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ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer

worldwide and is complex in nature due to the variety of organs located in the head and

neck region. Knowing the metastatic state of the lymph nodes is paramount in accurately

staging and treating HNSCC patients. Currently, metastatic lymph node detection involves

the use of magnetic resonance imaging and/or x-ray computed tomography, followed by

biopsies for histological confirmation. The main diagnostic criteria is the size of the nodes;

however, current imaging methods are not 100% accurate due natural lymph node vari-

ability. Ultrasound imaging is able to provide additional biological information in addition

to lymph node size such as the hilus state, presence of necrosis and vascular informa-

tion, but it is hindered by poor resolution and limited contrast. Augmenting ultrasound for

metastatic lymph node detection has clinical potential due to the availability of ultrasound

in the clinic, reduced radiation exposure and minimized patient morbidity. This thesis fo-

cuses on augmenting ultrasound with photoacoustic imaging or with nanoparticle contrast

agents for improved detection of lymph node metastasis. First, the development of an

ultrasound-photoacoustic (USPA) imaging system is described. The USPA system is capa-

ble of imaging blood oxygen saturation (sO2), a promising criteria to differentiate between

metastatic and healthy lymph nodes. To correct for tissue-dependent attenuation of light in

tissue, a deep neural network was developed and trained using Monte-Carlo simulated and

experimentally acquired photoacoustic data for better sO2 predictions. Secondly, to im-

prove ultrasound sensitivity to metastatic cells, molecularly targeted phase change perfluo-

rohexane nanodroplets conjugated to epidermal growth factor receptor (EGFR) antibodies

(PFHnD-Abs) were developed. It is shown that the PFHnD-Abs are able to specifically

bind to HNSCC cells and improve the ultrasound contrast of the cells, opening the door

to targeted metastatic lymph node detection. Lastly, to validate the use of the PFHnD-Abs

in-vivo, a paired agent imaging approach was adopted by using using a perfluoropentane

core nanodroplet (PFPnD) as a non-targeted imaging agent to enable multiplex ultrasound
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imaging in vivo. Overall, this work expands the potential of ultrasound for metastatic lymph

node detection.
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Chapter 1

Introduction, Background and Purpose

1.1 Importance of Lymph Nodes in Head and Neck Squa-

mous Cell Carcinomas (HNSCCs)

Head and neck squamous cell carcinoma (HNSCCs) is the sixth most common cancer

worldwide with 890,000 cases and 450,000 deaths in 2018 [1]. The incidence of HNSCC

is projected to increase by 30% by 2030 [1]. HNSCCs can be derived from the mucosal

epithelium of a variety of organs located in the head and neck region such as the oral cavity,

nasopharynx, oropharynx, pharynx and larynx [1]. The causes of HNSCC have been cor-

related to tobacco use, alcohol consumption, environmental pollutants and viral infections,

mainly human papillomavirus (HPV) and Epstein-Barr virus (EBV) [1]. Proper staging of

the disease state is needed to accurate treatment and management of the cancer. The tumor,

node and metastasis (TNM) staging system is used to determine the state of the cancer [2].

The tumor size or depth (T), the lymph node spread (N) and metastatic status (M) are used

to predict survival, choose the initial treatment and attempt to standardize communication

among healthcare providers and outcomes reporting [2]. While the TNM system is con-

stantly being evolved to incorporate new criteria [3], the importance of nodal status has

been constant.
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The spread of head and neck cancer occurs in multiple ways. The first is direct growth

from the primary site into adjacent areas, second is the spread through the lymphatic chan-

nels to the lymph nodes [4]. Another method of spread is through the bloodstream to distant

sites in the body [4]. The spread of cancer to the lymph nodes in the neck is relatively com-

mon in head and neck cancer, highlighting the importance of determining the metastatic

state of cervical lymph nodes. The accumulation of cancer cells in the lymph nodes in-

dicates metastasis. The lymph system is a part of the immune system and is intended to

fight and kill the cells, indicating that the metastatic cells that accumulate in the lymph

nodes have mutated, are resistant and have overcome the immune defenses [5]. Thus, the

presence of metastatic cells in the lymph nodes is an early predictor of survival outcomes.

Determining nodal metastases is performed by medical imaging or biopsy and histology,

the latter leading to higher patient morbidity.

Specific tumor biomarkers have been identified that promote proliferation of HNSCCs.

Human papilloma virus (HPV) has shown to induce HNSCCs which is a biologically dis-

tinct disease compared to HPV negative tumors [6]. It has been shown that HPV induced

HNSCC has a better prognosis and treatment than HPV negative HNSCCs [6]. P16 over-

expression has been used as a surrogate clinical biomarker to determine if the tumor is

HPV induced [6]. Epidermal growth factor receptor (EGFR), a cell surface membrane

receptor, is over-expressed in 90% HNSCCs, which corresponds to tumor growth and ther-

apy resistance [7]. The EGF ligand has shown to activate a multitude of signal transduction

pathways, which has led to drive cell proliferation and resist apoptosis [8]. Cetuximab, a

monoclonal anti-EGFR antibody, is the first FDA approved molecular agent widely used

clinically and has shown improvement in survival rates with patients exposed to combined

antibody and radiotherapy [7]. The use of antibodies to bind to EGFR has shown downreg-

ulation of the signaling pathways, promoting cell apoptosis [8].

The current standard of care in clinical practice for HNSCCs depends on the location

of the tumor. Treatment strategies are dependent on accurate staging of the tumors, which
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involved determining if the tumor has metastasized. Initial screening involves the use of

magnetic resonance imaging (MRI) and/or x-ray computed tomography (CT) to determine

the extent of the primary tumor [9, 10]. For early stage tumors (stage I and II), single

modality treatment with surgery or radiation therapy (RT) is used to remove the primary

for approximately 30%-40% of patients [10]. Later stage tumors are often treated with a

combination of RT and chemotherapy. The results of surgery and RT as single modalities

have been similar, however the choice of modality is dependent on the location of the tumor.

Combined therapy has been recommended for 60% of patients with local or regionally ad-

vanced diagnosis [10]. Determining the metastatic state of cervical lymph nodes is crucial

to determining the stage of the tumor and ultimately the prognosis of the disease. Imaging

is used first to locate the lymph nodes followed by biopsies to allow for histological assess-

ment of the tissue. However, biopsies are limited to a certain subsection of the node and is

an invasive procedure, leading to patient morbidity. In contrast, improvements in current

imaging modalities have been advantageous due to their non-invasive nature and ability to

image the whole node, however each imaging modality has an array of limitations. Through

the use of new imaging techniques, the sensitivity and specificity of detecting metastatic

lymph nodes has been improving, with the ultimate goal of alleviating the need for lymph

node biopsies.

1.2 Imaging of lymph nodes

The detection and confirmation of metastatic lymph nodes includes the use of different

imaging modalities such as CT, MRI, fludeoxyglucose positron emission tomography (FDG-

PET), ultrasound, fluorescence and photoacoustic imaging. However, none of the imaging

modalities have shown to be 100% accurate, indicating the need for better methods [11].

MRI and CT rely on the lymph node size and shape to identify malignant lymph nodes,

while ultrasound is able to provide size and shape information in addition to inner nodal
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criteria such as the hilus state, presence of necrosis, and vascular information with the use

of Doppler [12]. FDG-PET measures the metabolic activity of lymph nodes to determine

the metastatic state. By relying predominantly on size, MRI and CT still face challenges in

determining borderline metastatic lymph nodes and nodes harboring micro-metastases, ex-

plaining the decreased specificity and sensitivity compared to ultrasound [12]. Advances in

camera systems and better understanding of cancer biology has allowed for targeted fluores-

cence imaging using fluorescent tagged bio-markers [13]. With recent advances in imaging,

FDG-PET/CT has been regarded as the main method of imaging lymph nodes during tumor

staging due to the high anatomical accuracy from CT and the metabolic activity from PET.

[10, 14]. However, the potential drawbacks of FDG-PET/CT include limited resolution and

partial volume effects resulting in inaccurate diagnosis of small lymph nodes [14]. Benign

lymphadenopathy also results in metabolism similar to metastatic lymph nodes leading

false positives[14]. Interestingly, the inflammatory response to the COVID-19 vaccine has

shown similar lymph node metabolism comparable to metastatic lymph nodes, indicating a

need for a secondary confirmation [15]. The use of ultrasound as a secondary confirmation

modality has been shown to improve detection efficiency [14]. Ultrasound is able to detect

nodal features invisible to PET/CT such as necrosis, an automatic indicator of metastasis

[14, 12]. Improving ultrasound for lymph node detection has many advantages mainly zero

exposure to ionizing radiation, widespread clinical availability and cost effectiveness.

1.2.1 Ultrasound detection of metastatic lymph nodes

Ultrasound has been shown to have a better sensitivity and specificity than MRI and CT

[12, 16, 17]. The use of ultrasound in assessing lymph nodes for metastasis has been well

established due to the increased feature information compared to other modalities and the

enhanced clinical availability. Additionally, ultrasound can be used to acquire two times

of images, grayscale and Doppler, each providing different assessment criteria. Grayscale

ultrasound provides spatial, size, shape, border and internal node information (echogencity,
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Figure 1.1: a) Schematic of a healthy lymph node. The echogenocity of the hilum is
reduced in metastatic lymph nodes [16].

echogenic hilus, calcification and necrosis) [16]. Doppler can be used to determine the

vascular patterns of lymph nodes [16].

The size, shape and border are external factors used to identify metastatic lymph nodes

from benign nodes. Typically, the size of metastatic nodes are larger than benign nodes

with the size threshold criteria ranging from greater than 5-10 mm [16]. The shape of

metastatic nodes tend to be more round with the short to long (S/L) ratio greater than 0.5,

where benign nodes are more elliptical in shape with a S/L ratio less that 0.5 [16]. This

ratio is easy to measure because the border of metastatic lymph nodes tend to be sharp due

to the intranodal tumor acoustic impedance mismatch compared to the surrounding tissue

[16].

Internal factors used to assess nodal metastasis include intranodal necrosis, calcifica-

tion, echogenic state of the hilus and vascular distribution. Metastatic lymph nodes typi-

cally do not show any echogencity in the hilus, compared to benign nodes of the same size

[16, 18]. The presence of necrosis should be considered metastatic [16, 19]. Calcification

found in the nodes also indicates metastasis, but mainly has been shown to be related to
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thyroid cancer specifically [16]. The vascular distribution within the node can be assessed

using Doppler ultrasound. Normal lymph nodes with a diameter greater than 5 mm will

display hilar vascularity within the node [16]. Metastatic lymph nodes display peripheral

vasculature due to the tumor cells inducing angiogenesis, recruiting new vessels [16].

The use of grayscale and Doppler ultrasound provide information on different lymph

node characteristics to determine metastatic state. The specificity and sensitivity of ultra-

sound have shown to be better than MRI and CT [17, 12]. However, one of the major

limitations of ultrasound is the dependence on the sonographer. Compared to MRI and

CT which are much more standardized and reduce inter-observer variation, ultrasound is a

hand-held live imaging modality where sonographer experience introduces inter-observer

variation [12, 20]. Additionally, ultrasound is limited to superficial structures, as it faces

attenuation deeper in tissue [20]. The augmentation of ultrasound through the use of hybrid

imaging modalities and contrast agents to overcome these limitations is needed to improve

the specificity (ranging from 67-97% [12]) and sensitivity (ranging from 74-100% [12]) of

the imaging modality.

1.2.2 Fluorescence imaging

The advances in camera technology and deeper understanding of cancer biology and biomark-

ers enabled fluorescence imaging in head and neck cancer imaging [13]. The optimal wave-

lengths for fluorescent dyes used in fluorescence imaging are in the near-infrared (NIR)

spectrum (650-1350 nm), which allows for deeper light penetration several millimeters

deep compared to hundreds of micrometers for other wavelengths [21]. Fluorescent imag-

ing is also a real-time modality, making it attractive for surgical guidance and detection

of tumor margins [22], with many contrast agents currently undergoing clinical trials [23].

Fluorescent dyes are conjugated to molecular targeting antibodies or affibodies designed to

target molecules over-expressed in tumor cells, like EGFR. The molecular targeting allows

for precision imaging by selectively illuminating tumor cells. While the real-time imag-
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ing and precise targeting are major advantages, depth penetration is a hindrance from wide

adoption. Fluorescence imaging has been widely adopted in surgical guidance due the tis-

sue already being exposed, removing the depth penetration constraint. Clinical lymph node

imaging has been limited to ex-vivo applications, mainly to augment pathological assess-

ment [23].

