (abundance below the limit of

detection) [136, 271]. This makes it difficult to distinguish between low-abundance

and absent taxa, especially when studies differ considerably in sequencing quality and

depth. Finally, microbiome data is also high-dimensional, where a typical data set

contains from hundreds of species to thousands of sequence variants resulting in a

high multiple testing burden. All of the challenges above contribute to methods that

have to make difficult trade-offs between power, type I error control, and effect size

estimations. As a consequence, researchers are faced with a complex landscape of

available methods, which have been shown to produce different results on the same

data sets [219].

In addition to technical challenges, the gut microbiome itself is also dynamic with

a great degree of intra-individual variability. Even though the adult gut microbiome

composition is stable over longer time scales [59], studies have also shown that shifts in

composition occur on a day-to-day basis, impacted by host diet and lifestyle [63, 64].

However, the magnitude of shifts are small when compared to between host variability.
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In the original human microbiome project (HMP) paper, researchers estimated that

for signature genera that are supposed to be habitat-specific, their presence in samples

collected from respective environments can be as low as 17% (highest 84%) [59]. In

another study of gut microbiomes from a Chinese cohort of healthy individuals (N

= 120), around 90 (±16) species-level taxa (assayed using full length 16S rRNA

gene sequencing) were shared between individuals from the total of 1,235 identified

species [332]. This effect is consistent even when looking at the strain level [175].

For context, humans share around 99.5% of their genomes [125]. The degree of

microbiome personalization is significant enough to warrant initial exploration of

forensic applications [89].

Section 1.2

Approaching microbiome research from a

mechanistic perspective

1.2.1. The functional microbiome

The end goal of medical and epidemiological research on the gut microbiome is to

ascertain why selected microbes exist in a given environment, and how they can

affect human physiology to cause or mediate disease. The questions of “why” and

“how” usually underline discussions surrounding microbial function [144], the answers

to which can allow for the design of therapeutics and interventions [75]. As such,

researchers are interested in moving beyond looking at the microbiome from a purely

taxonomic perspective to a functional one [116].

One of the most important and well-known roles of the gut microbiome involves

the fermentation of foods into metabolites that can be absorbed by its host. Studies

have shown that the microbiome is involved in the digestion of all three macronutrient

sources from the human diet: carbohydrates, lipids, and proteins (reviewed in [228]).
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For carbohydrates, even though the human gut can hydrolyze and absorb certain

sugars such as glucose, fructose, and lactose in the proximal gastrointestinal (GI)

tract, the complexity of bonds that exist between monosaccharide units in dietary

starches (especially plant polysaccharides) means that the majority of carbohydrates

pass through to the distal GI where it is digested by very well-equipped microbes

[319]. The species Bacteroides thetaiotaomicron alone has 260 glycoside hydrolases

in its genome [329], well beyond that of native human enzymes. The by-product

of carbohydrate fermentation are SCFAs (most notably acetate, proprionate, and

butyrate) [182], which are compounds that not only have inherent nutritional value

but also play a role in maintaining the gut epithelial barrier. Even though proteins

and fats are not as central to microbiome function as carbohydrates, certain important

compounds have been shown to be linked to gut communities (reviewed in [208]). In

a study by Backhed et al., germ-free mice were fed significantly more chow compared

to wild-type controls yet had 42% less body fat [14]. Surprisingly, when a single

species from the microbiome of wild-type mice was transplanted (also Bacteroides

thetaiotaomicron), these formerly germ-free mice were able to partially recover their

capacity to produce body fat, thereby suggesting a relationship between gut microbes

and the process of adiposity. This provides further evidence for a link between the

gut microbiome and obesity [288].

The microbiome is also implicated with immune programming. Even though the

specific signalling pathways are still under active research, this process is mediated

through commensal secreted metabolites or surface-associated antigens that interact

directly with host immune cells (reviewed in [21]). For example, murine studies have

shown that the innate immune receptor Toll-like receptor 5 (TLR5) selects for certain

microbes during the neonatal period by serving as a sensor for bacterial flagellin [96].

During early life, in order to accommodate the initial colonization process, host im-
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mune response is limited and certain types of cell activity is suppressed. Microbes can

directly induce this by secreting molecules such as sphingolipids that inhibit the in-

duction of invariant natural killer T cells (iNKT) [8]. Even though this process results

in an increased propensity of being infected, it also suppresses the host’s inflammatory

response, preventing excessive behaviors that might cause harmful outcomes such as

necrotizing enterocolitis [221]. This crosstalk continues throughout life, where the

microbiome participates in a co-operative relationship that helps maintain intestinal

homeostatsis (reviewed in [341]).

Overall, the gut microbiome participates in extensive biochemical pathways that

help maintain homeostasis and promote human health. The list of potential targets

grows as more studies demonstrate new and exciting host-microbe intractions. It is

clear that profiling microbial function can help get at the questions of “why” certain

microbes exist, as well as “how” they can lead to positive or negative health outcomes.

1.2.2. Approaches to characterize function in epidemiological studies

Advances in high-throughput molecular technologies have allowed researchers to com-

prehensively profile different functional components of the microbiome [90]. Although

powerful, each meta‘omic method faces different challenges in accomplishing their in-

tended goals, such as complex sampling preparation strategies or limited resolution

and annotation. Here, we give a short description of major microbiome profiling

technologies currently in use and the types of biological insight they can provide.

Metagenomics. Metagenomics refers to untargeted DNA sequencing of the entire

gene content of a sample via “shotgun” shearing of fragments [248]. In terms of

taxonomic profiling, metagenomic approaches can provide species to strain level res-

olution [286], as well as being able to detect non-bacterial organisms such as archaea

and viruses. In terms of function, researchers can estimate the abundance of certain

8



1.2 Approaching microbiome research from a mechanistic perspective

gene families in the entire community, which can be used downstream to infer entire

pathways and even predict structural variants [140]. Finally, assembly-based ap-

proaches can categorize sequence fragments into putative genomes, thereby enabling

the discovery of novel strains and genes [239]. However, since this is a DNA-based ap-

proach, gene family copy numbers only represent functional potential rather than true

outputs. This is further complicated by the fact that it is challenging to discern which

bacteria are “alive” since DNA is a stable molecule [248]. As such, inferences about

microbiome function drawn from metaegenomic data sets are limited, and difficult to

trace back to specific microbes. Finally, databases are woefully biased towards easily

identifiable strains, whereby most genes are defined as unmapped, making annotating

specific functions difficult.

Metatranscriptomics and Metaproteomics. Metatranscriptomics and metapro-

teopmics refer to profiling the entire transcript (i.e. RNA) and protein content of a

sample [91]. Both techniques measure downstream products of gene abundances,

therefore they are better representations of the total amount of functional informa-

tion that is “active” within a community. Metatranscriptomics involve nucleic acid

sequencing similar to metagenomics (in fact, with proper tagging, one can simulta-

neously sequence both the transcriptional and genomic content of a sample), while

metaproteomics requires separation and quantification using a combination of liquid

chromatography (LC) and mass spectrometry (MS). Both metatranscriptomics and

metaproteomics can be mapped back to sequences obtained from original metage-

nomics results via sequence translation. This allows for powerful multi-omics ap-

proaches that can identify how a function reservoir is activated and expressed down-

stream. For example, in a paired metagenomic-metatranscriptomic analysis of healthy

gut microbiomes, researchers found that even though there is a reservoir of genes

coding for biosynthesis of amino acids, low transcriptional activity suggests that this
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function is under-expressed [92]. This is consistent with the fact that these procedures

are energetically unfavorable [228]. Despite such benefits, there are various challenges

in the technical aspect of these profiling approaches. For metatranscriptomics, not

only are mRNAs highly unstable, they are dwarfed in abundance by rRNA in the total

RNA pool, requiring specialized techniques to enrich for them while also removing

human contaminants. For metaproteomics, the process of protein purification and

extraction is demanding due to the complexity of the environment, requiring more

biomass as well as special sample preparations to reach the degree of depth obtained

by nucleic acid sequencing technologies [160, 261, 293].

Metabolomics. Metabolomics refers to the direct quantification of metabolites and

other small molecules. It is different from metatranscriptomics and metaproteomics

in the fact that there is no convenient map to sequence information [91], making

direct integration with taxonomic or gene abundances from metagenomic sequencing

more challenging. However, metabolomics reflects the layer of microbiome function

that is closest to the host-microbiome interface, as measured metabolites interact di-

rectly with host receptors or participate in collaborative metabolic pathways [277].

Integrative multi-omics data sets featuring metabolomics have shown important links

between microbes, their metabolic outputs, and human disease. For example, a study

identified that changes in the microbiome have been implicated in the production of

trimethylamine N-oxide (TMAO), a compound associated with cardiovascular dis-

ease, from l-carnitine (commonly found in red meat) [303]. One large benefit of

metabolomics is that its sample preparation requirements are not as demanding as

that of metaproteomics [93, 293]. However, each molecule has different properties

and chemical structures, which means that some compounds are easier to measure

than others, creating biases in which type of features gets measured [277]. Finally,

metabolomic profiles are highly variable and sensitive to perturbations such as food
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consumption prior to measurement [118]. As such, it is suggested that metabolite

flux might be a more meaningful measure of microbiome function rather than cross-

sectional measures of concentration.

1.2.3. Obstacles in a function-based approach

A common misconception is that microbiome functional profiles are relatively more

stable across individuals compared to their taxonomic counterparts [59]. This means

that analyses focusing on community-wide functional ‘omics analyses might produce

more consistent and validatable results. However, the degree of comparative stability

is difficult to ascertain due to differences in the scale of comparison across taxonomy

and function [156]. In fact, when gene families are considered instead of pathways, the

degree of stability decreased significantly [124]. Additionally, empirical studies have

also shown that using pathway abundances are not significantly better at classifying

patients disease status [330].

Two major challenges exist for function-driven microbiome analyses (reviewed in

[116]). First, the large number of available molecular technologies mean that there is

considerable choice in what constitutes as “function” in a certain context. In other

words, depending on the research question, researchers have to make a decision on the

analytical unit of microbial function, be it gene family abundance, pathway presence-

absence, or concentrations of groups of metabolites. For example, in an analysis

of strain-specific functional adaptation of the infant gut microbiome from the DIA-

BIMMUNE cohort [291], the authors were interested in microbial capacity to digest

human milk oligosaccharides (HMO) as a core ecosystem function. However, HMO

metabolism is not encoded as a single pathway in frequently used databases such as

the Kyoto Encyclopedia of Genes and Genomes (KEGG) or Gene Ontology (GO),

but rather as a group of 30 genes identified via literature review. As such, defining

functions based on the research question of interest can provide meaningful interpre-
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tations on the services that microbes confer. Second, there is a considerable amount

of “microbial dark matter” that hampers the characterization of functional dynamics

[131]. For example, in a study involving metatranscriptomic profiling, around 9%

of differentially abundant transcripts had unknown function [115]. Results can be

misleading if these limitations are not acknowledged or improved upon.

Section 1.3

An integrative approach to incorporate both

structure and function

1.3.1. Importance of taxa-function relationships

A holistic understanding of microbiome-related processes requires a conception of the

relationship between taxonomic compositions and their functional profiles, termed

the taxa-function relationship [156, 116]. Unfortunately, limited numbers of studies

have explored taxonomic drivers of functional shifts beyond anecdotal searches in the

literature [188], where it is more common to study them independently. This gap is

problematic because even though drivers of the microbiome’s impact on host health

are its functional outputs, modulation can only occur at the taxonomic level. Niche

differentiation driven by abiotic factors, such as the availability of nutrients, shape

community assembly [237]. As such, any attempt to design restorative interventions or

understand environmental perturbations requires the ability to pinpoint exact groups

of taxon relevant to the functional processes of interest [318].

The taxa-function relationship is also integral to the complex ecological pro-

cesses that exist within the microbiome. The plasticity of certain functions to ex-

ternal perturbations can be attributed to redundancies in the number of contributing

strains [299, 215]. This idea of “robustness” [84] can be used as a proxy to diagnose

community-wide or function-specific dysbiosis [295]. This also helps explain the un-
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derlying mechanisms as to why healthy microbiomes are found to be generally more

“diverse”, fitting with the prevailing ecological theory linking biodiversity and ecosys-

tem functioning in microbial systems [284]. On the other hand, if a core function is

only contributed by a single taxon, targeted therapies can be designed to improve

growth conditions or to provide the necessary probiotic supplements.

Finally, taxa-function relationships can also enhance quality of existing population-

level studies. Providing the relevant context that can increase interpretability, while

also helping researchers distinguish possible false positives when considering targets

for validation.

1.3.2. Challenges and opportunities

Many studies have attempted to systematically tackle taxon-function integration in

microbiome studies [188, 295, 84, 226]. However, they face challenges regarding as-

sumptions, limitations in resolution, and biases in reference databases. For example,

FishTaco [188], a tool to estimate species contributions to functional shifts, assumes

that the functional content of contributing microbes is consistent at the species level,

ignoring strain-level variation. Other ecological processes such as inter-taxa interac-

tions and horizontal gene transfer can also radically change the taxa-function land-

scape, whereby removals or additions of certain contributing species might affect other

seemingly unrelated members. Additionally, there are difficulties in defining relevant

functions. Even though pathway annotations from reference databases such as KEGG

are informative, it is still difficult to interpret long lists of pathways identified as dif-

ferentially abundant.

However, despite such drawbacks, there are numerous opportunities. Utilizing

different multi-omic approaches can provide additional insight into “active” functions

whose products are persistent in the gut environment [130]. This is particularly

important considering that microbes might harbor genes but can choose not to express
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them depending on environmental or ecological conditions [199]. Defining functions

in terms of ecosystem roles such as traits [308] can allow for more interpretable results

that are relevant to the condition of interest. The goal would be to look for context

specific functions such as in the aforementioned study by Vatanen et al. [291] where

multiple related gene clusters are simultaneously evaluated.
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Chapter 2

Associations between the gut

microbiome and metabolome in

early life

This work was published on August 28th, 2021 as a Research Article at BMC Micro-

biology. The final article can be found here:

Nguyen, Q.P., Karagas, M.R., Madan, J.C., Dade, E., Palys, T.J., Morrison, G.H.,

Pathmasiri, W.W., McRitche, S., Sumner, S.J., Frost, H.R., Hoen, A.G. Associations

between the gut microbiome and metabolome in early life. BMC Microbiol 21, 238

(2021). https://doi.org/10.1186/s12866-021-02282-3

Section 2.1

Abstract

Background: The infant intestinal microbiome plays an important role in metabolism

and immune development with impacts on lifelong health. The linkage between the

taxonomic composition of the microbiome and its metabolic phenotype is undefined
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and complicated by redundancies in the taxon-function relationship within micro-

bial communities. To inform a more mechanistic understanding of the relationship

between the microbiome and health, we performed an integrative statistical and ma-

chine learning-based analysis of microbe taxonomic structure and metabolic function

in order to characterize the taxa-function relationship in early life.

Results: Stool samples collected from infants enrolled in the New Hampshire Birth

Cohort Study (NHBCS) at approximately 6-weeks (N = 158) and 12-months (N =

282) of age were profiled using targeted and untargeted nuclear magnetic resonance

(NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region

from the bacterial 16S rRNA gene. There was significant inter-omic concordance

based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however

this association was no longer significant when accounting for phylogenetic relation-

ships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p

= 0.069). Sparse canonical correlation analysis showed significant correlation, as well

as identifying sets of microbe/metabolites driving microbiome-metabolome related-

ness. Performance of machine learning models varied across different metabolites,

with support vector machines (radial basis function kernel) being the consistently

top ranked model. However, predictive R2 values demonstrated poor predictive per-

formance across all models assessed (avg: -5.06% – 6 weeks; -3.7% – 12 months).

Conversely, the Spearman correlation metric was higher (avg: 0.344 – 6 weeks; 0.265

– 12 months). This demonstrated that taxonomic relative abundance was not predic-

tive of metabolite concentrations.

Conclusions: Our results suggest a degree of overall association between taxonomic

profiles and metabolite concentrations. However, lack of predictive capacity for stool

metabolic signatures reflects, in part, the possible role of functional redundancy in

defining the taxa-function relationship in early life as well as the bidirectional nature
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of the microbiome-metabolome association. Our results provide evidence in favor

of a multi-omic approach for microbiome studies, especially those focused on health

outcomes.

Section 2.2

Background

The human gut microbiome is a complex and diverse system of microorganisms that

co-inhabit the intestinal lumen and play a crucial role in modulating human health

and disease [270, 229]. The development of the microbiota in early life is a sensitive

process akin to primary ecological succession [145], and therefore both reliant on, and

vulnerable to, external perturbations. Studies have linked microbiome alterations to

long-term health consequences, including risk of obesity [273], type I diabetes [147],

and inflammatory bowel disease [10]. As such, there is a need to understand how the

microbiome participates in the multifactorial pathways leading to long-term disease

outcomes. One key to this open question lies in the currently undefined relationship

between the taxonomic structure of the microbiome and its metabolic phenotype.

Previous studies addressing this question have mainly focused on DNA-based profiling

of microbial functional potential, which, due to complicated regulatory mechanisms

at the cellular level beyond the genome, is not equivalent to the microbiota’s realized

functional landscape [116].

There exists a bidirectional association between the metabolome and the micro-

biome in the gut [287, 86]. These low molecular weight molecules can either be nutri-

ents that shape the composition of the microbiome [228] or important byproducts of

host-microbe nutrient co-metabolism that help regulate host metabolic homeostasis

[114, 168, 224]. For example, members of the Clostridium clusters can produce and

increase serum levels of branched chain amino acids, which are markers for insulin re-
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sistance and diabetes [233, 220]. However, studies suggest that the fecal metabolome

specifically can be used as a readout of gut microbe metabolic functions. Zierer et

al. [343] showed in a large cohort of adult females (n = 786) from the TwinsUK

study that around 60% of the fecal metabolome is associated with microbial compo-

sition, where on average, 67% of variance in the metabolome can be explained by the

microbiome.

Recent studies have integrated the metabolome in microbiome analyses of health

outcomes, most notably Lloyd et al. [174] from the integrative Human Microbiome

Project. However, these studies have mostly focused on adult populations with spe-

cific metabolic disease etiologies such as inflammatory bowel disease. Only a limited

number of studies [301, 13, 275, 335, 36, 143], have simultaneously profiled the gut

microbiome and metabolome from infant stool samples. These studies have prelim-

inarily established that metabolomic profiles shift as taxonomic abundances change

between subject case/control status [301, 275, 335, 117]. Specifically, Ayeni et al.

(n = 48) [13] and Kisuse et al. (n = 35) [143] demonstrated that inter-sample dis-

tances calculated using metabolite abundances are correlated with those calculated

from taxonomic profiles using Mantel tests across African and Asian cohorts. How-

ever, studies to date have either focused on preterm infants [301, 275, 335] or had

small sample sizes (less than 50) [13, 36, 143]. We identified a major gap in defining

microbiome-metabolome relatedness among infants from a population-based cohort

capturing both early in infancy and near the first birthday, with regards to deter-

mining the strength of association and to identify key contributors to the overall

concordance.

Here, we present our study investigating associations between microbe abundances

assayed with 16S rRNA sequencing and metabolomic profiles measured with 1H NMR

spectroscopy in a cohort of infants representing a rural general population from the
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New Hampshire Birth Cohort Study (NHBCS). This is a unique epidemiological co-

hort with multi-omic profiling of infant stool samples at multiple time points accompa-

nied with rich sociodemographic, dietary and health outcomes data [183]. Our study

utilizes predictive modeling, multivariate correlation methods and distance-based ap-

proaches to characterize the dynamic relationship between the gut microbiome and

the gut metabolome in early life.

Section 2.3

Results

The overall workflow and subject selection process are described in Fig 2.1. Primary

analyses were performed on paired microbiome-metabolome data sets on samples

collected at approximately 6 weeks (N = 158 samples) and 12 months (N = 282

samples) of age (65 subjects have paired samples collected at both time points).

In order to take advantage of the most samples from this study, each time point

was analyzed separately with sensitivity analyses performed on sample pairs. As

such, the sample size N will thereafter represent the number of samples found in

each time point rather than the number of unique infants. After processing and

filtering, we evaluated a final taxonomic dataset of 48 genera in 6 weeks samples and

72 genera in 12 months samples. Metabolomic profiles were represented as 208 unique

untargeted spectral bins and a concentration-fitting method [309] was used to acquire

specific relative concentrations of 36 targeted metabolites. These metabolites were

chosen based on a literature search (Supplementary Note 4) for compounds known

to be associated with commensal gut microbes. Results presented here will primarily

feature the targeted dataset, with accompanying figures and tables for the untargeted

data set in the supplemental section. Fig 2.1 shows the overall workflow including

the sample selection process. In summary, we performed three analyses: First, an
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overall concordance analysis using ordinations with ecological distances; second, a

parametric multivariate correlation approach with a variable selection component to

quantify the overall correlation and determine important factors that contribute to

the overall microbiome-metabolite association; third, a predictive analysis approach

to see if taxonomic abundance alone can accurately predict the concentrations of

specific metabolites.

Figure 2.1: Overview of the analysis. Panel A describes the subject selection work-
flow and panel B describes the analytic pipeline.

2.3.1. Study population

Study subject characteristics are summarized in Table 2.1 separately for both sub-

jects providing samples at 6-week of age (N = 158) and 12-months of age (N = 282).

Characteristic of our population, most infants are White (97.5% among subjects con-

tributing a 6-week sample; 95.4% among subjects contributing a 12-month sample),

delivered vaginally (6 weeks samples: 72.2%; 12 months samples: 70.9%) and did not

have any systemic antibiotic exposure during initial hospitalization following birth

(6 weeks samples: 95.6%; 12 months samples 97.2%). The average birth weight was

also similar across subjects irrespective of the sample time point, 3370 g (± 480)
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for infants contributing 6-week samples and 3430 g (± 528) for infants contributing

12-month samples. Similarly, the average gestational age was 39.1 weeks (± 1.59)

(6-week samples) and 39 weeks (± 1.7) (12-month samples). At the time of 6-week

sample collection, 62% of infants had been exclusively breastfed while by the time of

12-month sample collection, 59.2% of infants received breast milk supplemented with

formula, however a large minority (35.1%) remained exclusively breastfed. There were

more male than female infants in the cohort (53.8% male among infants contributing

a 6-week sample; 56.4% male among infants contributing a 12-month sample). Ma-

ternal smoking during pregnancy was rare (6-week samples: 7%; 12-month samples:

5%).

2.3.2. Inter-omic sample distance comparison suggests overall concordance

between data sets

Global concordance between the microbiome and the metabolome was observed across

both time points and metabolomic data sets (Fig 2.2A, Fig B.1A) when analyzed

using a symmetric Procrustes test with samples ordinated by Euclidean distances

Materials and Methods. It is noted that the p-value at 6 weeks for the targeted data

set (p = 0.057) was only trending close to significant at the 0.05 level.

Since the Procrustes test was performed on principal coordinate (PCoA) ordina-

tions of sample distances, the result is sensitive to the choice of dissimilarity metric. In

addition to standard Euclidean distances, the generalized UniFrac (gUniFrac) metric

was also leveraged to account for phylogeny in calculating differences between sam-

ples. With gUniFrac, the association was not significant at either time points for

the targeted data set only (Fig 2.2B), while the untargeted data set still maintained

strong concordance (6 weeks samples – p = 0.001; 12 months samples – p = 0.006;

Fig B.1B).
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Table 2.1: Selected characteristics of subjects contributing samples at 6 weeks (N =
158) and at 12 months of age (N = 282)

6 weeks
(N = 158)

12 months
(N = 282)

Birthweight (grams)
Mean (Standard Deviation) 3370 (480) 3430 (528)
Median [Minimum, Maximum] 3430 [1910, 4710] 3450 [1320, 4660]
Missing 2 (1.3%) 4 (1.4%)

Sex
Male 85 (53.8%) 159 (56.4%)
Female 73 (46.2%) 123 (43.6%)

Feeding mode until time of sample collection
Unknown 6 (3.8%) 7 (2.5%)
Exclusively breastfed 98 (62%) 99 (35.1%)
Exclusively formula fed 13 (8.2%) 9 (3.2%)
Mixed 41 (25.9%) 167 (59.2%)

Delivery Mode
Vaginal 114 (72.2%) 200 (70.9%)
Cesarean 44 (27.8%) 82 (29.1%)

Gestational Age (Weeks)
Mean (SD) 39.1 (1.59) 39 (1.70)
Median [Minimum, Maximum] 39.1 [33.4, 43.0] 39.1 [29.1, 42.0]

Post-delivery infant systemic antibiotic exposure
No 151 (95.6%) 274 (97.2%)
Yes 7 (4.4%) 8 (2.8%)

Maternal smoking during pregnancy
No 143 (90.5%) 262 (92.9%)
Yes 11 (7.0%) 14 (5.0%)
Missing 4 (2.5%) 6 (2.1%)

Infant Race
Other 4 (2.5%) 13 (4.6%)
White 154 (97.5%) 269 (95.4%)
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Figure 2.2: Inter-omics Procrustes biplots comparing PCoA ordinations of tar-
geted metabolite profiles and taxonomic relative abundances for 6 weeks (left panels)
(N = 158) and 12 months (right panels) (N = 262). Top panels present analyses
based on ordinations from Euclidean distances of genus level abundances after cen-
tered log ratio transformation and Euclidean distances of log-transformed metabolite
profiles. Bottom panel presents analyses based on gUniFrac distance of amplicon se-
quence variant (ASV) relative abundances and Euclidean distances of log-transformed
metabolite profiles. There were significant associations between the microbiome and
the metabolome (both targeted and untargeted) when utilizing Euclidean distances,
however this association goes away when the gUniFrac distance was employed for the
targeted metabolites only.

