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Abstract 

The biomarker discovery pipeline is a multi-step endeavor to identify potential 

diagnostic or prognostic markers of a disease. Although the advent of modern 

mass spectrometers has revolutionized the initial discovery phase, a significant 

bottleneck still exists when validating discovered biomarkers. In this doctoral 

research, I demonstrate that the discovery, verification and validation of 

biomarkers can all be performed using mass spectrometry and apply the 

biomarker pipeline to the context of clinical delirium. 

 

First, a systematic review of recent literature provided a birds-eye view of 

untargeted, discovery proteomic attempts for biomarkers of delirium in the 

geriatric population. Here, a comprehensive search from five databases yielded 

1172 publications, from which eight peer-reviewed studies met our defined 

inclusion criteria. Despite the paucity of published studies that applied systems-

biology approaches for biomarker discovery on the subject, lessons learned and 

insights from this review was instrumental in the study designing and proteomics 

analyses of plasma sample in our cohort. 

 

We then performed a targeted study on four biomarkers for their potential 

mediation role in the occurrence of delirium after high-dose intra-operative 

oxygen treatment. Although S100B calcium binding protein (S100B), gamma 

enolase (ENO2), chitinase-3-like protein 1 (CHI3L1) and ubiquitin carboxyl-
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terminal hydrolase isozyme L1 (UCHL1) have well-documented associations with 

delirium, we did not find any such associations in our cohort. Of note, this study 

demonstrates that the use of targeted approaches for the purposes of biomarker 

discovery, rather than an untargeted, systems-biology approach, is unavoidably 

biased and may lead to misleading conclusions. 

 

Lastly, we applied lessons learned and comprehensively profiled the plasma 

samples of delirium cases and non-delirium cases, at both pre- and post-surgical 

timepoints. We found 16 biomarkers as signatures of cardiopulmonary bypass, 

and 11 as potential diagnostic candidates of delirium (AuROC = 93%). We 

validated the discovered biomarkers on the same mass spectrometry platform 

without the use of traditional affinity-based validation methods. Our discovery of 

novel biomarkers with no know association with delirium such as serum amyloid 

A1 (SAA1) and A2 (SAA2), pepsinogen A3 (PEPA3) and cathepsin B (CATB) 

shed new lights on possible neuronal pathomechanisms. 

 

 

 

 

 

 



 iv 

Acknowledgements 

My sincerest appreciation to the many faculty, collaborators, sponsors and fellow 

students at Dartmouth College and beyond for their immense contributions and 

support to my academic journey. I am particularly grateful to Dr Scott A. Gerber 

for the many things I have learned under his tutelage and for his guidance 

navigating through graduate training. A very big thank you to my qualification and 

thesis committee members, Dr Hildreth R. Frost, Dr Stephen L. Lee and Dr 

Michael L. Whitfield, without their help and support I would not come this far. Last 

but not the least, I am heavily indebted to my family and friends who supported 

me during my training. 

 

 

 

 

 

 

 

 

 

 



 v 

Table of Contents 

Abstract ................................................................................................................................................ ii 

Acknowledgements ........................................................................................................................... iv 

List of Tables ..................................................................................................................................... vii 

List of Figures ................................................................................................................................... vii 

Chapter One: Introduction ................................................................................................................ 1 

Background .............................................................................................................................................. 3 

Research Objectives ............................................................................................................................. 28 

Chapter Two: Review of Proteomic Contributions to Delirium Biomarker Research ........... 30 

Abstract ................................................................................................................................................... 31 

Introduction ............................................................................................................................................ 32 

Methods .................................................................................................................................................. 35 

Results .................................................................................................................................................... 36 

Discussion .............................................................................................................................................. 50 

Conclusion ............................................................................................................................................. 59 

Chapter Three: Perioperative Hyperoxia and Delirium after Cardiopulmonary Bypass ....... 60 

Abstract ................................................................................................................................................... 60 

Introduction ............................................................................................................................................ 62 

Methods .................................................................................................................................................. 64 

Results .................................................................................................................................................... 69 



 vi 

Discussion and Conclusion .................................................................................................................. 77 

Chapter Four: Intraoperative Plasma Proteomic Changes in Cardiac Surgery: .................... 82 

Abstract ................................................................................................................................................... 83 

Statement of Clinical Relevance ......................................................................................................... 84 

Introduction ............................................................................................................................................ 85 

Materials and Methods ......................................................................................................................... 87 

Results .................................................................................................................................................... 97 

Discussion ............................................................................................................................................ 115 

Chapter Five: Conclusions and Future Directions .................................................................... 131 

Chapter Six: Additional Works and Contributions .................................................................... 137 

Affinity-based profiling of endogenous phosphoprotein phosphatases by mass spectrometry137 

Abstract ............................................................................................................................................ 137 

Contribution ..................................................................................................................................... 138 

Development and validation of inducible protein degradation and quantitative 

phosphoproteomics to identify kinase-substrate relationships ..................................................... 139 

Abstract ............................................................................................................................................ 139 

Contribution ..................................................................................................................................... 140 

Quantitative survey research in anesthesiology: a field guide to interpretation ......................... 141 

Abstract ............................................................................................................................................ 141 

Contribution ..................................................................................................................................... 142 

Brachial Artery Embolectomy in a Polytrauma Patient: A Case Report ...................................... 143 

Abstract ............................................................................................................................................ 143 

Contribution ..................................................................................................................................... 143 



 vii 

References ....................................................................................................................................... 144 

 

List of Tables 

Table 2. 1 Summary of included studies .................................................................... 46 

 

Table 3. 1 Baseline characteristics of study participants ......................................... 70 

Table 3. 2 Measured Biomarkers and their Dynamic Range ................................... 70 

Table 3. 3 Stratified analysis of baseline to post-operative change in S100B 

levels ................................................................................................................................ 73 

Table 3. 4 Conditional effects and regression coefficients of predictors in 

mediation modeling ....................................................................................................... 76 

Table 4. 1 Selected baseline characteristics of study subject in the discovery 

phase ............................................................................................................................... 98 

Table 4. 2 Summary of DeepRT+ training parameters and results of prediction 

assessment. .................................................................................................................. 106 

 

 

List of Figures 

Figure 1. 1 FDA approved biomarker assays (2011 - 2021) ..................................... 6 

Figure 1. 2 Composition of the Plasma Proteome by Protein Mass ......................... 8 

Figure 1. 3 Schematic overview of the biomarker discovery workflow .................. 13 



 viii 

Figure 1. 4 Mass spectrometry analysis of a plasma sample ................................. 19 

Figure 1. 5 Different approaches to the discovery pipeline ..................................... 23 

Figure 1. 6 Retention time shifts .................................................................................. 25 

Figure 2. 1 Counts of all published documents on delirium between 2016 and 

2021 ................................................................................................................................. 34 

Figure 2. 2 Literature search and screening .............................................................. 37 

Figure 2. 3 Modified Venn (Euler) diagram ................................................................ 48 

Figure 2. 4 UpSet chart ................................................................................................. 49 

Figure 2. 5 Functional analysis of the biomarker pool .............................................. 51 

 

Figure 3. 1 Experimental design .................................................................................. 65 

Figure 3. 2 Modelling for mediation analyses ............................................................ 68 

Figure 3. 3 Comparison of neuro-inflammatory biomarker levels ........................... 72 

Figure 3. 4 Stratified analysis of S100B levels .......................................................... 74 

Figure 3. 5 Mediation modeling and analyses ........................................................... 75 

 

Figure 4. 1 Study Design and Biomarker Discovery Workflow ............................. 100 

Figure 4. 2: Data preparation for downstream analyses ........................................ 104 

Figure 4. 3 Clustering, differential abundance and functional analyses .............. 109 

Figure 4. 4 Biomarker Validation ............................................................................... 111 

Figure 4. 5 Analyses of Validation Data ................................................................... 114 



 1 

 

 

 

 

 

 

Chapter One: Introduction  

 

Biological Mass Spectrometry for Clinical Biomarker Discovery 

The use of diagnostic biomarkers is central to patient care. Biomarkers are 

useful, not only for the early detection of pathological changes before overt 

clinical manifestations, but also for monitoring treatment and for predicting 

outcomes. Within the omics spectrum, proteins are more proximal reporters of 

diseases than genes and transcripts, and most diseases manifest at the level of 

protein activity. It is therefore not surprising that protein-based biomarkers form a 

substantial proportion of laboratory tests requested in clinical practice. Despite 

their substantial role in diagnostics, the last few years have seen a significant 

decline in the number of protein biomarkers approved by the FDA for clinical 

use.[9-11] 
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Several reasons have been suggested for this down-trending observation in 

protein biomarker discovery. Until recently, profiling biofluids for proteomic 

signatures was mostly achieved using two-dimensional (2-DE) electrophoresis 

beginning in the 70s.[12-14] Despite the many successes with 2-DE systems,[15-

19] the lack of reproducibility, the narrow dynamic range and inability to identify 

low abundance and/or hydrophobic proteins, among other limitations, 

underscored the need for high-resolution platforms. Liquid chromatography (LC) 

equipped with mass spectrometry (MS) overcame some of these aforementioned 

challenges and opened the gateway for the unbiased analyses and quantification 

of proteins even in complex biological samples. The advent of modern mass 

spectrometers, the availability of comprehensive protein sequence databases 

and the introduction of new peptide labeling schemes has enhanced the 

accuracy, sensitivity and multiplexing capabilities of mass spectrometers, 

allowing for the comprehensive analyses and quantification of proteins from 

multiple batches of samples at a time. 

 

Notwithstanding the substantial progress in protein identification, a primary 

bottleneck in the biomarker workflow is the failure to validate candidate 

biomarkers. The use of traditional affinity-based methods to validate biomarkers 

discovered by MS could delay biomarker translational research and FDA 

approval by about a demi-decade.[20, 21] To accelerate the biomarker pipeline, 

we must close the translational gap between the bench and the bedside. This 

doctoral research contributes to the growing body of knowledge that biomarker 
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discovery and subsequent antibody-free validation is achievable on the same MS 

platform. Here, we applied MS-based discovery and validation pipeline to the 

specific context of post-operative delirium, using systems-biology approaches. 

Additionally, it is demonstrated that careful study designing, clarity regarding the 

intended use of the biomarkers (for screening, diagnosis or prognosis), use of the 

appropriate study population, choice of statistical tools and optimal sample 

preparation all play important roles to ensuring successful biomarker discovery. 

 

 

 

Background 

The Need for Protein-based biomarkers 

Biomarkers are, by definition, objectively measurable characteristics, useful in 

evaluating a normal biological activity, a pathological process or a 

pharmacological response to some therapeutic intervention.[22] Within the omics 

spectrum, proteins are most preferred for diagnostic purposes. This is because 

genomic sequencing provides unchanging probabilistic risk with limited 

applicability beyond monogenic diseases such as hemophilia A, phenylketonuria 

and osteogenesis imperfecta.[23-25] Diagnostic assays involving transcripts 

(mRNA), on the other hand, has yet to gain widespread use in clinical 

laboratories.[26] Although proteins and metabolites are the most proximal 

reporters of diseases, proteins are unique in providing a functional snapshot of 
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the body’s response to a disease process rather than metabolic products. 

Furthermore, most diseases manifest at the level of protein activity, given their 

central role in biosynthesis, signaling and structural stability of cell and 

tissues.[27, 28] These make proteins ideal for diagnostics, for prediction and as 

targets for intervention.[29] It is therefore not surprising that proteins (in particular 

enzymes) are the most routinely requested biomarkers in clinical laboratories[30, 

31]. 

 

The broader clinical significance of protein biomarkers is also evident in routine 

laboratory medicine. For example, a positive post-urea breath test for 13CO2 

molecules only suggests an H pylori infection. However, detecting a BCR-ABL 

fusion protein is not only diagnostic of chronic myeloid leukemia (CML) but is 

also the target for Imatinib therapy and for monitoring drug response. Where the 

underlying pathophysiology is unknown, discovered biomarkers have been 

instrumental in shedding new lights on the mechanistic underpinnings of the 

clinical condition in question.[32-34] 

 

Advances in measurement technology and the rising number of putative 

biomarkers reported in recent literature raise expectations about the ideal 

biomarker. Biomarkers are required to be more sensitive, reliable and accurate in 

identifying cases and quantifying the extent of a pathological change. 

Additionally, the ideal biomarker is expected (1) to detect an active pathological 
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change very early in the disease process, preferably before significant changes 

occur; (2) to be easily accessible, i.e., assaying from peripheral blood is generally 

preferred to taking an invasive biopsy unless it is absolutely necessary; (3) to be 

analytically stable and correlate well with worsening disease severity; and lastly 

(4) to be associated with a known disease mechanism.[22, 35] 

 

Based on these characteristics, there is clearly a significant unmet clinical need, 

yet the proportion of FDA-approved in vitro diagnostics which are protein-based 

assays remains low (Figure 1.1). This unmet need for protein biomarkers is 

further reflected in the widening gap between published literature on putative 

biomarker candidates and the number of FDA-approved candidates for clinical 

use.[20, 29, 36] Attempts to fill this gap has led many authors to reimagine the 

biomarker discovery pipeline in terms of the choice of biological samples, the 

appropriateness of the study population, analytical platforms for measurement 

and existing approaches for clinical validation. 

 

Ideal sample sources of biomarker discovery 

Human biofluids are a rich media of diagnostic material, useful in the detection of 

pathological processes. They reflect the overall physiological state of an 

individual[37] or the disease state of a specific organ-tissue,  which makes 

biofluids the ideal sample for biomarker discovery. Relative to other biospecimen 

such as tissues, the relative ease of accessibility of biofluids fulfils a major  



 6 

 

 

 

 

Figure 1. 1 FDA approved biomarker assays (2011 - 2021) 

The number of in vitro diagnostic (IVD) tests approved by the FDA for 

professional use or as over the counter diagnostic, grouped into non-protein and 

protein-based biomarkers. Numbers include novel biomarkers as well as approvals 

after expiration of original patent terms. The FDA considers biomarker assays as medical 

devices and adhere to the same regulatory standards as other types of medical devices. 

Data source: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfIVD/search.cfm 

(last accessed: 05/25/2022) 

 

 

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�	

��
�


��
��

��
��

����

�
��
�	


��	���
��������

��

���



 7 

 

criterion of the ideal biomarker. Use of urinary albumin to evaluate the risk of 

diabetic nephropathy and use of antemortem CSF tau protein to detect 

Alzheimer-type neuropathologic changes in the brain are well-known examples of 

the diagnostic potential of biofluids.[38, 39]. The proteome of human biofluids can 

be broadly categorized into native proteins, tissue leakage and signaling 

proteins. 

 

This consistent compositional pattern is observed when comparing discovery 

proteomic experiments performed on blood, tears, saliva, urine, cerebrospinal 

and synovial fluids.[40-45]  

 

Analytical challenges of the human plasma proteome 

Of these biofluids, blood plasma/serum is the most complex by composition, and 

remains the most difficult proteome to characterize.[40] Proteins in plasma (or 

serum) represents about 20% of the entire human proteome. The wide dynamic 

range of protein concentrations spans about 10 – 12 orders of magnitude.[40] In 

addition, approximately 95% of the total protein mass in plasma (or serum) is 

made up of the 12 most abundant proteins (Figure 1.2).[46, 47] Because plasma 

(or serum) contains leakage proteins from many tissues in the body, this 

compositional complexity poses significant analytical challenges, as signal from 

the proteins of interest may be impaired by the dominance of albumin and other  



 8 

 

 

 

 

 

Figure 1. 2 Composition of the Plasma Proteome by Protein Mass 

Data source from Pietrowska, Wlosowicz [48] 
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high-abundance proteins.[29, 40, 49] Furthermore, post-translational 

modifications and degradation mechanism by native plasma proteases in the 

background of lipids, salts and small molecule metabolites further reduce 

analytical sensitivity, reproducibility and resolution in unpredictable ways.[48, 49] 

 

To reduce sample complexity and enhance signal from the low-abundance 

plasma proteome frequently requires additional experimental steps to remove the 

dominating high-abundance proteins. Immunodepletion, affinity enrichment and 

fractionation are common pre- and post-digestion options compatible with 

shotgun proteomics, although blood-derived exosomes have recently been 

explored.[50-53] By far, immunodepletion is the most commonly employed 

sample purification strategy, and affinity enrichment is most useful for the 

analysis of post-translational modifications.[54] It is worth noting that no one 

single approach is better than the others, and substantial removal of the high-

abundance proteome may require more than one approach. Briefly, while 

immunodepletion by dye affinity resins rely on the covalent binding between the 

anionic anthraquinone dye to agarose beads to deplete albumin, immunoaffinity 

columns purify samples by binding to mono- or polyclonal antibodies immobilized 

on resin beads. The High Select Top14 Abundant Protein Depletion Mini Spin 

Columns (Thermo) and the PierceTM Albumin Depletion Kit® (Thermo Fisher 

Scientific) are notable commercial examples.  
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These additional experimental steps, however important they may be in 

enhancing signal from the low-abundance proteome, are without limitations. A 

major concern about their use is the non-specific removal of proteins other than 

what was targeted. Because of the role of albumin in the active transport of many 

other proteins, Liu, Zhao [55] observed a remarkable loss of target proteins after 

albumin depletion. Furthermore, there is considerable degree of variation in the 

efficacy of the depletion step.[56] Possible reasons for this observation may 

include saturation of antibody binding sites and the relatively low sample capacity 

of antibodies used.  

 

Following digestion of intact plasma proteins, separation strategies to reduce 

sample complexity is commonly achieved using electrophoresis or 

chromatography. Here, separation is achieved according to size, hydrophobicity, 

charge, isoelectric point or by affinity.[57] Post-digestion chromatographic 

fractionation involves the interaction of peptides with a stationary phase (e.g. 

reversed-phase [RP] materials) and a mobile phase gradient. Modification of 

properties of the mobile phase, either by changing the organic modifier 

concentration, pH or the salt content over time, allows for the differential elution 

of peptides.[58, 59] Given the benefits of extensive fractionation in reducing the 

dynamic range of the proteome being studied,[59-61] multidimensional strategies 

that combines orthogonal separation properties are often employed. Such is the 

approach of an in-house offline pentafluorophenyl (PFP)-RP chromatographic 

strategy that is orthogonal to the online C18-based reversed-phase 
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separation.[62] Our in-house method, comparable to more commonly used 

approaches such as Hi-pH RP fractionation, requires fewer experimental steps, 

and has been demonstrated to be time-efficient and compatible with chemically-

labeled peptide species. 