1.2.3 Photoacoustic imaging

Photoacoustic imaging (PAI) is a hybrid imaging modality that combines the use of fluo-

rescence imaging with ultrasound imaging. Photoacoustic imaging works by transmitting

pulsed light (e.g., a nanosecond laser or light emitting diode (LED)) into tissue which is ab-

sorbed by chromophores . The absorption process generates localized heating, generating

an ultrasound pressure wave that can be detected using a conventional B-mode ultrasound

transducer. The image is formed using the time-of-flight of the acoustic wave, much like

grayscale ultrasound. Photoacoustic images provide information on the optical properties

of tissue, specifically optical absorption, while pure ultrasound images provide the mechan-

ical properties of tissue [24]. The pressure distribution produced upon deposition of optical

energy can be correlated to the absorbed optical energy distribution given the optical ab-

sorption and scattering properties of the tissue [24]. The core advantages of photoacoustic

imaging are its high spatial and temporal resolution, clinically sufficient imaging depths,

the ability to image both endogenous and exogenous contrast agents and zero ionizing ra-

diation exposure [25].

Photoacoustic imaging typically use optical wavelengths in the NIR range (650 - 1350

nm) which allows for the deepest depth penetration up to a 5 cm [26, 25, 24]. Imaging in

the NIR window allows for spectroscopic photoacoustic imaging (sPA), which exploits the

temporal resolution of PAI and the NIR window by transmitting multiple wavelengths of

light into the tissue to create a spatial map of the absorption spectra within the tissue. This

allows for the ability image endogenous chromophores such as hemoglobin, lipids, water,
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Figure 1.2: Photoacoustic imaging uses light to excite tissue which results in a acoustic
pressure wave that can be read by an ultrasound transducer. The laser pulse excites a pho-
toabosorber which causes thermoelastic expansion of the tissue resulting in the ultrasound
wave. Image courtesy of Patricio Sarzosa.

melanin in addition to exogenous chromophores like small molecule dyes and nanoparti-

cles with greater depth penetration than traditional optical imaging [24]. By knowing the

absorption properties of the different chromophores, spectral analysis can be performed to

quantify the concentration of the various chromophores within in the tissue. One major ap-

plication where this has been used is to quantify blood oxygenation (sO2) by exploiting the

difference in optical absorption spectra between oxyhemoglobin and de-oxyhemoglobin.

Blood oxygen imaging provides information on the physiological state of the tissue and

has shown to be able to identify tumor hypoxia [27] and differences between metastatic

and benign lymph nodes [28] without the use of external contrast agents.

The hypoxic status of the primary tumor has shown to be an indicator of lymph node

metastasis [29]. Blood oxygenation imaging using PAI has shown to be able to differentiate

between metastatic and benign lymph nodes [28]. The overall blood oxygen saturation of

tissue can be computed by taking the ratio between the concentration of hemoglobin and

de-oxyhemoglobin in the tissue, requiring no external contrast agents. The measurements
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therefore are receptive of functional changes in the node compared to molecular changes

[28]. The sO2 within metastatic lymph nodes is shown to be lower than benign nodes due

to the increased metabolic activity from cells in the region responding to the metastatic

invasion [28]. Tumor hypoxia is another factor that explains the decrease in sO2 compared

to benign nodes. Photoacoustic imaging can be further augmented through the use of ex-

ogenous contrast agents such as fluorescent dyes, plasmonic nanodroplets and multi-modal

contrast agents [30] which will be discussed in the subsequent sections.

A major limitation of PAI is depth penetration due to light attenuation into tissue. Be-

yond the first millimeter in tissue, light is attenuated by a factor of 4 for each subsequent

centimeter of penetration depth [24]. This leads to lower ultrasound signals, requiring low

frequency transducers to capture the low signals, compromising on image quality. Strate-

gic use of photosensitizers and choice of transducers can optimize the depth penetration

limitation. Another major limiting factor is spectral coloring, where the optical absorp-

tion and scattering of tissue changes the fluence leading to inaccurate photoacoustic signals

[31, 32]. To correct for the spectral coloring, deep learning methods have been explored

showing promise to correctly estimate sO2 [33, 34].

1.3 Imaging Contrast Agents

The use of imaging contrast agents augments the different imaging modalities. Contrast

agents help generate more contrast that is detectable by the imaging modality, but can

further be tuned to serve a functional purpose such as molecular targeting and imaging.

Contrast enhanced ultrasound (CEUS) has been explored to enhance the functionality of

ultrasound through the use of microbubbles or nanodroplets for vasculature and molecular

imaging [35]. The contrast is achieved due to the acoustic impedance mismatch between

the gas in the core of the agent and the surrounding tissue. Some of the contrast agents

developed can also serve as multi-modal contrast agents in conjunction with photoacoustic
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or fluorescence imaging. Currently, microbubbles have been approved by the FDA for

ultrasound imaging [36].

1.3.1 Microbubbles

Contrast microbubbles are gas filled with a diameter between 1-10 µm. The core of the

microbubble is typically a perfluorinated gas mixed with air, encapsulated in a shell made

of proteins, polymers, lipids or surfactants [35]. The perfluorinated core is poorly solu-

ble in water and oppose the in-vivo Bernoulli forces from blood vessels, keeping the mi-

crobubble intact in-vivo [35]. The microbubbles are injected into either the bloodstream or

lymphatics through a small bolus or infusion. Their micrometer size allows them to cir-

culate through the vasculature, enabling vasculature imaging. The interaction between the

ultrasound wave and the compressible gas core results in an unique nonlinear oscillation

pattern, leading to further enhanced contrast [37]. In addition to oscillation, interaction

with ultrasound waves can also lead to microbubble steering, gas dissolution and vascu-

lature/membrane disruption through micro streaming of the fluid around the microbubble

[38]. Disruption of the vasculature using microbubbles has ultrasound triggered drug de-

livery [38]. The use of microbubbles with ultrasound have shown higher sensitivity of

detecting hypo- or hyper-vascularity compared to Doppler [37].

Microbubbles have been used in a variety of applications such as vasculature imaging,

molecular targeting [35], targeted drug delivery [39], therapeutic gas delivery [40], and

lymph node imaging [37]. While microbubbles have shown promise in vasculature imag-

ing, microbubble mediated delivery in tumors has been limited mainly due to the inability

to perfuse into the micro-vasculature in tumors due to their size. The size cutoff of tu-

mor vasculature pores ranges from 380 - 780 nm, while some expand up to 2 µm [41].

Additionally, microbubbles experience short circulation times on the order of minutes [42],

limiting their in-vivo application. The use of microbubbles has shown to be able to improve

metastatic lymph node detection compared to conventional ultrasound [37], but the overall
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Figure 1.3: a) Schematic of the perfluorocarbon nanodroplets. The core of the nanodroplet
contains a liquid perfluorocarbon core, encapsulated by a lipid shell. A fluorescent dye
can be embedded into the core of the nanodroplet for optical activation. b) the liquid
nanodroplet can be activated either with an optical or acoustic trigger to initiate the liquid
to gas phase transition. The gaseous microbubble is what produces the contrast in the
ultrasound images.

tumor penetration and ability to detect micro-metastasis still requires improvement.

1.3.2 Nanodroplets

To address the major size limitation of microbubbles, nanodroplets have been explored

as contrast agents due to their ability to better perfuse into the tumor microenvironment

through the enhanced permeability and retention (EPR) effect [41]. Tumor tissue is as-

sociated with poor vascularization, leading to irregular blood flow and leaky vasculature.

Smaller sized contrast agents have a greater chance of accumulating into the tissue. Many

nanoparticles have been developed for a variety of applications, but phase change nan-

odroplets are a particular class that have been heavily explored as ultrasound contrast

agents. Phase change nanodroplets employ a perfluorocarbon core encapsulated in a lipid,

polymer or protein shell. The stabilizing shell keeps the nanodroplet in the liquid phase

due to the high Laplace pressure acting on the core of the nanodroplet [43].

The perfluorocarbon core is attractive because of their low boiling points. Upon ex-

posure to either acoustic or optical energy, the low boiling point liquid droplet vaporizes

into a gaseous microbubble. In the stable liquid droplet state, there is no visible ultrasound
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contrast, however when the core undergoes the vaporization event, the resulting microbub-

ble produces the ultrasound contrast. Nanodroplet circulation is longer than microbub-

bles, due to their size and use of polyethylene oxide chains to avoid recognition by the

reticulo-endothelial system and blood proteins involved in clearance [43]. Phase change

nanodroplets have been developed for a variety of different applications such as gene and

drug delivery [43], penetrating the blood brain barrier[44, 45], and super resolution imag-

ing [46] to name a few. By incorporating fluorescent dyes within the nanodroplet, phase

change nanodroplets have been used as multi-modal imaging agents for photoacoustic and

ultrasound imaging. Indocyanine green (ICG) is an FDA approved photosensitizer with an

excitation wavelength in the NIR spectrum that has been explored as a photosensitizer for

photoacoustic imaging and photodynamic therapy [47, 48]. The use of an optical stimu-

lus such as a nanosecond pulsed laser tuned to the excitation wavelength of the embedded

dye can cause the same vaporization effect, leading to ultrasound contrast [47]. While the

use of small molecule dyes in the nanodroplet allows for tunable wavelength selection, the

depth penetration is limited by the attenuation of light in tissue. Phase change nanodroplets

activated by an ultrasound stimulus, known as acoustic droplet vaporization (ADV), has

better depth penetration and has open doors to better in-vivo imaging.

1.4 Aims for Thesis

1.4.1 Aim 1: Development of a combined ultrasound and photoacous-

tic imaging system

The first aim of this thesis is to develop an ultrasound-photoacoustic (USPA) imaging sys-

tem that is capable of imaging blood oxygen and photoacoustic contrast agents. The system

used a Verasonics Vantage 256 high frequency research ultrasound system combined with

a near infrared nano-second pulsed tunable laser. The blood oxygenation measurements

were characterized using cow blood phantoms, modulating the amount of oxygen in the
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blood by mixing it with carbon dioxide. In an effort to correct for spectral coloring, an

accompanying deep learning model was developed to accurately estimate sO2 from Monte

Carlo simulations and experimental photoacoustic images.

1.4.2 Aim 2: Synthesis of tumor biomarker targeted ultrasound phase

change nanodroplets for molecular imaging and improved con-

trast

The second aim of this thesis is to fabricate, functionalize and characterize molecularly

targeted perfluorocarbon (PFC) phase change nanodroplets conjugated to anti-EGFR an-

tibodies (PFCnD-Ab). EGFR was chosen as the target due to its over-expression in head

and neck squamous cells carcinoma (HNSCC) cells. The PFCnD-Abs do not emit any ul-

trasound contrast in the inherent liquid state. Upon activation with an acoustic or optical

trigger, the PFC core expands from a liquid droplet to a gaseous microbubble, producing

the ultrasound contrast. The choice of perfluorocarbon core can also induce recondensa-

tion and reactivation, leading to a blinking effect. This section will explore the fabrication,

robustness and targeting efficiency of the PFCnD-Abs using cells, phantoms and in-vitro

studies.

1.4.3 Aim 3: Paired agent imaging approach using ultrasound phase

change nanodroplets for multiplexing

The third aim of this thesis is to expand the second aim by introducing multiplexing imag-

ing using different PFCnD contrast agents together. In this section, two different PFCnDs

with different cores, perfluorohexane (boiling point 56°C) and perfluoropentane (boiling

point 29°C) each with their own fluorescent dye are imaged together using a custom high

intensity focused ultrasound (HIFU) imaging setup. The perfluorohexane core nanodroplet

surface is functionalized with anti-EGFR antibodies for molecular targeting, while the per-
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fluoropentane nanodroplet surface is not functionalized and serves as a non targeting con-

trol. Each nanodroplet has a different fluorescent dye embedded to allow for paired agent

imaging and targeting validation. Paired agent imaging allows for a ratiometric direct

comparison between the two nanodroplets to validate the targeting efficiency using fluo-

rescence, since both particles are experience the same flow kinetics in-vivo. The custom

developed HIFU imaging system was used to differentiate between the PFH and PFP ultra-

sound signals, based off the repeatable blinking effect of the PFH particles and the one time

activation of the PFP particles. The ability to differentiate between the two nanodroplets

was performed and compared using fluorescence and ultrasound in-vivo.
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Chapter 2

Ultrasound-Photoacoustic (USPA)

System Development

2.1 Introduction and Background

Photoacoustic imaging (PAI) is a hybrid imaging modality that uses light to excite tissue

and measures the optically induced ultrasound signals. The conversion of light to sound is

known as the photoacoustic effect and was discovered by Alexander Graham Bell in 1880

[49]. Ultrasound images provide information about the elastic and mechanical properties

of tissue, whereas photoacoustic images provide information about the optical properties

within the tissue [24]. When tissue is exposed to nanosecond, high energy pulses of light, it

causes thermoelastic expansion within the tissue due to the optical absorption of the light.

The thermoelastic expansion results in transient broadband ultrasound waves which can be

detected by an conventional ultrasound transducer to form an image [50]. A prominent

feature of PAI is the ability to distinguish tissue components such as hemoglobin, melanin,

water, and lipids to name a few, each having a different absorption profile within tissue

(Figure 2.1). Since light propagation is only used to excite the tissue and not used in

generating the image, PAI can penetrate tissue deeper than traditional optical imaging [50].