2.3.3. Sparse canonical correlation analyses reveal the core set of microbe-

metabolite groups driving inter-omic relatedness

Given broad concordance between the gut microbiome and metabolome from sample

distance analyses, we employed sparse canonical correlation analysis (sCCA) and
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pairwise Spearman rank correlation to ascertain the strength of association as well

as to identify core microbes and metabolites driving this relationship (Materials and

Methods).

The majority of taxa (65% of total genera at 6-weeks and 80% at 12-months) and

metabolites (100% of total metabolites at 6-weeks and 80% at 12-months) were part

of significant (FDR threshold 0.05) Spearman pairwise comparisons (Supplementary

Note 1). This demonstrated a high level of congruence, where most microbes are

involved in metabolic processes captured in the stool metabolome. This was also

reflected in the significant multivariate correlation (permutation p < 0.001). However,

at 6 weeks (correlation: 0.606 [ 0.61 – 0.73 ]), the degree of concordance was slightly

higher than at 12 months (correlation: 0.52 [0.431 - 0.646]) but this difference was

not significant due to overlapping confidence intervals. The canonical correlation was

slightly higher in the untargeted data set (6 weeks: 0.636 [0.621 – 0.733]; 12 months:

0.49 [0.475 – 0.702]), however the difference between time points was similar (Fig B.2,

Supplementary Note 2).

Using sCCA, we identified a core set of microbes and metabolites that are major

contributors to the multivariate correlation (Fig 2.3 right panels; Supplementary Note

2). Selected microbes (in both the targeted and untargeted data set) belonged to the

Firmicutes, Actinobacteria and Proteobacteria phyla, as those are the most commonly

found phyla in the infant gut [183, 15]. However, previously established dominant

genera such as Bifidobacterium, Bacteroides and Lactobacillus were not consistently

selected across both time points. In the targeted data set Bifidobacterium was selected

only at 6 weeks and Lactobacillus was only selected at 12 months. Most notably, more

microbes were selected at 12 months compared to 6 weeks in the targeted data set,

however in the untargeted data set this pattern was reversed (Fig B.2, right panels). In

terms of selected metabolites, the majority of the selected metabolites in the targeted
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data set were amino acids (Supplementary Note 1), with some short chain fatty acids

(SCFAs) selected at the 6-week time point.

2.3.4. Microbial community structure is weakly predictive of stool metabo-

lite relative concentrations

In order to determine how well the fecal metabolome acts as a functional represen-

tation of the gut microbiome, we fitted metabolite-specific prediction models based

on taxonomic profiles. Chosen models include random forest (RF), elastic net (EN),

support vector machines with radial basis kernel (SVM-RBF) and sparse partial least

squares (SPLS), all of which had previously been shown to work well with microbiome-

associated learning tasks [342]. Evaluation was based on predicted R2 and Spearman

correlation coefficient (SCC) as measured using 100 repeats of 5-fold nested cross

validation (Materials and Methods).

Predictive performance was more dependent on the metabolite being predicted

than by choice of model (Fig 2.4, Supplementary Note 3, Supplementary Note 1).

Looking at predictive R2 (Fig 2.4A), the average posterior mean performance across

all models and metabolites was negative for both time points (-5.6% at 6 weeks; -3.07%

at 12 months), which indicated that for most prediction tasks the fitted model was less

predictive than a naive, intercept only model. At 6 weeks 22.2% of metabolites had

models that perform significantly better than the null (lower bound of 95% credible

interval larger than 0) while at 12 months 38.9% of metabolites fit the classification.

However, even among such metabolites, the maximum R2 is only 11.8% at 6 weeks

and 8.7% at 12 months. Conversely, SCC values were higher in comparison (cross-

metabolite avg.: 0.339 at 6 weeks and 0.249 at 12 months) (Fig 2.4B, Supplementary

Note 3). At 6 weeks, 83% of metabolites were significantly more performant than

the null, while at 12 months all metabolites were selected. Using a more stringent

cutoff as used by Mallick et al. [187], the majority of metabolites at 6 weeks (69.4%
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of total metabolites) still remained as well predicted while conversely at 12 months

only 38.9% (of total metabolites) were predictable.

Results from the untargeted analysis showed higher performance values for both

evaluation metrics (Supplementary Note 3). Specifically, 56.7% of metabolites bins

at 6 weeks and 42.7% of bins at 12 months had R2 values significantly higher than

0. However, under SCC, while 57% of metabolite bins at 6 weeks had SCC values

significantly larger than 0.3 cutoff, only 28.8% of metabolite bins at 12 months fit

this criterion. Despite better performance, the overall average values were still low,

suggesting that across the entire metabolome few metabolites were highly predictable.

Despite weak predictive performance values, we were still interested in determining

a model that stands out as the most appropriate for our prediction task. Aggregat-

ing performance across metabolites stratified by model for both evaluation metrics

(Fig 2.5, top panel), it can be observed that the average performances were simi-

lar (Supplementary Note 3), for which no semi-targeted analyses performed better

on average than the naive model under R2. This is further illustrated when model

performance was aggregated by rank using Borda scores (Fig 2.5, bottom panel). A

higher score indicated that a model was selected as the top choice more times than

others, where an even score distribution across models corroborated the suggestion

that no model was best across all prediction tasks. That said, SVM-RBF seemed to

be the highest scoring model, particularly for the 6-week time point. The untargeted

analysis also found similar results (Fig B.3).

2.3.5. Sensitivity analyses

We performed both Procrustes and correlation analyses on a data set restricted to

the 65 subjects with paired samples collected at both time points (6 weeks and 12

months). Each time point was analyzed separately as in our main analysis. In the

targeted data set, significant Procrustes concordance was observed at 12 months (p-
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value = 0.003) but not at 6 weeks (p-value = 0.106). This association was no longer

significant when considering taxonomic ordination using the gUniFrac distance metric

(6 weeks). Surprisingly, in the untargeted data set, no association was observed across

both time points and choice of distance metric (Fig B.5, Fig B.6). In the canonical

correlation analyses, significance was only observed in the targeted data set at 6

weeks only (6 weeks: permutation p-value = 0.044; 12 months: permutation p-value

= 0.388). Even though most correlations were not significantly different from the

permuted null, the canonical correlation coefficient is higher at 6 weeks compared

to 12 months in both the targeted (6 weeks: 0.676 [0.661 – 0.765]; 12 months: 0.52

[0.484 – 0.663]), and untargeted (6 weeks: 0.703 [0.685 – 0.788]; 12 months: 0.444

[0.52 – 0.705]) data sets (Fig B.7, Fig B.8).

Furthermore, to ascertain the uncertainty of model choice, we evaluated all se-

lected modelling approaches with simulated data sets based on bootstrapped resam-

pling of taxonomic relative abundances (Fig B.4). For the first simulation scenario,

models were assessed against generated metabolite concentrations under different

degrees of model saturation (number of taxa associated with the outcome) and asso-

ciation strength (signal to noise ratio). As expected, model performance asymptoti-

cally reached perfect prediction with increasing signal strength and model saturation,

which demonstrated that prediction models were able to capture predictive associa-

tions should they arise even in sparse microbiome data sets. Most notably, simulation

performance differed more by signal-to-noise ratio than model saturation, which in-

dicated that the strength of association plays a larger role in the observed weak

predictive performance than the number of taxa involved. Surprisingly, we obtained

very similar results to our real data values under our lowest simulation setting (model

saturation = 5%; signal-to-noise ratio 0.5). As such, it can be suggested that the lack

of predictability is due to weak coupling rather than model choice.
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Section 2.4

Discussion

In this study, we provide a descriptive and hypothesis generating analysis of the

relationship between fecal microbial taxonomic abundances and metabolite concen-

trations with multi-omic profiling via paired targeted sequencing of the 16S rRNA

gene and 1H NMR metabolomics at multiple time points. Ecological, statistical and

machine learning approaches were applied to provide a multi-faceted view of this as-

sociation. To our knowledge, this study is one of the few comprehensive investigations

addressing the microbiome/metabolome interface in a large general population cohort

of infants.

2.4.1. The microbiome is significantly correlated but weakly predictive of

the metabolome

Overall global concordance was found from three independent methods (Procrustes

analysis, sCCA and univariate Spearman correlation), consistent with previous stud-

ies on both infant [13, 143] and adult populations [174, 193]. This overall effect was

found at both time points, suggesting there coupling exists throughout infancy despite

high levels of both inter- and intra-individual variability in taxonomic compositions

[15].

Although our analyses demonstrated significant multivariate and univariate cor-

relation between the microbiome and the metabolome, most metabolites were not

predictable when evaluated across multiple machine learning models. Even among

the small number of metabolites that are significantly predictable compared to the

null, the maximum performance values were still low for both the untargeted and

targeted analyses. When compared to a recent study performing metabolite predic-

tions from taxonomic abundances using an adult cohort [187], both the number of
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well-predicted metabolites and the average performance values were much lower, even

when using similar evaluation criterion and cut offs. It is unlikely that model choice

was driving the lack of predictability, since all chosen methods had been shown to be

suited for microbiome-associated prediction tasks [342, 232] as well as covering both

non-linear and linear associations. This is further evidenced in our sensitivity anal-

yses, where non-parametric simulations demonstrated that low predictability across

both evaluation metrics was driven by low signal-to-noise ratio rather than model

choice or number of taxa driving the association.

These results can be attributed to the limitations of our study design. We utilized

partial 16S rRNA sequencing instead of whole genome shotgun sequencing. This

limits our taxonomic resolution to the Genus level for most of the analysis [132].

Since bacterial functions relevant to human metabolism are likely to be strain specific

[338, 175], we hypothesized that aggregating to Genus level might dilute the direct

effects, where different strains within the same Genus might have opposite impacts on

the abundance of a certain metabolite. This would result in a lack of predictability as

the same feature would contain elements that both increase and decrease the values

of the outcome of interest.

However, we can potentially attribute overall performance to other ecological pro-

cesses. A likely candidate is functional redundancy, an aspect ubiquitous in microbial

communities [176], plays an important role in this weak coupling. Functional redun-

dancy is the ecological phenomena that multiple species representing a spectra of

taxonomic groups can perform similar roles [176, 295], and is usually a marker for

ecosystem resilience [7]. Under this paradigm, the loss of a certain metabolite pro-

ducing taxa would not impact the abundance of that metabolite as different taxa can

complement the functional role, complicating taxa to metabolite predictions. This is

evidenced when inter-omic associations is no longer significant in Procrustes analyses
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when phylogenetic relatedness was adjusted using the gUniFrac distance metric. Since

gUniFrac adjusts for phylogeny by weighting the differences in proportions of each

taxa across two samples by the branch length from constructed evolutionary trees

[48], the absence of an association suggests that samples with similar metabolic pro-

files might be numerically comparable (cluster together under Euclidean distances)

but with evolutionarily divergent taxonomic compositions. This is further supported

by our supplementary PICRUSt2 analyses, where we found for most pathways no

single genera dominate functional contribution (Fig B.10). Functional redundancy is

also consistent with previous research in human associated microbiomes [178].

2.4.2. Taxa and metabolites selected to be core to the microbiome-metabolome

correlation reveal the importance of amino acid metabolism

Taxa and metabolites with non-zero loading coefficients in sCCA analyses were iden-

tified as factors driving this overall correlation. The sCCA procedure utilized a

L1-penalized matrix decomposition of the cross-product matrix akin to a LASSO

regression problem [316], which means that variables were selected based on their

importance to the overall covariance between taxa and metabolite abundances.

At six weeks, two short chain fatty acids (SCFAs), butyrate and propionate, were

selected as core to the microbiome-metabolome interface. SCFAs (which includes

compounds such as isobutyrate, and acetate) are important metabolites obtained

primarily from colonic microbial fermentation of carbohydrates that escape digestion

in the small intestines [210]. Butyrate is an energy source for colonocytes [161] as

well as participating in the maintenance of the gut epithelial barrier through mucin

production [236]. Similarly, propionate is part of the gluconeogenesis pathway in

liver hepatocyte cells, which is core to lipid and energy metabolism in liver [68].

Most importantly, SCFAs participate in immune programming in early life, where

the reduction in SCFA producing bacteria is associated with inflammatory bowel
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disease [61, 265].

SCFA production in early life is linked to the Bifidobacterium and Bacteroides

catabolism of human milk oligosaccharides (HMO) [128, 158, 189], which explains

the selection of the Bifidobacterium genera at 6 weeks where infants are exclusively

on a milk-based diet. This is further supported in our supplementary PICRUSt2

analysis, where predicted pathways whose abundance significantly correlate with bu-

tyrate concentrations were those associated with breakdown of sugars into butanoate

(Fig B.9). The genera breakdown of those functions features prominently Bacteroides,

Bifidobacterium, Lachnoclostridium, Flavonifractor, and Clostridium sensu stricto 1

genera (Fig B.10). This demonstrates that at 6 weeks, infant microbiome-metabolome

interaction is primarily concerned with breakdown complex sugars into SCFAs, ce-

menting it’s functional role in microbiome development [274].

Surprisingly, the selected Bifidobacterium genus is negatively correlated with bu-

tyrate abundance. We hypothesized that this might be due the complex cross-feeding

relationship that exist between Bifidobacterium and butyrate-producing taxa [258].

On one hand, some Bifidobacterium species can be completely commensal, producing

secondary metabolites such as acetate that assist in the growth of butyrate producing

species. On the other hand, other Bifidobacterium strains such as B. longum LMG

11047 and B. adolescentis can compete for the same substrates as butyrate producing

species [203]. The selection of the negative association between Bifidobacterium and

butyrate suggests that butyrate-suppressing Bifidobacterium strains might be more

important in our infant samples.

However, the most selected metabolites in sCCA analyses are amino acids (7 out

of 10 metabolites selected at 6 weeks were amino acids). Prior studies have shown

that the microbiota participate in regulating host amino acid homeostasis by acting

as both producers and utilizers [220]. The most common amino acid fermenters in
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the human gut include those from the Clostridia class [62]. Our results further sup-

port this as most selected microbes with positive correlation with amino acids are

of the Eisenbergniella, Flavonifractor, Ruminococcaceae UCG-004, Oscillibacter and

Ruminiclostridium genera under Clostridia. This is further seen in our supplemental

PICRUSt2 analyses, where predicted abundance of isoleucine and methionine biosyn-

thesis pathways are significantly correlated with observed concentrations (Fig B.9).

Aside from being fermenters, microbes can also either directly utilize amino acids

and incorporate them into protein synthesis, or catabolize them as an energy source,

producing secondary metabolites. Even though the process of amino acid catabolism

for energy alone is not energetically efficient [228], it produces secondary metabolites

such as aforementioned SCFAs, which are important molecules in the metabolic in-

teractions between the microbiota and the host. However, amongst selected microbes

whose abundance are negatively correlated with amino acid concentrations (hence,

suggestive of catabolism), we do not observe corresponding positive correlation with

selected SCFAs. We hypothesized that this might be due to the fact that bacte-

rial concentrations are higher in distal parts of the intestine [86, 220] where nutrient

availability is low. This lack of available carbohydrates might incentivize microbes

to conserve energy by directly incorporating free amino acids rather than metabo-

lizing them. On the other hand, prior studies suggested that microbial amino acid

catabolism is compartment specific and occurs in more proximal regions [62, 182].

However, our study design is limited to cross-sectional metabolomic profiling, which

limits the possibility of detecting SCFAs that are rapidly produced and absorbed.

2.4.3. The microbiome is more tightly coupled with the metabolome in

early infancy

Results suggest some level of significant difference in microbiome-metabolome cou-

pling across development. Canonical correlation, while not significantly different,
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were lower at 12 months than at 6 weeks, suggesting a time-varying effect. When

looking at predictability, we observed a higher number of well predicted metabolites

at 6 weeks compared to 12 months. Among those selected as well predicted metabo-

lites, the average performance values (both R2 and SCC) where higher. This is also

replicated in the global untargeted data set. Furthermore, in our supplementary PI-

CRUSt2 analyses, there exists a higher number of significantly correlated predicted

pathway abundance to observed metabolite concentrations (Fig B.11), indicating in-

creased metabolic coupling between the microbiome and the metabolome at 6 weeks

compared to at 12 months.

There are various factors that can contribute to the difference in microbiome-

metabolome coupling between infants at 6 weeks and 12 months. First, there exists

substantive differences in dietary patterns for those included in our analysis. The

majority of infants at 6 weeks (62%) were exclusively breastfed, while that num-

ber is markedly less (35%) at 12 months, at which time infants are also consuming

complimentary solid family foods. This transition in diet to solid foods have been

shown to induce a change in the gut microbiome composition and diversity due to

increased amounts of fiber and protein [205, 157], which might favor certain microbes

over others. Such changes in diet, particularly the cessation of breastmilk intake,

also contributed towards the development of infant gut microbiomes towards a more

“adult like” state [15, 205]. We hypothesized that earlier in life when infants are

only consuming a limited type of food (predominantly breast milk or formula), the

microbiome participates more actively in host-microbiome co-metabolic activity as

infants are more reliant on microbes to breakdown complex nutrients (reviewed in

[202]). Conversely, at one year of age where the microbiome has matured, this rela-

tionship is not as strongly coupled as a larger share of the metabolome comes from

host-produced metabolites.
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However, as analyses were conducted within each timepoint independently with

little subject overlap, further investigations are required to make more conclusive

statements about the potential time-varying effect of microbiome-metabolome cou-

pling. Particularly, aside from differences in diet, factors such as differences in antibi-

otic exposure [57] and maternal covariates [180] might result in differences between

time points. In future studies we hope to examine this factor using samples across

multiple time points for the same infants.

2.4.4. Limitations

This study has various limitations. First, we utilized partial 16S rRNA gene se-

quencing instead of shotgun whole genome sequencing, which limits our taxonomic

resolution to the genus level for most of the analysis [338]. We hypothesized this

lack of resolution contribute to overall lack of predictability, as well as limiting the

interpretability of variables selected by the sCCA process as species and strain level

differences can result in completely separate metabolic contributions [175]. For exam-

ple, we cannot disentangle the different Bifidobacterium strains that might compete

with butyrate producing taxa and generating the negative correlation between mea-

sured SCFAs and Bifidobacterium abundance.

Second, our cohort includes only infants from the NHBCS, a population-based

cohort reflecting mostly rural and White demographics of northern New England in

the United States. While this increases confidence in the internal validity of our study,

this homogeneity in race and geography limits the generalizability of our results to

other populations.

Third, our study is a cross-sectional survey if microbiome-metabolome relation-

ships at two different time points. This means that we cannot capture associations

relating to metabolites that are highly produced and consumed. This means that the

metabolites selected might not be representative of the intricate relationship between
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the microbiome and the metabolome. This interpretation is further limited by the

lack of annotation for our untargeted metabolite bins, which cannot be compensated

by the small number of metabolites selected for the targeted analyses.

Finally, each time point was analyzed independently with only 65 subjects with

samples in both time points. As such, this limits the ability to explore the differences

in coupling across the first year of life.

Section 2.5

Conclusion

In conclusion, we conducted one of the first large-scale multi-omics analysis of the

microbiome-metabolome relationship using samples from a large birth cohort study

at 2 time points (6 weeks and 12 months). Although we found global concordance

between the microbiome and the metabolome, the inter-omic concordance is weak,

where bacterial abundances at the genus level cannot accurately predict metabolite

concentrations. We hypothesized that this might be due to functionally relevant

diversity at the strain level, as well as the impact of functional redundancy on the

contribution of each microbe to metabolite abundances. Additionally, we were able

to identify metabolites and microbes driving the overall correlation. Results pointed

to support the importance of SCFA metabolism particularly at 6 weeks, as well as the

role of amino acid metabolism, either as a source of SCFA and energy in the absence

of carbohydrates, or as a general mechanism for microbes to save energy as they

incorporate amino acids around their environment. Finally, our analysis suggests

preliminary evidence that the degree of microbiome-metabolome coupling changes

across time, being much more integrated at six weeks compared to one year.

We conclude that although the metabolome is a functional output of the mi-

crobiome, there exists massive challenges in being able to trace specific microbial
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contributions to host-microbe metabolism due to the complexity of factors such as

functional redundancy and strain level variability. As such, we recommend studies to

profile both the microbiome and the metabolome, as aspects of microbial metabolic

contributions cannot be found solely through one omic data set. This is particularly

important in settings where it is important to have a mechanistic understanding of

the role of microbes such as developing of microbiome therapies [163].

Section 2.6

Materials and Methods

2.6.1. Study population

Subjects for this study were from the New Hampshire Birth Cohort Study (NHBCS)

who provided infant stool samples at 6-weeks and 12-months after birth. These two

timepoints are chosen as each correspond to routine maternal postpartum visit, al-

lowing sample collection with minimal participant burden. Furthermore, at both time

points, infant feeding patterns are comparatively more well established. As described

in previous studies [183, 180], NHBCS is a prospective study of mother-infant dyads

in New Hampshire, USA. Participants eligible are pregnant women between the ages

of 18 and 45 years old, currently receiving routine prenatal care at one of the study

clinics, consuming water out of a private well with no intention to move prior to

delivery. The Center for the Protection of Human Subjects at Dartmouth provided

institutional review board approval. All methods were carried out in accordance with

guidelines. Written informed consent was obtained for participation from all sub-

jects for themselves and their children. Comprehensive sociodemographic, exposure

and outcome data such as infant feeding method, delivery mode, maternal smoking

status, etc. were collected for all participants through surveys, medical records and

telephone interviews conducted during pregnancy, about 6 weeks postpartum, and
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updated every 4 months up until first year of age and every 6 months thereafter.

2.6.2. Collection of infant stool samples

Infant stool samples were collected at 6-weeks and 12-months. Stool samples were

provided in diapers and stored by subjects in their home freezer (−20◦C) until they

were able to return it to the study site. Stool was thawed at 4◦C so that it could

be aliquoted into cryotubes. Stools collected for 16S rRNA gene sequencing were

aliquoted (range 350-850 mg) into 3ml RNAlater and homogenized before storing

at −80◦C. Stools collected for metabolomic analysis were aliquoted (1-2 grams) into

15ml centrifuge tubes before storing at −80◦C.

2.6.3. Taxonomic profiling using 16S rRNA targeted gene sequencing

RNAlater stool samples were thawed and DNA was extracted using the Zymo Fecal

DNA extraction kit (Cat #D6010, Zymo Research, Irvine, CA), according to the

manufacturer’s instructions. For each sample extraction, 400µl RNAlater stool slurry

(50–100 mg of stool) was used to isolate DNA. Extractions were performed in batches

of multiple samples and included a composite RNAlater stool positive control and a

RNAlater negative control. Lysis was performed using 750µl Lysis Buffer in ZR

BashingBead™ Lysis Tubes (0.5 mm beads), mixed and then shaken on a Disruptor

Genie for 6 min. Eluted DNA was quantified on a Qubit™ fluorometer using the

Qubit™ dsDNA BR Assay. Average coefficient of variation of DNA yields (µg/µl) for

composite RNAlater stool positive controls was 28%. No DNA was ever detectable in

negative control elutions. Concentrations of DNA samples used for 16S rRNA gene

sequencing range from 1 ng/µl to 25 ng/µl.