 

The choice between plasma and serum remains a long-standing debate. After 

centrifugation of an anticoagulant-treated blood to suspend cells and cellular 

debris, the remaining liquid component of blood is plasma. Omitting the 

anticoagulant step results in serum, and the subsequent centrifugation also 

allows for the removal of the fibrin clots. This results in significant qualitative and 

quantitative differences between plasma and serum.[63, 64] In fact, the 

coagulation step results in a 3 – 4% lower protein concentration in serum relative 

to plasma.[65, 66] It is recommended that the decision to use plasma or serum 

be guided by the purpose for the sample draw. However, for the specific 

purposes of biomarker discovery requiring the unbiased profiling of blood, 

removal of clotting factors (as in the case of serum) may contribute to non-

specific removal of other proteins of interest that may be associated with the 

clotting factors. This is also the recommendation by the Human Proteome 

Organization (HUPO), with the additional reason of a lower degree of ex vivo 

degradation during the coagulation step [67] 
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Mass spectrometry-based Biomarker Discovery 

The biomarker discovery workflow is a series of preclinical experiments and 

clinical studies that aim to discover, verify and validate potential biomarkers of 

the clinical condition under investigation. Typically beginning with a small set of 

patient samples (figure 1.3), discovery proteomic experiments are conducted to 

generate the foundational hypotheses of the study. Here, samples are 

comprehensively profiled for all identifiable proteins that may explain the 

differences in the proteomic profiles of cases and controls. At this stage, 

experiments are designed to report protein abundance in relative terms (e.g., log 

fold change between cases and controls). Common options for relative 

quantification in shotgun proteomics include isotopic labeling (e.g., using 

intensities from tandem mass tags or isobaric tags for relative and absolute 

quantification), non-isobaric tagging (e.g., amine-specific, stable-isotope-labeled 

reagents) or label-free quantification (by peak area integration or spectral 

counting).   

 

With a putative list of thousands of candidate biomarkers at this stage, the 

qualification phase ensures that the biomarker readout is independent of the 

discovery measurement platform and ascertains that a relationship between 

abundance and clinical outcome exists.[68] Often times, this step is buried in the 
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Figure 1. 3 Schematic overview of the biomarker discovery workflow 

Each step forward requires substantially higher number of patient samples while 

focusing on a panel of very few proteins for clinical evaluation. 
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verification phase if the measurement platform used for verification is orthogonal 

to that used for the discovery. Biomarker verification then measures identified 

biomarker candidates in a larger independent set of samples with the primary 

aim of eliminating false discoveries.  

 

To date, this phase remains the main bottleneck in the biomarker workflow.[30, 

69, 70] This is because traditional affinity-based verification methods, notably 

ELISA, have limited multiplexing capabilities and are not suited for the high 

throughput setup that biomarker verification demands. Besides, measurements 

by ELISA are semi-quantitative.[71] ELISA verification also requires candidate 

biomarkers to be antigenic and often exhibit cross-reactivity.[72, 73] Where 

commercial antibodies are unavailable, developing high-quality assays for the 

many biomarkers needing verification can be time-consuming (about 1 – 2 years 

per antibody) and may be cost-prohibitive (over USD 100, 000 per antibody).[74-

77]. As a result, many discovered biomarkers are never verified.[1, 78] 

Notwithstanding these, verification by ELISA is advantageous for the ability to 

identify proteins with the least false positive rate and measure concentrations of 

analytes even in low abundance.[79] 

 

Fundamental to the biomarker pipeline is the unequivocal identification and 

characterization of candidate analytes from study samples. As this step sets the 

stage for many downstream steps at both the discovery and validation phases, 
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the degree of certainty required in protein identification places high demands on 

the quantitative assays used. Common assay types employed in the biomarker 

pipeline include immunohistochemistry[80], enzyme-linked immunosorbent 

assays (ELISA), flow cytometry[81], mass spectrometry, and more recently, 

proximity extension assays[82] and SomaScan[83].  

 

 

Mass spectrometry and modern mass analyzers 

Of these measurement platforms, mass spectrometry (MS) remains the gold 

standard for bioanalytical applications.[84] MS is a high throughput analytical 

platform with the requisite sensitivity, unprecedented selectivity and resolution to 

identify analytes in complex biological samples. The high mass accuracy and 

speed makes MS uniquely suited to quantify analytes, even at attomole 

concentrations.[85] At its fundamental level, MS has three functional 

components: (1) sample introduction, (2) ionization and (3) detection and mass 

analyses. The most common method for sample introduction is by liquid 

chromatography. In a typical proteomics setup, liquid chromatography coupled 

online to tandem mass spectrometers (LC-MS/MS) detects the input sample 

dissolved in the mobile phase and pumps eluents under very high pressures 

through a densely packed column containing the stationary phase. 

Chromatographic separation of sample at this point, typically orthogonal to 
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separation methods described earlier, is based on differential affinity of input 

material to the stationary phase.  

 

After successful separation and elution from the column, the sample undergoes 

ionization and subsequent introduction into the mass spectrometer for detection 

according to their mass to charge (m/z) ratios. The time it takes from analytes’ 

contact with the column material to elution off the column is the chromatographic 

retention time (RT). For peptides, two ionization techniques are most commonly 

employed: the electrospray ionization (ESI) and the matrix assisted laser 

desorption/ionization (MALDI). Of the two, soft ionization by ESI is achieved by 

applying an electric field to the sample in the capillary column. This produces 

charged droplets that form gaseous ions with very little fragmentation.[86] 

MALDI, on the other hand, achieves ionization by using short laser pulses to heat 

up an acidic matrix containing the sample.[87] For a LC-MS/MS setup, ESI is 

typically coupled to ions traps,[88] preferably because of the ease of introducing 

ionized samples from the columns into the mass spectrometer. Considerable 

gains in protein identification can be attributed to improvements in ion 

transmission, speed, mass accuracy, duty cycle and resolution in modern mass 

analyzers. Time-of-flight, Orbitraps and ion-traps are common mass analyzers, 

each with unique properties in terms of resolution, duty cycle and acquisition 

speed, among others.[89-91] Specifically for proteomics, a number of hybrid 

configurations exits, such as the linear ion trap-Orbitrap, that combines the 



 17 

strengths of two or more mass analyzers to increase their ability to analyze 

samples in tandem, as briefly described below. 

 

Generally, the first mas analyzer, MS1, separates ionized species by their mass 

to charge (m/s) ratio. Ions at a given m/z ratio are then selected for further 

fragmentation, either by collision-induced dissociation, photodissociation or ion-

molecule reactions. Fragments ions introduced into the second round of mass 

analysis, MS2, provide the sequence information that is searched against the 

appropriate database to identify proteins in the sample. Figure 1.4 shows an 

example of data acquired by LC-MS/MS analysis of a plasma sample. Many 

search algorithms exist for the identification of peptides from their respective 

tandem mass spectra, most common ones being SEQUEST, MASCOT, 

Andromeda and COMET. While SEQUEST computes cross-correlation scores by 

comparing the experimental spectra with theoretically derived equivalents,[92] 

MASCOT employs a probabilistic scoring metric, the expectation value, that 

ascertains the probability that the observed match between the experimental 

spectra and the protein database is random.[93] Conveniently integrated into the 

MaxQuant Environment, Andromeda uses a probability metric for scoring 

peptide-spectrum matches (PSM)[94]. Last but not the least, COMET works 

similarly to SEQUEST. It however implements a faster cross-correlation scoring 

by avoiding the creation, storing and indexing of theoretical spectra.[95] 

Competing technologies 
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SomaScan (SomaLogic, Inc, Boulder, CO) and PEA (Olink Proteomics, Uppsala, 

Sweden) are emerging technologies, capable of simultaneously measuring 

thousands of plasma proteins. While SomaScan uses fully synthetic, single-

stranded DNA-based molecular recognition elements to bind to proteins within a 

sample,[96] PEA employs oligonucleotide-labeled antibody probe pairs that bind 

to their respective proteins. Both are semi-targeted, high throughput analytical 

platforms with increased usage in recent biomarker research.[97-100] Their use 

requires less infrastructure, lesser number of steps in sample preparation and 

much less expertise when compared to MS.[101] Because they are semi-

targeted, their use challenges the fundamental principle of unbiased proteomic 

profiling for the purposes of biomarker discovery and hypothesis generation. 

This, however, may be less of a concern given that newer version of SomaScan 

can identify 7000 different proteins from only 55µL of sample. 

(https://somalogic.com/panels/, last accessed 05/29/2022). 

 

Nonetheless, MS remains the gold standard platform, although data from the 

different platforms may be complimentary.[101] Because SomaScan and PEA 

require less sample preparatory steps, the analytical challenges with the human 

plasma proteome, outlined earlier in this chapter, may only apply to biomarker 

workflows that employ MS. The extent to which additional steps such as sample 

fractionation and immunodepletion,  
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Figure 1. 4 Mass spectrometry analysis of a plasma sample 

Tryptic peptides from a plasma sample spiked in with exogenous CDS1 protein 

was analyzed on the Orbitrap Fusion Lumos MS. Peptides were fragmented by 

electron transfer dissociation (ETD) and the resulting MS/MS spectra were 

search against the human proteome database using COMET. A: Base peak of 

the total ion chromatogram based on the peptide separation by liquid 

chromatography. B: MS1 spectra acquired at 22.9 mins retention time (red 

arrows). Image source: MASSIEVE, an in-house computational platform 
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or the lack thereof, affects data acquired by SomaScan or PEA remains to be 

determined. 

 

Overcoming the validation bottleneck 

Although biomarker researchers agree that discovery, verification and validation 

are the major steps in the workflow (Figure 1.3), two major approaches to this 

workflow also exist. The first and more traditional approach, also called the 

triangular strategy, is based on discovery using MS, followed by verification and 

validation with immunoassays (Figure 1.5). Quite recently, Geyer, Holdt [30] 

proposed the rectangular strategy, which involves the discovery, verification and 

validation of candidate biomarkers all on the same MS platform. As outlined 

earlier regarding challenges with immunoassay-based validation schemes, the 

rectangular strategy seeks to eliminate this bottleneck in the biomarker workflow. 

 

Initial steps in MS-based validation involve the development of a targeted method 

for the list of precursor ions discovered a priori. In targeted proteomics, the term 

“transition” refers to the pair of precursor ion – product ions following 

fragmentation. Broadly, selected reaction monitoring (SRM) and parallel reaction 

monitoring (PRM) are the available targeted proteomic methods, the choice of 

which is dictated by the available MS instrument and the nature of the 

experiment or type of information required. While SRM, primarily performed on 
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triple quadrupole (QqQ) MS, requires the selection of a limited number of 

transitions for a given peptide, PRM monitors all potential product ions of a 

peptide.[102] The method development is achievable directly via the MS 

instrument software (e.g., XCalibur) or with the assistance of specialized 

software (e.g. Skyline).[103] Specifically for PRM, the method file typically 

contains an identifier for the precursor ion, the m/z, the charge state of the 

precursor ion, and the corresponding retention time window, all of which can be 

obtained from the discovery experiments. SRM requires the additional step of 

specifying which transitions will be monitored at MS2. 

 

Following data acquisition by targeted proteomics, Skyline can also facilitate 

additional downstream analyses, although vendor software such as QualBrowser 

or manually extracting the data in a programming environment are possible 

options. Because retention time windows are specified for any given precursor 

ion, particular attention on RT is required as minor changes in chromatographic 

conditions occurring during MS can cause significant RT shifts. Figure 1.6 shows 

the RT shifts observed during an in-house PRM method development on a 1-

hour gradient. We observed that for each subsequent MS run, there was a RT 

shift of about 30 seconds. 
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Figure 1. 5 Different approaches to the discovery pipeline 

Consistent in both approaches is the unbiased profiling of biospecimen in the 

discovery phase, and an orthogonal biomarker measurement and use of 

independent set of samples in the subsequent phases. A: triangular strategy 

typically begins with a smaller set of samples, yielding 1000s of candidate 

biomarkers and ends with larger cohort of patients to validate a smaller panel of 

biomarkers; B: in the rectangular approach, both discovery and validation occur 

on the same MS platform without a need for affinity-based validation. Emphasis 

here is on orthogonality of the MS measurement techniques across the different 

phases of the pipeline. Qualification, verification and validation are illustrated in a 

continuum to demonstrate how MS eliminates bottlenecks and simplifies the 

biomarker pipeline  
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Although this problem is not well known in published literature, Heil, Remes [104] 

made a similar observation direct import of acquired raw data after each run in 

order that RTs can be adjusted for subsequent runs. Nonetheless, the advantage 

of MS-based validation over traditional affinity-based methods is clear, with the 

theoretical possibility of shortening the bench-to-bedside time gap in biomarker 

discovery. 

 

Post-operative delirium 

We apply the biomarker pipeline to the context of post-operative delirium. This is 

a debilitating clinical condition with acute onset and a fluctuating course in the 

immediate post-operative period. It is characterized by changes in cognition, 

deficits in attention, fluctuating levels of consciousness and/or disorganized 

thinking.[105] 

 

It is the most common acute neuropsychiatric disorder[106, 107] and complicates 

post-surgical care of the elderly with worse hospital outcomes, longer hospital 

stays, higher risk of post-surgical strokes, increased readmission rates and 

higher overall mortality[108, 109]. Post-operative delirium increases 

hospitalization cost substantially and remains a significant healthcare burden, 

most especially in the geriatric population. Although incidence varies widely 

depending on the type of surgery,[110] the post-cardiotomy population has one  
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Figure 1. 6 Retention time shifts 

Even when a wider RT window is specified for a given precursor, RT shifts 

across MS runs can be significant enough such that precursor ions may be 

missed. Target proteomic analyses involving many samples or runs require 

particular attention to this shift in RTs 
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of the highest incidence, documented to be over 50% in some studies.[108, 111, 

112] 

 

Complications of post-operative delirium goes farther than the immediate post-

surgical period. In the balanced trial, Evered, Chan [113] observed that patients 

diagnosed with delirium in the immediate post-operative period experienced 

significant neurocognitive deficits in the one year following the surgical insult. 

Significant functional decline, which necessitates placement in nursing homes, 

has also been reported at three month following surgery.[114, 115] Although 

delirium is generally considered a transient condition, some patients continue to 

meet the criteria of diagnosis one year after discharge.[116, 117] This 

phenomena, conveniently termed persistent delirium, is associated with overall 

higher risk of mortality and delayed functional recovery.[118] Furthermore, 

delirium may accelerate long-term cognitive disorders such as Alzheimer’s 

disease, although this observation has been inconsistent across studies.[119-

121] 

 

At present, no definitive treatments exist for delirium. Because patient 

management is largely symptomatic, there is high demand for preventative 

strategies. Prevention, however, requires finding subjects who are most at risk of 

delirium, or at least, accurately identifying patients before overt clinical 

manifestation. Unfortunately, the existing diagnostics tools require that patients 
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are already exhibiting signs of delirium. The confusion assessment method 

(CAM), the Intensive Care Delirium Screening Checklist (ICDSC) and the 4A’s 

test (4AT) are common delirium screening tools. Of these, the CAM and its 

accompanying variants (CAM-S, CAM-ICU, 3D-CAM, etc.) are the most widely 

used[122] with four main components based on the 1987 DSM III-revised 

criteria.[123] Despite a reasonably good diagnostic accuracy of the CAM (>94% 

sensitivity and 90-95% specificity), there is significant diagnostic uncertainty. 

Assessing for confusion and disorganized thinking introduces subjectivity and 

arbitrariness. Even for trained users of the tool, there is poor inter-rater 

agreement, reported to be about 92%.[124] Furthermore, delirium remains one of 

the most missed- or under-diagnosed conditions in current practice. Between 32 

– 72% of cases have been reported as missed diagnosis, misattribution or late 

diagnosis.[125-127] Additionally, the hypoactive subtype of delirium often 

presents with features that are not always associated with phenotypic 

delirium.[128, 129] 

 

Due to aforementioned problems, the current assessment tools may not be very 

helpful for a condition that has no definitive treatments, and for which early case 

identification and prevention is desired. We therefore assert that reliable 

diagnostic biomarkers of delirium are urgently needed. 
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Research Objectives 

In this doctoral research, I hypothesize that biomarkers of delirium, discovered by 

comprehensively profiling the plasma samples of delirium cases and non-delirium 

controls, may provide an objective approach to diagnosis and offer insights into 

possible neuronal pathomechanisms. Comprehensively profiling of patient 

samples requires that the initial stages of the biomarker discovery workflow is 

unbiased, to allow for the detection of all possibly identifiable proteomic 

signatures between cases and non-cases. 

 

To achieve this overarching research objective, Chapter Two[130] is a systematic 

review that summarizes the major proteomic studies over the last six years that 

sought to discover biomarkers of delirium using unbiased, systems-biology 

approaches. This study provides a birds-eye view of the attempts and 

approaches by various scientists towards the clinical need of discovering 

biomarkers of delirium. Further, the review provides a thorough assessment of 

experimental approaches that optimize the chances of a successful discovery 

endeavor, lessons from previous attempts and avenues for improvement in the 

quest for diagnostic biomarkers of delirium. 

 

Consistently emphasized in this doctoral thesis is the knowledge that discovery 

experiments be conducted in an unbiased manner, most especially for a 

condition such as delirium for which much less is known about the underpinning 
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pathomechanisms. This approach to biomarker discovery, appropriately termed 

as untargeted experiments, requires that selection of candidate biomarkers be 

guided by the data acquired. Quite surprisingly, most studies on delirium 

biomarkers use a targeted approach, where a list of proteins are selected for 

measurement in cases and controls. The use of targeted approaches, while 

powerful, is unavoidably biased by the a priori knowledge of those biomarkers. In 

Chapter Three[131] of this document, I describe a targeted study of plasma 

samples in our cohort based on select panel of four proteins. I demonstrated that 

use of targeted strategies for the purposes of discovery defies the fundamental 

logic of biomarker discovery and may potentially lead to misleading conclusions 

and incorrect study outcomes. 

 

Lastly, I applied the biomarker discovery pipeline to plasma samples from subject 

in our study cohort. Chapter Four[132] outlines the discovery steps, the 

application of advanced computational tools to handle low-abundance proteins 

and validation strategies that ensured the accurate quantification of discovered 

biomarkers in an independent set of samples. It is my hope that this series of 

works contributes to the growing body of knowledge on clinical proteomics, 

biomarker discovery and the search of objective diagnostic biomarkers of post-

operative delirium. 
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Chapter Two: Review of Proteomic Contributions to 

Delirium Biomarker Research 

Wiredu, K., et al., Proteomics for the discovery of clinical delirium biomarkers: A 

systematic review of Major Studies. medRxiv, 2022[133] 

 

Authors’ contributions: 
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 31 

Abstract 

Delirium represents a significant healthcare burden, diagnosed in over two million 

elderly Americans each year. In the surgical population, delirium remains the 

most common complication among elderly patients and is associated with with 

longer hospital stays, higher costs of care, increased mortality and functional 

impairment. The pathomechanism of disease is poorly understood, with current 

diagnostic approaches somewhat subjective and arbitrary, and definitive 

diagnostic biomarkers are currently lacking. Despite the recent interest in 

delirium research, biomarker discovery for it remains new. Most attempts to 

discover biomarkers are targeted studies that seek to assess the involvement of 

one or more members of a focused panel of candidates in delirium. For a more 

unbiased, systems-biology view, we searched literature from MEDLINE, 

Cochrane Central, Web of Science, SCOPUS, and Dimensions between 2016 

and 2021 for untargeted proteomic discovery studies for biomarkers of delirium 

conducted on human geriatric subjects. From an overall search of 1172 

publications, eight peer-reviewed studies met our defined inclusion criteria. The 

370 unique peri-operative biomarkers identified in these reports are enriched in 

pathways involving the activation of the immune system, inflammatory response, 

and the coagulation cascade. IL-6 was the most commonly identified biomarker. 