15



Additionally, ultrasound scattering in tissue is 2-3 magnitudes lower than optical scattering

in tissue, allowing for deeper penetration and higher spatial resolution [50]. PAI has the

potential to clinically augment ultrasound imaging, specifically in cancer imaging.

2.1.1 Basic Principles of Photoacoustic Imaging

The photoacoustic effect is the generation of sound from the absorption of light. The light

energy is absorbed by endogenous photoabsorbers (e.g., hemoglobin or melanin) convert-

ing it to heat. The heat then causes the tissue to thermoelastically expand, generating

acoustic waves detectable by conventional ultrasound transducers.[30]. The maximum ini-

tial pressure Po from the photoabsorber is correlated to the absorbance coefficient of the

absorber. The relationship is described in the following equation:

P o = ΓµaF (2.1)

where Γ is the tissue’s Grüneisen parameter [30], µa is the absorbance coefficient of the

photoabsorber and F is the fluence of light at the photoabsorber. The more light that can be

delivered into the tissue, the stronger the resulting acoustic wave. The absorbance coeffi-

cient is a wavelength dependent constant for the photoabsorber. The Grüneisen parameter

is constant relating to the thermal expansion of tissue and and is defined as

Γ = β/(κρCp) (2.2)

where β is the isobaric volume coefficient, Cp is the specific heat κ is the isothermal

compressibility and ρ is the mass density [51]. It is important to note that the Po values are

an approximation due to tissue heterogeneity and light attenuation, which occurs as both

the optical and acoustic energy travel through the tissue [30].

A biomedical PAI system typically contains a tunable near-infrared (NIR) laser with a

pulse width < 10 ns, a fluence of 20 - 100 mJ/cm2 at 700 - 1,100 nm, and a pulse repeti-
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tion frequency (PRF) between 10 and 50 Hz [50]. Optical wavelengths in the NIR window

allow for the deepest penetration of light due to low optical absorption within the tissue.

Higher fluence and shorter pulse widths enhance the photoacoustic effect and enable deeper

penetration. However, imaging depth and spatial resolution are direct trade-offs [50]. Pho-

toacoustic imaging relies on the light penetrating into the tissue, but light diffuses in tissue

past a depth of 1 mm [30]. Assuming uniform diffusion, the spatial resolution is dependent

on the ultrasound transducer parameters. The axial resolution is inversely related to the

bandwidth of the transducer. Higher bandwidth and center frequency transducers produce

higher resolution images, but at the cost of imaging depth; higher frequency acoustic waves

are more quickly attenuated in tissue [52]. For comparison, a 50 MHz and a 5 MHz trans-

ducer have a typical axial resolution of 15 and 150 µm and a lateral resolution of 50 and

300 µm resolution, respectively [30]. The lateral resolution is dependent on the number of

elements in the array, shorter linear arrays have lower resolution. Wavelength selection is

also important in determining the imaging depth [53].

2.1.2 Spectroscopic photoacoustic imaging

Spectroscopic photoacoustic (sPA) imaging is performed by using multiple wavelengths

to excite the tissue and unmixing the resulting PA signals for each wavelength. Thus, the

concentrations of the different optical absorbers within the tissue can be determined. The

selection of wavelengths is important, ideally a large number of wavelengths spanning a

broad spectrum should be used. However in practice, the number of wavelengths used is

limited by the spectral range of the laser, the line width of the laser, the PRF and the light

attenuation of the tissue being imaged [53]. The concentrations of the different absorbers

are determined by treating each pixel as a combination of different intensities from each

absorber based on their absorption coefficient at each individual wavelength [53]. Figure

2.1 shows the absorption profiles of different absorbers in tissue, including oxyhemoglobin,

deoxyhemoglobin, melanin, water and fat, based on data produced from the Oregon Med-
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Figure 2.1: The endogenous chromophores in tissue each have different absorption profiles
with respect to wavelengths. In particular, the difference the in the absorption between
hemoglobin (HbO2) and deoxyhemoglobin (HbR) within the optical window (650 - 900
nm) allows for spectroscopic photoacoustic imaging to determine blood oxygenation using
spectral unmixing [54].

ical Laser Center. Two main applications of sPA are blood oxygenation and nanoparticle

deposition in tissue [53].

2.1.3 Blood oxygenation imaging using photoacoustic imaging

Hemoglobin is the absorbing molecule in blood. Its optical spectrum changes based on

whether it carries an oxygen molecule or not, denoted oxyhemoglobin and deoxyhemoglobin,

respectively. Normal arterial blood oxygen levels range between 95% - 100%, while ve-

nous blood lies in the 60% - 80% range [54]. Fast growing tumors have a high oxygen

consumption rate leading to the creation of new blood vessel networks (a process known

as angiogenesis) [54]. The irregular blood vessel network results to interrupted blood flow,

irregular vascular path, and leaky vessel walls leading to a heterogeneous oxygen distribu-
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tion within the tumor [54]. With the rapid growth of blood vessels, tumors tend to have

hypoxic cores due to the irregular growth [54], which leads to an overall decrease in blood

oxygenation within tumors [54]. The use of sPA imaging can estimate the concentrations

of hemoglobin and deoxyhemoglobin to determine the sO2. Within the 600-900 nm range,

both deoxyhemoglobin (Hb) and hemoglobin (HbO2) have an optical absorption coefficient

that is at least one order of magnitude higher than other endogenous chromophores, such

as lipids and water [54]. Luke et. al have shown that it is possible to differentiate between

healthy and metastatic lymph nodes using photoacoustic blood oxygen saturation [28]. The

metastatic lymph node displayed a lower sO2 throughout the whole lymph node compared

to healthy nodes [30], indicating that it could be a possible biomarker for the spread of the

disease.

2.1.4 Exogenous contrast agents for photoacoustic imaging

Spectroscopic photoacoustic imaging can also be used to image contrast agents in tissue.

Dyes, plasmonic nanoparticles, phase changing nanoparticles have been used to enhance

the imaging contrast while also providing molecular information [2]. To maximize the

exogenous contrast, the optical absorption of the contrast agent should be within the opti-

cal window (600-1100 nm) where the absorption of tissue is lowest [30]. Contrast agents

should have a signaling compound that absorbs the optical energy such as a dye, metal-

lic or semi-metallic nanostructure or an organic nanostructure [55] along with a targeting

moiety for a specific biological process or entity such as antibodies, affibodies, aptamers,

small molecules or peptides [55]. The signaling compound can either be directly conju-

gated to the targeting compound or encapsulated within a nanostructure with the targeting

compound on the surface [55].

Different nanoparticles with different conjugation strategies have been developed for

photoacoustic imaging. There are many biocompatible dyes within the optical window,

such as indocyanine green (ICG), AlexaFluor 750, IRDye 800CW, and methylene blue
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that have been commonly used [30]. The dyes are small molecules on the order of one

nanometer, allowing quick clearance through the body [30]. Lower quantum yield dyes

lead to higher PA signal generation because less of the absorbed energy is emitted [30].

Plasmonic nanoparticles use noble metals like gold or silver and rely on the surface

plasmon resonance (SPR) effect, which occurs when the surface free charges on the metal

oscillate due to the electromagnetic field resulting in optical absorption five times greater

than small molecule dyes [30]. The resonant frequency is shape and size dependent, al-

lowing for wavelength tunability and application flexibility [30]. Different shapes such

as nanospheres, nanorods, nanostars, nanoplates and nanocages have been developed for

photoacoustic imaging [30]. The surface can also be easily modified to conjugate to other

molecules. Poly(ethylene glycol) (PEG) molecules have been conjugated to the surface

to increase circulation time and biocompatibility [56]. While plasmonic nanoparticles are

tunable and versatile, the use of noble metals is a clearance and safety concern.

Perfluorocarbon phase change nanodroplets (PFCnDs) have also been used in photoa-

coustic imaging applications which produce contrast in both ultrasound and photoacoustic

images, leading to multi-modal capabilities [57]. Optical absorbers are incorporated into

PFCnDs to allow for optical excitation. ICG has been used with PFCnDs due to its am-

phiphilic properties, allowing it to be embedded into the particle [47]. The choice of PFC

core allows for tunability, with lower bowling point PFCs requiring less energy to induce

the phase change [58]. The use of higher boiling point PFCs, such as perfluorohexane

which has a boiling point of 56°C, allows for repeated vaporization which has allowed for

tumor imaging and super-resolution imaging [58, 46, 59]. PFCnDs also have been used in

photoacoustic imaging of lymph nodes [60, 59].

Photoacoustic imaging has allowed for ultrasound based imaging of lymph nodes using

label free methods [28] and exogenous contrast agents [60]. In this chapter, we set to

develop a USPA system capable of imaging blood oxygen saturation using endogenous

contrast with the potential to also work with exogenous contrast agents for non-invasive
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metastatic lymph node detection. This chapter discusses the system design considerations,

characterization of the system, acquired experimental results and future directions.

2.2 Materials and Design Considerations

The ultrasound-photoacoustic (USPA) imaging system has two main components: a nanosec-

ond pulsed laser and an ultrasound imaging system. The laser is used as the signal generat-

ing energy source, while the ultrasound imaging system is used as the recording and image

acquisition device. When it comes to lasers, there is a trade-off between laser energy and

pulse repetition frequency. The more energy being emitted, the slower the pulse repetition

frequency, resulting in a trade-off between imaging depth and frame rate. Light attenu-

ates in tissue as it propagates deeper into tissue, meaning that in order to image deeper

structures, high energy light needs to be emitted into the tissue.

The developed USPA system simultaneously acquires both ultrasound and photoacous-

tic images, but comes at a trade-off. Each channel in the ultrasound transducer needs to

be able to both send and receive radio frequency signals. By simultaneously imaging both

the ultrasound and photoacoustic images, there is a division of allocated transducer ele-

ments for the ultrasound and photoacoustic images. This leads to a trade off in PA signal

strength, which is typically low to start off with. However, the added value of capturing

the ultrasound image is that there is an anatomical reference which serves as the basis.

The photoacoustic image can be overlaid on the ultrasound image highlight both the elastic

and optical properties of the tissue. This is useful from a clinical translatability standpoint,

clinicians have training using ultrasound to identify structures in tissues which may lead to

better adoption of this technology.
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2.2.1 Nanosecond Pulsed Laser

The USPA system was developed with the intent of imaging deep structures, characterized

here as 2-3 cm below the surface. The nanosecond pulsed laser chosen for the system was

the Phocus Mobile HE (Opotek) which has a low pulse frequency (10 Hz) and a high pulse

energy (80 - 100 mJ/pulse). The higher pulse energy satisfies the design requirement to

image deep structures. The laser is tunable and consists of a 1064-nm Nd:YaG pump laser,

second harmonic generator, and optical parametric oscillator to achieve a tunable spectral

range from 690 to 950 nm. The optical range is in the near infrared (NIR) regime, which

allows imaging of endogenous chromophores such as hemoglobin and deoxyhemoglobin.

The laser has an optical fiber bundle which is used to transmit the light into tissue. A

custom hand-held transducer that combines the ultrasound transducer and a custom fiber

optic bundle (CeramOptec, Bonn, Germany) was developed and will be explained in further

detail below.

2.2.2 Ultrasound Imaging System

The second important component of the system is the ultrasound imaging system. A Vera-

sonics Vantage 256 ultrasound system was chosen to acquire the PA signals, and form the

image. The Vantage is widely used in research because of its programmable customizabil-

ity and easy integration with the Phocus laser. The imaging system is connected to a PC

computer, which handles the image formation.

The ultrasound transducer is another key design element in the system and is dependent

on the application being pursued. Two transducers, a 7-MHz, 128-element linear array

transducer (L11-4v, Verasonics) and a 15 MHz, 256 element linear array (L22-8v CMUT,

Kolo Medical) were chosen because of their reasonable frequency range for a variety of

clinical ultrasound imaging applications. Their bandwidths are appropriate for receiving

the weaker broadband PA signals.

22



Figure 2.2: a) Schematic of the transducer and fiber bundle aligned to project the light onto
the surface of the skin. b) Monte Carlo simulation of elevation vs depth and fluence. c) the
fiber bundle angle was determined based on the distance from the imaging plane vs the PA
signal intensity and the optical fiber angle.

2.2.3 Handheld Ultrasound Transducer

Photoacoustic imaging relies on light being delivered to the imaging plane on the skin

surface. An ideal case would have the ultrasound transducer and laser aligned co-linearly;

however, this is not possible due to the thickness of the ultrasound transducer. The design

used flat optical fiber bundles oriented off-axis to the ultrasound transducer at an angle.

The angle off-axis was determined through Monte Carlo simulations of light into tissue.

Relatively uniform distribution of light into the tissue can be achieved by having optical

fiber bundles running alongside of the transducer.