The V4-V5 hypervariable region of bacterial 16S rRNA gene was sequenced at

Marine Biological Laboratory in Woods Hole, MA, using standard Illumina MiSeq

amplicon approach (paired end sequenced between 518F and 926R) [222, 121]. As

37



2.6 Materials and Methods

described previously [183, 180], 16S rDNA V4-V5 amplicons were generated from

purified genomic DNA samples using fusion primers. The use of forward primers

containing one of eight five-nucleotide barcodes between the Illumina-specific bridge

and sequencing primer regions and the 16S-specific region and a single reverse primer

containing 1 of 12 Illumina indices enables 96 samples per lane multiplexing. Ampli-

fications were done in triplicate with one negative control for internal quality control

at MBL. We used qPCR (Kapa Biosystems) to quantify the amplicon pool, and one

Illumina MiSeq 500 cycle paired end run to sequence each pool of 96 libraries. We de-

multiplex and divided datasets using Illumina MiSeq reporter and a custom Python

script. Demultiplexed reads derived from Illumina sequencing were denoised and

quality filtered using DADA2 (v. 1.12.1) [40] in R (v. 3.6.1) [251]. Illumina adapter

sequences were removed prior using cutadapt (v. 1.18). We utilized DADA2’s fil-

terAndTrim function to remove reads either containing a quality score of 2 or lower

(minQ = 2) or with expected errors [77] of 2 (maxEE = c(2,2)) or higher. Post fil-

tering, we obtained an average of 119,800 reads per sample for 6-week samples and

120,480 reads per samples for 12-month samples. On average, we 74.7% of reads were

kept for 6-week samples and 76.3% of reads were kept for 12-month samples. We then

use the RDP classifier implemented natively in the DADA2 R package with SILVA

database (v. 128) to profile the taxonomy of identified amplicon sequence variants

(ASVs).

2.6.4. Metabolomics profiling using untargeted and targeted 1H NMR

1H NMR metabolomics was performed in collaboration with the NIH Eastern Re-

gional Comprehensive Metabolomics Resource Core (RCMRC) at UNC Chapel Hill.

De-identified stool aliquots were shipped on dry ice and immediately stored at −80◦C

for metabolomics analysis. Samples were thawed and ∼150mg of stool samples were

transferred to MagNA Lyser tubes after recording the weight. Samples were then ho-
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mogenized with 50% acetonitrile in water by using the Omni Bead Disruptor (Omni

International, GA, USA). Homogenized samples were centrifuged at 16000 rcf and the

supernatant was separated into another tube. An aliquot (1000 µL, 100 mg equiva-

lent of fecal mass) was transferred into an Eppendorf tube and lyophilized overnight.

The dried extract was reconstituted in 700 µL of NMR master mix (containing 0.2M

phosphate buffer, 0.5 mM DSS-d6 (internal standard), and 0.2% sodium azide (pre-

venting bacterial growth)), vortexed on a multi tube vortexer at speed 5 for 2 min

and centrifuged at 16000 rcf for 5 min. A 600 µl aliquot of the supernatant was trans-

ferred into pre-labeled 5mm NMR tubes. Additionally, study pooled quality control

(QC) samples (created from randomly selected study samples) and batch pooled QC

samples were generated from supernatants of study samples and aliquots of super-

natants were dried and reconstituted similar to study samples described above and

used for QC purposes.

1H NMR spectra of feces extracts were acquired on a Bruker 700 MHz NMR

spectrometer using a 5 mm cryogenically cooled ATMA inverse probe and ambient

temperature of 25◦C. A 1D NOESY presaturation pulse sequence (noesygppr1d [18,

69], [recycle delay, RD]-90◦-t1-90◦-tm-90◦-acquire free induction decay (FID)]) was

used for data acquisition. For each sample, 64 transients were collected into 64k data

points using a spectral width of 12.02 ppm, 2 s relaxation delay, 10 ms mixing time,

and an acquisition time of 3.899 s per FID. The water resonance was suppressed using

resonance irradiation during the relaxation delay and mixing time. NMR spectra were

processed using TopSpin 3.5 software (Bruker-Biospin, Germany). Spectra were zero

filled, and Fourier transformed after exponential multiplication with line broadening

factor of 0.5. Quality control measures included review of each NMR spectrum for line

shape and width, phase and baseline of spectra, and tight clustering of QC samples

in Principal Component Analysis [37]. NMR bin data (0.49-9.0 ppm) were generated
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(untargeted data) excluding water (4.73-4.85 ppm) using intelligent bucket integration

of 0.04 ppm bucket width with 50% looseness using ACD Spectrus Processor (ACD

Labs Inc, Toronto, Canada).The integrals of each bin were normalized to the total

spectral intensity of each spectrum and transferred to analysis software. This resulted

in a collection of spectral bins with bin-specific relative abundances, which will be

called the untargeted data. In addition, relative concentration of library-matched

metabolites (selected from the literature implicated to be important in host-microbe

relationships - Supplementary Note 4) was determined by using Chenomx NMR Suite

8.4 Professional software [309].This data set will be called the targeted data set.

2.6.5. Software and tools

All analyses were performed using the R programming language (v. 3.6.3) [251] and

associated packages. All data wrangling steps were performed using phyloseq [196],

plyr and tidyverse packages [310], as well as the compositions package [290] for log-

ratio transformations. All figures were generated using the ggplot2 [311], cowplot

[313], viridis [98] and pheatmap [146] packages. Additionally, the tidymodels [152]

suite of packages was utilized to assist in all modelling tasks. Specific packages used

for modelling will be enumerated below. All scripts as well as intermediary analysis

objects are available on GitHub with all dependencies and their versions (https:

//github.com/qpmnguyen/infant_metabolome_microbiome).

2.6.6. Data transformation and normalization

For microbiome data, we retained all ASVs present in at least 10% of samples [187] and

added one pseudocount to all cells [153]. We then subsequently aggregated all ASVs to

the genus taxonomic level [342] and converted data to relative proportions using total

read counts by sample to account for differential sequencing depth. We further filtered

out taxa with mean relative proportion < 0.005% [30]. This filtration step resulted
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in 46 genera for 6-week samples and 72 genera for 12-month samples. To address the

compositional problem induced by a sum to one constraint, we apply the centered

log ratio transformation (CLR), which is often used to remove such constraints in

microbiome data sets [4]. The CLR transformation is favored compared to other

statistically equivalent log-ratio transformations due to its scale invariant property

and ease of interpretation [104].

For metabolomic data sets, we employed different transformations to approximate

homoscedasticity depending on the data type (targeted vs untargeted). For targeted

metabolites, we performed a log(x+ 1) transformation while for untargeted metabo-

lites we utilized the arcsine square root transformation which has been previously

used for transforming composition metabolomics data sets [187].

2.6.7. Distance matrix analyses

Principal coordinates analysis (PCoA) was performed using the pcoa function from

the ape package in R [230] with sample distance matrices. The PCoA procedure seeks

to represent high dimensional multivariate data sets in lower dimensions through

eigen decomposition of the doubly centered distance matrix. PCoA allows the usage

of non-Euclidean distances between samples such as ecological indices, which makes it

a preferable method for sample ordination compared to principal component analysis

(PCA).

We constructed Euclidean distance matrices for both metabolic and taxonomic

profiles post data transformation described in the previous section. Additionally, gU-

niFrac distances (alpha = 0.5) [48] were considered for taxonomic data using the im-

plementation provided in the package MiSPU [323]. gUniFrac requires a phylogenetic

tree, of which an approximate maximum likelihood phylogenetic tree was constructed

with representative ASV sequences using FastTree (v 2.1) [244]. Multiple sequence

alignment was performed using the AlignSeqs function from the DECIPHER pack-
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age in R [320] and trees were midpoint rooted using phytools [255]. Since multiple

sequence alignment is not conserved under filtering and aggregation of ASVs, gU-

niFrac distance calculations were performed with pre-filtered ASV-level abundances

normalized to relative abundances.

The first two axes of constructed ordinations were then compared using a symmet-

ric Procrustes procedure implemented in the protest function in the vegan package

[227]. Procrustes superimposes two ordinations by translating and rotating the coor-

dinates, which preserves the general structure of the data. This method performs a

superimposition fit between two data sets minimizing the sum-of-squared differences

(m2), which describes the degree of concordance between the two configurations nor-

malized to unit variance. Significance is obtained by testing against the permuted

null using a permutation test. This method was shown to have more power while also

limiting type I error compared to the traditional Mantel test in ecological analysis

[238]. Significance was determined using a permutation test on the sum of squared

differences with 999 permutations [37].

2.6.8. Sparse canonical correlation and Spearman correlation analyses

Sparse canonical correlation analysis (sCCA) was performed to identify strongly asso-

ciated metabolite-microbe groups. sCCA seeks to find linear combinations of variables

from each dataset that maximizes the correlation with each other while simultane-

ously thresholding variable specific weights to induce sparsity and performing variable

selection. The correlation coefficient in the first canonical variate quantifies the overall

degree of multivariate associations. As such, sCCA is a popular method in integrat-

ing multi-omics datasets with the ability to select more biologically relevant sets of

features compared to traditional ecological methods such as co-inertia analysis [42].

In this study, we use the sCCA implementation in the package PMA in R [316] which

uses a novel penalized matrix decomposition procedure to achieve sparsity [317]. We
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tune hyperparameters using a permutation approach in the CCA.permute function

(nperms = 50) prior to fitting the final model. We obtained the correlation coeffi-

cients as a measure of overall correlation between the two data sets and calculated

a bootstrapped 95% confidence interval (nboot = 5000). Additionally, we tested for

significance using a permutation test (nperm = 1000) for α at the 0.05 level. In order

to keep the structure of the data set across different permutations, we use the func-

tion randomizeMatrix from the package picante in R [138] using the richness null

model, which randomizes community abundances within samples to maintain sample

species richness.

Pairwise Spearman correlations were also performed using the cor function in R.

Hypothesis testing was done using cor.test, with multiple hypothesis testing correction

using the Benjamini-Hochberg procedure [24] using p.adjust. An FDR value of 0.05

is used as cutoff for significance pairwise correlations. Visualization was done using

pheatmap package in R.

2.6.9. Predictive modelling and evaluation

We choose candidate models based on previous research utilizing supervised learning

with microbiome associated prediction tasks [342, 232, 187]. Specifically, we chose

random forest (RF) [33], support vector machine with radial basis function kernel

(SVM-RBF) [32], elastic net (EN) [344] and sparse partial least squares (SPLS) [54],

which have all been shown to perform with high-dimensional predictors. These mod-

els also support linear and non-linear associations between the microbiome and the

outcome of interest. Model fitting, parameter tuning, and evaluation were done using

caret package in R [314]. Parallel processing was performed using the doParallel

[60] and parallel packages.

We evaluate prediction performance by performing 100 repeats of 10-fold nested

cross validation, whereby within each training fold is a separate 5-fold cross-validation
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procedure done to perform hyperparameter selection when appropriate with param-

eter grids modelled after Pasolli et al. [232]. For RF, we set the number of trees

to be 500, and the number of features used in each decision tree to be the square

root of the number of the original features. For SVM-RBF, we tuned across a grid

for the regularization parameter C (values 2(−5), 2(−3), . . . , 215) and the kernel width

parameter γ (values 2(−15), 2(−13), . . . , 23). For EN, we tuned over a grid of the reg-

ularization parameter λ and the L1 to L2 penalty ratio α, where for each α value

(spaced by 0.1) between 0 (equivalent to a LASSO model) and 1 (equivalent to a

ridge regression model), we evaluate 100 lambda values chosen by the glmnet pro-

cedure. For SPLS, we kept the concavity parameter κ constant at 0.5 while tuning

the number of components K (values 1, 2, . . . , 10) and the thresholding parameter η

(values 0.1, 0.2, . . . , 0.9).

We utilize standard regression evaluation metrics include predictive R2 and Spear-

man correlation coefficient (SCC). These statistics were chosen due to their ability to

capture two different aspects of the regression task. Predictive R2 captures the pre-

dicted residual sum of squares (PRESS) normalized by the total sum of squares, which

can be thought of as PRESS values for a naive, intercept only model. On the other

hand, SCC quantifies the monotonic association between true and predicted values,

providing perspective as to whether the predicted values can capture the overall trend

of the outcome. Prior to evaluation, all metabolites were back transformed to their

original scale. In order to perform comparisons between models across time points

and metabolites as well as ascertaining the uncertainty of each evaluation metric, a

Bayesian approach as presented in [23]. Specifically, a generalized Bayesian hierar-

chical linear model (with identity link and gaussian standard error) in the following

form was fitted for each metabolite:
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Evaluation Statistic ∼ Model + (1|repeat) + (1|repeat : fold)

This model assumes that the distribution of the evaluation statistic as a linear func-

tion of model assignment, with random intercepts varying among repeats and for

folds within each repeat. Models were fitted using implementation in the R pack-

age tidyposterior [151] using default weakly informative priors as described in the

rstanarm package [35]. Using this model, a predictive posterior mean and 95% cred-

ible interval can be generated. The posterior mean is then used to rank the best

performing model for each metabolite according to the evaluation metric of interest.

Ranks are then aggregated using the Borda method [173] to generate Borda scores.

In detail, for each metabolite, 4 points are added to the top ranked model, 3 points

to the second ranked model and so on. The model with the highest total points for

each metric is the most performant model aggregated across all prediction tasks.

2.6.10. Simulation design

Simulations were performed to examine the behavior of models under known associ-

ation/null settings in order to validate findings.

For the first simulation scenario, a linear association between genus-level tax-

onomic abundance and log transformed metabolite concentrations were simulated.

The predictor matrix were bootstrapped resamples of the community matrix post

data processing. β coefficient values were sampled from the standard normal distri-

butionN (0, 1) values for each genus would have a probability p (0.05, 0.1, 0.5, 0.95) of

being 0 which determines the sparsity of the coefficients (or the level of model satura-

tion). We generate metabolite outcome values Y following the model Y = β0+Xβ+ϵ

where X is the n× p simulated taxonomic predictor matrix, β is the p× 1 previously

defined coefficient vector, ϵ ∼ N (µ = 0, σ = σϵ) is the standard normal noise vector.
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Similar to Xiao et al. 2018 [327] and Shi et al. 2016 [269], we set all β0 = 6/
√
10 and

σϵ = (σ(β0 +Xβ))/SNR where signal-to-noise ratio (SNR) are set at 0.5, 0.7, 3, 5 to

simulate both situations where noise is higher than signal and vice versa. For each

simulation setting, 100 data sets were generated. For the second simulation scenario,

null models were assessed through a permutation procedure using the picante pack-

age in R as described earlier. A total of 500 permutations was performed for each

model.

To evaluate the predictive capacity of models for each simulation scenario, each

data set was split into a train and test set (80% train; 20% test). Within each training

set, a 10-fold cross validation procedure was employed to tune any hyperparameters.

Similar evaluation metrics were assessed as described in the model fitting section.

2.6.11. Metagenomic prediction with PICRUSt2

We conducted a PICRUSt2 (version 2.3.0 b) [73] analysis to investigate the potential

relationship between the functional metagenome (obtained via in sillico predictions)

and measurements of associated metabolites. We performed this analysis for metabo-

lites obtained in the targeted data set. The PICRUSt2 pipeline was performed on

pre-filtered ASV sequences and abundance tables using default settings. Snakemake

was used to construct the computational pipeline [204].

After obtaining predicted MetaCyc pathway abundances [45], for each metabo-

lite, we selected a subset of the pathways where the metabolite is a known product

(accessed via MetaCyc SmartTables; 6-week samples: https://metacyc.org/group?

id=biocyc13-50254-3822215614, 12-month samples: https://metacyc.org/group?

id=biocyc13-50254-3822215614) and performed Spearman correlation analysis with

the measured metabolite abundances. For each significant correlation (significance

level defined as q-values below 0.05 following the Benjamini-Hochberg procedure [24]),

we profiled the relative contributions of the top five Genera. Relative contribution is
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calculated as total abundance of a pathway assigned to that Genus across all samples

divided by the total abundance of the pathway across all samples. Additionally, pair-

wise Spearman correlation between all identified pathway abundances and targeted

metabolite concentrations was also performed. Significance is defined similarly as

FDR adjusted q-values below 0.05.

Section 2.7

Availability of data and materials

The 16S rRNA gene sequencing datasets used in this study are stored in the Na-

tional Center for Biotechnology Information (NCBI) Sequence Read Archive: http:

//www.ncbi.nlm.nih.gov/sra under accession number PRJNA296814. The raw

and processed metabolomics data is available at the NIH Common Fund’s National

Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https:

//www.metabolomicsworkbench.org where it has been assigned Project ID PR001146.

The data can be accessed directly via its project DOI: https://doi.org/10.21228/

M8K69N. All intermediary analysis objects and scripts are available on GitHub.

Section 2.8

Acknowledgements

We thank the participants of the New Hampshire Birth Cohort Study and to the study

staff, without whom this research would not be possible. We would also like to thank

all members of the Microbiome research group at Dartmouth College and our collab-

orators at the University of North Carolina and the Marine Biological Laboratory for

all advice and additional assistance in preparing this manuscript.

47



2.8 Acknowledgements

Figure 2.3: Pairwise Spearman correlation of concentration-fitted metabolites and
genus-level taxonomic abundances for 6-weeks (panel A, N = 158) and 12-months
(panel B, N = 282) infants. Left panel displays the overall correlation pattern,
where non-significant correlations are not colored (false discovery rate (FDR) con-
trolled q-value < 0.05). Right panel displays the same heatmap restricted to taxa
and metabolites selected by the sparse CCA procedure. Additionally, correlation
coefficient of the first sCCA variate pair, bootstrapped 95% confidence interval and
permutation p-value are also reported. Significant microbiome-metabolome correla-
tion was observed at both time points, however no significant difference was found
between the time points.
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Figure 2.4: Forest plots of each prediction performance metric (R2 - Panel A,
Spearman correlation - Panel B) for each time point (6 weeks (N = 158), 12 months
(N = 282)) across all 36 metabolites and 4 machine learning models. 95% credible
interval and predictive posterior means were generated using Bayesian modelling of
the evaluation statistic (Materials and Methods) after 100 repeats of 5-fold nested
cross validation. Red vertical lines indicate a value of 0 for the evaluation metric
(equivalent to null model). Metabolites were classified as predictable if the null value
did not lie within the estimated 95% credible interval. For most metabolites, predic-
tive performance was not significantly better than null models.
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Figure 2.5: Comparative analysis predictive model performance across all metabo-
lites in the targeted dataset for both 6-weeks (N = 158) and 12-months (N = 282)
time points. Top panel shows superimposed boxplots and violin plots of the distri-
bution of predictive posterior mean for each evaluation metric across all 36 metabo-
lites. Bottom panels show aggregated model rankings for all metabolites using R2

(left) and Spearman correlation (right) using Borda scores (Materials and Methods).
Higher scores indicate that a model was consistently selected as a better performing.
Relatively similar Borda scores and cross-metabolite average predictive performances
indicate that no model was clearly the most performant. However, support vector
machines (with radial basis function kernel) was highest scoring model.
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Chapter 3

CBEA: Competitive balances for

taxonomic enrichment analysis

This chapter was accepted for publication on May 5th, 2022 as a Research Article at

PLOS Computational Biology and is currently in press. The latest pre-print of the

article can be found here:

Nguyen, Q.P., Hoen, A.G., Frost, H.R. CBEA: Competitive balances for taxonomic

enrichment analysis. bioRxiv. https://doi.org/10.1101/2021.09.07.459294

Section 3.1

Abstract

Background: Research in human-associated microbiomes often involves the analysis

of taxonomic count tables generated via high-throughput sequencing. It is difficult to

apply statistical tools as the data is high-dimensional, sparse, and compositional. An

approachable way to alleviate high-dimensionality and sparsity is to aggregate vari-

ables into pre-defined sets. Set-based analysis is ubiquitous in the genomics literature

and has demonstrable impact on improving interpretability and power of downstream
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analysis. Unfortunately, there is a lack of sophisticated set-based analysis methods

specific to microbiome taxonomic data, where current practice often employs abun-

dance summation as a technique for aggregation. This approach prevents comparison

across sets of different sizes, does not preserve inter-sample distances, and amplifies

protocol bias. Here, we attempt to fill this gap with a new single-sample taxon en-

richment method that uses a novel log-ratio formulation based on the competitive

null hypothesis commonly used in the enrichment analysis literature.

Methods: Our approach, titled competitive balances for taxonomic enrichment anal-

ysis (CBEA), generates sample-specific enrichment scores as the scaled log-ratio of the

subcomposition defined by taxa within a set and the subcomposition defined by its

complement. We provide sample-level significance testing by estimating an empirical

null distribution of our test statistic with valid p-values.

Results: Herein, we demonstrate, using both real data applications and simulations,

that CBEA controls for type I error, even under high sparsity and high inter-taxa

correlation scenarios. Additionally, CBEA provides informative scores that can be

inputs to downstream analyses such as prediction tasks.

Section 3.2

Background

The microbiome is the collection of microorganisms (bacteria, protozoa, archaea,

fungi, and viruses) which co-exist with their host. Previous research has shown that

changes in the composition of the human gut microbiome are associated with impor-

tant health outcomes such as inflammatory bowel disease [245], type II diabetes [268],

and obesity [9]. To understand the central role of the microbiome in human health,

researchers have relied on high-throughput sequencing methods, either by targeting a

specific representative gene (i.e. amplicon sequencing) or by profiling all the genomic
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content of the sample (i.e. whole-genome shotgun sequencing) [52]. Raw sequencing

data is then processed through a variety of bioinformatic pipelines [40, 286], yield-

ing various data products, one of which are taxonomic tables which can be used to

study associations between members of the microbiome and an exposure or outcome

of interest.

However, there are unique challenges in the analysis of these taxonomic count

tables [166, 165]. The data is sparse, high-dimensional, and likely compositional

[104, 166, 165]. Even though these problems are challenging, a very approachable

solution is to use set-based analysis methods, also termed gene set testing in the

genomics literature [139, 105]. Aggregated variables can be less sparse, and testing

on a smaller number of features can reduce the multiple-testing burden. As such,

gene set testing methods have been shown to increase power and reproducibility of

genomic analyses. Furthermore, through the usage of functionally informative sets

defined a priori based on historical experiments (for example MSigDB [276], and

Gene Ontology [12]), gene set analysis also allows for more biologically informative

interpretations.

A diverse set of methods have already been developed in this field. Traditional

methods utilize the hypergeometric distribution to test for the overrepresentation of

a gene set using a candidate list of genes screened based on a marginal model [105].

Unfortunately, these approaches are sensitive to the differential expression test as well

as the chosen threshold when trying to select genes for the candidate list. Aggregate

score methods, which are generally preferred [126], instead assign a score for each

gene set based on gene-specific statistics such as z-scores or fold change. Of these

approaches, methods such as GSEA [276] perform a test for each gene set at the

population level, summarizing information across all samples. Conversely, methods

such as GSVA [111] and VAM [95], generate enrichment scores at the sample level and
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are more akin to a transformation. In addition to being able to screen for enriched

sets per sample, this strategy also allows for the flexible incorporation of different

downstream analyses, such as fitting prediction models, or performing dimension

reduction.

In microbiome research, even when no explicit enrichment analysis is performed,

researchers often aggregate taxa to higher Linnean classification levels such as genus,

family, or phylum. However, there is limited research done to extend existing set-

based methods to microbiome relative abundance data. Some software suites, such as

MicrobiomeAnalyst, do offer tools to perform enrichment testing with curated taxon

sets [53]. However, the approach used in MicrobiomeAnalyst is a form of overrep-

resentation analysis at the population level and therefore similarly sensitive to the

differential abundance approach used and p-value threshold. One of the primary chal-

lenges for adapting gene set analysis to the microbiome context is the compositional

nature of the data. Sequencing technologies constrain the total number of reads,

and samples are expected to have the same number of reads instead of DNA content

[250, 249]. However, different samples still yield arbitrarily different total read counts

[104, 212], suggesting the use of normalization methods to allow for proper compar-

ison of feature abundances across samples. However, microbiome data sets do not

follow certain assumptions that enable the cross-application of methods from similar

fields (such as RNA-seq) [249, 250]. For example, DESeq2’s estimateSizeFactors

[177] assumes that the majority of genes acts as housekeeping genes with constant

expression levels across samples. As such, practitioners often rely on total sum nor-

malization to transform count data into relative proportions that sum to one [307].

Some studies have provided emprical performance evaluations supporting this nor-

malization schema [194]. Since this approach imposes a sum constraint on the data,

post normalization microbiome data sets are compositional [104], which means that
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the abundance of any taxon can only be interpreted relative to another. Under this

scenario, log-ratio based approaches from the compositional data analysis (CoDA)

literature [6] are motivated to address this issue.