By reviewing the distribution of protein biomarker candidates from these studies, 

we conclude that a panel of proteins, rather than a single biomarker, would allow 

for discriminating delirium cases from non-cases. The paucity of hypothesis-
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generating studies in the peer-reviewed literature also suggests that a systems-

biology view of delirium pathomechanisms has yet to fully emerge. 

 

Introduction 

Diagnosed in over 2 million older adults each year, delirium presents a significant 

healthcare burden in the United States.[134, 135] Delirium is etiologically 

heterogenous, with many precipitating and predisposing factors.[136-138] 

Following surgery, it complicates geriatric hospitalizations with significant 

functional impairments, longer hospital stays, higher cost of care and increased 

overall mortality risk.[109, 139, 140] Despite the substantial impact on the quality 

of life in this demographic, delirium is diagnosed through subjective assessment 

of a constellation of signs and symptoms within the clinical history, behavioral 

observation and cognitive assessments.[141] As a results, commonly used tools 

such as the confusion assessment method (CAM) often exhibit inter-rater 

variability.[142, 143]  

 

In addition, there is considerable lack of clarity regarding the pathophysiology of 

the condition. Given this, it is surprising to note the majority of delirium biomarker 

research use targeted experiments, where authors study a selected list of 

biomarkers. The use of targeted strategies for the purposes of discovery, while 

powerful, is unavoidably biased by the a priori knowledge of those biomarkers 

and the specific focus of the hypothesis under evaluation. Targeted studies may 
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miss as-of-yet unappreciated functional players in a condition as complex as 

delirium. Furthermore, the biological complexity of commonly used biofluids 

(such as blood and cerebrospinal fluid) necessitate the use of a measurement 

platform that is precise and sensitive even for biomarkers of low abundance. 

Mass spectrometry (MS) remains the gold standard protein discovery platform, 

although high-throughput platforms such as SomaScan and proximity extension 

assays (PEA) have recently been used.[101, 144, 145] Unlike MS, these 

platforms are semi-targeted and limited in the number of proteins assayable. 

 

The inception of the Network of Investigation of Delirium: Unifying Scientists 

(NIDUS)[146] in 2016 to corroborate scientific evidence on delirium has 

encouraged a more unified nomenclature[147] and consistency in case 

identification for the purposes of research. However, only a small proportion of 

published literature since 2016 has focused on biomarker identification (figure 

2.1). 

 

The identification of definitive biomarkers of delirium is likely to contribute 

significantly to our understanding of delirium pathophysiology and to accurately 

identify cases of this acute and debilitating condition.[148] Here, we have 

summarized proteomic contributions in delirium biomarker research in the last six 

years (2016 – 2021), focusing on untargeted experiments that offer a systems-

biology view of the condition. We examine the merits of the different  
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Figure 2. 1 Counts of all published documents on delirium between 2016 and 

2021 

Figure highlights documents involved with delirium biomarkers only, or delirium 

treatment and prevention. Documents described as articles include peer-

reviewed original research, study protocols, preprints, poster abstracts, 

monographs, conference proceedings and editorials and opinions. Administrative 

documents include grants, patents, clinical trials and policy documents. (Source 

of data: Dimensions.ai[149], downloaded on 03/25/2022) 
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measurement platforms and experimental approaches and have offered 

perspectives on optimizing sample preparation for the detection of low 

abundance biomarkers. Lastly, we analyzed the biomarker pool from the 

published studies for understanding of functional themes that may be at play in 

the occurrence of delirium. 

 

Methods 

Following the PRISM guidelines,[150] we searched five databases (MEDLINE, 

SCOPUS, Central, Web of Science and Dimensions) using the key terms 

[delirium, acute confusion, acute brain failure] AND [biomarker, biological marker] 

AND [proteins, proteomics] (Supplemental Table 1). Search results were limited 

to publications written in English and published from 2016 – 2021.  EndNote 

bibliography software version X9.3.3[151] was used for duplicate removal. All 

remaining publications were independently reviewed by KW and EAP in a two-

stage process. Rayyan freeware, a free web-tool for systematic reviews,[152] 

was used to expedite the initial (title and abstract) screening. Secondary 

screening of remaining publications involved full text review for publications that 

met the inclusion criteria of (1) untargeted proteomic profiling, (2) for biomarkers 

of delirium, (3) conducted on human geriatric subjects. Discordance was 

resolved by both KW and EAP through consensus. 
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Results 

We identified a total of 1,172 publications from 5 database searches (MEDLINE, 

SCOPUS, Central, Web of Science and Dimensions). The majority of articles 

excluded during initial screening were review articles, non-biomarker articles, 

poster abstracts, meeting proceedings, editorial and comments. Full text review 

was performed on 280 articles, many of which were either targeted biomarker 

studies on delirium, animal studies or involved non-protein delirium biomarkers 

such as brain imaging. Unique in these exclusions was one study on delirium in 

children. Figure 2.2 is a flowchart of the screening steps and exclusion criteria, 

leading to the final eight peer-reviewed original studies summarized in Table 1. 

Of the eight studies, five were conducted in North America [1, 2, 5, 7, 8] and one 

each in Asia [3], Europe [6] and Sweden [4].  

 

Study Design, Patient Selection and Choice of Controls 

All but two studies had a nested, case-control design.[4, 6] Overall, the age of 

delirium cases averaged 73.3 years (Table 1). Samples from a total number of 

484 subjects (cases and controls) were used for biomarker discovery alone, 

although there is likely an overlap in subjects selected from the same parent 

study (i.e., the SAGES study or the MINDDS trial). Except for one study which 

profiled biofluids from non-surgical patients[6], eligible subjects were all surgical 

patients, who underwent either cardiac[5, 8] or non-cardiac procedures.[1-4, 7] 

Patients’ comorbidity score, either with the Charlson index or PROMIS, was 

established in all but for two studies[4, 6], although van Ton, Verbeek [6]  
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Figure 2. 2 Literature search and screening 

PRISMA flow chart highlights the step-by-step process involved in the selection 

of the final 8 studies summarized in this review. 
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indicated that hypertension, diabetes, immunosuppression and cerebrovascular 

disorders were common in the selected cohort.  

 

Delirium cases were identified with either the Confusion Assessment Method 

(CAM), the Chart-based Delirium Identification Instrument (CHART-DEL) or the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-V) (Table 1). 

Subjects from the MINDDS trial [5, 8] received twice daily post-operative 

assessments for delirium occurrence, compared with once daily assessments for 

the SAGES cohort  [1, 2, 7]. 

 

Baseline neurocognition of study participants was established in seven studies 

(Table 1). Neither the case identification method nor baseline neurocognition 

approach was specified by Lindblom, Shen [4]. All eight studies used non-

delirium controls to establish a statistical baseline, with some variations in the 

choice of controls. Controls were age- and sex-matched in five studies [1, 2, 5, 7, 

8], although the SAGES cohort included baseline cognitive performance as an 

additional matching parameter. Han, Chen [3] selected controls that matched to 

cases by age and by mini-mental state examination (MMSE). In the study by van 

Ton, Verbeek [6], two groups of controls to the post-infectious delirium cases 

were selected: healthy controls and controls with neurocognitive impairments 
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other than delirium. Similarly, Lindblom, Shen [4] selected surgical patients who 

suffered other neurological injuries but without the diagnosis of delirium.  

 

Sample Preparation and Proteomic Techniques 

The source of proteins for biomarker discovery included peripheral blood (five 

studies), cerebrospinal fluid (CSF; two studies) and both blood and CSF (one 

study) (Table 1). When CSF was used, lumbar puncture samples were collected 

only once. This contrasts with the serial collection of samples for the blood-based 

studies. Three of the six blood-based studies used plasma and the remaining 

three used serum. Of note, only the plasma-based studies [1, 2, 7] documented 

sample immunodepletion, specifically by using affinity-based depletion columns 

to remove the 14 most abundant proteins in an effort to detect proteins of lower 

abundance. Three studies used mass spectrometry (MS) as the analytical 

approach, three studies used proximity extension assays (PEA), and the 

remaining two used SomaScan technology. Two studies attempted sample 

multiplexing with isobaric labelling [1, 2]. There was, however, no mention of pre-

analytical sample fractionation to further reduce sample complexity in any of the 

studies. 

 

 

 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
ef

er
en

ce
 

St
ud

y 
 

D
es

ig
n 

Ag
e*

 o
f 

ca
se

s 
Ag

e 
of

 
co

nt
ro

ls
 

N
o.

 o
f 

ca
se

s^
 

N
o.

 o
f 

co
nt

ro
ls

 
Ba

se
lin

e 
N

eu
ro

C
og

 
D

el
iri

um
 

Sc
re

en
 

Bi
of

lu
id

 
U

se
d 

D
is

co
ve

ry
 

Te
ch

ni
qu

e 
Va

lid
at

io
n 

Te
ch

ni
qu

e 
N

o.
 o

f  
Pr

ot
ei

ns
§  

M
aj

or
 

Fi
nd

in
gs

 

D
illo

n,
 

Va
su

ni
la

s
ho

rn
 [2

] 

N
es

te
d,

 
ca

se
 

co
nt

ro
l 

77
.6

 
77

.2
 

75
¶  

75
 

G
C

P 
C

AM
 o

r 
C

H
AR

T-
D

EL
 

Pl
as

m
a 

iT
R

AQ
 

LC
-

M
S/

M
S 

EL
IS

A 
15

2 
Pr

e-
op

er
at

iv
e 

C
R

P 
ha

s 
pr

og
no

st
ic

 
po

te
nt

ia
l, 

an
d 

su
bs

eq
ue

nt
 

po
st

-
op

er
at

iv
e 

in
cr

ea
se

s 
in

 
C

R
P 

le
ve

ls
 

su
pp

or
ts

 a
 

he
ig

ht
en

ed
 

ne
ur

oi
nf

la
m

m
at

or
y 

m
od

el
 

of
 d

el
iri

um
, 

po
ss

ib
ly

 
in

st
ig

at
ed

 b
y 

th
e 

su
rg

ic
al

 
in

su
lt 

Li
nd

bl
om

, 
Sh

en
 [4

] 
Pr

os
pe

ct
iv

e 
co

ho
rt 

59
.8
†  

- 
8 

15
 

- 
- 

Se
ru

m
, 

C
SF

 
PE

A 
- 

92
 

D
iff

er
en

t 
pr

ot
eo

m
ic

 
si

gn
at

ur
es

 
w

er
e 

ob
se

rv
ed

 in
 

se
ru

m
 a

nd
 

C
SF

 fr
om

 th
e 

sa
m

e 
su

bj
ec

ts
, 

no
ta

bl
y 

TR
4,

 
EZ

H
2 

an
d 

KL
F6

. T
hi

s 
 



 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

m
ay

 re
fle

ct
 

di
ffe

re
nt

 
pa

th
op

hy
si

ol
o

gi
ca

l 
re

sp
on

se
s 

to
 

su
rg

ic
al

 in
su

lt 
in

 a
nd

 o
ut

si
de

 
th

e 
br

ai
n 

Va
su

ni
la

sh
or

n,
 N

go
 [1

] 
N

es
te

d,
 

ca
se

 
co

nt
ro

l 

77
.3

 
76

.8
 

75
¶  

75
 

G
C

P 
C

AM
 o

r 
C

H
AR

T-
D

EL
 

Pl
as

m
a 

iT
R

AQ
 

LC
-

M
S/

M
S 

EL
IS

A 
80

 
A 

dy
na

m
ic

 
pa

ne
l o

f p
re

-
op

er
at

iv
e 

(C
R

P 
an

d 
AZ

G
P1

) a
nd

 
po

st
-

op
er

at
iv

e 
bi

om
ar

ke
rs

 
(IL

-6
, I

L-
2 

an
d 

C
R

P)
 c

an
 a

id
 

pr
e-

op
er

at
iv

e 
ris

k 
st

ra
tif

ic
at

io
n 

an
d 

po
st

-
op

er
at

iv
e 

ca
se

 
id

en
tif

ic
at

io
n,

 
re

sp
ec

tiv
el

y 
H

an
, C

he
n 

[3
] 

N
es

te
d,

 
ca

se
 

co
nt

ro
l 

82
.2

 
81

.7
 

10
 

30
 

M
M

SE
 

C
AM

 
C

SF
 

LF
Q

 L
C

-
M

S/
M

S 
PR

M
-M

S 
 

 

10
76

 
63

 
di

ffe
re

nt
ia

lly
 

ab
un

da
nt

 
C

SF
 p

ro
te

in
s 

fa
ll 

in
to

 tw
o 

m
ai

n 
fu

nc
tio

na
l 

 
 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

cl
us

te
rs

 o
f 

ne
ur

on
al

 
dy

sg
en

es
is

 
an

d 
en

do
pl

as
m

ic
 

re
tic

ul
um

-
re

la
te

d 
po

st
-

tra
ns

la
tio

na
l 

m
od

ifi
ca

tio
n.

 
C

on
ce

nt
ra

tio
n

s 
of

 th
es

e 
pr

ot
ei

ns
 a

ls
o 

co
rre

la
te

 w
ith

 
de

lir
iu

m
 

se
ve

rit
y 

va
n 

To
n,

 
Ve

rb
ee

k 
[6

] 
R

et
ro

sp
ec

tiv
e 

co
ho

rt 

64
.2

 
49

.3
 

15
 

30
 

- 
D

SM
-V

 
C

SF
 

PE
A 

- 
15

3 
Pr

ot
ei

ns
 

in
vo

lv
ed

 in
 

sy
na

pt
ic

 
si

gn
al

in
g 

w
er

e 
do

w
nr

eg
ul

at
e

d 
in

 b
ot

h 
de

lir
iu

m
 a

nd
 

AD
 p

at
ie

nt
s.

 
Th

e 
si

gn
ifi

ca
nt

 
ov

er
la

p 
in

 
bi

om
ar

ke
rs

 
be

tw
ee

n 
th

e 
tw

o 
co

nd
iti

on
s 

hi
nt

s 
sy

na
pt

op
at

hy
 

(s
pe

ci
fic

al
ly

 
 



 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

sy
na

ps
e 

lo
ss

) 
m

ay
 b

e 
a 

co
m

m
on

 e
ar

ly
 

m
ec

ha
ni

sm
 

M
cK

ay
, 

R
he

e 
[5

] 
N

es
te

d,
 

ca
se

 
co

nt
ro

l 

74
 

73
 

12
∂  

12
 

tM
O

C
A 

C
AM

 
Se

ru
m

 
PE

A 
- 

18
2 

Po
st

-
op

er
at

iv
e 

di
ffe

re
nt

ia
l 

ab
un

da
nc

e 
of

 
FG

F-
21

, 
FG

F-
23

, I
L-

6 
an

d 
M

C
P-

3 
su

gg
es

ts
 

m
et

ab
ol

ic
 

re
co

ve
ry

 a
s 

a 
po

ss
ib

le
 

pa
th

om
ec

ha
ni

sm
 

un
de

rp
in

ni
ng

 
PO

D
 

R
he

e,
 

Ku
zn

et
so

v 
[8

] 

N
es

te
d,

 
ca

se
 

co
nt

ro
l 

75
 

74
 

8∂
 

8 
C

AM
 

C
AM

 o
r 

St
ru

ct
ur

ed
 

C
ha

rd
 

R
ev

ie
w

 

Se
ru

m
 

SO
M

As
ca

n 
- 

13
05

 
C

ar
di

ac
 

su
rg

er
y 

w
ith

 
C

PB
 li

ke
ly

 
in

st
ig

at
es

 
sy

st
em

ic
 

in
fla

m
m

at
io

n.
 

Se
ru

m
 

pr
ot

ei
ns

 w
ith

 
si

gn
ifi

ca
nt

 
ch

an
ge

s 
fo

llo
w

in
g 

C
PB

 
ar

e 
fu

nc
tio

na
lly

 
en

ric
he

d 
fo

r 
 



 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

le
uk

oc
yt

es
 

re
cr

ui
tm

en
t 

an
d 

up
re

gu
la

tio
n 

of
 m

et
ab

ol
ic

 
pr

oc
es

se
s 

(e
.g

., 
gl

yc
ol

ys
is

). 
IL

-6
 a

nd
 

PD
E3

A 
ar

e 
ke

y 
ex

am
pl

es
 

Va
su

ni
la

sh
or

n,
 D

illo
n 

[7
] 

N
es

te
d,

 
ca

se
 

co
nt

ro
l 

76
.4
†  

- 
18

¶  
18

 
G

C
P 

C
AM

 o
r 

C
H

AR
T-

D
EL

 

Pl
as

m
a 

SO
M

As
ca

n 
EL

IS
A 

13
05

 
A 

pa
ne

l o
f 7

 
pr

ot
ei

ns
 

id
en

tif
ie

d 
as

 
po

te
nt

ia
l 

m
ar

ke
r f

or
 

pr
eo

pe
ra

tiv
e 

ris
k 

st
ra

tif
ic

at
io

n 
su

gg
es

ts
 a

 
he

ig
ht

en
ed

 
pr

o-
in

fla
m

m
at

or
y 

st
at

e 
pr

io
r t

o 
oc

cu
rre

nc
e 

of
 

de
lir

iu
m

. 
An

ot
he

r p
an

el
 

of
 4

 p
ro

te
in

s 
w

as
 id

en
tif

ie
d 

as
 p

os
t-

op
er

at
iv

e 
di

ag
no

st
ic

 
m

ar
ke

rs
. 

C
H

I3
L1

 is
 

 



 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

no
ta

bl
y 

th
e 

on
ly

 c
om

m
on

 
bi

om
ar

ke
r 

be
tw

ee
n 

th
e 

tw
o 

se
ts

 o
f 

pa
ne

ls
. 

 



 46 

Table 2. 1 Summary of included studies 

*: mean age of delirium cases and non-delirium controls (in years) 

^: number of cases and controls in the discovery phases of experiment 

†: authors reported a combined mean age of all subjects 

§: total number of proteins identified (not necessarily what was used for 

downstream analysis) 

¶, ∂: subjects were likely selected from the same parent study, SAGES and 

MINDDS, respectively 

 

Abbreviations:  

AD: Alzheimer’s disease; AZGP1: zinc-alpha-2-glycoprotein; CAM: confusion 

assessment method; CHART-DEL: Chart-based Delirium Identification 

Instrument; CPB: cardiopulmonary bypass; CRP: c-reactive protein; CSF: 

cerebrospinal fluid; DSM-V: Diagnostic and Statistical Manual of Mental 

Disorders (5th edition); ELISA: enzyme-linked immunosorbent assay; EZH2: 

histone-lysine N-methyltransferase; FGF: fibroblast growth factor; GCP: general 

cognitive performance; IL-2 / IL-6: interleukin 2 / interleukin 6; iTRAQ: isobaric 

tags for relative and absolute quantification; KLF6: krueppel-like factor 6; LC-
MS/MS: liquid chromatography – tandem mass spectrometry; MCP-3: monocyte 

chemotactic protein-3; NCog: baseline neurocognition; PDE3A: cGMP-inhibited 

3',5'-cyclic phosphodiesterase A; PEA: proximity extension assay; POD: post-

operative delirium; PRM-MS: parallel reaction monitoring – mass spectrometry; 

tMOCA: telephone-based Montreal cognitive assessment; TR4: nuclear receptor 

subfamily 2 group C member 2 
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Proteomic Biomarkers 

In the union of all eight studies, 446 unique proteins were identified as candidate 

biomarkers for delirium. Of these biomarkers, 370 were identified peri-

operatively. Figures 2.3 and Figures 2.4 illustrate the contribution of each study 

to the total pool of candidate biomarkers, and where biomarkers overlap between 

studies. Overall, Vasunilashorn, Dillon [7] reported the largest number of 

differentially abundant proteins (n = 128) between cases and controls. 