Custom 3D printer parts were used to create the necessary housing to assemble the

handheld transducer. The optical fiber bundles were carefully glued to a 3D printed flap

that would easily slide into the main ultrasound transducer standoff. The standoff was filled

with a tissue mimicking polyacrylamide phantom with a thin layer of titanium dioxide

mixed with gelatin. The titanium dioxide blocks back scattering of light, protecting the

ultrasound transducer from damage and noise. Ultrasound gel is used to generate good

contact between the transducer and transducer standoff.
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Figure 2.3: Schematics of the hand-held transducer and offset. a) schematic of the whole
assembly developed in SolidWorks (Dassault Systems). b) the green flaps are attached
to the optical fiber bundles. The red supports allow for handheld operation. c) the blue
offset is filled with tissue-mimicking material and allows for the light to reach the surface
of the skin in the ultrasound plane. d) the cable housing. e) image of the fully assembled
transducer.

2.3 Preliminary Results and Discussion

2.3.1 Point Spread Function

To first characterize the system, we measured the point spread function (PSF) by sending

the signal from each element in a 64x64 pixel field of view with a mechanical pencil lead

(0.5 mm) in the center of the FOV. The image was produced using the back-projection

method. The maximum pixel intensity point was selected to analyze the point spread func-

tion. The pixel intensities of the row containing the max intensity pixel was used to measure

the lateral full width half max (FWHM), 0.8 mm. The column of the max intensity pixel

was used to calculate the axial FWHM, 0.1 mm (Fig 2.4).

2.3.2 Blood oxygen characterization

To characterize the blood oxygen saturation (sO2) measurements using the photoacoustic

system, spectroscopic measurements of bovine blood using 5 wavelengths between 700-

850 nm with increments of 30 nm were collected. The blood sample was measured using

a custom acoustically transparent ballistic gel (Humimic Medical Gelatin 2) phantom with
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Figure 2.4: a-b) A close-up of the image corresponding to the pencil lead with the maxi-
mum intensity pixel in the field of view. The lateral row and axial column are highlighted
by the green box. The pixel intensities in the row and column were normalized and plotted
(c-d); the lateral and axial full width half maximum (FWHM) were calculated 0.8 mm and
0.1 mm respectively.

a blood flow channel. The handheld USPA transducer was placed 7 mm above the blood

flow channel. The USPA system was used to aquire simultanous US and PA images.

To characterize the blood oxygen saturation measurements from the USPA system, cow

blood was imaged while constantly being purged with CO2. The blood sample was diluted

by a 1:1:0.1 ratio of bovine blood (Lampire Biological Laboratories), phosphate buffer

solution (Corning) and intralipid. Ground truth measurments of sO2 were performed using

an optical reflectance fiber probe, which used 4 white light pulses followed by a dark light

signal for correction. For each optical probe measurements, five photoacoustic imaging

acquisitions were acquired and averaged. Measurements were taken every 30 seconds while

O2 was purged into a closed flask with the blood mixture. The experiments were carried

out for 30 minutes total.

The resulting USPA images from the blood flow phantom were processed using MAT-

LAB to determine the blood oxygen saturation. A mask was created by tracing the blood
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channel in the ultrasound images. The mask was then applied to the photoacoustic image

to reduce noise and only highlight the region of interest. The overall intensity of the region

of interest was calculated for each of the five wavelengths for each photoacoustic frame.

The intensity for each wavelength was corrected for the laser power for each respective

wavelength. Power values were recorded before every experiment using a power meter

(ThorLabs PM400, ES245C Sensor). The photoacoustic Hb and HbO2 intensities were

calculated by multiplying each wavelength photoacoustic intensity by the respective ideal

Hb and HbO2 spectrum and added together for each pixel within the region of interest. The

sO2 values were then calculated by the following formula.

sO2 =
C[HbO2]

C[HbO2] + C[Hb]
(2.3)

The optical probe sO2 measurements and the photoacoustic sO2 measurements were

plotted against each other to visualize the correlation between the ground truth (optical

probe) and the photoacoustic measurement. A correlation coefficient of 0.95 was found

between the two measurement systems (Figure 2.5).

The experimental blood profile was calculated by multiplying the average experimental

sO2 value by the ideal Hb and HbO2 absorption profiles and summing the two together.

The measured photoacoustic signal for each wavelength used was also plotted to assess the

performance of the USPA system (Figure 2.6).

2.4 Discussion

The developed USPA system can be modified for a variety of applications such as blood

oxygen saturation, but also with the use of exogenous contrast agents. The main consid-

eration to improve with this system is the signal to noise ratio with relation to penetration

depth. Transducer choice plays a role in achieving the optimal result, two transducers were

tested, the L11-4v (7-MHz, 128-element) and the L22-8v CMUT (15 MHz, 256 element)
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Figure 2.5: The sO2 measurements from the optical probe vs the measured sO2 from our
photoacoustic imaging system. The oxygen saturation of bovine blood was modified by
purging O2 by bubbling CO2 into a closed vessel. The correlation coefficient between the
two measurements was calculated to be 0.954.

Figure 2.6: The ideal blood oxygenation spectrum in comparison to the experimental blood
profile from our photoacoustic system. The measured photoacoustic intensity is plotted
in black. The experimental blood profile was calculated by summing the product of the
average experimental sO2 value and the ideal Hb and HbO2 absorption profiles.

27



transducer from Verasonics. It was found that lower frequency transducers could image

deeper in tissue, but with a trade off with image quality. The higher frequency transduer

was not able to generate accurate PA signals.

It was shown that blood oxygen could be measured using our system and correlates

well with the ground truth measurements, however there is still room for improvement.

From a hardware perspective, the use of a polyacrylamide head instead of the ballistic

gel head could improve signal penetration into tissue and improve SNR. Secondly, the

processing algorithms might not be taking into account spectral coloring, a phenomenon

known to skew photoacoustic results based on tissue attenuation. Thirdly, improvements

can be made on the image processing, currently the whole vessel was segmented from the

ultrasound images while most of the photoacoustic signal is from the top of the vessel,

leading to a level of noise in the blood oxygenation calculation.

While blood oxygenation was the main application demonstrated in this section, the

USPA system has the potential to image exogenous contrast agents with photoabsorbers

within the NIR window. Blood oxygenation on its own can be used in identifying vascu-

lature [54] and determining metastatic lymph nodes [28]. The concept can be expanded to

image tumor vasculature and hypoxia to gain a better understanding of the tumor oxygen

dynamics. However, further clinical in-vivo studies need to be performed to determine the

clinical viability for USPA blood oxygenation measurements and metatstatic lymph node

detection using this system.

2.5 Conclusion

In conclusion, the developed photoacoustic system has been shown to measure blood oxy-

gen saturation in phantoms. The nanosecond pulsed laser and Verasonics ultrasound imag-

ing system were chosen due to their customizability. MATLAB algorithms were written to

control the imaging system, acquire spectroscopic photoacoustic images as well as process
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the acquired images. The handheld transducer design was optimized to be lightweight and

deliver the most amount of light into the tissue. Blood oxygen saturation measurements

were performed and compared to optical light probe oxygen measurements resulting in a

correlation of 0.95.

While it was shown that the USPA system was able to determine blood oxygenation,

further experiments are needed to improve detection accuracy. First, the laser can be tuned

further to ensure that that there is adequate power delivery from all the different wave-

lengths. The crystals should be tuned using a power meter to ensure maximum power

delivery. Secondly, the gelatin phantom used to measure the photoacoustic signal did not

include any scattering agents or multiple tissue layers, which need to be accounted for

when thinking about clinical translatability. Repeating the experiment with a different tis-

sue phantom with multiple skin layers and scattering agents would assist in any corrections

that might need to made in the processing. Finally, the PA signal was predominantly at the

top of the blood vessel, but the whole vessel was used as the region of interest leading to

estimation errors. Reprocessing the datasets using just the top of the vessel where the PA

signal is evident would be appropriate to try to improve the correlation coefficient between

the USPA system and the ground truth measurements.
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Chapter 3

O-NET - Convolutional Neural Network

for PA Imaging Segmentation and

Oximetry

3.1 Introduction

While spectroscopic photoacoustic imaging (sPA) allows of non-invasive blood oxygena-

tion imaging, accurate quantification of sO2 is hampered by unknown tissue properties such

as optical scattering, absorption and light attenuation in tissue. The amount of light that at-

tenuates deeper into tissue varies as a function of optical wavelength, a phenomenon known

as ’spectral coloring’ [61]. This phenomenon leads to a skew in blood oxygenation mea-

surements due to the heterogeneous nature of tissue leading to heterogeneous light attenu-

ation. In order to accurately quantify blood oxygen saturation, recent efforts have included

principle component analysis or the use of machine learning [62, 63, 64, 65]. Principle

component analysis has shown promising results, but it requires knowing the boundary

conditions, oftentimes unknown [33]. With advances in machine learning, computer vision

techniques such as semantic image annotation have been explored [66]. Semantic image
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annotation is a computer vision approach that enables classification and segmentation of

sPA images to generate clinically relevant data like blood oxygenation [66] through the

use of convolutional neural networks (CNN). One advantage of deep learning is the fast

interface time, enabling real time processing and measurement of data [66].

Here we developed a new machine learning approach to obtain quantitative sO2 from

sPA data based on a deep convolutional neural network (CNN). The network consisted of a

new deep convolutional neural network architecture - O-Net - that simultaneously estimates

vascular sO2 and segments the blood vessels from two-wavelength PA images generated

from three-dimensional Monte Carlo simulations of light transport in tissue. Once the

model was developed and trained on the simulated Monte Carlo data, it was trained on

experimental photoacoustic data generated from our USPA imaging system.

3.2 Data Generation and Methods

3.2.1 Monte Carlo data generation

Monte Carlo simulations are considered the gold standard in modeling light transport in tur-

bid media and are frequently used to validate numerical models. Monte Carlo simulations

are a pure numerical approach and simulates the path taken by ’packets of energy’ as they

propagate one by one through the scattering medium. Simulated Monte Carlo sPA data was

generated by using the MCXYZ program [67]. The data generated consisted of 3.8 x 3.8

x 3.8 cm volumes with background tissue properties using epidermis, dermis, and breast

tissue measurements [68] to simulate heterogeneous layered tissue. Within each simulated

volume, one and three cylinders with diameters ranging from 0.5 and 4 mm were inserted

with random orientations to represent blood vessels. Each simulated vessel was assigned

with a with a randomly selected sO2 value. A laser beam with a 36 x 1.5 mm rectangular

aperture directed at the surface of the skin was used in the simulation. Two different optical

wavelengths: 700 and 900 nm were used to excite the simulated tissue. 4000 simulations
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(2000 for each wavelength) were performed on a cluster containing two 10-core Xeon E5-

2640v4 2.40GHz processor with 256 GB of memory for each node. Approximately 106

photon packets were delivered to each simulated volume. Each simulation ran for a du-

ration of 30 minutes. The resulting 128 x 128 x 128-voxel absorbed energy maps were

filtered using a 3 x 3 x 3-voxel median filter to reduce the noise from scattering photon

packets. sO2 measurements were performed on a 2-D cross section from the center of the

3-D voxel.

3.2.2 Model construction and training

The O-Net architecture was based on the widely used U-Net architecture [69], which has

been effective at image segmentation where the output resembles the input. The O-Net

architecture (Figure 3.1) consists of two U-Nets arranged in parallel. The top half of the

neural network is focused on blood vessel segmentation while the bottom half estimates

the sO2 in the vessels. ELU activation functions were used except for all of the levels

except the last stage, where a sigmoid function was applied. Since the output sO2 has

a range between 0 and 1, the sigmoid function was deemed appropriate. This activation

combination demonstrated better accuracy than linear, ELU, or RELU activations alone.

To avoid overfitting, dropout layers were added in each level after the first convolution

layer. Two sets of 128 x 128 pixel PA image cross sections representing the two simulated

wavelengths, 700 and 900 nm, were used as the model inputs. The model assumed that

the initial pressure distribution was perfectly reconstructed, allowing the model to focus

on the optical problem. There have been other models developed that focus on accurately

reconstructing the initial pressure distributions, which could be easily combined with our

O-Net [70, 71]. To focus the calculation mainly on the blood vessels within the tissue, the

top ten rows of the PA images containing signal from the epidermis were zeroed out. The

output was a pair of 128 x 128 images, one with the sO2 estimate and the other with the

vessel segmentation. The data was split into an 80%, 10%, and 10% training, validation,
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Figure 3.1: O-Net network architecture used for blood vessel segmentation and oxygen
estimation using simulated Monte Carlo data. Monte Carlo simulated photoacoustic images
for two wavelengths (700 (a) and 900 (b) nm) were inputted into the the model. The
segmentation branch outputs the vessel segmentation map (d), and the sO2 branch estimates
the sO2 within the volume (e). The final output only estimates the sO2 within the vessel
segmentation map (f). The model was trained for 60 epochs with a training dataset size of
1536 images and a testing dataset of 192 images. The training time was roughly 3.5 hours
on a CPU and 20 minutes using a GPU.

and testing data sets, respectively. Each PA image pair was normalized by the maximum

pixel value, allowing each pixel to range between 0 and 1. The training parameters includes

a batch size of 32, for 60 epocs and used an Adam optimizer with a learning rate of 0.001

[33]. The training time was around 3.5 hours and performed using an Intel i5-8350U CPU

with 16 GB of RAM.