Unfortunately, the standard practice for aggregating variables using element-wise

summations (referred to as amalgamations in the CoDA literature), does not ade-

quately address the compositional issue [195]. First, inter-sample Aitchison distances

computed on original parts are not preserved after amalgamation [79]. This means

that cluster analyses might show different results depending on the level of amalga-

mation and differs from the those computed from original variables. Second, amalga-

mations do not allow for comparison between sets of different sizes within the same

experimental condition since larger sets will have larger means and variances. Third,

considering that each taxa has specific measurement biases [195], an amalgamation

based approach would make the bias of the amalgamated variable dependent on the

relative abundance of the its constituents. In other words, if taxon 1 has abundance

A1 and bias B1, while taxon 2 has abundance A2 and bias B2, then the bias of the

aggregate variable (for example, a genera) is (A1B1+A2B2)/(A1+A2) (see Appendix

1. from McLaren et al. [195]). This means that bias invariant approaches (such as

analyses of ratios) would no longer be invariant when applied to amalgamated vari-

ables as bias now varies across samples. The alternative would be to multiply the

proportions rather than to sum them [79].

Here, we present a taxon-set testing method for microbiome relative abundance

data that addresses the aforementioned issues. Our approach generates enrichment

scores at the sample level similar to GSVA [111] and VAM [95]. We leverage the

concept of the Q1 competitive hypothesis presented in Tian et al. [283] to formulate

the enrichment of a set as the compositional balance [257] of taxa within the set

and remainder taxa using multiplication as the method of aggregating proportions
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[79]. This well-defined null hypothesis allows us to perform significance testing with

interpretable results through estimating the empirical distribution of our statistic

under the null that can also account for variance inflation due to inter-taxa correlation

[324].

In the following sections, we present our approach titled competitive balances for

taxonomic enrichment analysis (CBEA). First, we present the step-by-step formula-

tion of CBEA and discuss its statistical properties. Second, we detail our evaluation

strategy using both real data and parametric simulations, and the methods we are

comparing against. Third, we present results on enrichment testing using CBEA

for single samples as well as at the population level. Fourth, we show the perfor-

mance of CBEA in downstream disease prediction. Finally, we discuss our results

and the limitations of our method. An R package implementation of CBEA can

be installed via Bioconductor. The development version can be found on GitHub

(www.github.com/qpmnguyen/CBEA).

Section 3.3

Materials and Methods

3.3.1. Competitive balances for taxonomic enrichment analysis (CBEA)

The CBEA method generates sample-specific enrichment scores for microbial sets

using products of proportions [80]. Details on the computational implementation of

CBEA can be found in the Supplementary Materials. The CBEA method takes two

inputs:

• X: n by p matrix of positive proportions for p taxa and n samples mea-

sured through either targeted sequencing (such as of the 16S rRNA gene) or

whole genome shotgun sequencing. Usually X is generated from standard tax-

onomic profiling pipelines such as DADA2 [40] for 16S rRNA sequencing, or
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MetaPhlAn2 [286] for whole genome shotgun sequencing. CBEA does not ac-

cept X matrices with zeroes since it invalidates the log-ratio transformation.

Users can generate a dense matrix X using a method of choice, however by

default mode CBEA will add a pseudocount of 10−5 if zeroes are detected in

the matrix.

• A: p by m indicator matrix annotating the membership of each taxon p to m

sets of interest. These sets can be Linnean taxonomic classifications annotated

using databases such as SILVA [247], or those based on more functionally driven

categories such as tropism or ecosystem roles (Ai,j = 1 indicates that microbe i

belongs to set j).

The CBEA method generates one output:

• E: n by m matrix indicating the enrichment score of m pre-defined sets identi-

fied in A across n samples.

The procedure is as follows:

(a) Compute the CBEA statistic: Let M be a n by m matrix of CBEA scores.

Let Mi,k be CBEA score for set k and sample i:

Mi,k =

√∑
k Aik(p−

∑
k Aik)

p
ln

(
g(Xi,j|Aj,k = 1)

g(Xi,j|Aj,k ̸= 1))

)
(3.1)

where g(.) is the geometric mean. This represents the ratio of the geometric

mean of the relative abundance of taxa assigned to set k and remainder taxa.

(b) Estimate the empirical null distribution Enrichment scores represent the

test statistic for the Q1 null hypothesis Ho that relative abundances in X of

members of set k are not enriched compared to those not in set k. Since the
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distribution of CBEA under the null vary depending on data characteristics

(Fig 3.1), an empirical null distribution will be estimated from data.

• Compute the CBEA statistic on permuted and un-permuted X.

Let Xperm be the column permuted relative abundance matrix, and Mperm

be the corresponding CBEA scores generated from Xperm. Similarly, we

have Munperm be CBEA scores generated from X.

• Estimate correlation-adjusted empirical distribution for each set.

For each set, a fit a parametric distribution to both Mperm and Munperm.

The location measure estimated from Mperm and the spread measure esti-

mated fromMunperm will be combined as the correlation-adjusted empirical

null distribution Pemp for each set. Two available options are the normal

distribution and the mixture normal distribution. For the normal distribu-

tion, parameters were estimated using the method of maximum likelihood

implemented in the fitdistr package [66]. For the mixture normal dis-

tribution, parameters were estimated using an expectation-maximization

algorithm implemented in the mixtools package [22].

(c) Calculate finalized CBEA scores with respect to the empirical null.

Enrichment scores Ei,k are calculated as the cumulative distribution function

(CDF) values or z-scores with respect to Pemp distribution. Raw p-values can

be calculated by subtracting E from 1.

3.3.2. Properties of CBEA

CBEA and balances between groups of parts. The CBEA statistic is based

on the multiplication-based aggregation approach used to calculate balances between

groups of parts [79]. These balances are computed using the isometric log ratio (ILR)

transformation [80] formula. For a given balance i splitting variables across sets R
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and S, we have the balance coordinate x∗
i as:

x∗
i =

√
rs

r + s
log

(
g(Xj|j∈R)

g(Xj|j∈S)

)
(3.2)

where r and s are the cardinalities of sets R and S respectively, g(z) is the geometric

mean, andXj are values of the original predictors with indexes defined by membership

in R and S.

CBEA belongs to a set of methods that seek to leverage compositional balances

for the analysis of microbiome data [304, 257, 213, 272]. Unlike methods such as

PhILR [272], CBEA does not present an orthonormal basis for the complete ILR

transformation (such as a a sequential binary partition) [80]. Therefore, it is not

a subclass of the ILR transformation and is adjacent to this approach. A similar

method to CBEA would be phylofactor [304]. However, instead of performing an

optimization procedure to identify interesting balances, CBEA constructs balances

a priori using pre-defined sets, and formulates the enrichment of a set as the scaled

log-ratio between the center of the subcomposition represented by microbes within

the set and the center of the subcomposition represented by remainder taxa. This

formulation aligns with the Q1 null hypothesis from the gene set testing literature

[283].

Estimating the null distribution. We can assume that the CBEA statistic, simi-

lar to other log-ratio based transforms, follows a normal distribution [80, 5]. However,

when applying CBEA for hypothesis testing at the sample level, it is expected that the

researcher would be testing a large number of hypotheses. Under the assumption that

the number of truly significant hypotheses is low, Efron [78] showed that estimating

the null distribution of the test statistic directly (termed the empirical null distri-

bution) is much more preferable than using the theoretical null due to unobserved
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confounding effects inherently part of observational studies. As such, to perform sig-

nificance testing using CBEA, we also estimated the null distribution from observed

raw CBEA variables.

This assumption is also supported by preliminary simulation studies (detailed

below). We simulated microbiome taxonomic count data under the global null across

different data features and compute raw CBEA scores and compute kurtosis and

skewness in Fig 3.1A. We found that the characteristics of the null change depending

on sparsity and inter-taxa correlation. Sparsity seems to drive the distribution to be

more positively skewed while inter-taxa correlation encourages platykurtic (negative

kurtosis). The effect is most dramatic under both high inter-taxa correlation and

sparsity. This heterogeneity further supports the decision to estimate an empirical

null distribution, as suggested by Efron [78].

Additionally, the degree of kurtosis and skewness also suggests that the normal

distribution itself might not be a good approximation of the null. To address this issue,

we also evaluated a two-component normal mixture distribution. The goodness of fit

of the mixture normal and the normal distribution using Kolmogorov-Smirnov (KS)

test statistic computed on fitted normal and mixture normal distribution when fitted

on CBEA scores in simulation scenarios under the global null is shown in Fig 3.1B.

We can see that the mixture normal distribution is a better fit (lower KS scores) than

the normal distribution across both sparsity and correlation settings.

We performed our empirical null estimation by fitting our distribution of choice

and computing relevant parameters on raw CBEA scores on taxa-permuted data

(equivalent to gene permutation in the gene expression literature). As such, the null

distribution is characterized by scores computed on sets of equal size with randomly

drawn taxa.
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Figure 3.1: Properties of the null distribution of CBEA under the global null sim-
ulations. Panel (B) presents kurtosis and skewness of CBEA scores while panel
(A) presents the goodness of fit (as Kolmogorov-Smirnov D statistic) for mixture
normal and normal distributions. Panel (C) is a density plot of the shape of the
null distribution. Results indicated the necessity of estimating an empirical null and
demonstrating that the mixture distribution was the better fit compared to the basic
normal.

Variance inflation due to inter-taxa correlation. When taxa within a set

are highly correlated, the variance of the sample mean of taxon-wise statistics is

inflated. Without loss of generalizability, for a set of taxa with taxon-specific statistics
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x1, . . . , xp we have the variance of the mean x̄ to be:

V ar(x̄) =
1

m2

(∑
i=1

(σ2
i ) +

∑
i<j

ρijσiσj

)
(3.3)

where σi is the standard deviation of taxon i and ρij is the correlation between i and

j. The second term of (3.3) is the correlation dependent variance component, which

goes to 0 if there is no correlation. The CBEA statistic follows a similar pattern.

Since the geometric mean of a set of variables is equivalent to the exponential of the

arithmetic mean of their logarithms, we can re-write CBEA score for a set k with size

K as follows:

Mi,k =

√
K(p−K)

K + (p−K)

(
logXi,j|j∈K − logXi,j|j /∈K

)
(3.4)

where p is the overall number of taxa, j is the index of a taxa and K is the set of

indices of taxa in set k. The CBEA statistic then looks similar to a t-statistic for

difference in means of log-transformed proportions. As such, the pooled variance of

CBEA is dependent on the variance inflation of both mean components logXi,j|j∈K

and logXi,j|j /∈K . The result of this variance inflation is inflated type I error since

highly correlated sets are also detected as significantly enriched.

However, as Wu et al. [324] showed, performing column permutation to estimate

the null distribution of a competitive test statistic doesn’t allow for adequate capture

of this variance inflation factor since the permutation procedure disrupts the natural

correlation structure of the original variables. It is important to address this problem

since there is strong inter-taxa correlation within the microbiome [153]. Our strategy

for addressing this issue is to use the location (or mean) estimate from the column

permuted raw score matrix with the spread (or variance) estimate taken from the

original un-permuted scores. This still allows us to leverage the null distribution gen-
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erated via column permutation while using the proper variance estimate taken from

scores where the correlation structure has not been disrupted. As such, this proce-

dure assumes that the variance of the test statistic under the alternate hypothesis is

the same as that of the null. Details of the computational implementation to this

estimation process can be found in the Supplementary Note 1.

However, set-based analysis is an exploratory approach that can help generate

functionally informative hypotheses, and as such users might not want strict type I

error control in favor of higher power. This is especially true for competitive hypothe-

ses, where its stricter formulation compared to the self-contained approach implies

that the test naturally has lower power [105, 2]. Furthermore, sets that are highly

correlated compared to background can be biologically relevant. Therefore, CBEA

provides an option for users to specify whether correlation adjustment is desired.

Section 3.4

Evaluation

We based our evaluation strategy on gene set testing benchmarking standards set by

Geistlinger et al. [100] and utilized the same approaches whenever possible. All data

sets are obtained from either the curatedMetagenomicData [231] and HMP16SData

[262] R packages (2020-10-02 snapshot), or downloaded from the Qiita platform

[106]. All code and data sets used for evaluation of this method is publicly avail-

able and can be found on GitHub (www.github.com/qpmnguyen/CBEA_analysis).

Additional packages used to support this analysis includes: tidyverse [312], pROC

[259], phyloseq [197], mia [85], targets [155].
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3.4.1. Statistical significance

We evaluate the inference procedure of CBEA compared to alternate methods using

two approaches: randomly sampled taxa sets and sample label permutation. These

analyses were performed on the 16S rRNA gene sequencing of the oral microbiome

from the Human Microbiome Project [59, 245]. This data set contains 369 samples

split into two subsites: supragingival and subgingival. We processed this data set by

removing all samples with total read counts less than 1000 and OTUs whose presence

(at least 1 count) is in 10% of samples or less.

Sample-level inference. Due to CBEA’s self-contained null hypothesis, we can

perform inference at the sample level for the enrichment of a set. We evaluated this ap-

plication by generating one random taxon-set of different sizes S ∈ {20, 50, 100, 150, 200}

across 500 iterations. Random sets can act as our estimate for type I error since this

matches the CBEA null hypothesis stated in Materials and Methods, where we expect

within each sample, sets of randomly drawn taxa should not be significantly enriched

compared to the remainder background taxa. For this evaluation, we estimated type

I error as the fraction of samples where our random set is detected as significant at

a p-value threshold of 0.05 with confidence bands computed from the standard error

across all iterations. Additionally, this analysis also tests whether CBEA is sensitive

to different set sizes.

Population-level inference. We can perform enrichment testing at the population

level by generating corresponding sample level CBEA scores and performing a two-

sample test such as Welch’s t-test. In order to evaluate CBEA under this context, we

generated CBEA scores of sets representing genus-level annotation in above gingival

data set [59, 245] and applied a t-test to test for enrichment (similar to GSVA [111])

across a randomly generated variable indicating case/control status (repeated 500
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times). Type I error is estimated as the fraction of sets per iteration found to be

significantly enriched with confidence bands computed from the standard error across

all iterations. In addition, we also performed a random set analysis assessment,

where we generated 100 sets of different set sizes S ∈ {20, 50, 100, 150, 200} and

evaluated the fraction of genera that were found to be differentially abundant across

the original labels (supragingival versus subgingival subsite). 95% confidence intervals

were computed using the Agresti-Couli approach [3].

3.4.2. Phenotype relevance

We want to evaluate whether sets found to be significantly enriched by CBEA are

relevant to the research question. To perform this assessment, we relied on the gin-

gival data set mentioned above [59, 245]. This data set was chosen because its clear

biological interpretation can serve as the ground truth. Specifically, we expect aero-

bic microbes to be enriched in the supragingival subsite where the biofilm is exposed

to the open air, while conversely anaerobic microbes thrive in the subgingival site

[281]. Genus-level annotations for microbial metabolism from Beghini et al. [20]

were obtained from the GitHub repository associated with Calagaro et al. [38]. For

sample-level inference, we assessed power as the fraction of supragingival samples

where aerobic microbes are significantly enriched. For population-level inference,

power is the fraction of sets representing genus level taxonomic assignments that

were significant across subsite labels.

In addition to statistical power, we also assessed phenotype relevance through

evaluating whether highly ranked sets based on CBEA scores are more likely to be

enriched according to the ground truth. This is represented by the area under the

receiving operator curve (AUROC/AUC) scores computed on CBEA scores against

true labels (similar approach was used to evaluate VAM [95]). DeLong 95% confidence

intervals for AUROC [67] were obtained for each estimate.
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3.4.3. Disease Prediction

CBEA scores can also be used for downstream analyses such as disease prediction

tasks. We utilized two data sets for this evaluation:

(a) Whole genome sequencing of stool samples from inflammatory bowel disease

(IBD) patients in the MetaHIT consortium [225]. This data set contains 396

samples from a cohort of European adults, where 195 adults were classified as

having IBD (which includes patients diagnosed with either ulcerative colitis or

Crohn’s disease). We processed this data by removing all samples with less

than 1,000 total read counts as well as any OTU that was present (with non-

zero proportions) in 10% of the samples or less. Prior to model fitting, we

back-transformed relative abundances into count data (to align the format with

our 16S rRNA gene sequencing data set) using the provided total number of

reads aligned to MetaPhlan marker genes (per sample).

(b) 16S rRNA gene sequencing of stool samples from IBD patients in the RISK

cohort [101]. This data set contains 16S rRNA gene sequencing samples from a

cohort of pediatric patients (ages < 17) from the RISK cohort enrolled in the

United States and Canada. Of the 671 samples obtained, 500 samples belong

to patients with IBD. We processed this data set by removing all samples with

less than 1,000 total read counts as well as any OTU that was present (at least

1 count) in 10% of the samples or less.

We evaluate disease prediction performance by fitting a random forest model [33]

using as inputs CBEA scores to classify samples of patients with IBD and healthy

controls. Random forest was chosen as a baseline learner due to its flexibility as an

out-of-the-box model that is easy to fit. In this instance we evaluated predictive per-

formance of a default random forest model (without hyperparameter tuning) AUROC
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after 10-fold cross validation. Additionally, we utilized SMOTE to correct for class

imbalances [47]. Implementation was done using the tidymodels suite of packages

[152].

3.4.4. Comparison Methods

We benchmarked the statistical properties of CBEA against existing baseline ap-

proaches. For sample-level inference analyses, utilized the Wilcoxon rank-sum test,

which non-parametrically tests the difference in mean counts between taxa from a

pre-defined set and its remainder similar to CBEA. For assessments at the popu-

lation level, we compared CBEA against performing a standard test for differential

abundance with set-level features generated via element-wise summations instead.

We chose DESeq2 [177] and corncob [191] because they represent both methods ex-

trapolated from RNA-seq [197] and those developed specifically for microbiome data.

Since disease prediction models and rankings-based phenotype relevance analyses

seek to evaluate the informativeness of CBEA scores instead of relying on comput-

ing p-values, we compared performance against other single sample based approaches

from the gene set testing literature, specifically ssGSEA [17] and GSVA [111]. Ad-

ditionally, for evaluating prediction, we also compared performance against a stan-

dard analysis plan where inputs are count-aggregated sets with the centered log-ratio

(CLR) transformation.

Section 3.5

Results

In this section, we present results for evaluating statistical significance, phenotype

relevance, and predictive performance. In addition to real data, we also evaluated

models based on parametric simulations, where results can be found in the Supple-
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mental Materials.

3.5.1. Statistical Significance

Inference at the sample level. CBEA provides significance testing at the sample

level through a self-contained competitive null hypothesis. Generating random sets

approximate the global null setting where within each sample, sets generated by

randomly sampling taxa should not be significantly more enriched than remainder

taxa.
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Figure 3.2: Random taxa set analyses for inference at the sample level of CBEA
under different parametric assumptions compared against a Wilcoxon rank-sum test.
Type I error (y-axis) was evaluated by generating random sets of different sizes (x -
axis) (500 replications per size) and computing the fraction of samples where the set
was found to be significantly enriched at α = 0.05. Error bars represent the mean type
I error ± sample standard error computed across 500 replications of the experiment.
Only the unadjusted CBEA with the mixture normal distribution and the Wilcoxon
rank sum test were able to control for type I error at 0.05. All approaches are invariant
to set sizes.

Fig 3.2 demonstrates type I error of sample-level inference evaluated using the
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random set approach. The Wilcoxon rank sum test and unadjusted CBEA under

mixture normal assumption demonstrated good type I error control at the appropriate

α level. This fits with our expectations since the mixture normal distribution has a

much better fit than the normal distribution especially at the tails of the empirical

distribution (Fig 3.1). However, other variants of CBEA demonstrated inflated type

I error, especially correlation adjusted variants compared to their unadjusted counter

parts. Encouragingly, all methods demonstrate consistent performance across all set

sizes, with a slight increase in type I error at the highest levels.

Interestingly, simulation results (Fig C.1) showed an opposite pattern. Adjusted

approaches were good at controlling for type I error, especially under the low inter-

taxa correlation values within the set (similar to generating random sets where the

natural correlation structure is disrupted). In these simulations, unadjusted ap-

proaches and the Wilcoxon rank sum test had significant type I error inflation with

increasing correlation. All approaches seem to be invariant to the level of data spar-

sity.

Inference at the population level. Similar to other single sample approaches to

gene set testing such as GSVA [111], we can perform inference at the population level

by utilizing a two-sample difference in means test. Here, we evaluate using CBEA

scores generated under different settings with Welch’s t-test in a supervised manner

to assess whether a set is enriched across case/control status.

Fig 3.3 shows results for this scenario using both random sample label and random

set evaluations. The random sample label approach (Fig 3.3A) provides a controlled

setting where we can estimate type I error rate controlled at α = 0.05. Across all

replications, CBEA methods were able to control for type I error at the nominal

threshold of 0.05, with CBEA raw scores being the most performant. Neither output

types, correlation adjustment, nor distributional assumption improved performance
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Figure 3.3: Random sample label (A) and random set (B) analyses for population
level inference. (A) Type I error (x -axis) was estimated as the overall fraction of
sets found to be enriched α = 0.05 using randomly generated sample labels (500
permutations). Error bars represent the mean type I error ± sample standard error.
(B) Proportion of significant sets (y-axis) using 100 randomly generated sets of dif-
ferent set sizes (x -axis). Confidence intervals computed using Agresti-Couli method
for binomial proportions. For sample label permutation (A), all CBEA approaches
were able to control for type I error but not for corncob and DESeq2. For random
set analyses (B), all approaches demonstrate similar rate of accepting significant sets
and were invariant to overall set size.
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values. Surprisingly, DESeq2 and corncob both exhibit significantly inflated type I

error.

We also assessed the impact of set-size on the inference procedure by testing

for enrichment using the original sample labels but with randomly sampled sets of

different sizes (Fig 3.3B). Overall we observed very similar values across CBEA as

well as corncob and DESeq2, suggesting that no individual method is systematically

identifying too many significant sets. Additionally, similar to analogous analyses at

the sample level, no approach was significantly sensitive to changes in set sizes.

3.5.2. Phenotype Relevance
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Figure 3.4: Statistical power (A) and score rankings (B) to assess phenotype rele-
vance. (A) Power (x -axis) was estimated as the overall fraction of aerobic microbes
found to be enriched in supragingival samples at α = 0.05. 95% confidence intervals
were computed using the Agresti-Couli approach for binomial proportions. (B) Score
rankings were evaluated by comparing computed scores against true values using AU-
ROC (x -axis). DeLong 95 % confidence intervals for AUROC were computed.
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Inference at the sample level. In Fig 3.4, we evaluate whether sets found to

be significant by CBEA are relevant to the phenotype of interest. We leveraged the

gingival data set as stated in Evaluation section where we know beforehand that

aerobic microbes are more likely to be enriched in supragingival subsite samples and

vice versa.

We estimated statistical power using this data set as the fraction of supragingival

samples where the set representing aerobic microbes were significantly enriched. We

observed that adjusted CBEA approaches demonstrate much lower power compared

to the Wilcoxon rank-sum test and unadjusted variants. This is surprising given the

fact that in statistical significance analyses, the adjusted CBEA approach provides

inflated type I error, especially if the normal distribution assumption was chosen,

which indicates a mismatch in estimating the null distribution since a high type I

error did not result in increased power.

We also evaluated phenotype relevance by assessing whether enriched sets accord-

ing to ground truth are preferentially ranked higher using assigned continuous scores

(instead of performing a hypothesis test). This aspect is captured through computing

AUROC values comparing computed enrichment scores and true labels. Consistent

with the previous type I error evaluation, adjusting for correlation did not improve

performance, where obtained AUROC were around 0.5 and at the same level as the

benchmark Wilcoxon rank sum statistic. Unadjusted methods were much better at

ranking true enriched sets, however the mean AUROC values are lower than alternate

single sample enrichment methods (GSVA [111] and ssGSEA [17]) even though this

difference is not significant due to overlapping confidence intervals.

The above results were replicated in simulation studies where we observed that ad-

justed approaches were very conservative and demonstrated significantly lower power

(Fig C.3) with increasing correlation even at the highest evaluated effect sizes. When
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assessing score rankings, the performance of CBEA was closer to ssGSEA and GSVA

compared to real data evaluations, however all single sample approaches were much

better than using the W statistic from the Wilcoxon Rank Sum test.
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Figure 3.5: Statistical power to assess phenotype relevance of inference tasks at
the population level. Power (x -axis) was estimated as the overall fraction of sets
representing genera that are aerobic or anaerobic microbes found to be differentially
enriched across sample type (supragingival or subgingival). 95% confidence intervals
were computed using the Agresti-Couli approach for binomial proportions.