Interleukin-6 (IL-6) was the most commonly identified, differentially abundant 

protein among the studies [4-8]. Complement component C9, antithrombin-III 

(SERPINC1), the cytokine fractalkine (CX3CL1) and chitinase-3-like protein 1 

(CHI3L1) are notable biomarkers that were found in three or more studies. 

Except for the studies done in the SAGES cohort [1, 2, 7], very few of the 

remaining proteins overlap between studies.  

 

Functional analysis on the biomarker pool of 370 proteins for enriched biological 

processes suggests a systemic response of widespread activation and 

dysregulation of proteins involved in immunological reactions, inflammatory 

responses, and the coagulation cascade (Figures 3A, 3D). Furthermore, 

subcellular ontology annotation reveals the extracellular region as the 

predominant native location of these dysregulated proteins, enriched in signaling 

and cytokine activity (Figures 3C, 3D). 
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Figure 2. 3 Modified Venn (Euler) diagram 

Modified Venn (Euler) diagram showing the intersecting biomarkers 
between the 8 studies. Size of circle is proportional to number of biomarkers. 

Colors represent studies from the same cohort, with likely overlap in the subjects 

selected for proteomic profiling. Thickness of circle outline indicates the type of 

biofluid used. NB: Intersections between 4 or more studies are not visualized 

here. 
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Figure 2. 4 UpSet chart 

Figure shows the contributions of each study to the total pool of 446 unique 

biomarkers, and all the intersecting sets of proteins that could not be illustrated in 

figure 2 (main). Same colors represent studies from the same cohort, with likely 

overlap in the subjects selected for proteomic profiling. Thickness of rectangle 

outline indicates the type of biofluid used. 
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Validation Approaches 

All three mass spectrometry-based studies and one SomaScan-based study 

performed protein verification and validation on candidate biomarkers identified 

by high throughput methods (Table 1). Of these studies, three used ELISA, an 

affinity-based approach[1, 2, 7] and the remaining study used a MS-based 

approach, specifically parallel reaction monitoring (PRM).[3] The choice of 

biomarkers that were validated is however varied. Of the 63 differentially 

abundant proteins in the study by Han, Chen [3], 20 were selected for validation 

by PRM based on a minimum number of peptides and transitions set by the 

authors. Of the remaining studies, the choice to validate CRP, SERPINA3, 

AZGP1 and CHI3L1 was based, partly, on the consistency of their identification 

in various samples, the availability of a commercial antibody and a series of 

binomial, signed rank and Student t-tests. 

 

Discussion 

We have presented an in-depth review of clinical proteomic contributions over 

the preceding six complete years that offered an unbiased systems-biology view 

of delirium. As consistency in case identification and unified nomenclature is 

necessary to make comparisons between studies, we began our literature search 

from 2016. We observed that this is also the year NIDUS was established,[146] 

 



 51 

 

 

Figure 2. 5 Functional analysis of the biomarker pool 

Functional analysis of the biomarker pool showing the top 10 GO terms with 

regards to (A) biological processes, (B) cellular component, and (C) molecular 

functions. The number of proteins involved in each of the major functional 

classes in the biomarker pool are shown in (D).  
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and interest in delirium research has seen a steady increase since that point. We 

focused on studies that measured delirium biomarkers using a discovery-based 

approach in the human geriatric population. The total of eight studies that met 

our criteria signify the paucity of literature that offers a systems-biology view of 

delirium in this demographic. Nonetheless, the large proportion of search results 

that were excluded as grants, conference abstracts, meeting proceedings, and 

posters suggest a growing interest in research on delirium diagnostics.  

 

We aggregated a total of 446 biomarkers that are differentially dysregulated in 

human patients with delirium across eight studies. It is worth noting that subjects 

in one study [6] developed delirium after an infectious process. Functional 

analysis of the 370 peri-operative pool of biomarkers suggests a widespread 

activation of immunological reactions, inflammatory responses, and the 

coagulation cascade. We focused functional analyses only on biomarkers 

discovered peri-operatively, given that infectious delirium may involve a different 

pathophysiological process[6, 153-155], although analyses of all 446 biomarkers 

did not reveal any functional differences. Given that IL-2, C-X-C motif chemokine 

11 and C-C motif chemokine 13 [1, 5, 7], among others, were elevated 

preoperatively, it is equally likely that a heightened pre-operative inflammatory 

state increased the risk of delirium, although functional studies would be required 

to rigorously test this hypothesis. This observation is consistent with prevailing 

knowledge that phenotypic delirium is a culmination of multiple predisposing and 
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precipitating factors [138, 156, 157], and predictive biomarkers may be more 

beneficial in certain risk groups than others.    

 

At the cellular level, the biomarker pool is enriched in signaling and cytokine 

activity, predominantly in the extracellular domain. While there are many 

extracellular domain-containing proteins that do not localize to synapses, this 

observation may signify the possibility of altered synaptic functioning in the 

context of delirium. Synaptic dysfunction is an early event in Alzheimer’s disease 

[158], and many researchers have suggested similar findings as a common 

pathophysiological starting point in the continuum of neurocognitive disorders, of 

which delirium and AD are a part [159-161].  

 

Interleukin-6 remains one of the most consistently identified proteins among 

delirium patients. In well-functioning older patients, IL-6 is found to be 

prospectively associated with cognitive decline [162-164]. IL-6 is part of the core 

panel of frailty biomarkers [165], and has recently been suggested by Gómez-

Rubio, Trapero [166] as a useful biomarker for monitoring treatment in frail 

individuals. The inflammatory role of IL-6 and its associations with 

aforementioned predisposing triggers further emphasize the neuro-inflammatory 

model of delirium. 
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Notable in the 24 overlapping proteins between Dillon, Vasunilashorn [2] and 

Vasunilashorn, Ngo [1] is CRP, an acute phase reactant and a non-specific 

marker of inflammation, infection and tissue injury [167]. Many authors have 

suggested elevated CRP levels to be associated with a higher risk of delirium 

occurrence [168-173], and could likely be used to monitor the clinical course of 

delirium [174]. In a recent meta-analysis of 54 observational studies, Liu, Yu 

[175] hinted that CRP may be a more specific marker of post-operative delirium 

(POD) than post-operative cognitive dysfunction (POCD). The clinical relevance 

of this specificity remains unclear, given that a lower baseline cognitive reserve is 

a precipitating factor for both POD and POCD [176]. 

 

It is well documented that elevated total cholesterol and LDL correspond to 

increased neuritic plaque density in Alzheimer’s disease [177, 178]. One 

overlapping protein, apolipoprotein A-IV (APOA4) is a component of 

chylomicrons and HDL, synthesized mainly in the intestine and secreted into 

plasma [179]. Although there is some tenuous evidence of an association with 

cognitive impairment and Alzheimer’s disease [180, 181], data on APOA4 is 

scarce and there has yet to be a formal interrogation of its association in delirium. 

This holds true for many proteins in this union of 446 biomarkers. 

 

Furthermore, it is also unclear how the modest degree of overlap in candidate 

biomarkers between the eight studies reflect differences in the biofluids used or 
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the analytical strategies used to identify the biomarkers. While MS relies on 

peptide spectrum matches for protein identification, PEA (Olink Proteomics, 

Uppsala, Sweden) is an oligonucleotide-based immunoassay that combines 

quantitative real-time PCR with high-throughput quantification. SomaScan 

(SomaLogic, Inc, Boulder, CO), on the other hand, uses aptamers to bind 

specific molecular targets. These affinity technologies have recently gained 

attention in plasma proteomics as they are cost-effective, require less expertise, 

much smaller sample volumes and can quantify a little over 1000 human plasma 

proteins. In fact, the number of recent original publications on plasma proteomics 

that use PEA outnumber those that present MS-based approaches [101].  

Despite reports of comparable reproducibility and complementarity of PEA and 

SomaScan to MS, a recent study comparing PEA to MS-based protein profiling 

revealed a similar modest degree of overlapping proteins as found in this review 

[101]. Of the 14 available PEA panels,  van Ton, Verbeek [6] and McKay, Rhee 

[5] used the two that predominantly assay neural and inflammatory markers. It is 

therefore not surprising that there are nine overlapping biomarkers between 

these two studies. The SomaScan-based studies had only one biomarker in 

common, namely IL-6. Given that these affinity-based platforms are semi-

targeted and predominantly assay the low abundance plasma proteome, it is our 

thinking that the strengths of all three analytical techniques could be viewed as 

complementary, offering a deeper view into the plasma proteome together than 

each would separately. 
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Three of the six blood-based studies used serum which is qualitatively and 

quantitatively different from plasma. Removal of clotting factors (largely 

fibrinogen) results in a 3 – 4% lower protein concentration in serum relative to 

plasma [65, 66], and may also lead to removal of proteins with specific (or non-

specific) interactions with fibrin in a manner that is unpredictable. The Human 

Proteome Organization (HUPO) therefore endorses the use of plasma, citing a 

lower degree of ex vivo degradation and recommends that citrate or EDTA be 

used for anticoagulation over heparin [67]. As the sample choice should be 

tailored to the specific biomarker needs and the biomarker landscape of delirium 

is still in its infancy stages, it would be preferable that the biofluid used, their 

collection and sample preparation protocols permit the study of the entire plasma 

proteome.  

 

Serial collection of samples in the blood-based studies allowed for the 

determination of temporal associations of proteomic changes with the occurrence 

of delirium. In all but one of the blood-based studies [4], a minimum of two 

samples were collected for each study participant: at baseline (pre-operative) 

and on post-operative day one. This is in sharp contrast to the CSF-based 

studies which were limited by the one-time sample collection by lumbar puncture. 

CSF is the proximal biofluid of choice with a greater likelihood of reflecting the 

immediate proteomic changes in the brain. Unfortunately, CSF access is 

severely limited by the invasive nature of the sampling technique (lumbar 

puncture). Furthermore, it is hypothesized that the relatively higher permeability 
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of the blood brain barrier of the elderly brain makes it possible for proteomic 

changes in CSF to be detected in plasma.  

 

Immunodepletion is generally thought to be beneficial because of the wide 

dynamic range (~1010) of protein abundances in plasma and CSF, dominated by 

a handful of highly abundant proteins such as albumin and immunoglobulins. 

This makes identifying and quantifying proteins of lower abundance otherwise 

difficult. Three of the eight studies reported use of immunodepletion on the 

samples prior to analysis. Given that PEA and SomaScan are semi-targeted, it is 

unclear if immunodepletion is a necessary pre-analytical step. The extent to 

which the use immunodepletion, or otherwise, affected the identification of 

candidate delirium biomarkers is unclear. In addition, fractionation strategies 

such as ion exchange chromatography significantly reduce sample complexity 

and increase the depth of proteome coverage, especially when searching for low 

abundance plasma proteins. With the collective results from all eight studies 

indicating possible neuro-inflammatory process(es) to play a prominent role in 

delirium pathogenesis, candidates-biomarkers of delirium are likely to be in the 

low abundance proteome, which makes use of immunodepletion and sample 

fractionation an important consideration in the experimental design. Clearly, the 

relative advantages and disadvantages of each sample type and the approach to 

sample preparation will continue to play a significant role in the design of future 

studies to identify protein biomarkers in delirium and neurocognitive disorders at 

large. 
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Integrating results from eight different studies was not without challenges, one of 

which was the use of different delirium diagnostic algorithms. Even within the 

same study, Dillon, Vasunilashorn [2] employed both CAM and chart review for 

delirium case identifications. Further, the inclusion of subsyndromal delirium 

(SSD) cases together with delirium cases in the studies by Dillon, Vasunilashorn 

[2], Vasunilashorn, Ngo [1] and Vasunilashorn, Dillon [7] may further complicate 

data interpretation in the context of other studies. Additionally, none of the 

studies formally screened for depression among the study subjects. 

 

Lastly, nested case control is an adequate study design for biomarker studies. It 

is however limited in precision, inferential conclusions and power due to sampling 

of controls. Only associations, and not causal inferences, can be concluded from 

nested designs, even after adjusting for most confounding variables [182, 183]. 

The choice of controls to establish a statistical baseline plays a significant role in 

subsequent differential abundance analyses. In the study by van Ton, Verbeek 

[6], controls were significantly younger than delirium cases (49.3 versus 64.2 

years). Nonetheless, this is the only study in which authors excluded control 

subjects with a known acute or chronic systemic inflammation. 
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Conclusion 

The urgent need for diagnostic and predictive biomarkers of delirium is important 

not only to correctly identify cases, but also for pre-operative risk stratification 

and for follow-up on possible long-term neurocognitive sequelae. Interest in 

delirium research has seen a steady rise since the inception of NIDUS in 2016. 

Nonetheless, delirium biomarker research appears to be just emerging. There 

are only a handful of studies that offer a systems-biology view of delirium from 

human patient samples. For diagnostic purposes, it appears likely that a panel of 

biomarkers, rather than a single biomarker, has potential for discriminating 

delirium cases from non-cases. Collectively, biomarkers from these studies 

suggest an immunological and inflammatory response following surgical insult, 

enriched in cytokine and signaling activity in the extracellular space. Further 

studies are warranted to support this observation. With a greater focus on the 

low-abundance plasma proteome, complementary use of MS and PEA may yield 

a deeper plasma proteome profiling. 
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Neurologic and neurobehavioural complications are common after cardiac 

surgery with cardiopulmonary bypass (CPB). Exposure to the artificial bypass 

surface, conversion to laminar flow and hypothermia likely contribute to systemic 

inflammation observed after CPB. To ensure adequate systemic oxygenation, the 

CPB patient is often exposed to supraphysiologic levels of oxygen. Relative to 

normoxia, perioperative hyperoxia during CPB has not been shown to impact 

neurocognition in the long-term. Whether this holds true for the immediate post-

operative neurocognitive function is the question of this nested case-control 

study. 

Methods 

46 age- and sex-matched subjects, aged ≥ 65 years, selected for this study were 

randomized to receive normoxia or hyperoxia during CABG with CPB in the 

parent trial. Levels of four neuroinflammatory biomarkers (S100B, ENO2, 

CHI3L1, UCHL1) were measured at baseline and at post-bypass. Baseline 

neurocognition was established with the Montreal Cognitive Assessment tool and 

patients were assessed on each post-operative day for delirium using the 

confusion assessment method. Mediation analyses was conducted for the 

conditional effect of perioperative oxygen treatment on the occurrence of 

delirium, assuming mediation effect from change in biomarker levels. 

Results 

26 subjects (n = 12) demonstrated delirium. Of the four biomarkers, only S100B 

levels were differentially abundant post-bypass regardless of treatment (8.18 
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versus 10.15pg/mL, p value < 0.001). We found significant direct effects of 

treatment and the interaction of treatment and baseline neurocognition in the 

occurrence of delirium (effect = 0.08, p = 0.013). There was no significant 

mediating effect of S100B levels. 

Conclusion 

While perioperative hyperoxia may not be associated with neurocognitive 

dysfunction in the long-term, its immediate effects may contribute significantly to 

the occurrence of post-operative delirium. Taken together, our findings suggest a 

dose-response-time relationship between hyperoxia and neurocognitive function. 

Introduction 

The effects of perioperative hyperoxia on myocardial damage, acute kidney injury 

and long-term neurocognitive dysfunction are well documented [184-189], but the 

impact on the immediate post-operative neurocognitive function is less well-

characterized [190]. Globally, over 1.25 million patients undergo cardiac surgery 

on cardiopulmonary bypass (CPB) each year [191]. Perioperatively, the CPB 

population are often exposed to supraphysiologic concentrations of oxygen [192]. 

This practice is premised on the primary goal of maintaining end-organ perfusion 

as hypothermia, microcirculatory heterogeneity and interstitial fluid shifts during 

CPB all contribute to poor tissue oxygenation [193].  

 

At the tissue level, hyperoxia is beneficial in the ischemic preconditioning of the 

myocardium, reduces overall gas microemboli and provides significant oxygen 
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reserves in the event of interrupted ventilation [194-196]. In fact, the ability to 

monitor regional cerebral oxygenation in real-time has provided unequivocal 

evidence linking cerebral desaturation during CPB to worse clinical outcomes 

[197-200], further emphasizing the need for higher oxygen concentrations. On 

the other hand, hyperoxia may also trigger vasoconstriction that further 

compromises perfusion, may instigate inflammation and worsen ischemia-

reperfusion injury through increased oxidative stress [201-204]. Notwithstanding 

these, the prevailing observation is that hyperoxia during CPB is not associated 

with poor long-term neurocognitive outcomes [185, 188, 205].  

 

Delirium is etiologically heterogeneous and lower pre-surgical cognitive function 

is a recognized risk factor [206-208]. The extent to which perioperative oxygen 

treatment modifies the occurrence of delirium in a typical CPB demographic with 

suboptimal baseline neurocognition, however, remains largely unknown. In this 

nested case-control study, we examined the conditional effect of perioperative 

hyperoxia on the occurrence of post-operative delirium in an elderly cohort who 

underwent cardiac surgery on CPB. Further, we measured a panel of 

neuroinflammatory markers and ascertained their possible role in mediating the 

hyperoxia-delirium relationship. Finally, we proposed a conceptual model 

regarding the interaction between baseline neurocognition and perioperative 

hyperoxia as they relate to post-operative delirium. 
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Methods 

Study design and Ethics approval 

Subjects in this nested case-control study were selected from the parent clinical 

trial [188, 209] that examined the effects of intra-operative oxygen therapy on 

neurocognitive outcomes among cardiac surgical patients at the Beth Israel 

Deaconess Medical Center, Boston MA (Trial registration number NCT02591589, 

principal investigator: Shahzad Shaefi, registration date: October 29, 2015). 

Subjects were enrolled between July 2015 and July 2017, and all patients 

provided informed consent. Institutional review board (IRB) approval 

2014P000398/33 was amended for the purposes of this current study on 

09/17/2021 by the Committee on Clinical Investigations (CCI) at the BIDMC. 

Figure 3.1 summarizes the design of the current study. 