3.2.3 O-Net custom loss function

The O-Net used a custom loss metric where the mean-squared error of the sO2 was only

minimized within the blood vessels, compared to a standard mean squared error (MSE) loss

function that that optimizes the sO2 for the whole tissue. The standard loss function skewed

the sO2 estimates towards the background tissue, rather than just the blood vessels [33]. The

use of the custom loss function leads to large errors in background tissue sO2 estimates, but
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the background tissue estimates are nullified when combined with the accompanying vessel

segmentation map from the other half of the O-Net [33]. The segmentation half of the O-

Net used the standard MSE loss function. Each of the two losses (sO2 and segmentation)

were weighed equally [33].

3.2.4 Experimental data generation

After the initial training of the model on Monte Carlo simulated data [33], experimental

data was used to train the model. Photoacoustic images of cow blood were aquired using a

custom USPA system. The USPA system consisted of an nanosecond pulsed laser (Phocus

Mobile HE, Opotek) which has a low pulse frequency (10 Hz) and a high pulse energy (80

- 100 mJ/pulse). The accompanying ultrasound system used was a research grade Verason-

ics Vantage 256. A ballistic gel phantom with a blood flow channel was imaged. The cow

blood was diluted by a 1:1:0.1 ratio of bovine blood (Lampire Biological Laboratories),

phosphate buffer solution (Corning) and intralipid. Ground truth sO2 measurements were

performed using an optical reflectance fiber probe. The blood oxygen was modulated by

purging CO2 gas into the blood and reoxygenated by purging O2 gas into the blood. Five

photoacoustic images were taken and averaged for each optical probe ground truth mea-

surement. Two wavelengths were used in the image acquisition, 700 and 850 nm. A total

of 410 PA images were collected for each of the two wavelengths. 369 images of each

wavelength were used for the training set, 41 for the validation and 41 for the testing set.

The sO2 values from the optical probe were considered to be the ground truth and were

encoded as the pixel values for each pixel in the ground truth sO2 image. The ground truth

vessel anatomy image was obtained by segmented the accompanying ultrasound image.

3.2.5 Linear spectral unmixing

As a way to compare the efficency and performance of the O-Net, linear spectral unmix-

ing was performed on both the simulated and experimental datasets. Linear spectral un-
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Figure 3.2: Diagram showcasing the inputs and outputs of the O-Net convolutional neural
network using experimental data. The inputs include experimental photoacoustic images
at two wavelengths, 700 and 850 nm. The ground truth sO2 value was determined using an
optical oxygen probe and encoded as the pixel value of every pixel within the sO2 image.
The fourth input is the segmented vessel map. The outputs are the predicted sO2 and vessel
anatomy.
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mixing assumes that both the simulated and experimental data contained only two optical

absorbers, Hb and HbO2. The absorption spectra for these two absorbers is known [68].

This simplifies the model by assuming that the PA signal in each pixel is proportional to

the weighted sum of the concentration of Hb and HbO2 with respect to the wavelength as

described in the equation below where λ is the wavelength, µa is the absorption coefficient

of the absorber and C is the concentration [33].

PA(λ) = µaHbO2(λ)C[HbO2] + µa Hb(λ)C[Hb] (3.1)

The sO2 in each pixel was calculated using the following equation [33].

sO2 =
C[HbO2]

C[HbO2] + C[Hb]
(3.2)

3.3 Results

3.3.1 Custom loss function accuracy

The custom loss function developed was able to segment the vessel and measure the sO2

within the vessel for better estimation. For comparison, sO2 estimates were also calculated

using the standard root mean squared error (RMSE) loss function. When comparing the

custom loss function to the RMSE loss function, there was a significantly (p-value < 0.001)

lower mean absolute error.

The custom loss function was also compared to linear unmixing. The O-Net custom

loss function out performed linear unxming for noise free data as shown in Figure 3.3. The

standard MSE loss function was not able to accurately determine sO2 and resulted in high

errors. This is due to the inclusion of background tissue signals in the optimization process.

Linear unmixing showed higher error for deeper structures in the noise free data.
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Figure 3.3: The dataset was tested on two different loss functions, root mean squared error
(RMSE) and a custom loss function. The sO2 estimations from the two loss functions
were compared using the blood vessel simulated data. The custom loss function estimates
sO2 within the vessels compared to RMSE which estimates the sO2 throughout the tissue,
leading to skewed estimations because of the background tissue signals. The mean absolute
error was significantly lower when using the custom loss function compared to RMSE.
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Figure 3.4: The custom O-Net loss function compared with Root Mean Squared Error
(RMSE) and Linear Unmixing. The custom loss function outperforms both RMSE and LU
in being able to accurately predict the sO2 in Monte Carlo simulated data. The sO2 error is
shown in the middle column.
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Figure 3.5: Different levels of noise were added to the simulated data and retrained using
the O-Net. For comparison, the same datasets also underwent linear unmixing. Three rep-
resentative noise groups are shown in the figure. The mean absolute error was determined
for both the O-Net and linear unmixing. The mean absolute error of the O-Net was lower
than linear unmixing for all of the noise groups.

3.3.2 Robustness to noise

The O-Net was able to accurately determine the sO2 in noise free data compared to using

the MSE loss function and linear unmixing. To test the robustness of the O-Net, different

levels of noise were added to the images and retrained using the model. The different

levels of noise were balanced to have an average image signal to noise ratio (SNR) of 5,

10, 15, 20, 25, or 30 dB. The noise added data was also processed using linear unmixing as

a comparison. The mean absolute error was calculated for each noise group (Figure 3.5).

The predicted sO2 was also compared to the ground truth sO2 for both the O-Net and linear

unmixing methods (Figure 3.6).

While the O-Net has shown to outperform MSE and linear unmixing in estimating sO2

within the blood vessels, the segmentation accuracy of the O-Net was also determined for

the different noise levels (Figure 3.7 a). The overall segmentation accuracy was approxi-

mately 96% for all of the different noise level cases. The false negative and false positive
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Figure 3.6: The predicted sO2 was compared to the ground truth sO2 for the different noise
levels (5, 15, 30 dB SNR shown here) for both O-Net and linear unmixing. The O-Net
showed a linear correlation between the predicted and ground truth sO2 values for all of
the noise levels, where linear unmixing tended to overestimate the sO2 for all of the noise
levels.

error rates were also determined (Figure 3.7 b). The false positive error rate was close to

zero for all the different noise cases, indicating that the model did a good job of determining

the blood vessel. The false negative error rate increased as the noise within in the images

increased. A false negative indicates that the model determined a pixel not to be a part of

the vessel, when it actually is. With the addition of noise, it is suspected that edges of the

vessel are harder to determine for the model, leading to the increase in false negative error

rates.

3.3.3 O-Net performance vs linear unmixing on experimental data

The O-Net was able to accurately determine the sO2 compared to the ground truth in sim-

ulated images. Even with the addition of noise, the O-Net outperformed linear unmix-

ing. The O-Net performance was tested using experimental data acquired from our USPA

imaging system. Linear unmixing was also performed on the same data set of images for

comparison. The estimated sO2 was compared to the ground truth for both methods. The
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Figure 3.7: (a) The segmentation accuracy for the different noise cases. The segmentation
accuracy was around 96% for all of the different noise cases. (b) The false negative and
false positive error rates for the different noise level cases. The false positive error rate
stayed close to 0 for all of the noise cases; the false negative error rate was higher in
images with higher levels of noise, indicating that model had trouble determining the edge
cases of the vessels with the introduction of noise.

O-Net was able to better predict the sO2 with a r2 of 0.847 compared to a r2 of 0.618 for

linear unmixing (Figure 3.8).

3.4 Discussion

Overall, the O-Net with the custom loss function outperformed the mean squared error

(MSE) loss function and the linear unmixing method in both vessel segmentation and sO2

estimation in both simulated and experimental data. Linear unmixing showed to overes-

timate the sO2 predictions. This is probably because of the weak signals from deeper in

the tissue. The MSE loss function was not able to accurately determine the sO2 due to the

background bias in the calculations. With the introduction of noise, the O-Net was still able

to accurately estimate blood oxygen, but did show an increasing false negative error rate in

vessel segmentation as the noise in the images increased. We suspect the error is stemming

from the edges of the vessels, because the false positive error rate was consistently low for

all of the noise cases.
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Figure 3.8: a) the ballistic gel blood flow phantom used to acquire the USPA images. b) the
corresponding ultrasound image used to generate the vessel map for the O-Net, indicated
by the dotted red circle. c-d) the corresponding photoacoustic images. Two wavelengths
were used 700 and 850 nm. e-f) the sO2 predictions within the blood vessel for the O-
Net (e) and linear unmixing (f). g-h) the sO2 prediction error for the two methods. i) the
correlation between the ground truth sO2 and the O-Net predicted sO2. j) the correlation
between the ground truth sO2 and the linear unmixed sO2 prediction. k) Bland-Altman plot
showing the average difference between the O-NET and the linear unmixing methods with
a 95% confidence internval.
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The O-Net also outperformed the linear unmixing method when trained and tested using

experimental data. However the O-Net correlation between the ground truth sO2 and the

predicted sO2 was lower than the simulated data with added noise. A larger data-set with

multiple vessel geometries are needed to properly train the O-Net using experimental data

to improve the performance. Additionally, the vessel was segmented using the ultrasound

image for the whole vessel, where the PA signal was emitted mainly from only the top of

the vessel. Better segmentation and more geometries could improve the O-Net performance

using experimental data.

In addition to better segmentation and sO2 predictions using the O-Net, it is also com-

putationally fast. The average prediction time per image was under 50 ms, potentially

enabling real-time sO2 prediction and segmentation. The O-Net has the potential to be

augmented with our custom USPA system for faster imaging processing and sO2 quantifi-

cation.

3.5 Conclusions

We have developed a new neural network, O-Net, that simultaneously estimates blood sO2

and segments blood vessels from a pair of PA images. The network vastly outperforms

linear spectral unmixing on a data-set generated from 3-D Monte Carlo simulations. The

model was also outperformed linear unmixing on experimentally acquired photoacoustic

images from the developed USPA system. Overall, this approach could be used to imple-

ment quantitative oximetry and vessel segmentation deep in tissue.

While the model shows improvement compared to the currently linear unmixing method,

the model performance can be further improved by retraining the model on more simulated

and experimental data. The simulated data used in the model is a good starting point, but

realistically, the sO2 within the blood vessel represents a Gaussian distribution instead of

just one value. Recreating the Monte Carlo data set with a Gaussian sO2 distribution will be

43



needed to improve the model. Secondly, the experimental data used to train the model were

only acquired using the tissue mimicking gelatin phantom used in Chapter 2. Additionally,

the vessel position in the experimental data set was the same for all of the images. Ac-

quiring experimental data with the vessel in different positions within the image would be

needed to train the model further. Adding tissue layer with scattering agents as well as dif-

ferent levels of melanin on the top layer would help in the training the model for accuracy

for different attenuation factors. Performing a study with multiple phantoms modulating

the vessel depth, melanin levels, scattering levels would provide a more complete experi-

mental data set.
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Chapter 4

Molecular targeting of perfluorocarbon

core nanodroplets for metastatic lymph

node detection using ultrasound

4.1 Introduction

Ultrasound imaging contrast agents have augmented the modality’s potential for a wide

variety of diagnostic and therapeutic applications, such as vascular mapping, tissue abla-

tion, clot disruption, targeted drug delivery, and lithotripsy [72, 73, 74, 36]. Typically,

microbubbles with a gaseous air or perfluorocarbon core are used to provide imaging con-

trast due to the large acoustic impedance mismatch between their gaseous core and the

surrounding water-based tissue. In addition to enhancing contrast, molecular information

can be obtained through attachment of targeting molecules to the surface of the microbub-

bles. This has enabled molecular imaging of oncological biomarkers, such as VEGFR2, for

visualization of angiogenesis [75, 76, 77]. While microbubbles have proven to be effective

contrast agents with limited clinical adoption, their relatively large size restricts them to the

vasculature and results in rapid clearance from the bloodstream.
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Nano-sized contrast agents overcome the size restrictions of microbubbles by allowing

for permeation into leaky vasculature of tumors as leading to potential ultrasound guided

tumor specific molecular imaging targets [41]. One particular class of ultrasound con-

trast agents, perfluororcarbon nanodroplets (PFCnDs), have been studied due to their phase

change properties, leading to reduced size and improved in-vivo stability [78]. The PFCnDs

contain a liquid perfluorocarbon core surrounded by a lipid or protein shell. The ultrasound

contrast is produced when the PFCnDs are activated using an optical or acoustic stimu-

lus to induce the liquid perfluorocarbon core to vaporize into a gaseous microbubble. The

microbubbles reflect the incident acoustic waves, creating the contrast in the image. The

phase change dynamics of the PFCnDs have led to their use in a variety of imaging and

therapeutic applications [79, 46, 80, 81, 82]. Optical activation of the PFCnDs is achieved

by incorporating an optical absorber into the PFCnD and activating with a pulsed laser [57].