Inference at the population level. We also assessed statistical power for pop-

ulation level inference scenarios using a similar approach. Here, enrichment scores

for sets representing all identified genera were computed, and power was estimated

as the fraction of sets found to be differentially enriched across sample site labels

(supragingival or subgingival). We compared these results against performing a dif-

ferential abundance test of genus level features generated via sum-based approaches.

Results are shown in Fig 3.5. Some CBEA variants, such as CDF outputs for the mix-

ture normal distributional assumption, did not correctly detect as many significant

sets as DESeq2 or corncob despite very close performance values. Using raw CBEA
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scores was best approach, however it did not exceed values obtained from DESeq2

and corncob.

3.5.3. Disease Prediction

Since CBEA can generate informative scores that can discriminate between samples

with inflated counts for a set (Fig 3.4), we wanted to assess whether they can also

act as useful inputs to predictive models. In this section we assessed the predictive

performance of a standard baseline random forest model [33] with different single

sample enrichment scoring methods as inputs (CBEA, ssGSEA, and GSVA). Addi-

tionally, we also compared predictive performance of using these scores against the

a standard approach of using the centered log ratio transformation (CLR) on taxon

sets aggregated via abundance summations.

We fit our model to two data sets with a similar disease classification task of

discriminating patients who were diagnosed with IBD (includes both Crohn’s disease

and ulcerative colitis) using only microbiome taxonomic composition. The two data

sets represent different microbiome sequencing aprpaoches: the Gevers et al. [101]

data set uses 16S rRNA gene sequencing, while the Nielsen et al [225] data set uses

whole genome shotgun sequencing.

Fig 3.6 illustrates the performance of our model with AUROC as the evaluation

criteria. In the 16S rRNA data set, the best performing CBEA variant (CDF val-

ues computed from an unadjusted mixture normal distribution) outperforms both

GSVA and ssGSEA but not the standard CLR approach. Interestingly, in the whole

genome sequencing data set, CBEA outperforms CLR, but was similar in perfor-

mance to GSVA. However, due to large confidence intervals, no method significantly

out-performed other evaluated approaches. As such, these results indicate that, for a

given pre-determined collection of sets, CBEA generated scores are can be informa-

tive and provide competitive performance when acting as inputs to disease predictive
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Figure 3.6: Predictive performance of a naive random forest model trained on
CBEA, ssGSEA, GSVA generated scores as well as the standard CLR approach on
predicting patients with inflammatory bowel disease versus controls using genus level
taxonomic profiles. Data sets used span both 16S rRNA gene sequencing (Gevers
et al. [101]) and whole-genome shotgun sequencing (Nielsen et al. [225]). CBEA
performs better than GSVA and ssGSEA but not as well as CLR, with the exception
of the whole genome sequencing data set.

models. Simulation studies (Fig C.5) showed similar results, however CBEA more

consistently underperformed compared to CLR across all scenarios. Interestingly, the

performance gap decreases with increasing sparsity levels and correlation.
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Section 3.6

Discussion

3.6.1. Inference with CBEA

CBEA is a microbiome-specific approach to generate sample specific enrichment scores

for taxonomic sets defined a priori. The formulation of CBEA as a comparison

between taxa within the set and its complement corresponds to the competitive null

hypothesis in the gene set testing literature [283]. Since this null hypothesis is self-

contained per sample, this allows users perform enrichment testing at the sample

level. Additionally, in combination with a difference in means test, CBEA can also

test for enrichment at the population level across case/control status similar to GSVA

[111].

For single-sample analyses, we demonstrated that the CBEA approach (unad-

justed with mixture normal parametric assumption) was able to control for type I

error at the nominal level of 0.05 under the global null (Fig 3.2) while also demon-

strating adequate power (Fig 3.4). This performance is consistent across different

set sizes as well as our prior distributional fit analyses (Fig 3.1), where the mixture

normal displayed superior fit to the null distribution. Unfortunately, other variants of

CBEA demonstrated neither good type I error control nor power. Interestingly, while

the adjusted methods showed poor performance in real data evaluations (Fig 3.2), in

simulation studies (Fig C.1, Fig C.3) these approaches were able to control for type I

error well with the trade-off of much lower power. For the population-level inference

task, CBEA also performed very well. Under the permutation global null, represent-

ing genera abundance using CBEA scores in combination with Welch’s t-test controls

for type I error at the correct α threshold while also keeping respectable power. Since

the population level enrichment test is equivalent to a differential abundance test
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using set-based features, we compared the CBEA approach against using element-

wise summations with corncob [191] and DESeq2 [177] to test for set-level differential

abundance. We chose DESeq2 because it is an older approach from the bulk RNA-

seq literature that has strong support for usage in microbiome taxonomic data [197].

Alternately, corncob is a newer method developed specifically for microbiome taxo-

nomic data sets, where taxonomic counts are modeled directly using a beta-binomial

distribution instead of relying on normalization via size factor estimation. We ob-

served that using this approach resulted in an inflated type I error compared to all

variants of CBEA (Fig 3.2), yet did not improve power (Fig 3.4). Results for CBEA

approaches were replicated in simulation analyses, however for corncob and DESeq2

we observed an opposite effect: in simulation experiments, both methods show good

type I error control but low power (Fig C.2, Fig C.4).

We hypothesized that the discrepancy between simulation and real data evalua-

tions could be due to differences in our assumptions regarding the data generating

process that informed our simulation schema. For the non-zero component of each

taxon, we sampled from the same negative binomial distribution where designated

enriched taxa were generated with inflated means (but the same dispersion). These

marginals were simulated to account for block exchangable correlation within the

enriched set only. This might have affected our results in two ways. First, our sim-

ulation scenario ensures that all designated non-enriched taxa are identical to each

other. This is not the case for real data, where our null scenario involves randomly

sampled sets that might by chance all have taxa with inflated means compared to

remainder taxa. This is represented in Fig C.7, where the distribution of type I

error across 500 replications is right skewed for underperforming CBEA variants, in-

dicating that these approaches are much more sensitive compared to the Wilcoxon

rank sum test or unadjusted CBEA with mixture normal distribution. Second, as
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described in the Background section, we did not consider taxon-specific biases that

distort the observed relative abundance of taxa compared to true values [195]. In the

context of sum-based aggregations, the resulting bias of the aggregated taxon-set is

dependent on the relative abundances of the contributing taxa (Appendix I in [195]).

Conceptually, this means that measurement error for a taxon-set is different across

samples as relative abundance of contributing taxa changes, leading to issues when

attempting to perform inference. As such, we expect methods like corncob or DESeq2

when performed on such sum aggregates in the presence of taxon-specific biases to

have inflated type I error compared to our multiplication based approach. This also

explains why conversely in simulation studies, where taxon-specific biases are absent,

corncob and DESeq2 performed better.

3.6.2. Downstream analysis using predictive models

The sample-level enrichment scores generated by the CBEA method can be used in

downstream analyses such as disease prediction. We evaluated whether CBEA can

be used to generate set-based features for disease prediction models. We fit a basic

random forest model [33] to predict continuous and binary outcomes using CBEA gen-

erated scores as inputs. Similar to our inference analysis, we compared CBEA against

both ssGSEA and GSVA. Additionally, we also evaluated CBEA with the approach

where counts of a set were aggregated using sums and applied the centered log-ratio

transformation (CLR). This is because CLR is considered standard practice in using

microbiome variables as predictors for a model [104]. Results showed that CBEA

generate scores perform well across both real data and simulation scenarios. Since

predictive models consider the effect of variables jointly (and in the case of random

forest, consider interactions as well), good performance indicates that CBEA scores

can capture joint distribution of sets, enabling both uniset and multi-set type anal-

yses. Comparatively, CBEA generated scores outperformed other enrichment score
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methods (GSVA and ssGSEA), suggesting that it is more tailored for microbiome

taxonomic data sets. This is consistent with our sample ranking analysis (Fig 3.4),

where CBEA scores are on average more informative when used to rank samples based

on their propensity to have inflated counts. However, CBEA did not outperform the

CLR approach across our simulation studies, and only marginally performed better in

the real data analysis with WGS data. Fortunately, in simulation studies, this perfor-

mance gap between CLR and CBEA decreases with higher sparsity and correlation,

especially in low effect saturation scenarios.

3.6.3. Limitations and future directions

These above results demonstrate the applicability of CBEA under different data anal-

ysis scenarios. If researchers are interested in performing inference, they can decide

between an unsupervised sample level approach (i.e. screen samples for enrichment

of certain characteristics) or a supervised population level approach (i.e. identifying

characteristics that are differentially abundant across case/control status). For the

unsupervised approach, utilizing the unadjusted CBEA with the mixture normal dis-

tribution provides a good initial starting point. In the case where researchers only

want to screen samples with mean-inflated taxon sets (instead of additionally detect-

ing taxon sets with increased correlation), they can apply the adjusted approach,

which can be effective at conserving type I error even for high correlation scenarios.

However, the trade off for this adjustment is power, which decreases with increas-

ing correlation. For the supervised analysis, all CBEA variants control for type I

error and provide adequate statistical power. However, using raw CBEA scores with

difference-in-means test such as Welch’s t-test is preferable since is the least com-

putationally expensive (no estimation process) while still outperforming the use of a

sum-based approach with a standard differential abundance test. Beyond inference,

CBEA scores are flexible and can be useful for downstream analysis. We demon-
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strated that for a given number of set-based features, CBEA can produce informative

scores that contribute to competitive performance of prediction models even in low

signal-to-noise ratios with high inter-taxa correlation and sparsity. This is especially

true for whole genome sequencing data sets, where CBEA outperfrorms the standard

approach of applying a CLR transformation. Researchers might find CBEA useful

under situations of high sparsity and inter-taxa correlation, or if the property of a sin-

gular covariance matrix (a byproduct of the CLR transformation [104]) is undesired.

Even though we only evaluated prediction models, researchers can benchmark their

own usage of CBEA for other downstream tasks such as sample ordination. However,

there are various limitations to our evaluation of CBEA. First, our simulation analysis

may not capture the appropriate data-generating distributions underlying microbiome

taxonomic data. There is strong evidence to suggest that our zero-inflated negative

binomial distribution is representative [39], however other distributions such as the

Dirichlet multinomial distribution [322] have been used in the evaluation of prior stud-

ies. More recent studies have suggested utilizing the hierarchical multinomial logistic

normal distribution to model microbiome data sets [214, 181]. As such, there is space

to evaluate and adapt CBEA to these different distributional assumptions that under-

lie the data generating process. Second, we were not able to evaluate the phenotype

relevance of enrichment results as in Geistlinger et al. [100] due to limited consistent

annotations for microbiome signatures in health and disease, especially those that

are experimentally verified (and not just from differential abundance studies). We

attempted to perform this evaluation by leveraging the gingival data set similar to

[39]. However, we acknowledge that this is not a perfect solution, since the oxygen

usage label of each microbe in the data set is only available at the genus level, and the

difference in counts for obligate aerobes and anaerobes across the supragingival and

subgingival sites might not be as clear cut. As such, results from power analyses using
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this data set is only relative between the comparison methods and cannot be treated

as absolute measures of power or phenotype relevance. Third, fitting the mixture

normal distribution to raw CBEA scores using the expectation-maximization algo-

rithm is difficult, as the convergence rate is slow when there is high overlap between

the mixtures, resulting in small mixing coefficient for one of the components and

increased runtime (FigC.6) [218]. In our implementation, we attempted to account

for this by increasing the maximum number of iterations and relaxed the tolerance

threshold. Finally, we assumed that taxa within a set are all equally associated with

the outcome. This limits our ability to evaluate the performance of CBEA when only

a small number of taxa within the set is associated with the outcome, or if there are

variability in effect sizes or association direction of taxa within a set.

Our evaluation also showed various drawbacks of the CBEA method itself. First,

inference with CBEA at the sample level is limited, and can be affected by inter-taxa

correlation if users wish to only detect mean-inflated sets. Second, for downstream

analyses, CBEA might not always perform better than competing methods, espe-

cially when being used to generate inputs to predictive models. We hypothesized

that this might be due to the lack of fit for the underlying null distribution in high

correlation settings, especially the identifiability problem associated the estimation

procedure associated with adjusting the mixture normal distribution. As such, we

hope to refine the null distribution estimating procedure by either choosing a better

distributional form, or to further constrain the optimization procedure of the mixture

normal distribution by fixing the third and fourth moments.

In addition, CBEA itself did not consider other aspects of microbiome data. First,

across all analyses, we relied on adding a pseudocount to ensure log operations are

valid. Users can directly address this by incorporating model-based zero correction

methods prior to modelling such as in [192] or [135]. However, in our simulation stud-
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ies, sparsity seems to not have a significant impact on the overall performance of our

approach. Second, CBEA also treated all taxa within the set as equally contribut-

ing to the set. Incorporation of taxa-specific weights (similar to PhILR [272]) could

reduce the influence of outliers, such as rare or highly invariant taxa. Finally, even

though for a given set of a priori annotations CBEA can generate useful summary

scores, such values are limited in their utility if the annotations themselves are not

meaningful. As such, curating and validating sets (similar to MSigDB [276]) based

on physiological or genomic characteristics of microbes [308] or their association with

human disease (in beta BugSigDB https://bugsigdb.org/Main_Page) can allow for

incorporating functional insights into microbiome-outcome analyses.

Section 3.7

Conclusion

Gene set testing, or pathway analysis, is an important tool in the analysis of high-

dimensional genomics data sets; however, limited work has been done developing set

based methods specifically for microbiome relative abundance data. We introduced

a new microbiome-specific method to generate set-based enrichment scores at the

sample level. We demonstrated that our method can control for type I error for

significance testing at the sample level, while generated scores are also valid inputs

in downstream analyses, including disease prediction and differential abundance.

Section 3.8

Availability of data and materials

All data sets are available publically via Qiita, HMP16SData, and curatedMetagenomicData

with raw sequence data available on NCBI in their respective project repositories. All

analysis scripts and generated figures are available on GitHub (https://www.github.
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Chapter 4

Evaluating trait databases for

taxon set enrichment analysis

This chapter was submitted as a pre-print on bioRxiv and can be found here:

Nguyen, Q.P., Hoen, A.G., Frost, H.R. Evaluating trait-based sets for taxonomic

enrichment analysis applied to human microbiome data sets. bioRxiv. https://doi.

org/10.1101/2022.05.16.492155

Section 4.1

Abstract

Background Set-based pathway analysis is a powerful tool that allows researchers

to summarize complex genomic variables in the form of biologically interpretable sets.

Since the microbiome is characterized by a high degree of inter-individual variability

in taxonomic compositions, applying enrichment methods using functionally driven

taxon sets can increase both the reproducibility and interpretability of microbiome

association studies. However, there is still an open question of which knowledge base

to utilize for set construction. Here, we evaluate microbial trait databases, which
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aggregate experimentally determined microbial phenotypes, as a potential avenue for

meaningful construction of taxon sets.

Methods Using publicly available microbiome sequencing data sets (both 16S rRNA

gene metabarcoding and whole-genome metagenomics), we assessed these trait-based

sets on two criteria: first, do they cover the diversity of microbes obtained from a

typical data set, and second, do they confer additional predictive power on disease

prediction tasks when assessed against measured pathway abundances and PICRUSt2

prediction.

Results Trait annotations are well annotated to a small number but most abun-

dant taxa within the community, concordant with the concept of the core-peripheral

microbiome. This pattern is consistent across all categories of traits and body-sites

for whole genome sequencing data, but much more heterogenous and inconsistent in

16S rRNA metabarcoding data due to difficulties in assigning species-level traits to

genus. However, trait-set features are well predictive of disease outcomes compared

against predicted and measured pathway abundances. Most importantly trait-set fea-

tures are more interpreable and reveal interesting insights on the relationship between

microbiome, its function, and health outcomes.

Section 4.2

Introduction

Advancements in high-throughout sequencing technologies have allowed researchers

to characterize the identity and functional potential of a large proportion of mi-

croorganisms in human-associated microbiomes. This has enabled efficient study of

the link between health outcomes and the microbiota without reliance on currently

limited culture-based approaches [154]. As such, there has been an increase in micro-

biome profiling studies, primarily aiming towards identifying specific microbes that
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are differentially abundant between groups of individuals defined by an exposure or

disease state vs a control population [340]. However, such analyses face unique com-

putational and statistical challenges [166], which includes addressing the burden of

multiple testing and providing meaningful biological interpretations.

The challenge of understanding results of microbiome analyses in a broader context

of biological systems mirrors that of other high-throughput data sets. One approach

that has proven to be fruitful in human genomic studies is gene set testing (or pathway

analysis) which focuses on analyzing the coordinated expression of groups of genes

(termed gene sets or pathways) [186]. From a statistical perspective, set-based statis-

tics are are more reproducible and have greater power compared to their gene-level

counterparts [105]. The true benefit of set-based approaches, however, is the ability

to incorporate a priori knowledge of specific cellular processes [170]. Microbiome

differential abundance analyses can also benefit from set-based approaches instead

of a microbe-centric approach. In addition to statistical benefits such as reduced di-

mensionality and sparsity [223, 148], set-based approaches are also more reflective of

the underlying biology. Like genes, microbes act in concert with co-abundant part-

ners to drive biochemical processes that interact with the host, thereby impacting

health outcomes [326]. For example, when comparing patients with inflammatory

bowel disease against healthy subjects, microbes thought to be disease-causing for in-

flammatory bowel disease were also strongly co-occurring [101], suggesting that they

might jointly contribute to the microbiome-disease causal pathway instead of acting as

independent factors. This is also represented in the development of therapies, where

products often contain multiple strains of bacteria [25, 75]. Furthermore, organizing

microbes into functionally-driven groups (also termed “guilds” [326]) is also congruent

with the perspective that human microbiomes are complex ecosystems whose proper-

ties emerge from localized interactions between microbial communities representing
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individuals that exploit and contribute to their environment in similar ways [87].

Unfortunately, there is currently limited research in curating and evaluating ap-

propriate microbe annotations similar to the transcriptomic literature. Reposito-

ries like the Molecular Signatures Database (MSigDB) [170] aggregate information

about gene function across multiple sources, incorporating both laboratory results

and computational inferences. Even though similar databases such as Disbiome [129]

and MSEA [148] exist, they are usually human-centric and define microbial groups

based on their potential to be pathological rather than through common biochemical

roles. As such, these databases are limited in generating meaningful hypotheses link-

ing taxonomic changes to ecosystem function especially in novel disease conditions.

Trait-based analysis [308, 26, 184], with its long history in traditional macroeco-

logical studies [87, 149], is a promising approach to address this gap. Traits directly

represent microbial physiological characteristics and metabolic phenotypes (for exam-

ple, sulfur reduction, nitrate utilization, or gram positivity) and therefore can serve

as annotations for potential ecosystem function. For 16S rRNA gene sequencing

data sets, where one can only obtain taxonomic abundances, performing enrichment

analysis on trait-based sets can elucidate the taxa-function relationship and iden-

tify microbial processes that are differentially active between healthy and diseased

patients. For whole genome metagenomic data sets, traits still offer unique perspec-

tives. First, traits are often sourced from the long history of laboratory experiments

such as journal articles and Bergey’s Manual of Systematic Archaea and Bacteria

[285] which is different from homology-based sequence queries typically performed to

profile gene family abundances. Second, traits are complex phenotypes that represent

multiple molecular pathways, which means that they are more comparable to higher-

order pathway annotations in hierarchical databases such as Kyoto Encyclopedia of

Genes and Genomes (KEGG) [134] and MetaCyc [45]. As such, utilizing traits as
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the source to group microbes into functional and phenotypical categories can assist in

interpreting microbiome profiling studies, and generating mechanistically meaningful

hypotheses that link ecosystem function and its taxa.

Even though trait-based approaches have been utilized in various studies [308,

26, 107, 149], to our knowledge there is currently no effort to formalize trait-based

databases in terms of microbial sets and evaluate their utility in a typical enrichment

analysis of 16s rRNA metabarcoding or metagenomic data. Here, we constructed

taxon sets from pre-existing trait databases at both the species and genus level.

Then, we computed the coverage of these traits across different human-associated

environments and sequencing approaches. Finally, we evaluated whether trait-based

set features confer predictive capacity for diseased individuals compared to measured

(from whole genome sequencing data) and predicted (from PICRUSt2 [73]) pathway

abundances. Finally, we identified the most important features for prediction and

assessed whether they matched existing literature on the microbiome-disease rela-

tionship of interest.

Section 4.3

Material and methods

All analyses were performed in the R programming language (version 4.1.2) [251]

and the Python programming language (version 3.10.4). All graphics were generated

using ggplot2 [311], ggsci [328], patchwork [234]. Tabular data manipulation was

performed using pandas for python, and tidyverse [310] suite of packages for R.

Additional packages utilized include: BiocSet [209], taxizedb [46], phyloseq [196],

TreeSummarizedExperiment [119]. For enrichment analyses, we leveraged the CBEA

[223] method (version 1.0.1) developed previously by our lab. All analyses were per-

formed using the snakemake workflow [204]. All reproducible code and intermediate
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analysis products can be found on GitHub (https://www.github.com/qpmnguyen/

microbe_set_trait).

4.3.1. Generating taxonomic sets from trait databases

We utilized pre-compiled trait databases from previous publications: Madin et al.

2020 [184] and Weissman et al. 2021 [308]. The former was chosen due to the fact

that it is the most comprehensive compilation of microbial (bacteria and archaea)

physiological traits based on existing sources to date. The latter is a newer database

that hand curates traits specifically for human microbiomes based on Bergey’s man-

ual. Both of these databases source their trait assignments primarily from biochem-

ical and microbiological laboratory experiments over genomic-based annotation. We

focused our analyses on categorical traits, namely metabolism, gram stain, enzy-

matic pathways, sporulation, motility, cellular shape, and substrate utilization. We

are particularly interested in traits belonging to the class of enzymatic pathways

and substrate utilization as they represent functions that most directly impact the

microbe-host relationship [295].

We combined both databases into a joint knowledge base and constructed sets

for each available categorical trait. Additionally for the Madin et al. database, we

updated data entries sourced from Genomes Online Database (GOLD) [216] due to

the fact that compared to other compiled sources, GOLD is continuously updated

via community submissions. We grouped all traits belonging to the same National

Center for Biotechnology Information (NCBI) species-level identifier. When there

are conflicts in assigning traits, we prioritized Weissman et al. over Madin et al.

and GOLD due to its hand curated nature. If there are ambiguities in taxonomic

assignment in the Weissman et al. source, we considered that trait to be missing.

The exceptions to the above logic are enzymatic pathways and substrate utilization

categories where trait values across sources for the same species are concatenated
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instead of reconciled. For example, if a species A has entries from multiple databases

suggesting the presence of “nitrogen degredation” and “ammonia degredation”, then

instead of attempting to chose the best annotation based on source we assumed that

species A has the capacity to metabolize both nitrogen and ammonia.

All traits are defined at the species level via NCBI identifiers, however, due to

restrictions for 16S rRNA gene sequencing data sets to resolve beyond the genus level

[132], we also assigned traits to each genus based on a two-step process for each major

trait category:

• A hypergeometric test is used to ascertain whether the genus is underrepre-

sented in the database based on the total number of species assigned to that

genus in NCBI Taxonomy [264] compared to our trait database. If a genus

is underrepresented in our database (i.e. the proportion of species number of

genera in the database is significantly less than what one would expect if one

were to randomly draw species from the NCBI database), then the trait is not

assigned to that genus since we do not have enough information. Specifically,

we assessed P (X ≤ x) at α = 0.05 where X ∼ Hypergeometric(k,N,K), with

x as the total number of species assigned to that genus in the database with an

assigned value for the trait category of interest, k as the total number of species

in the database with an assigned value for the trait category, N as the total

number of species in NCBI Taxonomy, and K as the total number of species

assigned to the genus in NCBI Taxonomy.

• For all genera that are well represented in the database, we then assessed the

proportion of species under that genus that have the trait. If over 95% of species

of a given genus have the trait, then the trait is assigned to the genus.

We then defined trait-based sets using the aforementioned assignments. Each trait

value with a category, e.g. “obligate anaerobic” from the category “metabolism”, is
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defined as a set with elements representing the species (or genus) annotated to that

trait value. In the analysis stage, each identified taxon within a data set is matched

to a trait based on their NCBI identifier. For 16S rRNA gene metabarcoding data

sets, we matched all amplicon sequence variants (ASV) with traits belonging to the

genus level NCBI identifier matched to the ASV sequence. All processed databases

and resulting taxonomic sets can be found on GitHub in the analysis repository.