 

 

Patient population, Exclusion and Inclusion Criteria 

Details of enrollment, exclusion criteria and treatment allocation are published 

elsewhere [188, 209]. Briefly, eligible participants included patients 65 years or 

older who were booked for elective CABG requiring CPB. Neurocognitive 

assessment was achieved using the telephonic Montreal Cognitive Assessment 

(tMoCA) as the primary endpoint. Post-operatively, subjects were assessed daily 

for delirium as a secondary endpoint using the confusion assessment method  
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Figure 3. 1 Experimental design 

Schematic illustration of the nested case-control study, plasma sampling times 

and biomarker measurements by bead-based multiplex assay. CAM: confusion 

assessment method; CPB: cardiopulmonary bypass 
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(CAM). Patients were excluded if they were undergoing emergent CABG, if they 

required single-lung ventilation, CABG without CPB, intraoperative balloon 

counter-pulsation or mechanical circulatory support. Subjects with MoCA scores 

below 10 were also excluded. 

 

Sample size calculation 

Because quantitative studies on the selected biomarkers in the context of 

delirium are largely unexplored, Cohen’s estimation of effect size [210] was used 

to determine the optimal sample size at a significance level of 0.05 and a 

statistical power of 80%. Further, delirium cases were matched to non-delirium 

controls at approximately 1:3 ratio, to a total of 46 subjects in the current study. 

 

Conduct of Study and Biomarker Measurements 

Whole blood samples at baseline and post-bypass (P-BP) were collected into 

4mL EDTA-treated tubes (BD Diagnostics) and centrifuged immediately. 

Resulting plasma was stored at -80ºC until analyses. Limits of detection, limits of 

quantification and linearity of biomarker signal were established using serial 

dilutions of patient samples and laboratory standards. Biomarker measurements 

were made using a custom R&D Human Premixed Multi-Analyte Panel, a 

magnetic bead-based multiplex assay (Catalog Number:  LXSAHM-04, Lot 

Number: L140030). Analyte concentrations were determined by a 5-parameter 

logistic (PL) regression computed from the standard curves. All biomarkers were 
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measured in duplicates. For quality control, intra-assay variability was assessed 

at a cut-off of 20%. 

 

Statistical analyses 

Descriptive statistics are presented as mean (standard deviations) or count 

(proportion) for continuous and categorical variables, respectively. Duplicates 

recordings of biomarkers were averaged and compared between groups using 

Student’s t-test (paired, unequal variance). Stepwise regression was used to 

identify clinical variables with the most predictive association to the outcome 

variable (delirium). Structural equation modeling (SEM) was used to construct the 

conceptual and statistical mediation models based on this subset of variables 

(Figure 3.2). Assuming all effects to be linear, mediation analysis was then 

performed to ascertain the total, indirect and direct effects of intraoperative 

oxygen treatment on the occurrence of delirium, with post-bypass change in 

biomarker levels as the assumed mediating factor. Here, the direct effect of 

perioperative oxygen treatment was computed as the change in the odds of 

developing delirium in patients receiving hyperoxia versus the odds of developing 

delirium in patients receiving normoxia, when baseline neurocognition is fixed 

(i.e., holding tMoCA score constant). Average tMoCA score was also defined as 

the arithmetic mean of tMoCA scores for subjects in this nested cohort. 

Significance of the mediation effects were computed by bootstrapping [211]. All 

analyses were performed in R environment for statistical computing, v4.1.1 [212] 

at a significance level ⍺ = 0.05. 
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Figure 3. 2 Modelling for mediation analyses 

A: Conceptual and B: Statistical models used in the mediation model to assess 

the conditional effects of baseline neurocognition and intra-operative oxygen 

treatment on delirium occurrence, and their indirect effect through change in 

biomarker levels. 
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Results 

26% of subjects (n = 12) in the nested cohort demonstrated delirium 

postoperatively. At baseline, delirium cases and non-delirium controls were 

matched by age, sex and race (Table 3.1). Details of subjects’ comorbidities and 

preoperative medications are reported elsewhere [188]. Intraoperatively, there 

was no statistically significant differences in aortic cross-clamp or 

cardiopulmonary bypass times between cases and non-cases. Baseline 

neurocognition, as measured by the Montreal Cognitive Assessment (MoCA) 

tool, was generally low in this cohort, and significantly lower among cases 

relative to controls (p = 0.02). Of the non-delirium controls, 21% (n = 7) met the 

criteria for subsyndromal delirium. 

 

We measured four biomarkers well-documented to be markers of neuro-

inflammation. For quality control, we set an intra-assay variability cut-off of 20%. 

Biomarker measurements with 20% coefficient of variation (%CV) or higher 

between duplicate runs were removed from all downstream analyses, although 

including them did not change results of our analyses. Levels of ubiquitin 

carboxyl-terminal hydrolase isozyme L1 (UCHL1) in all samples were below the 

limits of quantification (Table 3.1 supplementary information).  
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Table 3. 1 Baseline characteristics of study participants 

 Case 
(N = 12) 

Non-case 
(N = 34) 

p-value 

Demographics 
Age (years) 
mean (SD) 

74 (±6.4) 70 (±4.3) 0.07 

Male sex 
count (%) 

9 (75%) 27 (79%) 1 

BMI (count (%) 
Underweight 

Normal 
Overweight 

Obese 

 
1 (8%) 

2 (17%) 
1 (8%) 

8 (67%) 

 
1 (3%) 

7 (21%) 
13 (38%) 
13 (38%) 

 
0.12 

White race 
count (%) 

10 (83%) 34 (100%) 0.11 

Baseline neurocognitive assessment 
Pre-operative MOCA 

mean (SD) 
15 (±2.7) 17 (±2.1) 0.02 

Intraoperative  
Hyperoxia  
count (%) 

4 (33%) 19 (56%) 0.31 

Cardiopulmonary bypass time (mins) 
mean (SD) 

79 (±17) 81 (±24) 0.83 

Aortic Cross-clamp time (mins) 
mean (SD) 

66 (±14) 67 (±21) 0.85 

Postoperative  
Delirium severity score 

mean (SD) 
8.9 (±3.1) 3.8 (±2.0) < 0.01 

Sub-syndromal delirium  
count (%) 

0 (0%) 7 (21%) 0.22 

┼4 subjects have missing data on CPBT and XCT, and 1 subject missing data on 

delirium severity 

Table 3. 2 Measured Biomarkers and their Dynamic Range 

Analyte Dynamic Range (pg/mL) 
Chitinase 3 -like 1 438.44 – 106,540 
S100B 40.41 – 9,820 
Enolase 2 374.44 – 90,990 
UCH-L1 925.10 – 224,800 
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Of the remaining biomarkers, only S100B levels were significantly higher at post-

bypass relative to baseline levels (p value < 0.001, Figure 3.3). We found no 

significant differences in S100B levels by sex or body mass index (BMI) at 

baseline or post-bypass (Figures 3.4A, B, D, E). Stratified analyses also showed 

that the absolute increase in S100B levels is not confounded by sex, BMI, patient 

outcomes or intra-operative oxygen treatment (Figure 3.4C, 3F, Table 3.2). We, 

however, observe that for patients with the longest CPB times (> 141 mins), the 

absolute change in S100B levels was not significant (p = 0.076, Table 3.2).  

 

 

Stepwise regression analyses revealed that baseline neurocognition and 

hyperoxia were the most important predictors of the delirium. In our cohort, the 

direct effect of baseline neurocognition on the occurrence of delirium is 

modulated by perioperative oxygen treatment (direct effect = 0.078, p = 0.013) 

(Table 3.3). Figure 3.5 illustrates the statistical mediation model and shows the 

conditional effects of perioperative oxygen treatment when holding baseline 

neurocognition constant. We also observe that this relationship is not mediated 

by the post-bypass change in S100B levels (indirect effect = 0.002, p = 0.584). 
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Figure 3. 3 Comparison of neuro-inflammatory biomarker levels 

Boxplots show the quantile distribution (median and inter-quantile ranges) of 

each biomarker, and a comparison of biomarker levels at baseline and at post-

bypass. Statistical tool used is the Student's t-test. Asterisks (*) represent 

statistically significant difference (i.e., p value < 0.05); ns: not significant; S100B: 

protein S100-B; ENO2: gamma-enolase; CHI3L1: chitinase-3-like protein 1. 
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Table 3. 3 Stratified analysis of baseline to post-operative change in S100B 
levels 

 Baseline 
S100B 
(pg/mL) 

Postop 
S100B 
(pg/mL) 

t-
statistic 

p-value 

Overall 
 8.18 10.15 7.68 <0.001* 
Stratified by outcome 

Case 8.66 10.70 4.291 0.004* 
Non-case 8.05 9.99 6.397 <0.001* 

Stratified by treatment 
Hyperoxia 8.08 10.10 5.015 <0.001* 
Normoxia 8.30 10.21 6.057 <0.001* 

Stratified by BMI§  
Normal 8.17 10.61 4.125 0.004* 

Overweight 7.81 10.03 5.907 <0.001* 
Obese 8.47 10.01 3.824 0.002* 

Stratified by Sex     
Female 9.09 10.65 3.372 0.015* 

Male 7.96 10.03 6.922 <0.001* 
Stratified by CPB Time     

< 52 mins 8.47 10.35 3.675 0.006* 
52 – 112 mins 8.23 9.95 3.267 0.014* 

112 – 141 mins 7.29 9.72 6.227 <0.001* 
> 141 mins 8.94 10.24 2.083 0.076 

*: statistically significant difference at \alpha ≤ 0.05 

§: Underweight category (n = 2) is underpowered for parametric testing 
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Figure 3. 4 Stratified analysis of S100B levels 

by: (A, B, C) sex and by (D, E, F) body mass index. 
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Figure 3. 5 Mediation modeling and analyses 

A. Statistical model of the relationship between delirium occurrence and the 

interaction of baseline neurocognition and intra-operative oxygen treatment, with 

an assumed mediation by post-bypass increase in S100B biomarker levels. B. 

Conditional direct and indirect effect sizes quantified on the linear scale. Dashed 

lines = non-significant relationship; MoCA: Montreal Cognitive Assessment tool 

used to establish baseline neurocognition 
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Table 3. 4 Conditional effects and regression coefficients of predictors in 
mediation modeling 

Variables Predictors Label β CE SE p 
Δ(S100B) tMoCA a1 -0.134 -0.113 0.155 0.464 
Δ(S100B) Treatment a2 0.412 1.507 4.638 0.745 
Δ(S100B) tMoCA * 

Treatment 
a3 -0.364 -0.074 0.260 0.776 

Delirium tMoCA c1 -0.138 - 0.110 0.042 0.009* 
Delirium Treatment c2 -0.724 -2.477 0.862 0.004* 
Delirium tMoCA * 

Treatment 
c3 0.682 0.130 0.050 0.009* 

Delirium Δ(S100B) B 0.002 0.001 0.041 0.971 
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Discussion and Conclusion 

We have presented a nested case-control study that sought to examine the 

effects of intraoperative hyperoxia on the occurrence of delirium. We found a 

significant direct effect between the interaction of baseline neurocognition and 

hyperoxia, and the odds of developing delirium. We, however, did not find a 

significant mediating role of neuroinflammatory biomarkers measured in our 

study. The causal effect of perioperative oxygen treatment on the occurrence of 

delirium, however small the effect size may be, reechoes the fact that delirium is 

etiologically heterogenous with likely many other possible pathomechanistic 

pathways besides our observation. Despite the paucity of literature on the 

relationship between perioperative hyperoxia and post-operative delirium, result 

of our study is consistent with recent studies investigating the matter [190, 213]. 

 

In one of the aforementioned studies, Lopez, Pandharipande [190] monitored the 

duration of cerebral hyperoxia with oximetry monitors intraoperatively and found 

that despite the considerable fluctuations in cerebral oxygenation, hyperoxia after 

a period of hypoxia was most strongly associated with the occurrence of delirium. 

Authors also observed that in delirium subjects, there was an increase in plasma 

concentrations of markers of oxidative stress (F2-isoprostanes and isofurans), 

suggesting a possible mediation role. In the remaining study, Kupiec, Adamik 

[213] established a maximum PaO2 cut-off of 33.2 kPa, beyond which post-

operative delirium was more likely to occur. Notable differences between these 

studies and ours is the relatively smaller sample size in our study, choice of the 
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baseline neurocognitive assessment tool and the frequency of assessments for 

post-operative delirium. 

 

Traditionally, ascertaining the mediation effect of a variable M (e.g., biomarker 

levels) on the relationship between a predictor X (e.g., baseline neurocognition) 

and outcome Y (delirium) has required that a relationship already exists between 

X and Y. This approach is heavily debated, and proposed alternatives suggest 

that a prior relationship between X and Y, or the lack thereof, neither proves nor 

rules out causal associations [214-216]. This was the observation in our study, in 

which we found that the relationship between X and Y is moderated by the 

interaction of another variable W (intra-operative oxygen therapy). 

 

The clinical significance of the post-bypass increases in S100B levels without 

any significant associations with delirium remains to be determined. This is also 

the observation by Jönsson, Johnsson [217] and Nguyen, Huyghens [218]. Aptly 

described by authors as the “controversial significance of early S100B levels 

after cardiac surgery”, Jönsson, Johnsson [217] measured S100B levels at 

defined intervals from end of bypass until 48 hours post-surgery, and concluded 

that the predictive significance of the S100B biomarker is limited [217]. These 

findings are in sharp contrast to many other studies in which S100B levels were 

consistently increased in delirium cases regardless of the sampling time after 

surgery [219-221]. These conflicting findings about the S100B-delirium 
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relationship highlights three possibilities: (1) that plasma levels of S100B do not 

necessarily reflect CSF levels, (2) the relatively short half-life of S100B (60 to 120 

mins) requires that blood sampling is appropriately timed, or (3) that increases in 

S100B levels only signal neuronal response to the surgical insult, and not 

because of the occurrence of delirium. With regards to the gap in plasma-to-CSF 

levels, S100B is also secreted by extra-neuronal tissues (e.g., adipocytes) [222, 

223], although the predominant source remains in mature, perivascular 

astrocytes [224, 225]. To ascertain that the post-bypass increases in S100B 

levels in our cohort were not confounded by body fat, we performed stratified 

analyses and found no differences in S100B levels by sex or by BMI. 

 

Further, although there was no association between CPB duration and incidence 

of delirium, we observe a downtrend in the absolute change in S100B levels with 

increasing CPB times and found no significant change in S100B levels for 

subjects with the longest CPB times (> 141 mins). We intimate that this is likely 

due to the short half-life of the S100B protein, although this hypothesis will 

require a formal interrogation from further studies. 

 

Our study is, however, without limitations, notable among them is sample size 

and selection bias. Our relatively small sample size (n = 46) did not allow for the 

statistical adjustment of covariates such as age, sex, BMI in the structural 

modeling and mediation analyses. Instead, we used stepwise regression to 
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select the subset of variables with significant association to delirium in our cohort. 

Moreover, we also controlled for possible confounding during the study designing 

by matching cases to controls by age, sex, BMI and race (Table 3.1), and do not 

expect the lack of statistical adjustments to have any significant impact on the 

strength of associations in our findings. To prevent selection bias, subjects in the 

present study were selected to reflect the distribution of treatment (hyperoxia 

versus normoxia) and outcome (delirium case versus non-delirium control) in the 

parent trial. We acknowledge that our cohort had considerable deficits in 

neurocognition at baseline. While the ideal choice of controls would be subjects 

without any baseline deficits, controls are more appropriately sampled from, and 

in terms of risk, should be representative of the very population that gave rise to 

the cases being investigated [226, 227]. Nonetheless, we excluded subjects with 

extremely low tMoCA scores (< 10). In addition, patients’ baseline tMoCA scores 

were included, and statistically adjusted for, in our models. 

 

There are several mechanisms proposed to underlie the possible neurological 

damage after cardiac surgery on CPB [228]. In our study, we focused on the 

neuroinflammatory mechanism as a possible mediator of the exposure-to-

outcome relationship. It is likely that our choice of biomarkers, albeit their 

recognized associations with neuroinflammation, may not be directly involved in 

the pathogenesis of post-bypass delirium. Given the half-lives and turnover of 

many inflammatory proteins, it is equally likely that our timing of blood sampling 
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did not permit detection of biomarker level that accurately reflects any possible 

neuroinflammatory process that may have been at play. 

 

To date, our study remains the only one that has investigated the effects of 

perioperative hyperoxia on both the immediate and long-term neurocognitive 

functions [188] in the same cohort of patients. Taken together, the findings that 

hyperoxia increases the risk of post-operative delirium, yet with no association 

with long-term cognitive decline, may best be explained by a dose-response-time 

relationship, although further studies are required to definitely interrogate these 

hypotheses. 
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In Search of Biomarkers of Post-Operative Delirium 
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Abstract 

Purpose 

Delirium presents a significant healthcare burden. It complicates post-operative 

care in up to 50% of cardiac surgical patients with worse hospital outcomes, 

longer hospital stays and higher overall cost of care. Moreover, the nature of 

delirium following cardiac surgery with cardiopulmonary bypass (CPB) remains 

unclear, the underlying pathobiology is poorly understood, status quo diagnostic 

methods are subjective, and diagnostic biomarkers are currently lacking. 

Objective 

To identify diagnostic biomarkers of delirium and for insights into possible 

neuronal pathomechanisms.  

Experimental design 

Comparative proteomic analyses were performed on plasma samples from a 

nested matched cohort of patients who underwent cardiac surgery on CPB. A 

targeted proteomics strategy was used for validation in an independent set of 

samples. Biomarkers were assessed for biological functions and diagnostic 

accuracy. 

Results 

47% of subjects demonstrated delirium. Of 3803 total proteins identified and 

quantified from patient plasma samples by multiplexed quantitative proteomics, 

16 were identified as signatures of exposure to CPB, and 11 biomarkers 
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distinguished delirium cases from non-cases (AuROC = 93%). Notable among 

these biomarkers are C-reactive protein, serum amyloid A-1 and cathepsin-B. 

Conclusions and clinical relevance 

The interplay of systemic and central inflammatory markers shed new light on 

delirium pathogenesis. This work suggests that accurate identification of cases 

may be achievable using a panel of biomarkers. 

 

 

Statement of Clinical Relevance 

The acute implication of delirium is well-documented, yet the true extent of the 

consequences beyond the immediate post-operative period has yet to be fully 

known. Despite its impact on the geriatric population, delirium remains 

underdiagnosed. Correctly identifying cases remain a challenge in clinical 

practice: the arbitrary and subjective nature of current diagnostic tools, such as 

the confusion assessment method, underscores the urgent need for diagnostic 

biomarkers. The clinical usefulness of delirium biomarkers extent beyond the 

objective identification of cases. Delirium biomarkers will also be useful for risk 

stratification, long-term follow-up of patients and may offer insights into possible 

etiologies that underpin the condition. In this report, we found systemic markers 

of inflammation with well-established association with delirium, as well as new 

biomarkers that shed new light on the condition. Although validation in a larger 
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cohort is the necessary next step, our efforts lay the groundwork for future 

studies and highlight new frontiers in delirium research yet to be explored. 

Introduction 

Delirium remains under-diagnosed in clinical practice[125, 229, 230]. 