While the choice of optical absorber and excitation wavelength allow for PFCnD versatil-

ity, the optical activation depth is limited due to light attenuation in tissue. Acoustic droplet

vaporization (ADV), in comparison, allows for deeper activation due to the low attenuation

of acoustic waves in tissue. ADV works by exposing the nanodroplets to a peak negative

pressure lower than both the core’s vaporization pressure and the Laplace pressure from the

stabilizing shell.

4.1.1 The use of ultrasound in metastatic lymph node staging

Knowing the lymph node metastatic state is paramount in accurately staging cancers and

developing the appropriate treatment plan [3]. While positron emission tomography (PET),

magnetic resonance imaging (MRI) and x-ray/computed tomography (CT) are used to

screen for metastatic lymph nodes in clinical practice, they are limited by size resolution

and have difficulty detecting lymph nodes less than 10 mm [83]. For smaller metastases,

ultrasound imaging is used due to the information provided in addition to size, such as

echogencity, echogenic hilus, calcification and necrosis [16] as well as vasculature infor-
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mation [83]. However, ultrasound is limited by contrast and depth in comparison to the

other modalities. Microbubble contrast agents have been used to enhance ultrasound con-

trast for better detection [83], but the size limitation of microbubbles limits the penetration

into smaller vessels.

Perfluorocarbon nanodroplets have the potential to enhance the use of ultrasound by

providing molecular information through various targeting strategies. Multiple publica-

tions have reported the development of perfluorocarbon nanodroplets to target extracellular

markers such as folate receptors [84, 85], and human epidermal growth factor receptor-2

(HER2) [86]. While these examples show targeting to specific molecules, the PFC core

used in the droplets have boiling points lower than the surrounding tissue, leading to one-

time activation and instability.

In this chapter, antibody-functionalized phase-changing perfluorohexane-core nanodroplets

(PFHnD-Ab) for molecular ultrasound imaging is described. The perfluorohexane core has

a boiling point of 56 °C. This allows for repeated vaporization and recondensation of the

PFHnD-Ab for more robust imaging. The molecular specificity is conferred through di-

rectional attachment of epidermal growth factor receptor (EGFR) antibodies to the surface

of the nanodroplets through a hydrazide-aldehyde reaction. The molecular specificity is

demonstrated through fluorescence microscopy and ultrasound imaging [87]. The impact

of repeated vaporization cycles on molecular binding is investigated. Overall, the results

show that the PFHnD-Ab provide reliable targeting and contrast for extended imaging ap-

plications.

4.2 Methods

4.2.1 Perfluorohexane Nanodroplet Synthesis

Perfluorocarbon nanodroplets were synthesized using a modified sonication-based method

described in Hannah, et al. [59], 2.2 µmol of lipids consisting of a 1:0.2:0.03 molar ratio of
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DSPE-PEG-2k, DPPC and DSPE-PEG-Hz respectively were added to 1 mL of chloroform

(Oakwood Chemical, Estill, South Carolina, USA) in a 50 mL round-bottom flask. The so-

lution was evaporated to form a lipid cake using a rotary evaporator (Heidolph, Schwabach,

Germany) at 38.5 °C, 250 mbarr and at a speed of 50 rpm. For the nanodroplets used in the

fluorescence experiments, 20 µL of 1 mg/mL DiD (Biotium, San Francisco, USA) fluores-

cent dye was also added to the mixture prior to evaporation. Upon complete evaporation

of the chloroform, the lipid cake was resuspended in 1 mL of DI water. The solution was

then vortexed (VWR, Radnor, PA, USA) for 30 seconds at 3000 rpm and sonicated using

a 35-kHz ultrasound water bath sonicator (VWR Symphony, Radnor, PA, USA) at room

temperature for 1 minute. The resulting mixed lipid solution was transferred to a 20-mL

centrifuge tube in an ice bath and 50 µL of perfluorohexane (Fluoromed, Round Rock, TX,

USA) was added to the solution. The mixture was then sonicated using a microtip probe

sonicator (QSonica, Newtown, CT, USA) at two different intensities, one of low intensity

(1% power, 1 s on, 5 s off, 20 total pulses) followed by a high intensity (50% power, 1 s on,

10 s off, 5 total pulses). Following sonication, the nanodroplets were washed three times

by centrifugation (MiniSpin, Eppendorf, Hamburg, Germany) at room temperature first at

800 rcf for 60 seconds keeping the supernatant, followed by 1300 rcf for 60 seconds, once

again keeping the supernatant and finally centrifuged again at 3500 rcf for 60 seconds, this

time discarding the supernatant and resuspending the pellet in 1 mL of DI water for the

final PFHnDs.

4.2.2 Antibody Conjugation to the PFHnDs

Epidermal growth factor (EGFR) antibodies (Bio X Cell, Lebanon, NH, USA) were fil-

tered using a 30 kDa MWCO centrifuge filter (Sigma Aldrich, St. Louis, MO, USA) for

15 minutes at 3000 rcf (Sorvall ST8, Thermo Fisher) resulting in a final concentration

of 1 mg/mL. The antibodies were then fluorescently labeled using the Alexa Fluor 555

(AF555) antibody labeling kit (Thermo Fisher Scientific, Waltham, MA, USA ) following
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Figure 4.1: The antibodies were first labeled with AF 555 antibody labeling kit. Secondly,
the Fc region of the antibody was oxidized by reacting with 100 mM NaIO4 leading to
aldehydes on the Fc region. The aldehydes on the activated Fc region then bind to the
hydrazides available on the surface of the PFHnDs, forming a stable hydrazone bond, lead-
ing to the final antibody conjugated nanodroplet (PFHnD-Ab). The core of the PFHnD
contains perfluorohexane (b.p. 56 °C) and DiD fluorescent dye.

the included protocol. The labeled antibodies were stored as a stock solution at 4 °C until

needed.

The procedure for oxidizing the Fc region to produce aldehyde groups for binding was

adapted from previous work on noble metal nanoparticles [88] and barium titanate nanopar-

ticles [89]. To briefly summarize, 10 µL of the AF555 labeled antibodies were added to

130 µL of 100 mM Na2HPO4.Fifty microliters of this solution was added to 5 µL of 100

mM NaIO4. It is important to note that the NaIO4 should be made immediately before use

for optimal results. After 30 minutes of incubation with NaIO4, 150 µL of PBS was added

to stop the reaction. Aldehydes were confirmed using the Purpald (Alfa Aesar, Tewksbury,

MA, USA) test: 20 µL of the antibody solution was added to 60 µL of a 10 mg/mL solution

of Purpald mixed with 1 M NaOH. The purpald solution qualitatively turns violet in the

presence of aldehyde groups.

To attach the antibodies to the surface of the PFCnDs, a direct conjugation strategy

was employed using the aldehydes on the Fc region of the antibody to bind to the free

hydrazides on the surface of the PFCnDs, creating a stable hydrazone bond. 200 µL of the
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aldehyde activated antibodies were then added to a solution with 200 µL PFHnDs (2.2 ×

108 particles/µL) and 100 µL of BupH coupling buffer (0.1 M sodium phosphate, 0.15

M NaCl, pH 7.2; ThermoFisher, Waltham, MA, USA). The mixture was incubated for 4

hours at room temperature in the dark on a shaker (10 rcf; Belly Dancer, IBI Scientific,

IA, USA). Post incubation, the solution was washed three times at 9000 rcf for 2 minutes

(MiniSpin Centrifuge, Eppendorf, Hamburg, Germany) to remove the unbound antibodies

by removing the supernatant each time and resuspending the pellet in 400 µL of PBS. The

resulting antibody-nanodroplet product (PFHnD-Ab) was resuspended in 200 µL of PBS

after the third wash.

4.2.3 Molecular Targeting of EGFR-targeted PFHnDs to FaDu cells

FaDu cells (ATCC) were used as the in-vitro model of head and neck squamous cell carci-

noma due to their over-expression of EGFR on the surface, which enables molecular target-

ing via the anti-EGFR antibody. The cells were cultured in T-75 flasks by using Dulbecco’s

Modified Eagle’s Medium (DMEM; Corning, Tewksbury, MA, USA) supplemented with

10% fetal bovine serum (Gibco - Thermo Fisher, Waltham, MA, USA) and 1% penicillin

(Corning, Tewksbury, MA, USA). FaDu cells were suspended in 2 mL of DMEM for a

final concentration of 4.42 × 105 cells/mL for use in the targeting experiments. Then, 200

µL of the cell solution was treated with 100 µL of 4 × 107 nanodroplets/µL solution of

fluorescent, PFHnD-Abs and incubated for 30 min at 36 °C.

Two control experiments were conducted. Firstly, cells were incubated with PFHnDs

without conjugated antibodies to determine the level of non-specific binding. Secondly,

cells were first subjected to unlabeled free floating anti-EGFR IgG (71 µg/mL) to block

the specific receptors, inhibiting any EGFR-mediated PFHnD-Ab binding, followed by the

addition of the same concentration and volume of PFHnD-Abs as the positive group. To re-

move unbound nanodroplets, the cells were washed five times for 30 s at 800 rcf (Minispin,

Eppendorf), each time removing the supernatant and re-suspending in 400 µL of PBS. Af-

50



ter the final wash, the cells were then re-suspended in 200 µL of PBS and imaged under

a microscope (DMi8, Leica, Germany). Dark field was used to image the cells, the red

fluorescence channel was used for the PFHnDs (DiD), and the yellow fluorescence channel

was used for the antibodies (AF555). To quantify the PFHnD fluorescence, the dark-field

images were segmented in MATLAB using the Image Processing Toolbox (MathWorks,

Natick, MA, USA). The coordinates of all of the cells in the dark field image were de-

termined and then used to quantify the fluorescence from the corresponding co-registered

fluorescent images. The Mann-Whitney U-test was used to determine the statistical signif-

icance of the results.

4.2.4 Ultrasound Imaging of FaDu Cells

To validate the ability to image the PFHnD-Abs targeted to the cells, tissue-mimicking

polyacrylamide phantoms were fabricated. Polyacrylamide phantoms have tissue-like acous-

tic properties such as density, sound speed, acoustic impedance and attenuation[90, 91, 92].

10 mL of 30% polyacrylamide solution (Sigma-Aldrich, St. Louis, MO, USA) was added

to 20 mL of DI water and 30 µL of ammonium persulfate (Sigma-Aldrich, St. Louis, MO,

USA) to generate a 30 mL phantom. 27 mL of the solution was set into the mold first fol-

lowed by adding 33.75 µL of Tetramethylethylenediamine (TEMED; Alfa Aesar, Haverhill,

MA, USA) crosslinker to create the phantom base layer. The phantom was allowed to set

for 5 minutes until hardened. The remaining 3 mL of PA solution was mixed with cells and

3.75 µL of TEMED crosslinker. The solution was added to the top of the base layer and

allowed to set.

The experimental setup, ultrasound imaging acquisition sequence and image processing

was adapted from previous work [87]. To briefly summarize, the custom ultrasound imag-

ing setup (Fig. 4.2) used a 15-MHz, 256-element linear array ultrasound transducer (L22-

8v, Verasonics, Kirkland, WA, USA) powered by a Verasonics Vantage 256 (Verasonics,

Kirkland, WA, USA) ultrasound imaging system and single element high intensity focused
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ultrasound (HIFU) transducer (H-151, Sonic Concepts, Bothell, WA, USA). A polyacry-

lamide coupling cone was used to focus the HIFU waveform to the activation spot. The

ultrasound image acquisition sequence was synchronized with the HIFU through a digi-

tal trigger output from the Verasonics imaging system. The trigger output was generated

using an arbitrary waveform generator (Tektronix, Beaverton, OR, USA), which created a

10-cycle, 1.1-MHz sinusoid burst. The waveform was then amplified by a 200-W radio

frequency power amplifier (1020L, E & I).

The image beamforming and processing methods were adapted from previous work

[87]. The image reconstruction and data processing were completed using the Verasonics

reconstruction algorithms. Briefly, each B-mode image was acquired using 5 plane-wave

transmissions at angles of -18°, -9°, 0°, 9°, and 18°. Six B-mode ultrasound images were

acquired before the fist HIFU pulse to be able to reliably determine the background signal.

Then, two frames were acquired 500 µs and 400 ms after each HIFU pulse. A delay of 500

µs after the second frame was applied before transmitting the next HIFU pulse. A total of

5 HIFU pulses were applied in each imaging sequence. A differential of frames between

pre-HIFU and the first frame after HIFU exposure were used to isolate the signal from the

PFHnD vaporization. The differential ultrasound signal was determined within the 3.94

mm2 focal spot region.