4.3.2. Evaluation data sets

We evaluated trait-based sets on publicly available 16S rRNA gene metabarcoding

and whole-genome metagenomic data sets. For study-specific metabarcoding data

sets, we obtained data directly from associated European Nucleotide Archive (ENA)

repositories and re-processed raw sequence files into ASV tables using the dada2

QIIME 2 (version 2022.2) plugin [40, 31]. Taxonomic classification was performed

using a pre-trained weighted naive bayes model [29, 133] using the SILVA NR 99

database version 138 [247] available via QIIME 2. For all our metagenomic data

sets, we downloaded taxonomic and pathway abundance tables directly from the

curatedMetagenomicData R package [231] (2021-10-19 snapshot), which processed

the data via the bioBakery [19] metagenomic data processing pipeline by the package

authors. Data from the Human Microbiome Project (HMP) was obtained using the

HMP16SData [262] (for metabarcoding data) and curatedMetagenomicData [231] (for

metagenomic data) R packages.

To assess trait annotation coverage, we utilized data from both Phase I and II of

the HMP [59] as it contains surveys for multiple human-associated environments from

healthy subjects. For predictive and concordance analyses, we focused on colorectal

cancer (CRC) and inflammatory bowel disease (IBD) as study conditions. Both CRC

and IBD are well represented across both metabarcoding and metagenomic data sets,

allowing comparisons across sequencing methodology. Furthermore, these conditions
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are also under active study within the microbiome literature, which improves the

ability to interpret the biological significance of the results. For CRC, we utilized

data from Zeller et al. [337], Feng et al. [88], Gupta et al. [108], Hannigan et al.

[110], Thomas et al. [279], Vogtmann et al. [296], Wirbel et al. [315], Yachida et

al. [331], and Yu et al. [336]. For IBD, we utilized data from the integrative HMP

[245], Gevers et al. [101], Hall et al. [109], Ijaz et al. [123], Li et al. [167], Nielsen

et al. [225], and Vich Vila et al. [294]. A detailed description of each data set and

data-processing procedures is available in the Supplementary Materials.

4.3.3. Coverage analysis

In this analysis, we sought to identify how well trait databases cover the taxonomic

diversity of different human-associated environments. We leveraged healthy samples

from multiple body sites from Phase I and II of the HMP [59]. We quantified coverage

as a per-sample measure considering both taxa absence/presence and its abundance.

• For each sample, we computed the proportion of taxa that is present (non-zero

counts) assigned to at least one trait (a sample-level trait-specific richness).

• For each sample, we computed the proportion of reads assigned to taxa that is

present and annotated to at least one trait (a sample-level trait-specific even-

ness).

In addition to coverage stratified by trait categories and body sites, we also gen-

erated category-specific and site-specific coverage values by averaging across all sites

or categories, respectively.

4.3.4. Prediction analysis

We also aimed to evaluate whether trait-based features can add information for

microbiome-based disease prediction compared to other data inputs. Here, we gen-
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erated sample-level enrichment scores for each trait using CBEA and utilized them

as inputs to a standard random forest model [33]. Model fitting was done using

scikit-learn [235] where all parameters were set to default values with the excep-

tion of the total number of trees per ensemble (500) and the total number of features

considered per split (equal to the square root of the total number of features). We

compared model performance using trait enrichment scores against measured and PI-

CRUSt2 predicted pathway abundances (for metagenomic and metabarcoding data

sets, respectively).

Model performance was measured using the area under the receiver operating

characteristic curve (AUROC) and Brier scores [34]. These metrics and associated

confidence intervals were obtained by fitting and evaluating the model via a 10-fold

cross-validation procedure. To obtain calibrated predictive probabilities for Brier

scores, we applied Platt’s method (using CalibratedClassifierCV) with 5-fold cross

validation nested within the training fold and used the ensemble model to generate

test set probabilities [242].

In order to identify which features are important to the disease prediction process,

for each input type we re-split the entire data set into train/test splits (80% training

data). We then refitted our calibrated random forest model on the training set as

described above. Since our final model is an ensemble of calibrated random forest

classifiers, we obtained feature importance values as the average across all calibrated

cross validation folds (N = 10). Feature importance per random forest model is de-

fined based on the implementation in scikit-learn as the decrease in Gini impurity

when the feature is split averaged across all decision trees in a forest.
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Section 4.4

Results

4.4.1. Database coverage

We computed the coverage for each trait category across each body site in the HMP

data set. Fig 4.1 illustrates results for species-level trait assignment for samples

profiled via whole genome metagenomics. In panel A, coverage is evaluated as the

total number of taxa present per sample annotated to a trait (a measure of cross-

trait richness), while in panel B coverage is the total number of reads assigned to

taxa annotated to a trait (a measure of cross-trait evenness). Richness provides

a general overview on how many members of a community is assigned to a trait,

while evenness accounts for their relative abundances by up-weighting species that

have high abundance across all samples. Overall, for any body site, at most 25% of

taxa are assigned to a trait, but when considering the proportion of reads, coverage

increased to more than 80%. This shows that traits are usually well annotated to the

most abundant taxa. This pattern holds for samples profiled with 16S rRNA gene

sequencing (Fig D.1), even though the proportions were much lower due to difficulties

in aggregating species level traits to genus. For many body sites and trait category

combinations, traits could not be assigned to any taxa.

We also observed heterogeneity in the annotation coverage across different body

sites and trait categories. For richness, nasal cavity and vaginal body sites were the

lowest in coverage, with less than 5% of taxa annotated with at least one trait across

all trait categories while conversely, oral cavity sites consistently had the highest

coverage under this metric. This pattern was reversed when considering coverage as

the proportion of assigned reads per sample, but overall values were consistently high.

Averaging coverage across body sites (Fig 4.2) also supports this observation, showing
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Figure 4.1: Trait annotation coverage across different body sites for the HMP data
set profiled using whole genome shotgun sequencing. Panel (A) illustrates the propor-
tion of present taxa per sample annotated to at least one trait. Panel (B) illustrates
the proportion of reads assigned to taxa annotated to at least one trait which accounts
for taxa relative abundances. Each plot facet represents different trait categories that
were evaluated. Error bar represents the standard error of the evaluation statistic of
interest across the total number of samples evaluated per body site.

overall that the proportion of reads covered are similar across all body sites despite

differences in the proportion of present taxa covered by trait annotations. Similar

results were observed for sites profiled with 16S rRNA gene sequencing (Fig D.1),

where oral sub-sites have the highest coverage across both richness and evenness

metrics but, on average, all sites were similar in coverage statistics. Surprisingly,

stool samples were low in coverage across multiple categories despite being one of the

well studied systems.
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Figure 4.2: Trait annotation coverage statistics for HMP data across samples pro-
filed with both 16S rRNA gene metabarcoding and whole genome metagenomics.
Panel (A) illustrates coverage statistics for each body site averaged across evaluated
samples and trait categories. Panel (B) illustrates statistics for each trait category
averaged across evaluated samples and body sites.

We also stratified our coverage analyses by trait categories (Fig 4.1, Fig 4.2,

Fig D.1). For samples profiled with whole genome sequencing, all trait categories

are evenly covered, with about 15% - 20% of taxa were annotated to a trait of any

category. However, these taxa comprise around 75% to 100% of the total reads per

sample suggesting that the overall read level coverage is very high. However, in

samples profiled with 16S rRNA gene sequencing, the overall coverage value across
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categories is low. Sporulation, substrate utilization and motility are the most covered

category while pathways and metabolism has no coverage at all.

4.4.2. Predictive analysis

To determine the utility of trait-based sets, we generated enrichment scores for cov-

ered traits using CBEA [223] for evaluated data sets and compared the predictive

performance of using trait-set enrichment scores as inputs compared to alternative

functional-based predictors. We evaluated two disease conditions, CRC and IBD,

with data sets drawn from both 16S rRNA gene metabarcoding and whole genome

metagenomic profiling techniques. We fitted a calibrated random forest model to each

input type and computed predictive performance as AUROC (discriminatory power)

and Brier scores (probability estimates) using 10-fold cross-validation.

For the CRC prediction task, traits covered 2.7% of taxa and 27.3% of reads for

the 16S rRNA gene metabarcoding data set, while for the whole genome sequencing

data set, traits covered 9.1% of taxa and 87.2% of reads. For the IBD prediction task,

traits covered 1.61% of taxa and 26.7% of reads for 16S rRNA gene metabarcoding

data set, while for the whole genome sequencing data set, traits covered 6.6% of taxa

and 91.2% of reads.

Fig 4.3 illustrates results of our model evaluations. Overall, enrichment scores for

trait-sets are as good as other alternate function-based predictors at discriminating

between case and control patients across both CRC and IBD conditions. Aside from

pure discrimination power, models fitted on CBEA trait-set scores are also equivalent

in approximating predicted probabilities. This is surprising especially for the 16S

rRNA gene metabarcoding data sets, where the trait coverage is low. Even though

the differences in performance is not significant, there are instances where trait-set

scores perform slightly better than their pathway abundance counterparts. Since

trait-features are also more descriptive, utilizing them can increase interpretation
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while also not sacrificing performance.
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Figure 4.3: Predictive performance of a calibrated random forest model across dif-
ferent disease conditions, profiling technique, and performance metrics. Scores were
obtained via 10-fold nested cross validation where within each training fold there is a
10-fold cross validation procedure to calibrate predicted probabilities. For each condi-
tion and data type, CBEA trait-set scores were compared against MetaCyc pathway
abundances from relevant sources (measured abundances for whole genome sequenc-
ing data sets and PICRUSt2 predicted abundances for 16S rRNA gene metabarcoding
data sets)

In addition to predicted performance, we also identified the top 10 features that are
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most important for model fitting. Since our model involves a 10-fold cross-validation

procedure within the training set to calibrate predicted probabilities, top features

are identified using the mean feature importance value across the 10 folds. Fig 4.4

illustrates results for whole genome metagenomic data sets while Fig D.2 illustrates

results for the 16S rRNA gene metabarcoding data sets. Even though these are the

top 10 features, the observed mean feature importance statistics are low, suggesting

that no individual features were definitively the most important in discriminating

between patient classes.

Section 4.5

Discussion

4.5.1. Traits are annotated with high coverage at the species-level

We computed the coverage of trait annotation on a typical dataset to understand

the extent in which community function is captured, thereby serving as a proxy for

expected confidence for an enrichment analysis performed using trait-based taxon sets.

Low coverage in this case indicates that the database does not adequately capture

the diversity of microbes found in the target data. This is because there might not

be enough taxa present in the data set to serve as evidence for the trait. Alternately,

this could also mean that the analysis is missing a majority of underlying community

traits, many of which might be core to the health outcome association of interest but

simply missing in the analysis. We computed coverage based on two metrics: first,

a richness-like metric which computes coverage as the proportion of taxa present per

sample annotated to a trait (for a given category and data set); second, an evenness-

like metric that accounts for relative abundances of each annotated taxa by computing

coverage as the proportion of reads per sample annotated to a trait.

When evaluated on the HMP data set (Fig 4.1), we can see that the overall
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Figure 4.4: Top 10 important features based on random forest model fitted different
inputs from data sets profiled with whole genome metagenomics. Features were se-
lected from mean decrease in Gini impurity averaged across 500 decision trees and 10-
fold cross-validation (nested with the training set) as implemented in scikit-learn.
AUROC scored on a held-out test set is also presented for each input type and disease
condition.

richness coverage is low (less than 25% of identified species) across all sites and data

sets, particularly for nasal cavity and vaginal sub-sites. However, when considering
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evenness of coverage, almost all of reads were annotated to a trait. This is consistent

with the observation that relative abundances of human-associated microbiomes are

highly skewed [59], where a small number of species usually dominate the community.

As such, even though traits might only cover a small number of taxa, they might

represent the majority of community abundance. For example, Ravel et al. [253]

observed that Lactobacillus species dominate the vaginal microbiome and, in some

phylotypes, almost all reads are assigned to a single species. This shows that our

trait-database has high degree of coverage across the most abundant taxon within

a community, which supports utilizing these sets to perform exploratory analyses.

However, low richness coverage also indicates that our database might not capture

traits associated with rare taxa, which can play an important role in regulating host

health [292].

Unfortunately, coverage is significantly lower for samples profiled using 16S rRNA

gene metabarcoding (Fig D.1). For some trait categories, such as pathways, no traits

were assigned to any taxa (Fig 4.2). We hypothesized that this is due to two issues.

First, metabarcoding data sets can only resolve taxonomies at the genus level [132],

while traits are usually defined at the species and strain levels. Aggregating consensus

traits to the genus is difficult due to the high degree of strain and species level diversity

within the microbiome [44]. Second, taxonomic assignments for metabarcoding data

sets are often based amplification of a specific hyper-variable region for a marker

gene (most often the 16S rRNA gene). This means that taxonomic assignment can

be sensitive to the choice of region, and can be inaccurate. Furthermore, the choice

of taxonomic database (e.g. Ribosomal Database Project [58], SILVA [247]) can also

play a part in reducing the ability for trait annotation coverage. Differences between

taxonomic paths [16] can result in certain taxa not being able to be matched to traits,

whose annotations are based on NCBI identifiers.
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4.5.2. Trait-set features are predictive of disease outcomes

We assessed the predictive performance of models fit on trait-set enrichment scores

compared to other function-based inputs. For whole genome sequencing data sets,

measured pathway abundances were utilized as a comparison point while for 16S

rRNA gene sequencing data sets, predicted pathway abundances via PICRUSt2 were

utilized instead. Fig 4.2 shows that across all conditions and profiling techniques,

trait-set features are competitive in producing well performing models and were able

to discriminate between cases and controls. Surprisingly, performance was also com-

parable in the 16S rRNA gene sequencing data set despite overall low coverage across

both richness and evenness metrics. This demonstrates that trait-set abundances

can still provide an informative approximation to functional potential similar to PI-

CRUSt2 that can be used for exploratory and hypothesis generating purposes.

To determine which features are important for overall model performance, we ex-

tracted the top 10 features based on the mean decrease in Gini impurity. However,

the overall feature importance values are not high, suggesting that no individual fea-

ture was dominant in classifying patient status. This is further supported by the fact

that some nonsense features show up in the top 10 list for models fit using pathway

abundances such as PWY-7235 and LYSINE-DEG-PWY, which are mammalian and

eukaryotic pathways, respectively. However, the models still show respectable discrim-

inatory power when evaluated on the test set (AUROC ∼ 0.7). Since random forest

models can capture interactions between predictors [112], we hypothesized that the

interaction between features contribute to test set performance rather than marginal

effects. As such, we did not observe a high degree of feature importance scores since

these measures are not designed to capture interaction effects [321].

However, despite such limitations, we were still able to recover existing knowledge

about the condition of interest. For example, “sulfide reduction;pathways” was shown
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to be an important feature in discriminating subjects with CRC vs control subjects in

Fig 4.4. This is supported by previous research showing that an increase in abundance

of sulfate reducing bacteria is associated with the condition [331]. Mechanistically,

this process, when using methionine or cysteine as substrates [49], generates H2S as

a product, which can stimulate CRC by inhibiting butyrate oxidation (which helps

prevent the breakdown of the gut barrier) as well as promoting the generation of

reactive oxygen species [190]. Another trait feature is “urea degredation;pathways”,

which suggests the importance of bacterial-driven urea hydrolysis process, which is

one of the main sources of ammonia in the human gut [28]. Sustained exposure of

colonocytes to free ammonia may contribute to the development of CRC [56], which

is supported by animal experiments showing histological damage in the distal colon

after long-term ammonium exposure [171].

4.5.3. Limitations and future directions

Even though our results demonstrate that utilizing trait-based sets can provide mean-

ingful insight to microbiome data sets, there are several major challenges to widespread

adoption. Although trait databases do not suffer from the same types of biases that

exist in genomic reference databases [330], the reliance on curated experimental data

means that traits are usually only annotated for species that are well studied and

culturable. While using predictive models can help in assigning traits to a broader

category of taxa [305], such automated approaches can result in misclassification of

traits and increased noise in downstream analyses. Additionally, high-quality trait

annotations require a time-consuming, manual curation process [308]. A source that

is based on user submission such as GOLD [216] can cover a larger number of taxa

and traits, but unfortunately can have erroneous and duplicated assignments due to

the lack of a standardized nomenclature. There is currently a gap in producing a

high-quality and diverse trait databases that are maintained and continuously up-
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dated.

In addition to issues with trait database quality, there are also problems matching

the identity of taxa in a given trait database with identifiers found in references for

sequence-based taxonomic profiling such as SILVA [247]. For whole genome metage-

nomic data sets, standard tools (such as MetaPhlan [19]) can provide NCBI identifiers

at the species or strain levels. However, it is currently unclear how to aggregate or dis-

aggregate traits if the taxonomic resolution of the observed data set is higher or lower

than that of the trait database in use. This is even more difficult with metabarcoding

datasets, where low taxonomic resolution makes trait-to-taxa assignments sparse and

less confident.

Finally, there are also hurdles in being able to properly validate traits that are

found to be significantly enriched due to a lack of ground truth data sets. While

some traits can be matched to pathways directly, others involve complex coordination

of multiple genetic pathways. As such, further investigation into ways to identify

biological concordance between obtained results and external measurements can help

improve confidence in utilizing traits for microbiome analyses.

Section 4.6

Conclusion

Set-based enrichment analysis is a useful approach for analyzing microbiome data

sets since it not only reflects underlying biology but can also provide more unique

perspectives of function that is linked to ecosystem services. Microbial trait databases

are a promising resource to construct taxon-sets as traits represent physiological phe-

notypes. We demonstrated that trait-based sets have high coverage across body sites,

especially for samples profiled using whole genome metagenomics. Furthermore, en-

richment scores computed on such sets are also competitive in predicting case/control
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status compared to pathway abundances. As such, trait features found to be impor-

tant in model fitting can be used to define interesting mechanistic hypotheses.

Section 4.7

Availability of data and materials

All data sets are available publically via Qiita, HMP16SData, and curatedMetagenomicData

with raw sequence data available on NCBI in their respective project repositories. All

analysis scripts and generated figures are available on GitHub (https://www.github.

com/qpmnguyen/microbe_set_trait).
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Conclusion

Taxa-function relationships are difficult to characterize due to the different scales in

which they operate [156]. For the taxonomic layer, one can look at species, strain,

or even cell states [198]. For the functional layer, it can be gene family abundance,

transcript expression, or metabolite concentrations. Each degree of granularity in-

creases the complexity of both the data collection process as well as its interpreta-

tion. However, no approach is “wrong” as each taxa-function combination can reveal

unique biological knowledge. For example, even in the face of strain-level variation,

an analysis of genus level taxa and metabolite abundances can show that perhaps the

metabolism of certain metabolites are phylogenetically conserved, which can have

various implications. Throughout this thesis, we have attempted to decipher this re-

lationship using multiple approaches. In chapter 2, we utilized a multi-omic data set

to identify strongly associated microbe-metabolite pairs. In chapter 3, we developed

a statistical method to leverage pre-defined taxa-function annotations (in the form of

sets) in standard epidemiological studies. In chapter 4, we evaluated an example of

such a source using trait databases aggregated from the literature.
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Section 5.1

Summary of findings

5.1.1. Mapping microbes to their function using multi-omics data

In chapter 2, we examined a paired metataxonomic-metabolomic data set to explore

the relationship between bacterial relative abundances and metabolite concentrations.

Even though multi-omics studies involving metabolomics are not new [174, 13, 143],

most studies have focused on defining differences between subject case/control status,

with limited exploration of the microbe-metabolite interface. Here, we characterized

associations between the microbiome (profiled using 16S rRNA gene sequencing) and

the metabolome (profiled using Nuclear Magnetic Resonance – NMR – techniques).

The analyzed metabolomic data set contained both untargeted taxonomic bins, as

well as concentrations of 36 specific metabolites. This data was generated from a

cohort of healthy infants from the New Hampshire Birth Cohort Study (NHBCS)

[103] with samples collected at 6-weeks and 12-months of age.

Using both Procrustes analysis and sparse canonical correlation analysis (sCCA)

[317], we found that overall metabolite concentrations are concordant with genus-

level taxonomic profiles. This relationship was weakly predictive, as we observed

poor performance across different machine learning models using predictive R2 as

the evaluation metric. However, model outputs performed better using Spearman

correlation ρ, but still lower compared to other studies using a similar performance

metric [187]. Using ρ = 0.3 as a threshold for defining “well-predicted” metabo-

lites [187, 217], we found that short chain fatty acids (SCFAs) such as butyrate are

most predictive, consistent with our understanding of microbiome physiology [161].

Surprisingly, the degree of coupling is higher for infants at 6 weeks compared to 12

months, suggesting that in early life humans are more reliant on the microbiome for
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metabolic purposes.

In addition to overall patterns of associations, we also identified genera-metabolite

groups that are core to the overall multivariate correlation by looking at the non-

zero loading coefficients of our sCCA model. Similar to our concordance analysis,

two SCFAs Butyrate and Proprionate were selected as the most important for the

overall microbiome-metabolome relationship, with a surprising negative correlation

with Bifidobacterium genera, a commonly identified producer of SCFAs [128]. We

hypothesized that this is an instance of strain-level variation where some strains of

Bifidobacterium compete with other butyrate-producing taxa [258]. Amino acids

were also well-represented among selected metabolites and were negatively correlated

with taxa abundances. We hypothesized that microbes are incorporating amino acids

in their environment directly instead of catabolizing them due to the fact that this

process is energetically inefficient [92, 228].

Our study showed that genus level microbial abundances are not sufficient to pre-

dict metabolite concentrations. However there is still a degree of overall coupling

that is supported by prior work [13, 143, 343]. Additional studies with higher taxo-

nomic resolution using whole genome metagenomics can be used to find more granular

scales of association. We also provided further evidence to support the importance

of microbiome-mediated butyrate catabolism in early life, while also suggesting that

amino acids might play an important role. However, our study was limited by our

cross-sectional design. This is because metabolite abundances are always changing,

making measures of flux (or rate of change) more meaningful in finding associations

[118]. Some studies have attempted to bridge this gap using genome-scale metabolic

models [226], which can be fitted to observed data. However, additional studies with

dense longitudinal sampling are still needed.
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5.1.2. Developing novel methods to integrate taxa-function relationships

in statistical analyses

In chapter 3, we developed a statistical method to test for the enrichment of groups

of microbes. Gene set testing (or pathway analysis), is a commonly utilized in the

genomics literature to aggregate lists of genes obtained after a differential abundance

test [126, 105]. These methods have been shown to improve power, reproduciblity,

and interpretability [139]. As such, set-based analysis can be a useful method to not

only address some of the challenges of analyzing sequencing-based taxonomic data

tables (such as sparsity) [165], but also to provide a formal statistical approach to

incorporate taxa and function via sets. Here, we provided a method for set-based

enrichment analysis called competitive balances for taxonomic enrichment analysis

(CBEA) that is tailored to microbiome relative abundance data. CBEA generates

sample-level scores in an unsupervised manner by integrating the Q1 competitive null

hypothesis [283] and compositional balances [272, 80]. Inference is performed at the

sample-level through estimating an empirical null distribution that can be adjusted

for variance inflation due to inter-taxa correlation.

We evaluated our model using both real and simulated data sets. First, CBEA can

be used to test for enrichment at the sample level. Results indicated that our approach

was able to control for type I error at the appropriate α level, however, the trade off

was limited power to detect small effect sizes, especially at higher degrees of inter-

taxa correlation. In addition, CBEA can also perform population-level analyses to

detect sets that are differentially abundant between case/control status by combining

generated scores with a difference in means test (such as Welch’s t-test). Under this

task, CBEA was able to control well for type I error but without having to concede

as much power. Notably, CBEA produced fewer false positives compared to using a

sum-based approach to aggregate taxa to sets and performing a standard differential
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abundance test such as corncob [191]. Finally, even though CBEA generated scores

were informative for discriminating between healthy controls and patients with IBD,

performance scores were not significantly higher than other comparison methods.

Our study illustrates an example of a statistical method that can assist in generat-

ing taxa-function hypotheses through the use of set annotations. Using CBEA, users

can not only perform inference, but also use CBEA sample scores for downstream

analyses such as predictive modeling, sample ordination, or network analysis. How-

ever, additional follow-up approaches are required to improve the inference procedure,

as well address data sparsity beyond pseudocounts.