Characterized by acute fluctuations in consciousness, deficits in attention and 

impairments in cognition not explained by a pre-existing neurocognitive disorder, 

delirium is etiologically heterogenous with a particularly high incidence after 

cardiac surgery[154, 231]. Following cardiac surgery, it complicates post-

operative care in up to 50% of patients with increased length of hospitalization, 

increased mortality and higher overall cost of care[232]. In the long term, post-

cardiotomy delirium patients are at increased risk of many complications, 

including re-admissions [233], cognitive decline [176, 234-236], functional 

impairments [114], and stroke [237, 238], to mention a few. Clearly, delirium 

presents a significant healthcare burden on society. The true extent of the 

consequences beyond the immediate post-operative period remains unknown. 

Thus, the accurate identification of subjects for optimal care in the immediate 

post-operative period and for long-term follow-up is likely to exert a significant 

positive impact on patient care and costs if implemented successfully. 

 

Unfortunately, many patients with delirium are missed [126, 239], an observation 

that is partly due to the subjective and variable nature of the current diagnostic 

approach. Efforts to improve recognition and accurate case identification has 

seen a steady rise in recent years, although a small fraction of these attempts 
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has focused on biomarker discovery. Most of these biomarker studies also 

employed targeted quantification strategies for a sub selected list of genes or 

proteins, an approach that is inherently biased and blinded to potentially novel 

factors involved in the etiology or consequences of delirium [130][submitted 

manuscript].  

 

Challenges with delirium biomarker discovery are due, in part, to the lack of 

clarity regarding the underlying pathophysiology of the condition. While a one-

size-fits-all explanation of delirium may be oversimplified, neuroinflammation 

induced by system-wide activation of an inflammatory cascade remains the 

prevailing mechanistic hypothesis[160, 240]. This is supported by recent 

untargeted and semi-targeted approaches that sought to study the proteome of 

human biofluids[2-8, 78], although neuroendocrine and circadian dysregulation 

have also been reported[160]. The emerging focus on signaling and inflammatory 

markers necessitate biomarker discovery approaches that focus on the low-

abundance proteome, using analytical platforms with the multiplexing capability 

and the requisite sensitivity to detect small changes in proteomic signatures.  

 

In the present work, we comprehensively profiled the plasma proteome of 

subjects at baseline and post-cardiotomy for an untargeted analysis of the 

plasma proteome. We included abundant protein immunodepletion and peptide 

fractionation to enhance signal from the low abundance plasma proteome. Using 
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independent set of samples, we validated candidate biomarkers at three time 

points (at baseline, post-bypass and post-operative) in order to understand the 

changing trajectories of these biomarkers over time as they relate to case 

identification. Finally, we demonstrate the diagnostic potential of a panel of 

candidate biomarkers, the accuracy of their use in discriminating cases from non-

cases and the temporal association between intra-operative events and changes 

in biomarker levels. 

 

Materials and Methods 

Study Design and Patient Enrollment: 

Subjects in this nested case-control study were selected from the parent study, a 

randomized double-blind trial conducted on subjects who underwent coronary 

artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) between July 

2015 and July 2017 at the Beth Israel Deaconess Medical Center (BIDMC) in 

Boston MA. The trial was registered with ClinicalTrials.gov (NCT02591589, 

https://clinicaltrials. gov/ct2/show/NCT02591589, principal investigator: Shahzad 

Shaefi, registration date: October 29, 2015). Institutional review board (IRB) 

approval 2014P000398/33 was amended for the purposes of this current study 

on 09/17/2021 by the Committee on Clinical Investigations at the BIDMC. Details 

of enrollment, subject randomization and treatment allocation in the parent study 

are published elsewhere [188, 209]. Briefly, patients aged 65 years or older who 

were booked for elective CABG requiring CPB were eligible. The primary 

objective was to examine the temporal relationship between intra-operative 
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oxygen treatment and post-operative neurocognitive function as measured by the 

telephone-based Montreal Cognitive Assessment (tMOCA) score. Patients were 

assessed for delirium as a secondary endpoint using the confusion assessment 

method (CAM). Patients were excluded if they were undergoing emergent CABG, 

if they required single-lung ventilation, CABG without CPB, intraoperative balloon 

counter-pulsation or mechanical circulatory support. All patients provide informed 

consent. 15 subjects were randomly selected for proteomic profiling in this 

nested case-control study. Because quantitative studies on the effect size of 

delirium biomarkers using mass spectrometry is largely unexplored, formal power 

analysis was not done. 

 

Sample Collection: 

Whole blood samples at baseline, post-bypass (P-BP) and on post-operative day 

one (PO1) were collected into 4mL EDTA-treated tubes (BD Diagnostics) and 

centrifuged immediately at 200g at room temperature for 10 min. Resulting 

plasma was stored at -80ºC until they were thawed for aliquots used here for 

proteomic profiling. 

 

Chemicals and Reagents: 

All LC-grade chemicals are marked with asterisk (*): Dithiothreitol (DTT), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (EPPS), Tris (hydroxymethyl) 

aminomethane (Tris), formic acid* and acetonitrile* were purchased from Sigma-
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Aldrich. Methanol* was obtained from Fisher. Trypsin Protease, SDS, 2-

iodoacetamide (IAA), High Select Top14 Abundant Protein Depletion Mini Spin 

Columns and TMT 11 plex kit were acquired from Thermo Fisher Scientific. 

 

Sample Preparation analysis: 

Sample Immunodepletion: 

Buffer exchange on single-use High Select Top14 Abundant Protein Depletion 

mini-spin columns (ThermoFisher Scientific) was performed twice using 200 µL 

of 50mM Tris [pH 8.1] / 50mM NaCl. 10 µL of each plasma sample was applied 

to the mini-columns, incubated at -4ºC with gentle end-over-end mixing for 15 

min, according to manufacturer’s instructions. Flowthrough were collected by 

centrifugation at 1000g for 2 min into 2mL Eppendorf tubes. Concentrations of 

the depleted samples were obtained using the Pierce BCA Protein Assay Kit 

(Thermo Scientific) at 562 nm absorbance per manufacturer’s instructions. 

 

Expression and purification of recombinant CDS1 protein: 

A CDS1 G-block was purchased from IDT and cloned into the pET16b plasmid. A 

pET13S-A plasmid containing λ-phosphatase was purchased from Addgene. 

CDS1 and λ-phosphatase were co-transformed with into BL-21 Rosetta E. Coli 

and colonies were grown in 5 mL LB medium (BD) with no antibiotic at 37°C 

overnight. The 5 mL culture was added to 400 mL LB medium with no antibiotic 
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and grown at 37°C until it reached an OD600 of 1. The temperature was 

decreased to 10°C and IPTG (UBP Bio) was added to a final concentration of 1 

mM to induce CDS1 and λ-phosphatase expression. The presence of λ-

phosphatase was necessary to solubilize CDS1. The culture was incubated for 

24 hours before collection. Cells were frozen at -80°C in batches of 50 mL until 

purification. 

 

To purify CDS1, cells were lysed in buffer (50 mM Tris pH 7.5 (Fisher Scientific), 

10 mM imidazole (Fisher Scientific), 150 mM NaCl (Fisher Scientific), 1% Triton-

X 100 (Sigma), 0.1 mM DTT (Amresco), and 1:500 protease inhibitor cocktail III 

(Research Products International)), sonicated, clarified by centrifugation, and 

incubated with Ni-NTA beads (Qiagen) for 3 hours at 4°C. Beads were collected, 

washed, and CDS1 eluted at room temperature in elution buffer (50 mM Tris-HCl 

pH 8.0 (Fisher Scientific) and 1 M imidazole (Fisher Scientific)). CDS1 was 

dialyzed overnight into dialysis buffer (25 mM Tris pH 7.5 (Fisher Scientific), 50 

mM NaCl (Fisher Scientific), and 0.1 mM DTT (Amresco)), aliquoted, and stored 

at -80 °C. Purified CDS1 was separated on an SDS-PAGE, Coomassie stained, 

visualized using a BioRad Gel Doc EZ imager, and quantified against a BSA 

standard using BioRad Image Lab 6.1 software. 
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Digestion and Labelling for Biomarker Discovery 

Depleted samples were treated with SDS (2% final) and DTT (2mM final) for 

denaturing at 75ºC for 15 min. Samples were cooled to room temperature before 

alkylation with IAA (7mM final) at room temperature in darkness for 30 min and 

quenched with DTT (additional 2mM final) for 10 minutes. Proteins were isolated 

by single-pot solid-phase-enhanced sample preparation (SP3) and digested to 

peptides in EPPS buffer overnight at 30ºC with 1:50 w/w trypsin (PromegaTM). 

Tryptic peptides were labeled with TMT-11 plex reagent for 1 hr according to 

manufacturer’s instructions. Two channels in each set of TMT-11 plex were 

reserved for pooled plasma to be used as bridge samples for technical control. 

Labeling efficiency of at least 95% was confirmed on a 1-hr gradient before 

pooling. Labeled tryptic peptides were then desalted on an OASIS µHLB 

(Waters) and subsequently dried by vacuum centrifugation prior to off-line HPLC 

fractionation on a pentafluorophenyl (PFP) column as described previously [62]. 

48 fractions were concatenated into 12 fractions for LC-MS/MS analysis. All 

samples were prepared in duplicates. 

 

Digestion for Biomarker Validation 

Equal amounts of recombinant purified CDS1 protein were added to each 

depleted sample before treatment with SDS (2% final) and DTT (2mM final) for 

denaturation and alkylation as described above. Proteins were isolated by single-

pot solid-phase-enhanced sample preparation (SP3) and digested to peptides in 
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50mM ammonium bicarbonate buffer overnight at 30ºC with 1:50 w/w trypsin 

(PromegaTM). In a separate experiment to check for signal linearity, increasing 

concentrations of heavy-labeled peptides of CNDH2 condensin subunit were 

added to the samples at this point. Tryptic peptides were desalted on an OASIS 

µHLB (Waters) and dried by vacuum centrifugation. All samples were run in 

duplicates. 

 

 

LC-MS/MS 

All data were acquired on an Orbitrap Fusion Lumos Tribrid instrument 

(ThermoFisher Scientific, San Jose, CA) equipped with EASY-nanoLC 1200 

ultra-high pressure liquid chromatograph (ThermoFisher Scientific, Waltham, 

MA). Dried peptides were resuspended in 5% methanol / 1.5% formic acid and 

injected onto a 35-cm long / 100-µm (inner diameter) in-house pulled analytical 

column packed with Reprosil C18 stationary phase particles. Discovery samples 

were separated on 120-minute gradient, and validation samples on a 60-min 

gradient, at 350nL/min flow rate. Acquisition parameters included 120,000-

resolution at MS1, AGC target value of 5.0×105, scan range of 350 – 1250 m/z 

and maximum injection time of 100ms. For the TMT-labeled peptides, the top 

eight MS2 peaks were selected for further fragmentation at 55% normalized high-

collision energy (HCD) via SPS-MS3 for quantification of reporter ions in the scan 

range of 110 – 500 m/z. For the label-free peptides in the validation phase, MS2 
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scans were generated at 30,000 resolution and AGC value of 2.5×105, using 

30% normalized collision energy (HCD). 

 

Bioinformatics 

Peptide Spectral Matching: 

Acquired data (in .raw format) were searched using COMET [95] against a 

target-decoy version of the human proteome (Uniprot, downloaded in 2020 and 

2022, for the discovery and validation phases respectively). The fasta for the 

validation phase was appended with sequences from CDS1_SCHPO. Search 

parameters included a mass tolerance of 20ppm, maximum missed cleavages of 

3, carbamidomethylation of cysteine as fixed modification and oxidized 

methionine as variable modification. In addition, the mass of 229.162932 Da was 

added to the N-termini and lysine residues of all peptides as fixed modification for 

the TMT data. A false discovery rate (FDR) of 1% was applied at the peptide 

level and final list of PSMs were filtered using XCorr and delta XCorr. All data 

were subsequently imported into R environment for statistical computing (v4.1.1) 

and Python programing language (v3.8) for downstream analyses [212, 241].  

 

TMT Data Wrangling and Normalization (Discovery Phase): 

After correcting for differential sample loading, the ratios of sample proteins to 

their respective bridge proteins were computed. Here, data from bridge samples 
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was used for quality control and to correct for batch-to-batch technical variations. 

Values were subsequently log-transformed and mean-centered. Data from all 

batches were combined and analyzed for possible outlier observations using 

OutlierDM R Package. Proteins were removed if their frequency of observation 

was less than half of all samples.  For one-hit wonders in each batch of 

experiment, a retention time (RT) predicting model was built in Python using 

DeepRT+ as described by Ma, Ren [242]. Prediction performance was assessed 

with coefficient of determination (R2) and delta-t95% (∆t95%). ∆t95% is the minimum 

time window containing deviations between the observed and the predicted RT 

for 95% of the peptides. Peptides with RT outside the ∆t95% range were excluded 

from downstream analysis. Missing entries in the data were imputed by making 

random draws from the left tail of the gaussian distribution of the entire log-

transformed data matrix (using -2.5 SDs from the mean, width = 0.3). 

 

Protein Feature Selection and Differential Abundance Analyses 

To determine the subset of protein features that differentiated cases from non-

cases, or postoperative expression profiles from baseline, Elastic Net algorithm 

was used [243]. This is a regularization and feature selection method with good 

performance on high-dimensional data (i.e., an n×p data with very large p 

proteins but small n samples). Elastic Net is insensitive to features that dominate 

the matrix (e.g., albumin) and likely suppress signal from low abundance 

predictors and skew model coefficients. In addition, Elastic Net is a good choice if 

overfitting and multicollinearity (or protein features that are highly correlated and 
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essentially communicate the same information) are a concern. Tuning 

parameters were achieved by grid optimization with a five-fold nested cross-

validation where the last fold was held out for testing. The average of 

hyperparameters from all folds were computed and used to build the final model. 

 

Using the subset of protein features, an unsupervised visualization of the data 

was achieved with principal component analysis (PCA). Hierarchical clustering 

was employed to check for reproducibility of replicate samples and inherent 

sample clusters, and together with a heatmap, the overall protein expression 

patterns. Here, clustering was achieved using Ward’s clustering algorithm.[244] 

Briefly, Ward’s minimum variance method begins with singleton clusters and 

recursively merges them by minimizing the total within-cluster variance as the 

objective function. After this point, protein values for any given biological 

replicates were summarized as means prior to differential abundance analyses. 

Two-way comparison for differential abundance was achieved by Student’s t-test, 

assuming unequal variance. Differential abundance analysis was visualized with 

volcano plots. Because statistical comparison was done for only a subset of 

proteins, no correction for multiple hypothesis testing was done. Proteins were 

deemed differentially regulated between conditions if there was a statistically 

significant t-test (p value cutoff ≤ 0.05) and a log2 fold-change of at least ±1. This 

fold-change cutoff was selected to prioritize a panel of biomarkers with significant 

changes between conditions that is unlikely to be due to chance. 
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PRM Label-free Data Procession (Validation Phase): 

Raw files were imported into Skyline v21.2.0.369 [103]. Precursor peptides with 

modifications other than carbamidomethylation of cysteine (as fixed modification) 

or oxidized methionine (as variable modification) were excluded.  Peptide 

quantification criteria was defined as follows: (1) consistently identified 

precursors across all validation samples, (2) with maximum of two missed 

cleavages, (3) a consistent minimum of five transitions, and (4) at least 0.95 dop-

product with the spectral library of chromatograms. All peak boundaries were 

manually inspected for interference-free co-eluting transitions before peak areas 

were integrated at the MS2 level. For any given precursor peptide, the five most 

intense fragment ions in the m/z range of 120 – 1500 were used for 

quantification. Final dataset was exported as .csv and analyzed in R environment 

for statistical computing (v4.1.2; R Core Team 2021). No imputations were 

required in the validation data. Data was normalized by computing peak area 

ratios relative to CDS1_SCHPO to correct for run-to-run variations. For each 

protein biomarker, Kruskal Willis global test was first used followed by post-hoc 

Mann-Whitney U test for pairwise comparisons of the normalized peak areas 

between the different sample collection timepoints (baseline, post-bypass and 

post-operative day 1). 

 

Data accessibility statement: 
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Datasets from the discovery and validation phases are available as supplemental 

material. 

 

 

Results 

Clinical Profile of Study Participants 

Subjects (n = 15) were selected from the parent study[188], which was a parallel 

group randomized controlled trial that enrolled 100 patients at Beth Israel 

Deaconess Medical Center (BIDMC), between July 2015 and July 2017. Delirium 

cases and non-delirium controls were age- and sex-matched (Table 1). There 

was no difference in baseline neurocognition between cases and non-cases, and 

the proportion of patients who received hyperoxic intraoperative treatment was 

comparable. There were no significant differences with regards to demographics, 

medical co-morbidities, pre-operative medications, or surgical characteristics. 

Details of the clinical characteristics of study subjects were reported 

previously[188]. 
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Table 4. 1 Selected baseline characteristics of study subject in the discovery 
phase 

 Delirium Cases Non-Delirium Controls 
Sample n = 7 n = 8 
Age 70 (±5.0) 71 (±4.4) 
Sex (male) 7 (100%) 8 (100%) 
tMOCA 17 (±2.3) 17 (±1.9) 
Hyperoxia 4 (57%) 4 (50%) 

tMOCA: telephone-based Montreal Cognitive Assessment test for Dementia 
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Discovery Phase of Biomarker Workflow 

Using a multiplexed isobaric tagging (TMT)-based design, plasma samples at 

baseline and on post-operative day 1 from 7 delirium cases (CAM+) and 8 non-

delirium controls (CAM-) were comprehensively profiled (Figure 4.1). For 

precision, samples selected for the discovery phase of the study were analyzed 

in duplicates, for a total n = 60 samples, which necessitated the analysis of seven 

separate, batched multiplexes. To control for technical variation between 

batches, two channels in each of the seven 11-plex TMT sets were reserved as 

bridge samples using equal amounts of a pooled plasma sample. We 

fractionated the TMT-labeled peptides using off-line HPLC on a 

pentafluorophenyl (PFP) column as described previously[62] into 48 fractions, 

which were subsequently concatenated into 12 and analyzed by LC-MS/MS on 

an Orbitrap Fusion Lumos Tribrid instrument platform. 

 

A collective total of 17,540 unique peptides from 3,803 proteins were identified 

from all seven multiplexes. An analysis of the number of proteins from each 

batch, separated into a binary group based on the corresponding number of 

peptides used in the identification of these proteins, demonstrates that our data 

are clearly dominated by so-called “one-hit proteins,” or proteins identified by a 

single peptide (Figure 4.2A). Often, single-peptide protein identifications are 

excluded from downstream analysis due to the increased risk of false protein 

identifications associated with single-peptide protein assignments. However, 
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Figure 4. 1 Study Design and Biomarker Discovery Workflow 

Biomarker discovery: a cohort of 15 subjects were selected from the parent study 

of 100 patients who underwent a non-emergent coronary artery bypass grafting 

(CABG) on cardio-pulmonary bypass (CPB) as part of a previously published 

clinical trial (1,2). Plasma samples of delirium cases (CAM+) and non-delirium 

controls (CAM-) were retrieved from the biorepository for subsequent proteomic 

analysis (3). Samples were immunodepleted, digested and labeled with multiplex 

isobaric quantification (TMT) reagents. For each set of TMT reagents, two 

channels were reserved for bridge samples for post-hoc batch correction (4). 