To determine the detection limitation, cells with attached PFHnD-Ab were diluted 10×,

50×, 100×, and 500×. The cells were then embedded into polyacrylamide phantoms and

imaged using the same procedure. The initial concentration of cells were measured using

an automated cell counter (LUNA II, Logos Biosystems, South Korea).
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Figure 4.2: Schematic of the custom ultrasound setup. The single element HIFU transducer
uses a polyacrylamide coupling cone to deliver the activation energy needed to induce the
PFHnD-Ab phase change. Polyacrylamide phantoms PFHnD-Abs conjugated to cells were
placed on the 3D printed stage. A linear array B-mode transducer was placed perpendicular
to the activation plane to capture the vaporization and recondensation processes.

4.3 Results

4.3.1 Nanodroplet Characterization and Conjugation

The perfluorocarbon nanodroplet (PFHnDs) were synthesized with a perfluorohexane core,

and a lipid shell consisting of a 1:0.2:0.03 molar ratio of DSPE-PEG-2k, DPPC and DSPE-

PEG-Hz. Using dynamic light scattering (DLS), we obtained a peak size of 530 ±40 nm

(n=3) and a zeta potential of -13 ±2 mV (Fig. 4.3). After conjugation to the antibodies, the

size distribution of the targeted nanodroplets (PFHnD-Ab) increased to a peak of 640 ±50

nm (n=3) and the zeta potential increased to -9 ±4 mV (n=3). The as-synthesized concen-

tration was 2.2×108 nanodroplets/µL as measured by the DLS. Additionally, the amount of

antibody conjugated to the nanodroplet surface was quantified using a spectrofluorometer

(FluoroMax, Horiba, Kyoto, Japan). The average fluorescent antibody concentration in the

sample was measured to be 1.57 µg/mL. This resulted in an average of 3 × 104 antibodies
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Figure 4.3: A) The size distribution of both the untargeted PFHnDs (530 ±40 nm; n=3) and
antibody conjugated PFHnD-Ab (640 ±50 nm; n=3) . B) The zeta potential of both targeted
(PFHnD-Ab; -9 ±4 mV; n=3) and untargeted (PFHnD; -13 ±2 mV; n=3) nanodroplets.

per PFHnD.

4.3.2 Molecular Targeting of PFHnD-Ab to FaDu cells

The binding ability of the PFHnD-Abs were explored by culturing with human squamous

cell carcinoma cells (FaDu cell line) that overexpress EGFR. The cells were incubated

with the PFHnD-Ab at 35 °C for 30 min. Three control groups were included to test the

binding specificity of the PFHnD-Abs. Firstly, PFHnDs without conjugated antibodies

were incubated with the cells under the same conditions to test for non-specific binding.

Secondly, to validate that the binding was due to the EGFR receptor-antibody reaction,

the cells were first exposed to free floating anti-EGFR antibodies followed by the same

concentration and volume of PFHnD-Abs as in the positive control case. The free floating

antibodies are intended to block all the receptor sites on the cells. Thirdly, cells without any
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Figure 4.4: Antibody calibration curve measuring the AlexaFluor 555 fluorescence for
different concentrations. Fluorescence was measured using a spectrofluorometer with three
measurements per concentration.

nanodroplets were also studied. After incubation, the unbound nanodroplets were washed

via centrifugation and the cells were imaged using a fluorescence microscope.

The PFHnD-Abs exhibited high levels of binding to the FaDu cells. Both fluorescence

channels exhibited a higher fluorescence signal per cell in the targeted group compared

to the other groups (Fig. 4.5A), indicating that the PFHnD-Ab bond remained intact af-

ter binding. The DiD fluorescence signal of the PFHnD-Ab was 5.63× and 6× greater

than the signal in the case of nontargeted PFHnDs (without the antibody) and the EGFR

blocking control, respectively. The mean fluorescence per cell (n=567 cells) was 43 ±15

in the DiD channel. The control samples averaged 8 ±5 (n=410 cells) for the nontargeted

group and 7 ±4 (n=558 cells) for the EGFR-blocking group (free floating IgG). The cell

autofluorescence without the presence of any nanodroplets or antibodies was measured to

be 6 ±1. The Mann-Whitney U-test was used to determine the statistical significance since

the data distributions were deemed not normal by the Lilliefors test. The PFHnD-Ab sam-

ple fluorescence was statistically significant compared to all conditions, as shown in Fig.

4.5B (***,p < 0.001). The data suggest that conjugating antibodies to the PFHnDs sig-

nificantly improves the binding to EGFR overexpressing cells. Some nonspecific binding
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Figure 4.5: DiD lipophilic dye was embedded into the core of the nanodroplets. The an-
tibodies were labeled with Alexa Fluor 555. Targeted and nontargeted particles were al-
lowed to incubate withe FaDu cells for 30 minutes. Additionally, a blocking control was
also employed where the cells were saturated with free antibody first before adding targeted
nanodroplets. A) Microscope images of cells were obtained in dark field, DiD fluorescence
channel and AF 555 channel. B) The DiD fluorescence per cell was computed for cells
from each group, resulting in the PFHnD-Ab group having a significantly higher mean
DiD fluorescence/cell compared to the other groups (p < 0.001).

56



of non-targeted PFHnDs to the cells was observed; however, there was not any significant

statistical difference in the fluorescence with relation to the cell autofluorescence. It was

also shown that the PFHnD-Ab conjugate binding to the cells is EGFR mediated and re-

liant on the presence of EGFR receptors due to the significantly higher fluorescence signal

compared to the blocking control case.

4.3.3 Effects of repeated vaporization of PFHnD-Ab and cell targeting

efficiency

One of the advantages of using perfluorohexane in the core of the nanodropets is the abil-

ity to repeatedly activate the particles from a liquid to gas state. Since the boiling point

of PFH is 56 °C, the core recondenses into a liquid nanodroplet after acoustic droplet va-

porization [87]. Given the unique dynamics of PFHnDs, it is important to investigate the

effects of repeated vaporization of the PFHnD-Abs on their targeting ability. Specifically,

we sought to determine if repeated vaporization would impact the molecular specificity of

the PFHnD-Ab. To test the targeting efficiency, PFHnD-Ab were vaporized by either 0, 10,

100 or 1000 HIFU pulses before incubation with the FaDu cells. The nanodroplets were

allowed to incubate with cells for 30 minutes, followed by centrifugation wash steps to

remove unbound nanodroplets. The cells were then imaged using fluorescence microscopy

(Fig. 4.6A) and the fluorescent signal in the DiD (Fig. 4.6B) and AF 555 (Fig. 4.6C) chan-

nels were quantified. The results show that there is no significant difference in targeting

efficiency resulting from prior vaporization of the PFHnD-Ab. This supports the notion that

the antibodies remain attached and functional after repeated activation and recondensation.

4.3.4 Effects of repeated vaporization of PFHnD-Ab after cell binding

A second test was carried out to determine whether activation of the PFHnD-Ab once bound

to cells would lead to detachment from the cells. Four groups were used in this study,
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Figure 4.6: The PFHnD-Abs were subjected to different levels of HIFU activation before
being incubated with cells to test the antibody-nanodroplet bond robustness. The PFHnD-
Abs were split into four groups and exposed to 0, 10, 100 and 1000 HIFU pulses before
being being allowed to incubate with FaDu cells. After 30 minutes of incubation with
cells, the cells were washed to remove any unbound PFHnD-Abs and were imaged using
fluorescence microscopy (A). There was no significant difference in DiD fluorescence (B)
and AF 555 (C), indicating that the antibody-nanodroplet bond is strong and can withstand
repeated vaporization and recondensation cycles.
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Figure 4.7: The PFHnD-Abs were allowed to incubate with cells and then split into 4
groups, each being exposed to a different number of HIFU pulses (0, 10, 100, 1000). The
cells were imaged before and after the HIFU treatment (A), and the mean fluorescence
per cell was determined in both the DiD and AF 555 channels. There was no significant
difference in the DiD (B) and AF 555 (C) fluorescence per cell after the HIFU treatment, in-
dicating that the targeted PFHnD-Ab remained attached to the cells during the vaporization
and recondensation phases.

no activation, 10 HIFU pulses, 100 HIFU pulses and 1000 HIFU pulses. The cells were

imaged with fluorescence microscopy before and after the HIFU activation (Fig. 4.7A) and

the DiD (Fig. 4.7B) and AF 555 (Fig. 4.7C) fluorescence from the cells was quantified.

We found that there was not any significant difference in DiD and AF 555 fluorescence

between the groups. The data shows that even after undergoing multiple vaporization-

recondensation cycles, the PFHnD-Ab remain bound to their target. Taken together with

the results from Fig. 4.6, the experiments show that the PFHnD-Ab are robust molecular

imaging agents.
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4.3.5 Ultrasound imaging of PFHnD-Ab targeted cells in phantoms

After fluorescence confirmation of PFHnD-Ab targeting to FaDu cells and washing to re-

move unbound nanodroplets, the cells were embedded in polyacrylamide tissue-mimicking

phantoms to enable ultrasonic activation and detection. A custom imaging setup that com-

bines a single-element HIFU transducer for activation with a linear array transducer for

imaging was used to evaluate the PFHnDs as contrast agents (Fig. 4.2). The PFHnDs were

activated using a 10-cycle, 10.5-MPa, 1.1-MHz burst from the HIFU transducer. The result-

ing microbubbles were visualized using a B-mode ultrasound transducer that was oriented

perpendicular to the HIFU axis. The image acquisition sequence was optimized to allow

for capture of the vaporization and recondensation processes of the nanodroplets. The se-

quence consisted of a total of 5 HIFU pulses, with 6 ultrasound images captured before the

first HIFU pulse, and one image after each HIFU pulse, resulting in a set of 16 ultrasound

images per acquisition. Additionally, the same cells-only, non-targeted PFHnD, and IgG

blocking control groups were used.

The PFHnD-Ab activation was confirmed by taking the difference between the ultra-

sound images before and after the HIFU activation pulse. The differential amplitudes for

each group are displayed in Fig. 4.8A. The phantom containing cells with the PFHnD-Ab

resulted in the highest ultrasound signal compared to the control groups (Fig. 4.8B), with

a p-value « 0.001 (p-value = 3.7 × 10-14). There was negligible ultrasound signal present

in the phantom containing only cells, reaffirming that the HIFU levels used in this study

were below the cavitation threshold. As expected, there was some signal in the other two

control groups, PFHnDs and IgG blocking (free antibody + PFHnD-Abs), due to limited

non-specific binding and incomplete washing. Repeated vaporization of the PFHnD-Abs

was confirmed from the captured ultrasound images and quantification of the ultrasound

amplitude per frame (Fig. 4.8C). Based on the results, it is clear that the PFHnD-Ab can be

used as molecularly targeted contrast agents for ultrasound imaging.
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Figure 4.8: A)Ultrasound images of cells embedded in polyacrylamide tissue mimicking
phantoms before and after the HIFU activation of the PFHnDs. The difference between the
two images is displayed in the right panel, indicating PFHnD activation. Cells conjugated
with the targeted droplets (PFHnD-Ab) were imaged along with the control groups; non-
targeted droplets (PFHnD), blocking group (Free antibody and PFHnD-Ab) and FaDu cells
without PFHnDs. B) The differential amplitude was calculated for each of the groups and
resulted in the PFHnD-Ab group having a significantly higher differential amplitude (p <
0.001) than the other groups C) The average ultrasound amplitude within the focal spot
for each ultrasound frame captured for each of the groups. The HIFU was pulsed prior to
frames 7, 9, 11, 13 and 15, resulting in the ultrasound amplitude spike within those frames.
.
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4.3.6 Determining the PFHnD-Ab detection limits

Cells with attached PFHnD-Ab were diluted 10×, 50×, 100×, and 500× and embedded in

a thin layer of polyacrylamide phantoms matching the elevational thickness of the imaging

transducer. The initial cell concentration was measured to be 2.12 × 105 cells/mL. The

average number of cells in the HIFU focal zone was determined by dividing the cells in

the phantom by the area of the focal zone, 3.83 mm2. This resulted in 38.16, 7.63, 3.81,

and 0.76 cells per focal area for the 10×, 50×, 100×, and 500× dilutions, respectively.

The differential ultrasound amplitude was computed and spatially averaged for five focal

spots for each dilution. Interestingly, the more diluted samples showed individual points

of signal, indicating single-cell detection (Fig. 4.9A). The differential ultrasound signal

was linearly proportional to the cell concentration, with an r2 value of 0.998 (Fig 4.9B).

This suggests that ultrasound imaging of PFHnD-Ab could be a highly sensitive method to

detect small numbers of cells.