5.1.3. Leveraging existing microbiology knowledge to define microbial ecosys-

tem roles

In chapter 4, we explored using an aggregated database of microbial traits defined

based on laboratory experiments to curate function-based taxon sets. Traits repre-

sents microbial phenotypic characteristics and are oriented towards describing ecosys-

tem functions given their long history in ecological research [149]. We drew on two

sources: Madin et al. [184] which is a comprehensive compilation of traits across mul-

tiple different static repositories, and Weissman et al. [308], which provides a human

microbiome centric annotations based on a manual curation of Bergey’s manual. We

constructed our sets based on categorical traits assembled, focusing on “pathways”

and “substrates” as they represent traits that relate to microbes’ participation in host

biochemical processes.

First, we computed the coverage of traits across body sites and trait categories

using the HMP data set. We found that trait coverage is low when considering

the proportion of taxa covered, but much higher when accounting for their relative

abundances. This suggested that traits are well annotated for the abundant taxa

within each community, but less so for rare microbes. We did not identify significant
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differences in average coverage across body sites, but some body sites have much

lower coverage in some traits compared to others. It was difficult to annotate traits

for 16S rRNA gene sequencing data sets since traits are defined at the species level.

This is because the databases are not well sampled enough across the tree of life to

enable comprehensive profiling of all genera. Furthermore, of strain and species level

variability [175] complicates the process of aggregating traits.

We then utilized CBEA (as described in chapter 3), to generate enrichment scores

for trait-sets and utilized them as inputs to predictive models. We found that trait

scores are as good as pathway abundances in discriminating between case and control

patients, suggesting that they can be informative features. Surprisngly, performance

held for the 16S rRNA gene sequencing data sets when compared against PICRUSt2

predicted pathway abundances, despite lower coverage. We also looked at the top 10

most informative features for our models and found that some traits correspond with

known disease-associated biochemical pathways.

Our results demonstrated that set-based analysis can help integrate taxa and

function under one unified framework for hypothesis testing. Set annotations based

on traits provide an interesting avenue, given that they are sourced from laboratory

experiments with descriptions that are less granular but more interpretable than

MetaCyc pathways. Even though trait coverage for rare species is limited, trait-

based sets are still informative in distinguishing healthy patients from those with

colorectal cancer and inflammatory bowel disease, suggesting that traits represent

meaningful biological processes. As such, additional studies are needed to further

refine the ontology of describing traits and to provide annotations to a larger selection

of microbes.
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Section 5.2

Perspectives and future research

Our work has shown promising applications of leveraging a taxa-function framework in

epidemiological studies. By contextualizing shifts in taxonomic abundances in terms

of their function, researchers can more easily interpret lists of differentially abundant

taxa and make informed choices on what to follow-up and validate in laboratory

experiments. However, there are still major hurdles to overcome before an integrative

framework can be confidently applied to future studies.

5.2.1. Defining microbial function

One of the most difficult aspects of investigating microbial function is the ability to

identify meaningfully relevant definitions [116, 340, 144]. Specifically, the question of

how to translate between definitions of genes and pathways (from KEGG or MetaCyc)

to ecosystem functions that the gut microbiome delivers. A relevant example is the

role of HMO metabolism [291], which is a host-relevant function that contextualizes

multiple gene families, all of which would be difficult to interpret individually.

Chapter 4 of this thesis attempted to examine function under the lens of mi-

crobial traits. Traits are usually conceptualized as defined, measurable properties

of organisms that link performance and contribution to core ecosystem needs [149].

While traits provide a more holistic conception of function, issues with unstandard-

ized databases [184] and limited coverage for rare species makes it challenging to use

in scenarios where they might be conferring important services.

As such, comprehensive efforts are needed to centralize and standardize the on-

tology of microbial function with respect to ecosystem needs. Efforts such as the

ontology of microbial phenotypes (OMP) [51] have started to generate a repository

of terminology to standardize description of microbial phenotypes. Researchers can
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further expand the types of annotations of OMP to be specific to body sites (us-

ing the uber-anatomy ontology - UBERON) or study conditions (using experimen-

tal factor ontology - EFO). KEGG terms or MetaCyc pathways can be assigned to

OMP annotations, which can then be translated to specific strains using reference

genomes/pangenomes or measured metatranscriptomic data. By defining a stan-

dardized vocabulary, researchers can begin to conceptualize a host-centric view of

microbial function that is both standardized and context driven.

5.2.2. Leveraging multiple meta‘omic technologies

While there have been a large number of microbiome multi-omic studies (see section

1.2.2), they have mostly been focused on analyzing each data-layer independently

with some studies performing limited taxa-function analyses. However, as shown in

Chapter 2, paired profiling of microbiome structure and molecular functions can reveal

novel aspects of host-microbe interactions. As such, multi-omic data sets, especially

those including multiple layers of functional profiling, can be invaluable.

Additionally, these data sets can be further leveraged in conjunction with the

functional framework defined in section 5.2.1 in two ways:

• First, researchers can use these data sets directly to test for the enrichment of

ecosystem-specific functional roles similar to that of Vatanen et al. [291] and

HMO metabolism.

• Second, researchers can leverage the collection of these data sets to validate

encoded taxa-function relationships, specifically accounting for situations where

gene carriage does not directly correlate with expression [92]

• Third, they can be used to generate new core taxa-function relationships that

can be disease-associated that can serve as biomarkers or as potential candidates

for intervention.

113



5.2 Perspectives and future research

5.2.3. Novel representations of taxa-function relationships

To jointly test for association between taxa-function groups and relevant exposures

or disease outcomes, there is a need to identify appropriate representations that can

be translated into a statistical framework. Set-based approaches, used in Chapter

3, are simple but powerful methods. Sets naturally capture categorical information

such as the assignment of strains to functions. However, the definition of sets are

rigid, and does not account for nuances such as uncertainties or the degree of strain

presence/absence in the overall population. As such, novel numerical representations

of taxa-function relationships can help account for this gap and allow for a more

flexible way to encode these relationships.

One candidate would be to use weights within sets or across different sets depend-

ing on the experimental context. For example, Frost [94] curates a set of tissue-specific

weights for MSigDB gene sets. Here, body-site specific weights can be computed for

each functional term, or the contribution of each taxa can be weighted by its overall

prevalence estimated from a large cohort such as HMP.

Network-based methods offer another approach. Bipartite networks can be used

to model connections between taxonomic and functional nodes [282]. Networks also

have topological features such as degree centrality that can provide extra dimensions

such as being able to identify taxa that contribute to a large number of functions or

vice versa. Standard network structures that allow for connections within taxonomic

and functional nodes are also useful as they can account for inter-taxa correlation or

dependencies between metabolites or genes.

There are also machine-learning based approaches that can provide unique en-

coding opportunities. Word embeddings, such as Word2Vec [201], create dense nu-

merical vectors that can represent high-dimensional co-occurrence relationships. This

application has been explored in the context of the microbiome-metabolome relation-
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ship [211]. Researchers can extend this approach to model different functional out-

puts, or to provide pre-trained embeddings based on a meta-analysis of microbiome-

metabolome data sets.
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Appendix A

List of abbreviations

NHBCS: New Hampshire Birth Cohort Study

PCoA: Principal Coordinates Analysis

NMR: Nuclear Magnetic Resonance

ASV: Amplicon Sequence Variants

OTU: Operational Taxonomic Unit

gUniFrac: Generalized Unique Fraction

sCCA/CCA: Sparse Canonical Correlation Analysis

FDR: False Discovery Rate

RF: Random Forest

ASV: Amplicon Sequence Variants

SCFA: Short chain fatty acids

EN: Elastic Net

SVM-RBF: Support Vector Machines with Radial Basis Kernel Function

SPLS: Sparse Partial Least Squares

CLR: Centered Log Ratio Transformation

KEGG: Kyoto Encyclopedia of Genes and Genomes

GOLD: Genomes OnLine Database
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List of abbreviations

CBEA: Competitive Balances for taxonomic Enrichment Analysis

HMDB: Human Metabolite DataBase

HMP: Human Microbiome Project

GSVA: Gene Set Variation Analysis

GSEA: Gene Set Enrichment Analysis

ssGSEA: Single Sample Gene Set Variation Analysis

GO: Gene Ontology

CRC: Colorectal Cancer

IBD: Inflammatory Bowel Disease

MSigDB: Molecular Signatures Database

VAM: Variance-adjusted Mahalanobis

CoDA: Compositional Data Analysis

iNKT: Invariant natural killer T cells

TLR-5: Toll-like receptor 5

GI: Gastrointestinal tract

DNA: Deoxyribonucleic acid

RNA: Ribonucleic acid

SCC: Spearman correlation coefficient

PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unob-

served States

ILR: Isometric log ratio transformation

LASSO: Least absolute shrinkage and selection operator

FID: Free induction decay

PMA: Penalized Multivariate Analysis

PCR: Polymerase Chain Reaction

QC: Quality Control
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List of abbreviations

PRESS: Predicted residual error sum of squares

QC: Quality Control

DADA: Divisive Amplicon Denoising Algorithm

AUROC: Area under the receiver operating characteristic curve

QIIME: Quantitative Insights Into Microbial Ecology

MetaPhlAn: Metagenomic Phylogenetic Analysis

PhILR: Phylogenetic isometric log ratio transformation

SMOTE: Synthetic Minority Oversampling Technique

CDF: Cumulative distribution function

MSEA: Microbe-set enrichment analysis

NCBI: National Center of Biotechnology Information

LC: Liquid Chromatography

MS: Mass Spectrometry

UBERON: Uber-anatomy ontology

EFO: Experimental factor ontology

OMP: Ontology of microbial phenotypes
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Appendix B

Supporting material for

“Associations between the gut

microbiome and metabolime in

early life”

Section B.1

Supplemental Notes

B.1.1. Supplementary Note 1

Microbe-metabolite participation in significant pairwise Spearman corre-

lation. Univariate pairwise Spearman correlations were performed to identify signif-

icant microbe-metabolite pairs. Significance was determined by the Spearman false

discovery rate (FDR) threshold of 0.05 following a Benjamini-Hochberg multiple hy-

pothesis testing procedure. At both time points a majority of genera and metabolites

were significantly correlated, where at 6 weeks, 28 genera (65% of total genera) and
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36 metabolites (100% of metabolites) were part of 516 significant correlations (16.6%

of total pairwise comparisons) while at 12 months, 59 genera (81.9% of total genera)

and 29 metabolites (80% of metabolites) were involved in 214 significant correlations

(8.01% of total pairwise comparisons). This result also supported the observation that

at 6 weeks the microbiome was marginally more associated with the metabolome com-

pared to 12 months. Similar to sCCA results, untargeted data set showed a similar

signal at both time points. Specifically, at 6 weeks, 37 genera (86% of genera) and

198 metabolite bins (95.1% of bins) were part of 1480 significant associations (16.5%

of pairwise comparisons). Similarly, at 12 months, 67 genera (93% of genera) and

207 metabolite bins (99.5% of bins) were part of 1392 significant associations (9.2%

of total pairwise comparisons).

B.1.2. Supplementary Note 2

Sparse canonical correlation analysis selects microbes and metabolites im-

portant to the inter-omic correlation. Only a small subset of metabolites and

microbes were selected (27% of taxa for both time points; 16.9% of metabolites at 6

weeks and 19.4% of metabolites at 12 months). At both time points, selected taxa

belong to the Firmicutes, Actinobacteria and Proteobacteria phyla with Firmicutes

being the most represented (58.3% of selected taxa at 6 weeks; 70% of selected taxa

at 12 months). Actinobacteria was the second most selected phylum (25% of selected

taxa) at 6 weeks while at 12 months it was Proteobacteria (30% of selected taxa).

For metabolites, amino acids were the most represented metabolite class (Supplemen-

tary Note 4) (60% of selected metabolites at 6 weeks, 85% of selected metabolites at

12 months). 6-week samples demonstrated a larger diversity of metabolite classes,

with additional representatives from carboxylic acids group, nucleotides and short

chain fatty acids (SCFA) while at 12 months, the only non-amino-acid metabolite

is uracil (of the nucleotide class). Across both time points, 3 genera (Flavonifrac-
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tor, Haemophilus and Acinetobacter genera) and 5 metabolites (lysine, isoleucine,

leucine, uracil, phenylalanine) were consistently selected. Surprisingly, in the untar-

geted analysis, nearly half of taxa and metabolites were selected at 6 weeks while the

number remained more similar to the targeted analysis at 12 months (6 weeks: 46% of

taxa and 42% of metabolite bins; 12 months: 13.8% of taxa and 17.3% of metabolite

bins). However, the taxonomic distribution of those selected taxa remained simi-

lar, with Firmicutes being the most dominating phyla (60% of selected taxa at both

time points). Additionally, for both time points, the sign of the sCCA loadings for

selected variables were also concordant with patterns of negative and positive cor-

relation via univariate Spearman correlations (Figure 3, right panels). Notably, all

selected metabolites contain negative loadings for both time points, with the majority

of selected pairwise correlation to be negative (6 weeks: 76.6% of selected pairwise

comparisons, 12 months: 60.7% of selected pairwise comparisons). This pattern is

replicated in the untargeted data set as well (6 weeks: 61.3% of selected pairwise

comparisons, 12 months: 70% of selected pairwise comparisons).

B.1.3. Supplementary Note 3

Prediction results. Under R2, at 6 weeks only 8 (22.2%) metabolites (Butyrate,

Glycerol, Isobutyrate, Isoleucine, Leucine, Methionine, Phenylalanine and Tyrosine)

were predictable, with a mean of 4.85% and a maximum of 11.8% (Butyrate using

EN). At 12 months, only 14 (38.9%) of metabolites (Butyrate, Formate, Inosine,

Isobutyerate, Isoleucine, Lactate, Leucine, Methionine, Phenylalanine, Propionate,

Propylene glycol, Tyrosine, Uracil, Valine) were predictable, with a mean of 4.81%

and a maximum of 8.7% (Propylene Glycol using RF). When looking at the average

R2 across all metabolites, performance was not good (-5.6% at 6 weeks; -3.07% at

12 months). This negative R2 value implies that the predicted model performs worse

than the näıve, intercept only model. Conversely, correlative performance was much
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better. At 6 weeks 26 metabolites (83%) were predictable, with a mean correlation

of 0.344 and a maximum of 0.669 (Butyrate using EN). Similarly, at 12 months all

36 targeted metabolites were predictable, with a mean of 0.265 and a maximum of

0.549 (Succinate using EN). Using the SCC cutoff of 0.3 as criteria for well predicted

metabolites, many metabolites at 6 weeks were still retained (25 metabolites - 69.4%).

Conversely, at 12 months, only 13 metabolites remained to be well predicted (38.9%).

On average, performance based on SCC was good with a mean SCC value of 0.339

at 6 weeks and 0.249 at 12 months. In the untargeted analysis looking at the entire

metabolome, performance was much better for both metrics. Under R2, 116 (56.7%)

of metabolite bins were predictable at a maximum of 42.7% (Bin 33 using SPLS) and

a mean of 16.7% at 6 weeks while at 12 months, 94 (45.1%) of metabolite bins were

ell predicted at a maximum of 22.7% (Bin 16 using SVM) and a mean of 8.19%. The

overall average across all metabolites is 3.91% (6 weeks) and -0.59% (12 months).

This trend was similarly observed using SCC, as all all 208 metabolites bins were

predictable for both time points (using SCC = 0 as the threshold). Specifically, of

the predictable metabolites at 6 weeks the maximum value was 0.687 (Bin 32 using

EN) with a mean of 0.352 while at 12 months, the maximum value was 0.53 (Bin 16

using SVM) and a mean of 0.253. Using the SCC cutoff of 0.3 as above, at 6 weeks

120 metabolite bins (57% of bins) were well predicted while at 12 months only 60

(28.8% of bins) were well predicted.

B.1.4. Supplementary Note 4

Short chain fatty acids (SFCA)

• Metabolites: Acetate, Butyrate, Isobutyrate, Proprionate

• HMDB Ids: HMDB00042, HMDB00039, HMDB01873, HMDB00237

• Examples of associated microbes: Faecalibacterium, Eubacterium, Rose-
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buria, Clostridia clusters IV and XIVa [224]

• Potential biological functions: Fermented in the colon from dietary complex

carbohydrates, assist in regulating host immune functionality, act as substrate

for cellular activities, limit growth of pathogenic species, promote integrity of

the mucosal lining.

Amino acids and derivatives

• Metabolites: Alanine, Asparagine, Aspartate, Glutamate, Glycine, Histidine,

Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline, Threonine,

Tryptophan, Tyrosine, Valine, π-Methylhistidine

• HMDB Ids: HMDB00161, HMDB00168, HMDB00191, HMDB00148, HMDB00123,

HMDB00177, HMDB00172, HMDB00687, HMDB00182, HMDB00696, HMDB00159,

HMDB00162, HMDB00167, HMDB00929, HMDB00158, HMDB00883 HMDB00479

• Examples of associated microbes: Proteobacteria phylum; Bacili class;

Clostridium and Bifidobacterium genera [243], Lactobacilli, Enterococci, and

Streptococci families [246]; Faecalibacterium prausnitzii species [168].

• Potential biological functions: Catabolized to form other end products such

as SCFAs, branched chain fatty acids (BCFAs) and other compounds [228]. For

example, the catabolism of methionine results in methanethiol and hydrogen

sulfide [243]; catabolism of histidine can produce histamine, which can inhibit

the production of pro-inflammatory cytokines as well as act as a neurotransmit-

ter [280]; catabolism of lysine can produce cadaverine [246], which is associated

with ulcerative colitis [159]; catabolism of tryptophan and tyrosine can produce

tryptamine, which is a neurotransmitter involved in intestinal motility and im-

mune function [97].
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Carbohydrates

• Metabolites: Fucose, Glucose, Glycerol, Maltose

• HMDB Ids: HMDB00174, HMDB00122, HMDB00131, HMDB00163

• Examples of associated microbes: Bacteroides thetaiotaomicron (possesses

260 glycoside hydrolases in its genome [329]), B. Fragilis, Ruminococcaceae spp.

• Potential biological functions: Humans rely mostly on gut commensals for

breaking down complex carbohydrates [228]. Bacteria also take in complex

carbohydrates for additional purposes. For example, fucose participate in the

fucosylation of bacterial glycans, increasing fitness for both pathogenic and com-

mensal microbes through host mimicry; facilitate promotion of useful bacterial

species and metabolites, suppress virulence genes [241]. Similarly, gut microbe

can metabolize glycerol into reuterin, which is an antimicrobial multicomponent

system [339].

Carboxylic and dicarboxylic acids

• Metabolites: Formate, Fumarate, Malonate, Succinate Lactate

• HMDB Ids: HMDB00142, HMDB00134, HMDB00691, HMDB00254, HMDB00190

• Examples of associated microbes: Bloom of Enterobacteriaceae phylum.

Others include Verrucomicrobia phylum. Producers from pyruvate catabolism

includes Bacteroides and Clostridia genera [120]. Specifically for lactate, Lac-

tobacilli, Lactococci, Streptococci, Leuconostoc and Pediococci genera [240].

• Potential biological functions: Often used as terminal electron acceptors

for bacterial anaerobic respiration [150] and is produced by the microbiota itself

[82] and a highly competitive resource especially if induced by antibiotics [254].
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The presence and activation of enzymes associated with oxidizing these acids

are markers of inflammation such as in the case of formate [120]. Notably,

lactate is an important component in designing lactic acid bacteria probiotics

which can modulate intestinal immunity and provide a protective effect against

infection [99].

Vitamins

• Metabolites: Nicotinate (Vitamin B3)

• HMDB Ids: HMDB01488

• Examples of associated microbes: Lactic-acid commensal bacteria such as

Bifidobacterium bifidum, B. longum, B. breve, and B. adolescentis [162].

• Potential biological functions: Microbiome has been shown to both metab-

olize dietary B vitamins as well as produce them through folate metabolism

[162]. It is well known that vitamin Bs are essential micronutrients that are

precursors to important enzymes in humans.

Nucleosides

• Metabolites: Inosine, Uridine, Uracil

• HMDB Ids: HMDB00195, HMDB00296, HMDB00300

• Examples of associated microbes: Anaerococcus, Peptoniphilus, Fusobac-

terium, Lactobacillus genera [72].

• Potential biological functions: Can play an important role in immune re-

sponse at the neonatal stage [297], supplementing the process of enterocyte

proliferation, maturation and apoptosis of intestinal cells [260].
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Alcohols

• Metabolites: Propylene Glycol

• HMDB Ids: HMDB01881

• Examples of associated microbes: Firmicutes and Lachnospiraceae phyla,

Dorea, Robinsonella and Roseburia genera [252].

• Potential biological functions: A solvent involved in propanoate metabolism

resulting in propanal (through KEGG [134]), which have been shown to be

associated with inflammatory bowel disease.

Bile acids

• Metabolites: Cholate

• HMDB Ids: HMDB00619

• Examples of associated microbes: Inhibits Bacterioidetes and Actinobac-

teria phyla, expansion of Firmicutes phylum, Blautia, Clostridium and Ru-

minococcus spp. [256, 127].

• Potential biological functions: Bile acid are involved in absorption of fats

and lipid-soluble vitamins [224], bile acid byproducts of microbial origins can

bind and activate host nuclear receptors and act as endocrine signaling molecules

[137, 122], which is found to be associated with cancer [334].