TMT-labeled samples were concatenated (5) and additionally fractionated (6) 

prior to LC-MS/MS (7) for quantification at MS3 (8). After peptide spectral 

matching and false discovery rate (FDR) curation, the final dataset of 3803 

proteins was quantified and analyzed for candidate biomarkers (9). 
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excluding all one-hit proteins can be a huge informational cost as some of these 

proteins may be biomarkers of interest. 

 

 

One-hit Proteins and Deep Learning for Confident Protein Identification: 

To examine this further, we differentiated one-hit proteins identified only in single 

batches of experiments from those identified consistently across multiple 

batches. We reasoned that identified one-hit proteins consistently identified in 

multiple independent analyses are less likely to be false identifications, especially 

if their consistent identification is based on the same unique peptide. These one-

hit proteins warrant additional peptide-centric information for protein inference 

beyond the sequences of the single peptides. Figure 4.2B displays the number 

of proteins identified in any given number of collective batches. Of the 3803 total 

proteins (figure 4.2B, cumulative batch ≤7), 51% (n = 1941 proteins) were 

identified based on a single peptide. While the number of proteins identified 

based on 2 or more peptides increased with increasing number of collective 

batches, the number of one-hit proteins remained fairly consistent. In particular 

for cumulative batches three to seven, we found 1698 one-hit proteins that were 

present in all of them. 
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To enhance the confidence in the identity of these one-hit proteins and minimize 

false positive identifications, we employed chromatographic retention time (RT) 

as additional peptide-centric information and orthogonal to their identification by 

tandem mass spectrometry. Here, we considered a peptide as confidently 

identified if, in addition to being a high-scoring peptide by PSM, the observed RT 

also falls within the RT window expected for that peptide and its corresponding 

experimental batch conditions. 

 

For example, K.GTEAAGAMFLEAIPMSIPPEVK.F , a unique peptide from alpha-

1-antitrypsin, A1AT_HUMAN (figure 4.2C, supplemental figure 4.1, blue 

rectangles) shows consistent RTs, regardless of the experimental batch or 

sample fraction the peptide was detected. On the other hand, 

K.GTEDFIVESLDASFR.Y (figure 4.2C, supplemental figure 1, red rectangles) 

is the only peptide-evidence that translocon-associated protein subunit alpha, 

SSRA_HUMAN – a one-hit protein – was detected in experimental batch 2.  
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Figure 4. 2: Data preparation for downstream analyses 

A: Total number of proteins identified per batch. Bars are demarcated by the 

number of unique peptides used for protein identification. Gray portion of each 

bar chart represents proteins identified by only a single peptide, highlighting the 

scope of one-hit proteins in our analysis. B: Number of proteins identified in a 

cumulative number of experimental batches. For example, of the 1638 total 

proteins identified in up to two cumulative batches of experiments (cumulative 

batch ≤ 2), about 90% of those (n = 1470) were one-hit proteins. The number of 

one-hit proteins increases only marginally with increasing cumulative batches 

(light green portion of the green bars), in contrast to proteins identified from at 

least two peptides. C: Chromatographic retention times of select peptides from 

the discovery experiment. Plot shows the consistency of retention times (RT) of 

K.GTEAAGAMFLEAIPMSIPPEVK.F (blue rectangle), observed in two fractions 

from multiple LC-MS runs. K.GTEDFIVESLDASFR.Y (red rectangle), on the 

other hand, was only identified once. In the absence of additional peptides, these 

single peptides required further information to reduce false protein assignments. 

D: Scatter plot of experimental and predicted RTs of peptides from experimental 

batch 1. RTs were predicted by training a deep learning RT predictor, DeepRT+. 

Prediction performance is assessed with R2 and ∆t95% (red dashed lines). up = 

number of unique peptides trained. E: Selection of the final 1731 proteins for 

downstream differential abundance analysis. Use of DeepRT+ salvaged 495 one-

hit proteins that would otherwise be removed from downstream analysis. F: 
Dynamic range of all 1731 proteins, ranked in decreasing order of intensity. Each 

dot represents the median intensity of all intensity values recorded for a given 

protein across all samples. Intensity is plotted on the log-scale and spans 6.3 

orders of magnitude between the high-abundance classical plasma proteins and 

the low-abundance signaling proteins. Functional groups are based on Putnam's 

classification. Red dots highlight representative members in each functional 

group. Labels are gene names of the corresponding proteins 
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To determine the RT window expected for these single peptides given the LC-MS 

conditions of their respective experimental batches, we trained a deep learning-

based RT predictor, the DeepRT+ [242], using 80% of the RT of consistently 

identified peptides for a given experimental batch. We tested the prediction 

accuracy of the DeepRT+ model with the remaining 20% of the training data and 

subsequently used the final model to predict the RT of one-hit proteins.  

 

We assessed performance of the RT prediction using the coefficient of 

determination, R2, and ∆t95%, the minimum time window containing deviations 

between the observed and the predicted RT for 95% of the peptides (Figure 

4.2D and Supplemental Figure 4.2). We found the RT of 495 unique one-hit 

peptides fell within the ∆t95% metric (Table 2) and were thus included to a final 

total of 1731 proteins used for downstream analysis (Figure 4.2E). The dynamic 

range of all proteins spans 6.3 orders of magnitude and confirms signal from a 

wide range of abundances in the plasma proteome (Figure 4.2F). 
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Table 4. 2 Summary of DeepRT+ training parameters and results of prediction 
assessment. 

Training Parameters Results 
Batch RT 

(min) 
RT 
(max) 

max 
aa 
length 

up 
(training) 

up 
(predicted) 

∆t95% R2 Eliminated 

1 4.1 129.2 46 8414 776 6.89 0.989 145 
2 5.2 129.4 45 8327 758 7.95 0.986 104 
3 10.2 129.7 44 9240 859 12.35 0.973 127 
4 9.3 129.5 43 7589 646 9.67 0.988 121 
5 10.5 128.7 40 7207 749 11.24 0.975 129 
6 4.4 128.6 43 10829 849 6.22 0.991 170 
7 11.1 128.7 42 6406 734 9.45 0.982 120 

Training. Given that each batch of sample has unique LC-MS experimental 

conditions that uniquely impact RT, seven different models were built for each of 

the seven batches of experiments. Abbreviations: RT (min): minimum RT for the 

batch; RT (max): maximum RT; aa: amino acid; up (training): number of unique 

peptides trained; up (predicted): number of unique peptides whose RTs were 

predicted; R2: coefficient of determination = correlation coefficient for bivariate 

analysis; ∆t95%: deviations between observed and predicted RT that contains 

95% of peptides for a given batch of experiment. 
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Protein Feature Selection and Differential Abundance Analyses 

To determine the subset of these 1731 proteins that are most important in 

discriminating plasma profiles of cases and from non-cases and between 

baseline and post-operative timepoints, we employed an elastic net regularized 

regression approach[243]. We found 47 and 64 proteins as signatures of surgical 

exposure and of delirium, respectively. Principal component analysis (PCA) of 

study subjects using the subset of protein features demonstrates that delirium 

cases cluster separately, with marginal overlap between non-delirium controls 

and baseline samples (Figure 4.3A). Additionally, plasma profiles of cases and 

non-cases are clearly separable post-operatively, although they were 

indistinguishable at baseline (Figure 4.3B). This strongly suggests a temporal 

relationship between post-operative changes in proteomic signatures and 

subjects’ surgical exposure and/or related intra-operative physiological events. 

 

Furthermore, we quantified the extent of changes in biomarker levels before and 

after surgery (Figure 4.3C) and between cases and non-cases (Figure 4.3D). 

When using the proteins identified as a signature of delirium (Figure 4.3D), we 

observed a  
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Figure 4. 3 Clustering, differential abundance and functional analyses 

A: Principal component analysis of all discovery samples (including replicates). 

Clustering is based on a subset of 64 proteins identified by the penalized 

regression approach (ElasticNet) for feature selection. B: Hierarchically clustered 

heatmap of proteomic signatures of delirium cases and non-delirium controls at 

two time points (baseline and post-operative day 1, PO1). Post-operatively, a 

subset of proteins (protein cluster 2, dashed lines) shows a higher expression in 

cases relative to non-cases, although the expression of this subset of proteins 

was very similar between the two groups at baseline. C: Volcano plot of p-value 

(log10 scale) vs fold-change (log2 scale) of the 47 proteins that explain most of 

the variation in proteomic profiles of the baseline and post-operative day 1 

samples. Blue dot means protein is significantly different at PO1 relative to 

baseline by at least 2 folds (p-value cut-off = 0.05). D: Volcano plot of the 64 

proteins that explain most of the variation in proteomic profiles between delirium 

cases and non-delirium controls. E: Diagnostic accuracy of the panel of 11 

differentially abundant proteins that discriminate cases from non-cases. F: 
Functional analysis of biomarkers for biological processes enriched among the 

panel of 11 differentially abundant proteins that discriminate cases from non-

cases. 
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diagnostic accuracy of 93% in discriminating cases from non-cases (Figure 

4.3E). Functional analysis of the biomarker panel for biological processes shows 

acute inflammatory response and activation of the immune system as the most 

significantly enriched functional pathways, predominantly in the extracellular 

region (Figure 4.3F and Supplemental Figure 4.3). 

 

Biomarker Verification  

For further evaluation of peri-operative proteomic differences between cases and 

non-cases, an independent set of plasma samples was used to verify biomarkers 

discovered a priori (Figure 4.4). Here, we used parallel reaction monitoring 

(PRM) as the targeted approach and employed label-free quantification (LFQ) as 

orthogonal methods different from the TMT approach used in the discovery 

phase. To ascertain the degree to which changes in protein concentration in the 

complex background of plasma are quantifiable, we artificially modified six 

biological replicates of a pooled plasma sample with the addition of exogenous 

proteins: (1) equal amounts of a non-human (Schizosaccharomyces pombe) 

homolog of the serine/threonine-protein kinase Chk2 (CDS1 in S. pombe); and 

(2) increasing concentrations of heavy-labeled AQUA peptides[245, 246] of 

human condensin-2 complex subunit H2 (CNDH2). From this experiment, we 

estimate a limit of quantification of ~1fmol on column (Figure 4.5A), with 

negligible impact on target protein quantification due to matrix effects from large 

(16-fold) variations in the concentration of a non-target protein in the matrix 

(Supplemental Figure 4.4). 
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Figure 4. 4 Biomarker Validation 

Validation samples included baseline (B), post-bypass (P-BP) and post-operative 

day 1 (PO1) samples. To each unlabeled validation sample, an equimolar 

amount of CDS1, a protein from S. pombe with no sequence overlap to human 

proteins previously expressed and purified from bacteria, was added as a 

reference standard to control for run-to-run variations. Select tryptic peptides of 

regulated proteins from the discovery phase were targeted for quantification 

using via PRM-MS. Concentrations of each biomarker were analyzed for 

changes across the sampling time points (B, PB, PO1). Hypothetical data are 

depicted as exemplars.  
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For candidate biomarker verification, we developed parallel reaction monitoring 

(PRM) methods through an iterative optimization process (Supplemental Figure 

4.5). We monitored 153 unique peptide sequences (212 total precursor ions 

including the observed range of charge states) from the union of 18 differentially 

abundant proteins as PRMs that were distributed across the entire LC-PRM 

elution gradient (Figure 4.5B). For example, we monitored the abundance of the 

peptide ESDTSYVSLK from C-reactive protein as a doubly charged ion via five 

individual y-ions in our PRM method via Skyline (Figure 4.5C) in each 

verification sample. The PRM methods we employed required the following 

minimum criteria for peptide quantification: a consistent minimum  

 

of 5 transitions in all samples, a minimum dot-product of 95% and manual 

inspection of all peaks for interference-free co-eluting transitions with distinct 

peak boundaries. 65 precursors from 13 proteins met these criteria for 

downstream analysis (Supplemental Table 4.3). Unsupervised clustering based 

on the quantification of these candidate biomarkers shows that post-operative 

samples aggregate separately from post-bypass and baseline samples (Figure 

5D). This is further confirmed by statistical comparison of biomarker levels 

between the sampling timepoints (Figure 4.5E and Supplemental Figure 4.6). 

 

Seven biomarkers (A2GL, AACT, CH3L1, CRP, LBP, MA1A1 and SAA1/SAA2) 

were significantly increased at post-operative day one (PO1) relative to baseline  
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Figure 4. 5 Analyses of Validation Data 

A: Normalized peak areas of CNDH2_HUMAN condensin subunit with increasing 

concentrations of its heavy-labeled stable isotope standards spiked into a 

background matrix of plasma. Grey area is the 95% confidence band of the 

regression line of fit: y = (12.84 + 33.25x[CNDH2]) x 106. B: Number of 

precursors monitored concurrently during five-minute windows across the 78-

minute gradient for used for validation experiments. C: Representative extracted 

ion chromatogram (XIC): the five most intense fragment ions of the 

CRP_HUMAN peptide ESDTSYVSLK, co-eluting at 28.3mins. All other peptides 

were quantified similarly with a minimum of five transitions consistent across all 

samples, a minimum dot product (dotp) of 95% and manual inspection for distinct 

peak boundaries and interference-free transitions. D: Principal component 

analysis of all validation samples. Notable here is the clustering of post-bypass 

samples together with the baseline, signaling similar proteomic signatures 

between the two timepoints. E: Representative plot of differential abundance 

analysis of validated proteins for the candidate biomarker C-reactive protein 

(CRP), showing changes across the three sample collection time points: 

baseline, post-bypass (P-BP) and post-operative day one (PO1). F: ROC 

analysis of the discriminatory power of the validated panel of biomarkers  
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in this validation cohort. Four razor peptides were shared between SAA1 and 

SAA2. However, no peptides unique to either SAA1 or SAA2 met the minimum 

quantification criteria for PRM verification. Similarly, none of the precursor 

peptides of CAH3, EFNA1, FGL1 or PEPA4 met PRM quantification criteria. 

Regardless of statistical significance, we observe that these candidate biomarker 

levels show a consistent increase in abundance between baseline and PO1 

(Supplemental Table 4.3). This panel of differentially abundant candidate 

biomarkers yields a discriminatory power of 96% (84.9 – 100%) between cases 

and non-cases (Figure 4.5F). 

 

Discussion 

This unbiased proteomic analysis of samples from a prior nested case-control 

study is the deepest unbiased plasma proteomic profiling for potential biomarkers 

of delirium to date. We employed a rectangular biomarker workflow[30] to both 

discover and verify biomarkers of post-operative delirium on a single mass 

spectrometry platform without the use of traditional affinity-based verification 

methods. Dominated by one-hit wonders, our focus on the low-abundance 

proteome presented us with the challenge of protein inference, for which we 

applied deep learning to recover pertinent orthogonal peptide chemical information 

and salvage a significant number of these one-hit proteins. 

 We identified 3808 proteins by isobaric quantitative multiplexed proteomics, 16 

of which were differentially abundant post-operatively from baseline levels, and 

11 of which were differentially abundant in cases relative to controls. This 
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includes proteins with well-documented associations with delirium, such as CRP, 

CH3L1, AACT, TIMP1, as well as new ones not previously associated with 

delirium, including SAA, CATB and PEPA3. Using an independent set of 

samples, we attempted to verify the union of these candidate biomarkers and 

found a 96% accuracy in correctly identifying delirium patients for those for which 

quantification was possible. Collectively, our findings show a temporal 

association between intra-operative events (i.e., surgical insult, administered 

anesthesia, etc.) and proteomic changes associated with phenotypic delirium. 

 

The prevailing mechanistic hypothesis of delirium is one of acute neurocognitive 

disruption triggered by system-wide inflammation[160, 240]. In our study, 

functional analysis of the post-operatively dysregulated biomarkers suggests a 

system-wide activation of the inflammatory cascade and related immunological 

reactions. Data on the associations between delirium and acute-phase reactants 

(APR) such as CRP is ubiquitous[2, 171, 175, 247, 248]. Although known APRs 

correlate well with the severity of inflammation, their usefulness as biomarkers is 

limited as they are not specific to delirium. We, however, found additional acute-

phase reactants that may shed a new light on delirium. 

 

Human serum amyloid A (SAA) is a collective name for a group of polymorphic 

proteins functionally associated with high-density lipoprotein (HDL). By the 

regulation of their synthesis, they are grouped into the acute phase isotypes (a-
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SAA: SAA1, SAA2 and SAA3) and the constitutive isotype (c-SAA: SAA4)[249, 

250]. Although predominantly secreted by the liver, extra-hepatic production 

occurs in the brain and may be more relevant in neurocognitive disorders such as 

Alzheimer’s disease[251-254]. SAA has cytokine-like effects which likely provokes 

blood brain barrier (BBB) dysfunction, induces depressive-like behavior in mice 

and may impair cognition in human subjects[255-258]. In the present study, we 

found SAA1 and SAA2 were both upregulated post-operatively in delirium cases 

by over 5 folds (p value < 0.001). This is the first mention of SAA in the context of 

delirium and warrants further studies to formally credential this association with the 

condition. 

 

The cysteine protease cathepsin B (CATB) has previously been quantified as an 

AD-related biomarker and correlates with mini-mental state examination (MMSE) 

scores [259-262], but its association with delirium is unknown. It is an 

inflammasome that promotes IL-1beta maturation and secretion[262]. It also has a 

beta-secretase activity, capable of cleaving amyloid precursor protein into amyloid 

beta [263]. Given that cases and non-cases in our study were matched by baseline 

neurocognition and tMOCA scores were statistically controlled for, upregulation of 

CATB in delirium cases may indicate a common pathophysiological starting point 

in the continuum of neurocognitive disorders, of which delirium and AD are a part. 

Generally recognized as the first enzyme to be discovered, pepsin (PEP-A) is the 

native acid protease of the stomach[264]. Blood pepsin is an established 

biomarker of gastric mucosal integrity, and plasma levels correlate with the degree 
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of mucosal damage[265-268]. Cardiac surgery and CPB places enormous 

physiological stress on the body. Through the cholinergic anti-inflammatory reflex, 

the body attempts to ameliorate the stress by increasing vagal tone[269-272] which 

manifests as gastric acid production. Normally, small amounts of secreted pepsin 

(~1%) may be found in blood and urine[273], but with increased acid production, 

this proportion may be higher. In the discovery phase of our study, differentially 

abundant PEP-A levels in cases relative to non-cases (1.64-fold increase, p value 

< 0.001) despite pre-operative proton-pump inhibitor administration in the study 

subjects suggests a peculiar association between plasma PEP-A levels and 

delirium. At present, we are unable to explain the relationship, if any, between 

increased vagal tone and neuroinflammation. 