B.1.5. Supplementary Notes 5

Illumina MiSeq v4v5 primers used for bacteria 16S rRNA gene sequencing

• Forward Primer (518F): CCAGCAGCYGCGGTAAN
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• Reverse Primers (926R): CCGTCAATTCNTTTRAGT CCGTCAATTTCTTTGAGT

CCGTCTATTCCTTTGANT

Section B.2

Supplemental figures

Figure B.1: Inter-omics Procrustes biplots comparing PCoA ordinations of untar-
geted metabolite profiles and taxonomic relative abundances for 6 weeks (left panels)
(n = 158) and 12 months (right panels) (n = 262). Top panels present analyses based
on ordinations from Euclidean distances of genus level abundances after centered
log ratio transformation and Euclidean distances of arcsine square root transformed
metabolite relative abundances. Bottom panel presents analyses based on generalized
Unifrac distance of amplicon sequence variant (ASV) relative abundances and Eu-
clidean distances of arcsine square root transformed metabolite relative abundances.
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Figure B.2: Pairwise Spearman correlation of metabolite bins and genus-level tax-
onomic abundances for 6-weeks (panel A, N = 158) and 12-months (panel B, N =
282) infants. Left panel displays the overall correlation pattern, where non-significant
correlations are not colored (false discovery rate (FDR) controlled q-value < 0.05).
Right panel displays the same heatmap restricted to taxa and metabolites selected
by the sparse CCA procedure. Additionally, correlation coefficient of the first sCCA
variate pair, bootstrapped 95% confidence interval and permutation p-value are also
reported.
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Figure B.3: Comparative analysis predictive model performance across all metabo-
lites in the untargeted dataset for both 6-weeks (n = 158) and 12-months (n = 282)
timepoints. Top panel shows superimposed boxplots and violin plots of the distribu-
tion of predictive posterior mean for each evaluation metric across all 208 spectral
bins. Bottom panels show aggregated model rankings for all metabolites using R-
squared (left) and spearman correlation (right) using Borda scores (Methods).
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Figure B.4: Results for positive (Panel A) and negative simulations (Panel B). Posi-
tive simulations were conducted based on bootstrapped resamples of the original data
(12-month time point) and a normally distributed outcome vector which represented
a log-transformed metabolite profile. Different levels of model saturation (horizontal,
model sparsity (spar) at 0.05, 0.1, 0.5, 0.95) and effect sizes (vertical, signal-to-noise
ratio (snr) at 0.5, 0.7, 3, 5) were assessed, with 100 data sets generated for each
setting combination. Negative simulations were conducted based on permutations of
the original data (12-month time point), with a total of 1000 permutations. Highly
negative outliers were removed for the purposes of visualization.
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Figure B.5: Inter-omics Procrustes biplots comparing PCoA ordinations of targeted
metabolite profiles and taxonomic relative abundances in the sensitivity analyses for
6 weeks (left panels) (N = 65) and 12 months (right panels) (N = 65). Top pan-
els present analyses based on ordinations from Euclidean distances of genus level
abundances after centered log ratio transformation and Euclidean distances of arcsine
square root transformed metabolite relative abundances. Bottom panel presents anal-
yses based on generalized Unifrac distance of amplicon sequence variant (ASV) rela-
tive abundances and Euclidean distances of arcsine square root transformed metabo-
lite relative abundances.
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Figure B.6: Inter-omics Procrustes biplots comparing PCoA ordinations of untar-
geted metabolite bin relative concentrations and taxonomic relative abundances in
the sensitivity analyses for 6 weeks (left panels) (N = 65) and 12 months (right
panels) (N = 65). Top panels present analyses based on ordinations from Euclidean
distances of genus level abundances after centered log ratio transformation and Eu-
clidean distances of arcsine square root transformed metabolite relative abundances.
Bottom panel presents analyses based on generalized Unifrac distance of amplicon se-
quence variant (ASV) relative abundances and Euclidean distances of arcsine square
root transformed metabolite relative abundances.
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Figure B.7: Pairwise spearman correlation of concentration-fitted targeted metabo-
lite concentrations and genus-level taxonomic abundances for 6-weeks (panel A,
N = 65) and 12-months (panel B, N = 65) infants in sensitivity analyses. Left
panel displays the overall correlation pattern, where non-significant correlations are
not colored (FDR controlled q-value < 0.05). Right panel displays the same heatmap
restricted to taxa and metabolites selected by the sCCA procedure. Additionally,
correlation coefficient of the first sCCA variate pair, bootstrapped 95% confidence
interval (nboot = 5000) and permutation p-value (nperm = 1000) are also reported.
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Figure B.8: Pairwise spearman correlation of untargeted metabolite bin relative
concentrations and genus-level taxonomic abundances for 6-weeks (panel A, N =
65) and 12-months (panel B, N = 65) infants in sensitivity analyses. Left panel
displays the overall correlation pattern, where non-significant correlations are not
colored (FDR controlled q-value < 0.05). Right panel displays the same heatmap
restricted to taxa and metabolites selected by the sCCA procedure. Additionally,
correlation coefficient of the first sCCA variate pair, bootstrapped 95% confidence
interval (nboot = 5000) and permutation p-value (nperm = 1000) are also reported.
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Figure B.9: Spearman correlation coefficients and 95% confidence intervals of signif-
icant correlations (q-value > 0.05) between metabolite concentrations in the targeted
data set and the abundances of pathways that produce them. Pathway abundances
were obtained via PICRUSt2 predictions, with pathway-metabolite relationship re-
trieved from MetaCyc database. Both 6-week (N = 158) and 12-month (N = 282)
samples are represented.
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Figure B.10: Top five contributors at the Genus level for each significantly cor-
related pathway-metabolite pair obtained using observed metabolite concentrations
and predicted pathway abundances (Spearman correlation with q-value ¡ 0.05). Panel
A represents 6-week samples while panel B represents samples at 12-months. Rela-
tive contributions are calculated as the total number of copies of genes mapped to a
pathway across all samples per Genus over the total number of gene copies assigned
to that pathway.
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Figure B.11: Heatmap representing overall spearman correlations between predicted
pathway abundances (obtained via PICRUSt2) and metabolite concentrations in the
targeted data set regardless of pathway-metabolite annotations. Both 6-week (N =
158) (Panel A) and 12-month (N = 282) (Panel B) samples are presented. Non-
significant correlations (q-value > 0.05) are not colored.
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taxonomic enrichment analysis”

Section C.1

Supplementary Note 1

In order to perform inference with CBEA, we estimated the null distribution empiri-

cally. This can be done either non-parametrically by constructing a null distribution

through computing scores on multiple permutations of the data, or parametrically via

estimating parameters of a distribution using the same permuted scores. This means

that our null distribution for a given set is equivalent to scores computed for sets

of similar sizes but containing randomly chosen taxa. We chose two distributional

forms for the null: the normal distribution and a two-component mixture normal dis-

tribution. For the normal distribution, we estimated parameters using the maximum

likelihood using the fitdistrplus package [66]. For the mixture normal distribution, we

utilized the expectation-maximization procedure from the package mixtools [22].
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An advantage of estimating the null using a parametric approach is the ability to

correct for variance inflation due to inter-taxa correlation within the set compared

to overall background correlation [324]. CBEA addresses this issue by combining the

location (or mean) estimate from the column permuted raw score matrix with the

spread (or variance) estimate from the original un-permuted scores. This still allows

us to leverage the null generated via column permutation while using the proper

variance estimate taken from scores where the correlation structure has not been

disrupted. As such, this procedure assumes that the variance of the test statistic

under the alternate hypothesis is the same as that of the null.

For the normal distribution, it is straightforward to combine mean and variance

estimates from the respective raw score matrices. For the mixture normal distribution,

however, due to the fact that the distribution is made of component-wise means,

variances and mixing coefficients, we decided to take an optimization based approach

to identifying the component wise variances σ1 and σ2 such the overall mean and

variance estimates come from the respective raw cILR score matrices as detailed

above. We can write the optimization problem as follows:

min
σ1,σ2

√(√
(σ1 + µ′

1 −M ′)λ′
1 + (σ2 + µ′

2 −M ′)λ′
2 − SD

)2
s.t. σ1 ≥ 10−5, σ2 ≥ 10−5

where M ′, SD, µ′
1, µ

′
2, λ

′
1, λ

′
2 are constants

(C.1)

λ′
1, λ

′
2, µ

′
1, µ

′
2, and M ′ are component-wise mixing coefficients, component-wise

means, and overall mean of the mixture distribution estimated from column-permuted

scores while SD is the overall standard deviation of the mixture distribution esti-

mated from unpermuted scores. We solve for this optimization problem using a quasi

Newton method with box constraints (L-BFGS-B) with the default finite-difference

approximation of the gradient, as implemented in the optim function in R.
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There are also different variations to this approach. We can choose to vary both

σ1 and σ2 or to keep either σ1 or σ2 constant and varying the remaining compo-

nent. We can assume that null distribution is a two-component mixture distribution

where there is one major component with smaller mean (representing the bulk of the

distribution centered at the permuted mean) and one minor component with higher

mean (representing the inflated right tail). Under this assumption, we can modify the

optimization problem to only estimate the variance parameter of the smaller compo-

nent (i.e. without loss of generalizability keeping σ1 constant where λ′
1 > λ′

2). This

allows for the optimization procedure to more properly capture the right tail distri-

bution rather than increasing weight on the left tail of the distribution which impacts

the computation of p-values for a one-sided test. Empirical experiments (data not

shown) done on simulated data and random set analyses suggest that this adjustment

improves performance of the adjusted CBEA under mixture-normal assumption. In

the R implementation of CBEA, users can control this behaviour by specifying the

fix comp parameter as part of the control argument.

Section C.2

Supplementary Note 2

C.2.1. Design

Even though real data evaluations provide good estimates for performance of CBEA

under typical analysis tasks, it does not allow for understanding of the behavior of the

model under different effect sizes, correlations, and sparsity. As such, we also perform

parametric numerical simulations by generating microbiome count data under the

assumption that it follows a zero-inflated negative binomial distribution, which is a

good fit for real microbiome relative abundance data [39]. Suppose Xij are observed
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counts for a sample i and taxon j, then we have the following probability model

Xij =


0 with probability pj

NB(µj, ϕj) with probability 1− pj

(C.2)

where µj and ϕj are mean and dispersion parameters, respectively. To incorporate

a flexible correlation structure into our simulation model, we utilized the NorTA

(Normal to Anything) method [43]. Given an n by p matrix of values U sampled

from multivariate normal distribution with correlation matrix ρ, we can generate

target microbiome count vector X.j for taxa j following the marginal distribution

NB characterized by the negative binomial cumulative distribution function FNB:

X.j = FNB
−1(ΦUi

) (C.3)

In this instance, for each taxon j, we set elements in U.j to be zero with probability pj

and applied NB−1(µj, ϕj) on non-zero elements to generate our final count matrix X.

To ensure that our simulations match closely to real data, we fitted negative binomial

distribution using a maximum likelihood approach (with the fitdistrplus package in R

[66]) to non-zero counts for each taxon from 16S rRNA profiling of stool samples from

the Human Microbiome Project (HMP). We take the median values of the estimated

mean (µj) and dispersion parameters (ϕj) as the baseline of our simulations. For

simplicity, we assumed that inter-taxa correlation follows an exchangeable structure

with correlation equals to ρ.

C.2.2. Scenarios

Simulation scenarios for enrichment analysis at the sample level. To

assess type I error rate and power for enrichment significance testing at the sample

141



C.2 Supplementary Note 2

level, we simulated data based on the schema above, and assessed enrichment for one

focal set. Type I error was obtained under the global null as the number of samples

where the null hypothesis was rejected at α = 0.05 over the total number of samples

(which represents the total number of hypotheses tested). Power was obtained using

the same formulation as type I error rate but under the global alternate. We treated

type I error and power as estimates of binomial proportions and utilized the Agresti-

Couli [3] formulation to calculate 95% confidence intervals. Across both analyses,

we varied sparsity levels (p = 0.2, 0.4, 0.6) and inter-taxa correlation within the set

(ρ = 0, 0.2, 0.5). For type I error analysis, we also varied the size of the set (50, 100,

150). For power analyses, set size was kept constant at 100 but different effect sizes

(fold change of 1.5, 2, and 3). All sample sizes were set at 10,000.

For classifiability, we evaluated the scores against the true labels per sample (in-

dicating the sample has a set with inflated counts) using the area under the receiving

operator curve (AUROC). This is a strategy used in Frost [95] which evaluates the

informativeness of scores by assessing the relative ranking of samples (i.e. whether

samples with inflated counts are highly ranked using estimated scores). DeLong 95%

confidence intervals for AUROC [67] were obtained for each estimate. Simulation

settings for classification performance were identical to power analyses as detailed in

the previous paragraph.

Simulation scenarios for enrichment analysis at the population level. To

assess type I error rate and power for inferece at the population level, we simulated

data based on the schema above, and assessed the enrichment of 50 sets (with 100

taxa per set) across 10 replicates per simulation condition. Type I error is calculated

as the number of enriched sets over the total number of sets for each simulation under

the global null. Power is defined similarly, but instead under the global alternate hy-

pothesis. Estimates and confidence intervals for type I error and power are calculated
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as cross-replicate mean and standard error. Across both analyses, we varied sparsity

levels (p = 0.2, 0.4, 0.6), and inter-taxa correlation within the set (ρ = 0, 0.2, 0.5). For

power analyse, we defined an enriched set as a set where all taxa within a set have

inflated means of the same effect size. Half of the sets are defined as enriched across

case/control status with varying effect sizes (fold change of 1.5, 2, and 3). Due to the

compositional nature of microbiome taxonomic data, simple inflation of raw counts

would cause an artificial decrease in the abundance of the remaining un-inflated sets.

As such, we applied a compensation procedure as described in Hawinkel et al. [113]

to ensure the validity of simulation results. All sample sizes were set at 500.

Simulation scenarios for downstream prediction. To assess predictive per-

formance, we generated predictors based on the simulation schema presented above

and evaluated prediction for both binary and continuous outcomes using a standard

random forest model [33]. For binary outcomes, we use AUROC similar to the clas-

sification analyses above. For continuous outcomes, we used root mean squared error

(RMSE). All predictive model fitting was performed using tidymodels [152] suite of

packages. Across both learning tasks, we varied sparsity (p = 0.2, 0.4, 0.6), and inter-

taxa correlation (ρ = 0, 0.2, 0.5). Continuous outcomes Ycont were generated as linear

combinations of taxa counts.

Ycont = f(X) + ϵ (C.4)

where ϵ ∼ N(0, σ2
ϵ ) and f(X) = β0 +Xβ. For each simulation, we set β0 to be 6√

10

similar to [327]. The degree of model saturation (the number of non zero β values)

were varied between 0.1 and 0.5, and signal to noise ratio (SNR = σ(f(X))
σϵ

) was varied

between 1.5, 2, and 3.

For binary outcomes, we generate Ybinary as Bernoulli draws with probability

143



C.2 Supplementary Note 2

pbinary, where

pbinary =
1

1 + exp(f(X) + ϵ)
(C.5)

To ensure a balance of classes, we applied the strategy described in Dong et al.

[71] where the associated β values are evenly split between positive and negative

associations. All data sets generated from prediction tasks have 2,000 samples with

5,000 taxa over 50 sets with a size of 100 taxa per set.

C.2.3. Results

Statistical Inference. Fig C.1 demonstrate type I error evaluations for sample-

level inference with CBEA compared to the Wilcoxon rank sum test, which uses a

rank-based statistic to compare the mean count difference between taxa in the set

its complement. All methods demonstrate good type I error control at α = 0.05

under zero correlation across all simulation conditions. However, under both medium

(ρ = 0.2) and high (ρ = 0.5) correlation settings, both the Wilcoxon test and unad-

justed CBEA variants show high levels of inflated type I error, where Wilcoxon test

performed the worst. On the other hand, adjusted CBEA methods (under both dis-

tributions) control for type I error at the appropriate α level even at high correlations.

This is opposite from our real data evaluations, where adjusted CBEA demonstrated

inflated type I error under random set evaluations.

We also assessed the ability to perform inference at the population level using

CBEA similar to GSVA [111]. Here, we test for enrichment of sets across case/control

status by generating CBEA scores and performing Welch’s t-test as a difference in

means test. We compared the performance of this approach with CBEA and two

commonly used methods for differential abundance testing in the microbiome litera-

ture: DESeq2 [177] and corncob [191]. Fig. C.2 present results for simulation studies

for both type I error evaluations. All methods were able to control for type I error
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Figure C.1: Simulation results for type I error evaluation for CBEA sample-level
inference. Type I error rate (y axis) was estimated for each approach across data
sparsity levels (x axis) across different set sizes (horizontal) and inter-taxa correlation
within the set (vertical). We compared variatns of CBEA against a Wilcoxon rank
sum test at α of 0.05. For each scenario, a data set of 10,000 samples (equivalent
to 10,000 hypotheses) was utilized. Confidence bounds were obtained using Agresti-
Couli approach.

across both sparsity and correlation levels, where medium level sparsity (p = 0.4) and

correlation (ρ = 0.2) showed the strongest performance. In these scenarios, the CDF

values of CBEA generated under the adjusted mixture normal distribution performed

the best. This is different than our real data evaluations, where corncob and DESeq2

showed increased type I error.
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Figure C.2: Simulation results for type I error evaluation for CBEA population-
level inference. Type I error (y-axis) was estimated as the average proportion of sets
with significant enrichment at 0.05 across 10 replications per simulation condition
under the global null. Error bars were estimated using standard errors computed
across 10 replicated data sets. Performance was evaluated across different sparsity
(x -axis) and inter-taxa correlation levels. For CBEA methods, enrichment analysis
was performed using a Welch’s t-test across case/control status with single sample
scores representing set-based features generated by CBEA (across different output
types and distributional assumptions). For corncob and DESeq2, set-based features
were constructed using element-wise summations.

Phenotype relevance. We assessed phenotype relevance similar to the main manuscript

by assessing statistical power and score rankings via AUROC. Results for this analysis

is shown in Fig C.3. For statistical power (panel A), under low-correlation settings,

all CBEA approaches demonstrate similar power, with the unadjusted methods being

slightly more performant at low effect sizes. Notably, all CBEA variants outperformed

the Wilcoxon rank sum test. However, as correlation increases, the adjusted CBEA

variants showed much lower power, congruent with the perspective that the adjust-

ment process is conservative and trades off power for type I error control. Even at the
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highest effect size (fold change of 3 in means) adjusted CBEA does not approach 0.8.

For score rankings (panel B), all methods are close together in performance, with the

Wilcoxon W statistic being the worst performer. These results are similar to that of

our real data evaluations. Notably, performance values were not affected by sparsity

and increases to near perfect prediction at higher effect sizes.
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Figure C.3: Simulation results for phenotype relevance evaluation for CBEA sample-
level inference. (A) demonstrate statistical power (y-axis) across different data spar-
sity levels (x -axis) and power (B) for differential abundance test across different
parametric simulation scenarios. For CBEA methods, differential abundance analy-
sis was performed using a difference in means test (either Wilcoxon rank-sum test
or Welch’s t-test) across case/control status using single sample scores generated by
CBEA (across different output types and distributional assumptions). CBEA associ-
ated methods demonstrated similar type I error to conventional differential abundance
analysis methods but with more power to detect differences even at small effect sizes.

For population-level analyses, we assessed phenotype relevance as statistical power

to detect sets that were simulated to be significantly enriched. Fig C.4 showed these

results. As expected, power decreases with increasing sparsity, where the effect was
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attenuated at lower effect sizes. Correlation did impact power, however the difference

was not notable. Interestingly, at lower effect sizes both DESeq2 and corncob has

comparable power with CBEA, however as effect size increases, the difference in per-

formance values became more stark. This is different than our real data evaluations,

where power was more comparable (with slight advantage to corncob and DESeq2).
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Figure C.4: Simulation results for phenotype relevance evaluation for CBEA
population-level inference. Power (y-axis) was estimated as the average proportion of
sets correctly identified as significantly enriched (at 0.05) across 10 replications per
simulation condition under the global null. Error bars were estimated using standard
errors computed across 10 replicated data sets. Performance was evaluated across
different sparsity (x -axis) and inter-taxa correlation levels. For CBEA methods, en-
richment analysis was performed using a Welch’s t-test across case/control status
with single sample scores representing set-based features generated by CBEA (across
different output types and distributional assumptions). For corncob and DESeq2,
set-based features were constructed using element-wise summations.

Predictive analysis. Fig C.5 shows results for simulation studies as detailed in

the Methods section. Panel A presents results for a regression learning task with a

continuous outcome. We observed no difference in performance values across different
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evaluation models. Overall, prediction error did not change across sparsity levels, and

decreases with increasing signal-to-noise ratio (SNR). However, at higher correlation

levels, the pattern was more erratic. For example, when ρ is set at 0.5, higher SNR

decreases performance only at low sparsity p = 0.2, but had the expected pattern

medium sparsity p = 0.4, where higher SNR correlates with improved performance.

This effect seems to be specific to low effect saturation scenarios (only a limited

number of taxa sets are associated with the outcome). Interestingly, higher sparsity

levels produces better performance.

Panel B represent results for a classification task with a binary outcome with

AUROC as the evaluation criteria. Here we observed similar results as that of our

real data evaluations, where using CLR transfromed data produces more predictive

models across all scenarios. Conversely, GSVA and ssGSEA were consistently under

performing when compared to CBEA and CLR. Interestingly, the degree of difference

varies across sparsity and inter-taxa correlations. We noticed that increasing sparsity

and correlation decreases the gap in performance between CBEA and CLR, while

increasing the gap in performance between CBEA/CLR and GSVA/ssGSEA. As such,

we can hypothesize that both GSVA and ssGSEA are more sensitive to the degree

of inter-taxa correlation and sparsity. Finally, effect saturation did not change model

rankings, but did decrease overall performance.
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Figure C.5: Simulation results for predictive pefromance evaluation for CBEA.
Predictive performance of a random forest model (with no hyperparameter tuning)
trained on set-based features as inputs. Methods to generate these features include
CBEA, ssGSEA, GSVA, and the CLR transformation applied on sum-aggregated
sets. Simulation data was generated across different levels of data sparsity, inter-taxa
correlation, effect saturation, and signal-to-noise ratio. Panel (A) presents perfor-
mance on a regression task using RMSE (root mean squared error) as the evaluation
measure. Panel (B) presents performance on a classification task with AUROC as
the evaluation measure.
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Section C.3

Supplementary Note 3

We implemented CBEA in the package CBEA on GitHub (https://www.github.

com/qpmnguyen/CBEA). We evaluated computational time using the bench package

in R. We applied CBEA to a standard data set generated using our simulation model

consisting of 40 sets (of size 20 each) and 500 samples. Benchmark was performed

on a single core using a node on the computing cluster (Specifications: Intel Xeon

E5-2690 (2.6GHz) with 4GB of RAM).

 1.89h

 1.35h

43.09s

45.81s

 5.53h

 5.39h

 1.32m

 1.47m

Permutations: 50 Permutations: 100

1.67m 16.67m 2.78h 1.67m 16.67m 2.78h

Mixture Normal

Normal

Total runtime

D
is

t
r

ib
u

t
io

n

Correlation Adjusted

FALSE

TRUE

Distribution

a

a

Mixture Normal

Normal

Figure C.6: Runtime performance. Overall runtime of CBEA under different pa-
rameters for a data set of 500 samples, 800 taxa (40 sets of size 20 each). This data
set was generated via simulations.

In general, using the normal distribution is the fastest approach regardless of the

total number of permutations performed (2 minutes). However, using the mixture

normal distribution increased the runtime many folds, especially for the adjusted
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approach (highest was 5.53 hours). This time scales with the number of sets evaluated,

as well as the number of samples. We believe this is due to the procedure used to

estimate parameters of the mixture normal distrubiton as implemented in themixtools

package. The default parameters used in CBEA also increased the runtime in order

to reduce convergence issues.

In order to reduce runtime, users can attempt the following: Since CBEA fits

parametric distributions over permuted values of all samples within a data set (i.e.

for N = 100 and 10 permutations, the fitting procedure will attempt to estimate

parameters from a vector of size 1000 for each set), if the sample size is high users can

reduce the number of permutations. Additionally, CBEA also implements a procedure

to parallelize computation across sets, which might be applicable to situations where

there are a lot of sets to evaluate. Finally, a lot of CBEA approaches work well without

parametric fit, so users can use the non-parametric approaches like the permutation

test or using raw CBEA scores.

Section C.4

Supplementary Note 4
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Figure C.7: Distribution of type I error values across all replications in real data
random set evaluations for CBEA inference at the sample-level. Density (y-axis) for
type I error values (x -axis) of each evaluated approach for sample-level inference using
real data across 500 replications. Here, type I error was estimated as the proportion
of samples where a randomly sampled set of different sizes where identified to be
statistically significant at p-value threshold of 0.05.
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Figure D.2: Top 10 important features based on random forest model fitted different
inputs from data sets profiled with 16S rRNA gene sequencing. Features were selected
from mean decrease in Gini impurity averaged across 500 decision trees and 10-fold
cross-validation (nested with the training set) as implemented in scikit-learn. AU-
ROC scored on a held-out test set is also presented for each input type and disease
condition.
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rence Levenez, Ole Lund, Bouziane Moumen, Denis Le Paslier, Nicolas Pons,

Oluf Pedersen, Edi Prifti, Junjie Qin, Jeroen Raes, Søren Sørensen, Julien

Tap, Sebastian Tims, David W. Ussery, Takuji Yamada, MetaHIT Consor-

tium, Pierre Renault, Thomas Sicheritz-Ponten, Peer Bork, Jun Wang, Søren

Brunak, S. Dusko Ehrlich, and MetaHIT Consortium, Identification and assem-

bly of genomes and genetic elements in complex metagenomic samples without

using reference genomes, Nat Biotechnol 32 (2014), no. 8, 822–828.

[226] Cecilia Noecker, Hsuan-Chao Chiu, Colin P. McNally, and Elhanan Boren-

stein, Defining and Evaluating Microbial Contributions to Metabolite Variation

in Microbiome-Metabolome Association Studies, mSystems 4 (2019), no. 6.

[227] Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre

Legendre, Dan McGlinn, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson,

Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, and Helene Wagner, Ve-

gan: Community ecology package, 2019.

[228] Kaitlyn Oliphant and Emma Allen-Vercoe, Macronutrient metabolism by the

human gut microbiome: Major fermentation by-products and their impact on

host health, Microbiome 7 (2019), no. 1, 91.

[229] Chana Palmer, Elisabeth M. Bik, Daniel B. DiGiulio, David A. Relman, and

Patrick O. Brown, Development of the Human Infant Intestinal Microbiota,

PLOS Biology 5 (2007), no. 7, e177.

197



BIBLIOGRAPHY

[230] E. Paradis and K. Schliep, Ape 5.0: An environment for modern phylogenetics

and evolutionary analyses in R, Bioinformatics 35 (2018), 526–528.

[231] Edoardo Pasolli, Lucas Schiffer, Paolo Manghi, Audrey Renson, Valerie Oben-

chain, Duy Tin Truong, Francesco Beghini, Faizan Malik, Marcel Ramos, Jen-

nifer B. Dowd, Curtis Huttenhower, Martin Morgan, Nicola Segata, and Levi

Waldron, Accessible, curated metagenomic data through ExperimentHub, Nature

Methods 14 (2017), no. 11, 1023–1024.

[232] Edoardo Pasolli, Duy Tin Truong, Faizan Malik, Levi Waldron, and Nicola

Segata, Machine Learning Meta-analysis of Large Metagenomic Datasets:

Tools and Biological Insights, PLOS Computational Biology 12 (2016), no. 7,

e1004977.

[233] Helle Krogh Pedersen, Valborg Gudmundsdottir, Henrik Bjørn Nielsen, Tuu-

lia Hyotylainen, Trine Nielsen, Benjamin A. H. Jensen, Kristoffer Forslund,

Falk Hildebrand, Edi Prifti, Gwen Falony, Emmanuelle Le Chatelier, Florence
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