 

The independent association between CPB and delirium remains an ongoing 

debate and data on the relationship is conflicting. On the one hand, the use and 

duration of extracorporeal circulation is reported to increase the risk of 

delirium[274-276]. Some authors, on the other hand, have reported no 

associations between delirium incidence and CPD duration[277, 278]. In our 

cohort, there was no statistically significant difference in aortic cross-clamp time or 

duration of bypass between delirium cases and non-cases.[188] To determine the 

impact of CPB in our cohort, we compared post-operative plasma profiles to 

baseline regardless of the case/non-case status of subjects. We found 16 

dysregulated proteins, most of which have been characterized as non-specific 

markers of surgical exposure[145, 279, 280]. A striking observation in our study is 
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the similarities in proteomic signatures between cases and non-cases at baseline, 

despite a clear difference at post-operative day one. Previous studies have shown 

that post-operative delirium cases are likely to be in a heightened pre-operative 

inflammatory state [2, 247, 270, 281-284], which makes them more vulnerable to 

intraoperative stressors. In our study, similarities in the levels of identified 

biomarkers at baseline suggests otherwise.  

 

The main strength of the present study is in its unbiased, hypothesis-generating 

approach to identify potential biomarkers of delirium. This lays the groundwork 

for future studies and highlights new frontiers in delirium research yet to be 

explored. Translational utility from the research bench to the patients’ bedside 

requires that the biomarker readout in the discovery phase is independent of the 

measurement approach used for their discovery[285]. For this reason, we 

validated discovered biomarkers using label-free quantification, which is 

orthogonal to the TMT-based measurements in the discovery phase of our study. 

Our choice of PRM-MS over traditional affinity methods for validation (e.g., 

ELISA) is further premised on the fact that affinity methods are semi-quantitative 

with inter-operator variability in quantification, have limited dynamic range and 

require larger amounts of sample. In addition to the requirement for peptide 

antigenicity, antibody cross-reactivity limits multiplexing (i.e., how many proteins 

can be validated at a time)[286]. All proteins needing validation require 

antibodies, a step that takes considerable amount of time to develop and can be 
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cost-prohibitive if commercial options are not available[69]. This, in fact, is a long-

standing bottleneck in clinical biomarker workflow[287]. 

 

Our study is, however, not without limitations. First, sample sizes for both the 

discovery and validation phases may have limited statistical power in detecting 

differences in the levels of many other biomarkers. In our cohort, the CAM test was 

administered daily after surgery. In our statistical analysis, we did not correct for 

the effects of retesting on repeated test administration in this cohort. In the 

discovery phase, our interest in the low-abundance plasma proteome required an 

immunodepletion step to remove the majority of the top 14 most abundant plasma 

proteins. The extent to which this experimental step contributed to the removal of 

other proteins through their specific or non-specific binding was not ascertained. 

Although isotypes SAA1 and SAA2 each had unique peptides in the discovery 

phase, only the razor peptides met the criteria for quantification in the validation 

phase and were thus undistinguishable. Similarly, peptides from CAH3, EFNA1 

and PEPA3 did not meet the minimum quantification criteria for verification by 

PRM, and peptides from FGL1 were not detected at all in any of the verification 

samples by PRM. 

 

In summary, diagnostic biomarkers of delirium are urgently needed for accurate 

case identification, long-term risk stratification and for molecular characterization 

of delirium. In this study, we discovered a panel of biomarkers through the 
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unbiased comparative analyses of baseline and post-operative plasma samples 

of delirium cases and non-cases. We underscored the importance of brain-

specific biomarkers such as SAA and CATB and their possible role in the 

pathophysiology of delirium. In the long-term, it is in our research interests to 

rigorously test their associations with delirium and ascertain how these 

biomarkers change over time in a larger independent cohort. 
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Supplemental Figure 4. 1 

Chromatographic retention times of select peptides, showing consistency of RT 

and adjacency of sample fractions from which they were identified. 
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Supplemental Figure 4. 2 

Scatter plot of experimental and predicted RTs of peptides from experimental 

batch 2 - 7. up = number of unique peptides trained 
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Supplemental Figure 4. 3 

Functional analysis of biomarkers for enriched cellular components 
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Supplemental Figure 4. 4 

Normalized peak areas of CNDH2_HUMAN condensin subunit, superimposed 

with CDS1-SCHPO against increasing concentrations of its heavy-labeled stable 

isotope standards spiked into a background matrix of plasma. 
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Supplemental Figure 4. 5 

Flowchart of PRM method development 



 128 

 

 

 

�

� � ����

� � �����

� � ������ � �����

� � �����

���	

�	��

���	

����

��
��
��
�
��
�
�
��

��
�

�����	�
��

���������������

�

��

� � ��
�

��

��

��

��

��

�������� ���� ���

��
��
��
��
�
�
��

��
�

����	�
��

��

�	

�


��

��
��
��
��
�
�
��

��
�

����	�
��

���������������

�

��

��

��

��

��
��
��
��
��
�
��

��
�

�����	�
��

���������������

��

��

��

�	

�


��

�

��
��
���
��
�
��

��
�

����	�
��

���������������

��

��

��

��

��

��

��

��

��	
��
 ���� ���

��
��

��
�
�
�
��
�
��
�

��������� 
��

��

�

�

�

�

�

	

������������ ������ �



 129 

 

Supplemental Figure 4. 6 

Differential abundance analysis of validated proteins, showing changes across 

the three sample collection time points: baseline, post-bypass (P-BP) and post-

operative day one (PO1). †: SAA1 and SAA2 could not be distinguished in the 
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validation phase as none of the peptides unique to them met the quantification 

criteria. 
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Chapter Five: Conclusions and Future Directions 

 

Conclusions 

This series of works contribute to the growing body of evidence regarding the 

possibility of discovering and using diagnostic biomarkers to diagnose delirium. 

We systematically reviewed recent published literature that provided a birds-eye 

view of untargeted, discovery proteomic experiments for biomarkers of delirium. 

We then demonstrated that the use of a targeted strategy for the purposes of 

discovery, however powerful this approach may be, can lead to misleading 

conclusions because of the unavoidably biased nature of targeted approaches. 

We subsequently applied the biomarker pipeline to plasma samples from our 

study cohort, and comprehensively profiled them for proteomics signatures of 

delirium. Summarized below are the major conclusions drawn from this thematic 

body of evidence. 
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Systematic review of proteomic contributions to delirium biomarker research 

The list of potential candidate biomarkers identified in eight studies that met the 

study criteria suggest that a panel of proteins, rather than a single biomarker, 

would allow for discriminating delirium cases from non-cases. With a total of eight 

hypothesis generating studies over the last demi-decade, delirium biomarker 

research may be at its very early stages. Although functional analyses of the 

identified biomarker pool are consistent with the prevailing mechanistic 

hypothesis of neuroinflammation, a systems-biology view of delirium 

pathomechanisms has yet to fully emerge. 

 

Perioperative Hyperoxia and Delirium after Cardiopulmonary Bypass 

In our cohort of patients, peri-operative hyperoxia treatment was found to have 

no associations with long-term neurocognition at one-year post-operative. 

However, analysis for the impact on the immediate post-operative neurocognitive 

function reveals that peri-operative hyperoxia significantly contributes to the 

occurrence of post-operative neurocognitive dysfunction. Targeted 

measurements of four markers of neuroinflammation, despite their known 

associations with delirium in published literature, showed no associations with 

the outcome of delirium nor contributed any mediating role in the occurrence of 

delirium. Taken together, (1) our data suggests that the association between 

intra-operative oxygen treatment and neurocognitive function is one of a dose-
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response-time relationship; and (2) use of targeted strategies for the purposes of 

discovery defies fundamental principles of biomarker discovery. 

 

Intraoperative Plasma Proteomic Changes in Cardiac Surgery 

Comparative analyses of proteomic profiles between delirium cases and non-

cases revealed 16 biomarkers as signatures of cardiopulmonary bypass, and 11 

as potential diagnostic candidates of delirium. While many of the identified 

biomarkers are non-specific markers of inflammation, novel identifications such 

as serum amyloid A1 (SAA1) and A2 (SAA2), pepsinogen A3 (PEPA3) and 

cathepsin B (CATB) shed new lights on delirium. Briefly, extra-hepatic production 

of SAA1 and SAA2 in the brain hints the possibility of brain-specific biomarkers of 

delirium. PEPA3, a native protease in the human stomach, found in significantly 

higher concentrations in the plasma of delirium cases suggest a break in the 

gastric mucosal integrity. This observation is consistent with an increased vagal 

tone as the body activates the cholinergic anti-inflammatory reflex in response to 

the physiological stress from cardiac surgery and CPB. Lastly, differential 

abundance of CATB, a well-known biomarker of Alzheimer’s disease with a 

strong correlation, among delirium cases suggest that delirium and AD may have 

a common pathophysiological starting point. Equally important in this study is the 

potential of mass spectrometry close the time gap in translational biomarker 

research by eliminating the bottlenecks of biomarker verification and validation. 
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Future Directions 

Validation in a larger independent cohort 

Although biomarker validation outlines in Chapter Four was performed on an 

independent set of samples, it is severely underpowered. It is in our research 

interest to conduct a carefully designed validation experiment on discovered 

biomarkers, using samples from a larger independent cohort of patients. 

 

Animal Models for Delirium Biomarker Research 

Although most original biomarker studies at the moment are done with clinical 

samples, very few studies have attempted to study delirium in animal models. 

One notable study by Wang, Velagapudi [139] used older APPSwDI/mNos2-/- AD 

mice (CVN-AD) that underwent orthopedic surgery. Findings from this study was 

instrumental in advancing our understanding of the role of the neurovascular unit 

and the blood brain barrier in the pathogenesis of delirium. In this study, authors 

ascertained that the immune systems of the experimental mice were naïve. While 

animal models are simpler and relatively more controllable, with possibly less 

noise in acquired data, they also present with significant challenges. A major one 

is the correlation between cognitive assessments in humans (e.g., with the use of 

the confusion assessment method) and that used for animals. For animal studies 

to enhance our understanding of delirium, future approaches will require 

cognitive tests that assess specific brain functions similar to that being tested in 
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the humans, and for human studies to evaluate for the baseline immune or 

inflammatory state of subjects before recruitment into studies. 

 

Number of scans relative of proteins identifications from plasma and the possible 

role of post-translational modifications 

Our study focused on global proteomic changes in plasma. As a result, post-

translational modifications and how they relate to the occurrence of delirium were 

not studied. Throughout our experiments, we observed that only a small fraction 

of MS2 scans provided meaningful proteomic information. Given that native 

plasma proteases likely modify proteins in ways that are largely unknown, and 

the role of PTM in the pathogenesis of delirium is only now emerging, this is an 

interesting question for future research in this space. 

 

Multi-omics approach to diagnostic biomarkers of delirium 

The growing body of evidence regarding delirium biomarkers underscores the 

complexity in identify definitive molecular signatures of delirium. In addition to 

proteomic approaches, many scholars have also attempted biomarker discovery 

at the gene, transcript and metabolite levels, all of which significantly contributes 

to our understanding of delirium pathomechanisms. It is likely that the different 

omic approaches only offer partial insights about the condition and when taken 

together, may offer a more complete molecular view of delirium. Interestingly, 

differentially abundant biomarkers such as SAA1 and APOA4 among other 
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plasma proteins, that functionally interact with lipoproteins suggest that lipidomics 

may also play a role in the pathomechanism of delirium. Taken together, a multi-

omics approach may offer a more complete understanding of the molecular 

underpinnings of delirium. 

 

 

Statistical tools for longitudinal proteomics data 

Statistical analyses for longitudinal proteomics data, especially those with 

repeated measures is largely unexplored. When analysis required the 

comparison of dimensions in the same dataset (for example pre- versus post-

surgery and cases versus controls), published literature is inconsistent on the 

right approach to analyses. While some authors have suggested the use of 

difference of the differences, others have used the overlap of features after 

performing comparison on the two dimensions separately. Yet some authors 

have also suggested regression modeling and the use of spectral count and 

other MS-centric information for variance estimation in such modeling. As 

proteomic biomarker research grows with the advent of modern mass analyzers, 

this warrants statistical method development that is tailored to the specific 

context of MS-derived data. 
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Chapter Six: Additional Works and Contributions 

 

Affinity-based profiling of endogenous phosphoprotein phosphatases by mass 

spectrometry 

Brooke L. Brauer, Kwame Wiredu, Sierra Mitchell, Greg B. Moorhead, Scott A. 

Gerber, Arminja N. Kettenbach 

https://doi.org/10.1038/s41596-021-00604-3 

 

Abstract 

Phosphoprotein phosphatases (PPPs) execute >90% of serine/threonine 

dephosphorylation in cells and tissues. While the role of PPPs in cell biology and 

diseases such as cancer, cardiac hypertrophy and Alzheimer’s disease is well 

established, the molecular mechanisms governing and governed by PPPs still 

await discovery. Here we describe a chemical proteomic strategy, phosphatase 

inhibitor beads and mass spectrometry (PIB-MS), that enables the identification 

and quantification of PPPs and their posttranslational modifications in as little as 

12 h. Using a specific but nonselective PPP inhibitor immobilized on beads, PIB-

MS enables the efficient affinity-capture, identification and quantification of 

endogenous PPPs and associated proteins (‘PPPome’) from cells and tissues. 

PIB-MS captures functional, endogenous PPP subunit interactions and enables 

discovery of new binding partners. It performs PPP enrichment without 

exogenous expression of tagged proteins or specific antibodies. Because PPPs 
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are among the most conserved proteins across evolution, PIB-MS can be 

employed in any cell line, tissue or organism. 

 

Contribution 

KW contributed to study conceptualization and revision of manuscript 
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Development and validation of inducible protein degradation and quantitative 

phosphoproteomics to identify kinase-substrate relationships 

Rufus Hards, Charles L. Howarth, Kwame Wiredu, Ian LaCroix, Juan Mercado 

del Valle, Mark Adamo, Arminja N. Kettenbach, Andrew J. Holland, and Scott A. 

Gerber 

https://doi.org/10.1101/2021.12.08.471812 

 

Abstract 

Phosphorylation signaling is an essential post-translational regulatory 

mechanism that governs almost all eukaryotic biological processes and is 

controlled by an interplay between protein kinases and phosphatases. 

Knowledge of direct substrates of kinases provides evidence of mechanisms that 

relate activity to biological function. Linking kinases to their protein substrates 

can be achieved by inhibiting or reducing kinase activity and quantitative 

comparisons of phosphoproteomes in the presence and absence of kinase 

activity. Unfortunately, most of the human kinases lack chemical inhibitors with 

selectivity required to unambiguously assign protein substrates to their respective 

kinases. Here, we develop and validate a chemical proteomics strategy for 

linking kinase activities to protein substrates via targeted protein degradation and 

quantitative phosphoproteomics and applied it to the well-studied, essential 

mitotic regulator polo-like kinase 1 (Plk1). We leveraged the Tir1/auxin system to 

engineer HeLa cells with endogenously homozygous auxin-inducible degron 

(AID)-Plk1). We HeLa cells and determined the impact of AID-tagging on Plk1 



 140 

activity, localization, protein interactors, and substrate motifs. Using quantitative 

proteomics, we show that of over 8,000 proteins quantified, auxin addition was 

highly selective for degrading AID-Plk1 in mitotic cells. Comparison of 

phosphoproteome changes in response to chemical Plk1 inhibition to auxin-

induced degradation revealed a striking degree of correlation. Finally, we 

explored basal protein turnover as a potential basis for clonal differences in 

auxin-induced degradation rates for AID-Plk1 cells. Taken together, our work 

provides a roadmap for the application of AID technology as a general strategy 

for the kinome-wide discovery of kinase-substrate relationships.  

 

Contribution 

KW contributed to comparative proteomic analyses between fast-degrading 

23R3, and slow-degrading B12-11 cell lines. This involved use of unsupervised 

dimensionality reduction to explore inherent data structures and z-

standardization to eliminate cell-line differences and allow for comparison of the 

rates of degradation at the global level and for specific proteins. 
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Quantitative survey research in anesthesiology: a field guide to interpretation 

Hedwig Schroeck, Kwame Wiredu, Tae Wuk Ko, David Record, Brenda Sirovich 

http://dx.doi.org/10.1136/rapm-2020-101299 

 

Abstract 

Background Survey research, indispensable for assessing subjective outcomes 

in anesthesiology, can nonetheless be challenging to undertake and interpret. 

Objective To present a user-friendly guide for the appraisal of survey-derived 

evidence, and to apply it to published survey research in the anesthesia 

literature. 

Methods Synthesizing published expert guidance regarding methodology and 

reporting, we discuss five essential criteria (with subcomponents) for evaluating 

survey research: (1) relevance of survey outcome to research objective, (2) 

trustworthiness of the instrument (testing/validation, availability), (3) collecting 

information well (sampling, administration), (4) representativeness (response 

rate), and (5) guidance towards interpretation of survey findings (generalizability, 

interpretation of numerical outcomes). These criteria were subsequently applied 

by two independent assessors to original research articles reporting survey 

findings, published in the five highest impact general anesthesia journals 

(‘Anaesthesia’, ‘Anesthesia & Analgesia’, ‘Anesthesiology’, ‘British Journal of 

Anaesthesia’ and ‘European Journal of Anaesthesiology’) between July 01, 2016, 
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and December 31, 2017, which were identified using a prespecified PubMed 

search strategy. 

Results Among 1107 original articles published, we identified 97 reporting survey 

research either employing novel survey instruments (58%), established surveys 

(30%), or sets of single-item scores (12%). The extent to which reader-oriented 

benchmarks were achieved varied by component and between survey types. 

Results were particularly mixed for validation (mentioned for 41% of novel and 

86% of established surveys) and discussion of generalizability (59% of novel 

survey reports, 45% of established surveys, and 17% of sets of single-item 

scores). 

Conclusion Survey research is not uncommon in anesthesiology, frequently 

employs novel survey instruments, and demonstrates mixed results in terms of 

transparency and interpretability. We provide readers with a practical framework 

for critical interpretation of survey-derived outcomes. 

 

Contribution 

KW contributed to study designing, assisted in database search and literature 

screening, analyzed data and contributed to writing manuscript. 
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Brachial Artery Embolectomy in a Polytrauma Patient: A Case Report 

Kwame Wiredu MBChB, Okyere Isaac BSc MBChB FGCS FWACS 

https://www.jce.ro/article/brachial-artery-embolectomy-in-a-polytrauma-patient-a-

case-report/ 

Abstract 

Introduction: The upper extremity is a frequent site of injury. Upper limb arterial 

thromboembolism, a rare complication of such injuries, may be missed if typical 

signs, such as pain, pulselessness, and sensory loss, cannot be ascertained or 

are overlooked by physicians, especially in the case of polytrauma or comatose 

patients. Case presentation: In this report, we present the case of a left brachial 

artery thromboembolism in a polytrauma patient for which brachial artery 

embolectomy was performed. Before surgery, the diagnosis was established with 

doppler ultrasonography of the upper limb vessels, performed upon suspicion of 

thrombus formation. Brachial artery arteriotomy and thrombo-embolectomy were 

performed using a size 6 Fr Fogarty catheter, after which 500 IU heparin was 

flushed to ensure adequate back and forward flow. Limb function and blood flow 

were restored immediately after the procedure. Conclusion: A high index of 

suspicion, timely assessment, and a prompt intervention can significantly reduce 

the rate of limb ischemia and/or amputations in polytrauma patients, especially in 

resource-limited settings. 

Contribution 

KW assisted in delivery of anesthesia to the patient, and collected all relevant clinical 

notes from the multi-disciplines to draft manuscript 
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