4.4 Discussion

The conjugation strategy employed in attaching the antibodies to the PFHnDs benefits from

multiple key features. First, the aldehyde-hydrazide chemistry is a one-step procedure that

does not require specialized linker molecules and can be carried out in biologically ap-

propriate conditions. Second, the method could be adapted to virtually any IgG antibody

with a glycosylated Fc region, opening the door to imaging an array of different molecular

targets. Third, by binding the PFHnDs to the Fc region of the antibody, directional conju-

gation is achieved, likely reducing the number of antibodies required to achieve effective

targeting.

A high-boiling-point perfluorocarbon was used in the core of the nanodroplets in this

study. Thus, in biological applications, the nanodroplets recondense after undergoing ADV.

This enables repeated activation and imaging of the same nanodroplets, opening the door
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Figure 4.9: Cells with PFHnD-Abs attached to them were diluted to different concentra-
tions and embedded into polyacrylamide phantoms. A) Images of the differential ultra-
sound amplitude for each of the different concentrations. The expected cells/focal area was
calculated based on the initial concentration of cells. B) The differential amplitude plotted
as a function of the expected cells/focal area yielded an r2 of 0.998.
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to improved contrast or super-resolution imaging [87, 59, 46]. Importantly, the results in

this paper show that the PFHnD-Ab retain their molecular targeting capabilities even after

undergoing 1000 vaporization/recondensation cycles. Furthermore, the PFHnDs remained

bound to their targets even when the HIFU energy was applied after their incubation with

cells. This suggests that the PFHnD-Abs have the promise to be robust in-vivo contrast

agents for molecular ultrasound imaging.

The perfluorohexane core requires a relatively large amount of energy to initiate the

vaporization. Previous studies have relied on the use of a pulsed laser for activation, which

results in limited imaging depth [46, 59, 93]. The use of HIFU to activate the nanodroplets

allows for deeper tissue activation [87]. The HIFU pressure levels used in this study were

below the cavitation threshold, and no signs of cavitation were observed; however, the

biological effects of HIFU in combination with PFHnDs has not yet been determined in

vivo.

Importantly, the conjugation strategy does not rely on the use of perfluorohexane. It

could be applied to the more volatile perfluoropentane (b.p. 28C) or perfluorobutane (b.p.

4C). These nanodroplets would require less energy for activation (i.e., a conventional imag-

ing transducer could be used), but would only offer a single-time vaporization. Thus, more

care would need to be taken to ensure binding in a region prior to imaging. An additional

benefit of using a lower-boiling-point core is the ability to release cargo on demand. There-

fore, the nanodroplets could be used for molecularly targeted drug delivery with ultrasound

image guidance [80, 94, 95].

4.5 Conclusion

In this study, we have presented a new directional antibody conjugation strategy to confer

molecular specificity to PFHnDs. The conjugation of EGFR antibodies promoted strong

association with EGFR-overexpressing FaDu cells with minimal nonspecific binding. We
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also demonstrated that the particles bound to cells could be imaged with a linear array ul-

trasound transducer after using HIFU to activate the PFHnDs. These findings show that the

PFHnD-Ab are a robust contrast agent that could be applied to a wide variety of molecular

imaging applications. While it was shown that the particles improve contrast, the size of

the nanodroplets could be of concern for clinical translatability. Further studies are needed

in-vivo to determine the clinical feasibility.

While specific targeting was shown on using the PFHnD-Abs, one additional control

experiment should be carried out to ensure that the cellular binding is due to the antibody-

receptor binding. Conjugating isotype control antibodies onto the surface of the PFHnDs

as a control would be a way to fully prove specific antibody binding.

While it was shown that the targeted PFHnD-Abs can improve ultrasound contrast, the

size of the particles can be further optimized to reduce the diameter. A size characterization

study should be carried out modulating three factors, the DSPE-PEG:DPPC ratios, the

sonication intensity and the centrifugation wash steps. The use of an extruder helps in

reducing the size of the particles to the size of the filter. We have used a 0.4 µm filter

membrane before which has resulted in nanodroplets in the 400 nm rang, however the

extruder was not used with droplets with antibodies. Experimenting to see the effect of

extruding on the surface antibody conjugation would be worthwhile. Other filter membrane

sizes have not been tested and could result in smaller particles.
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Chapter 5

Multiplexing using paired agent PFCnDs

for metastatic lymph node detection

5.1 Introduction

Perfluorocarbon nanodroplets (PFCnDs) have been shown to be versatile contrast agents

and have been used in both photoacoustic and ultrasound imaging due to their phase change

properties. Upon activation with either a laser or ultrasound pulse, the liquid perfluorocar-

bon core undergoes a phase change into a gaseous microbubble, providing contrast on

demand. The choice of perfluorocarbon core results in different varporization thresholds,

with higher boiling point cores being able to recondense back into a liquid nanodroplet

from a gaseous microbubble. The sub-micron size of the nanodroplets allows for molec-

ular imaging or extravascular tissue [58]. PFCnDs have also been shown to be used as

both imaging contrast agents and drug delivery vehicles, releasing the payload and provid-

ing contrast upon delivery [80]. We have shown in earlier chapters that PFCnDs can be

conjugated into antibodies for molecular targeting applications as well. While there have

been many diagnostic and therapeutic applications of PFCnDs, combining the effects for

multiplexed strategies has yet to be fully explored. Santiesteban et. al have shown opti-
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cal multiplexing by mixing two different perfluoropentane (PFP) nanodroplets, each with

a different optical dye. They were able to selectively activate the nanodroplets based on

the optical wavelength of the respective dye in the nanodroplet cocktail [96]. Multiplex-

ing potentially opens the doors to new therapeutic strategies, for example, one nanodroplet

can be used as a feedback loop to confirm the nanodroplets reached the target site before

activating the other nanodroplet to deliver the payload.

5.1.1 Paired agent imaging

While multiplex imaging has shown potential for augmenting optical and ultrasound imag-

ing, one of the challenges for multiplex targeting is determining specific targeting vs non

specific targeting in-vivo. Paired-agent fluorescence imaging has shown to alleviate this

issue by co-administering a non-targeted control imaging agent with a molecular targeted

imaging agent to allow for non-specific uptake correction [97, 98]. It is assumed that the

kinetics of the control and targeted paired agents is the same in-vivo and differences within

the fluorescence would indicate targeting [97]. Molecular imaging of lymph nodes has been

challenged with non specific effects, paired agent imaging has shown the ability to quan-

titatively identify cancerous tissue by eliminating the non-targeted fluorescence ultimately

enhancing the targeted agent fluorescence to tumor contrast, providing better information

[99].

While paired agent imaging has shown to be able to detect metastatic lymph nodes

accurately, since it based on fluorescence, the depth penetration is a limitation. Optical

imaging multiplexing is also faced with depth limitations. Acoustically activated PFCnDs

allow for deeper tissue penetration compared to fluorescent imaging and optical imaging.

We have shown that we can successfully target PFHnDs to EGFR overexpressing cells and

visualize them using ultrasound in-vitro. However, non-specific binding was also noticed in

the in-vitro studies, highlighing a need for a better visualization strategy before translating

to in-vivo.

67



Figure 5.1: The two PFCnDs can be differentiated based on their time signature. Since PFP
has a lower boiling point than body temperature, (b.p. 29 °C), once activated, the liquid
nanodroplet stays as a gaseous microbubble producing prolonged ultrasound contrast. In
comparison, PFH has a higher boiling point that body temperature (b.p. 56 °C), resulting
in a vaporization-recondensation cycle that can be activated multiple times. Recondensa-
tion occurs on an order of milliseconds. These different time signatures can be used to
distinguish between the two nanodroplets.

In this chapter, we describe methods of applying the paired agent imaging strategy for

acoustically activated PFCnDs for metastatic lymph node detection. Two different PFC-

nDs were developed, one with a perfluoropentane (PFP, b.p. 29 °C) core, and one with

a perfluorohexane (PFH, b.p. 56 °C) core, where the PFP nanodroplet serves as the non

targeted control and the PFH nanodroplet is the molecularly targeted agent. Each of the

nanodroplets was assigned a different fluorophore to allow for fluorescent paired agent

imaging as a validation technique.

We have shown previously in our lab to be able to distinguish between the two nan-

odroplets based on their ultrasound time signature. Since the boiling point of PFP is below

the body temperature (37 °C), once activated the PFP nanodroplets will stay in their mi-

crobubble state. PFH nanodroplets in comparison have a boiling point above the body tem-

perature and exhibit a recondensation behavior after activation. The timescale of activation

and recondensation of PFH nanodroplets is on the order of milliseconds [46], allowing for

repeated activation. With the proper activation sequence, the difference in time signatures
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can be used to distinguish between PFP and PFH nanodroplets.

5.2 Methods

5.2.1 Development and characterization of paired imaging agents

The two paired agent PFCnDs were synthesized using a modified sonication-based method

described in Hannah, et al. [59] as described in the previous chapter. The targeting nan-

odroplet (PFHnD) was contained a perfluorohexane core with a lipid shell consisting of of

a 1:0.2:0.03 molar ratio of DSPE-PEG-2k, DPPC and DSPE-PEG-Hz. Antibodies were

conjugated to the surface of the PFHnDs using the same methods described in chapter 4.

The antibodies were modified using 100 mM sodium periodate resulting in available alde-

hyde groups on the Fc region to bind to the hydrazide on the surface of the PFHnD. For

cell studies, DiD (Biotium, San Francisco, CA, USA), a lipophillic near infrared dye was

embedded into the lipid shell. For in-vivo fluorescence studies, a lipophillic near infrared

dye, DiR (Biotium, San Francisco, CA, USA) was embedded into the PFHnD-Ab. The

choice of dye for the different studies were determined by the fluorescence capabilities of

the instruments used in the studies.

The non-targeted paired agent (PFPnD) has a perfluoropentane core encapuslated in a

lipid shell consisting of 1:0.2:0.03 molar ratio of DSPE-PEG-2k, DPPC and DSPE-PEG-

Cy5.5 (for in-vivo studies) or DSPE-PEG-FITC (for in-vitro studies). The fluorescent lipid

was chosen for studies depending on the fluorescent capabilities of the instruments used

in the study. The synthesis was identical to the PFHnDs aside from the difference in lipid

shell composition. Size characterization was performed using dynamic light scattering

(Zetasizer Nano ZS, Malvern Panalytical, UK). The nanodroplet concentrations were cal-

culated using the concentration tools (Zetasizer Software, Malvern Panalytical, UK) based

on the nanodroplet size.
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5.2.2 In-vitro assessment of paired imaging agents

To assess the multiplexing capabilities of the paired imaging agents, cell studies were per-

formed and validated using fluorescence microscopy using the same methods described in

chapter 4. FaDu cells (ATCC) were used as the in-vitro model of head and neck squamous

cell carcinoma due to their over-expression of EGFR on the surface, enabling molecular

targeting via the anti-EGFR antibody. The cells were cultured in T-75 flasks by using

Dulbecco’s Modified Eagle’s Medium (DMEM; Corning, Tewksbury, MA, USA) supple-

mented with 10% fetal bovine serum (Gibco - Thermo Fisher, Waltham, MA, USA) and

1% penicillin (Corning, Tewksbury, MA, USA). FaDu cells were suspended in 2 mL of

DMEM for a final concentration of 4.42 × 105 cells/mL for use in experiments. Then,

200 µL of the cell solution was treated with a 9:10 ratio between PFHnD-Ab and PFPnD

nanodroplets (total 150 µL) with concentrations of 4.76 × 107 nanodroplets/µL (PFHnd-

Ab) and 4.31 × 107 nanodroplets/µL (PFPnD) and incubated for 30 minutes at 36 °C. Two

additional groups were used as controls to investigate the individual nanodroplet effects

on cell targeting. 200 µL cells were incubated with 100 µL of PFPnDs (4.31 × 107 nan-

odroplets/µL), and 200 µL of cells were incubated with 90 µL of PFHnD-Abs (4.76 × 107

nanodroplets/µL) to keep the concentrations consistent.

Fluorescent microscopy was used to visualize the cell and nanodroplet interactions.

The different groups were imaged fluorescently using both the DiD and FITC channel

along with a dark field image for reference. The cellular fluorescence was determined by

segmenting the cells in the dark field image and calculating the fluorescence within the

segmented cell regions in the respective fluorescence images.

5.2.3 In-vivo tumor model

All of the animal studies were performed after receiving approval from the Dartmouth insti-

tutional animal care and use committee (IACUC). Head and neck squamous cell carcinoma

(HNSCC) FaDu cells were inoculated at in the oral cavity of immunodeficient six week old
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female nu/nu mice. Approximately 500,000 cells were inoculated into the tongue of the

mouse and were allowed to grow until forming a diameter of 3-4 mm, with the intent of de-

veloping metastases in the lymph nodes. Prior to any imaging, the mice were anesthetized

using a combination of isoflurane (2.5%) and O2 (1 L/min).

After imaging studies were performed, the mice were euthanized using an overdose of

isoflurane (5%) and cervical dislocation. For mice containing tumors, the lymph nodes

were excised and fixed in 10% formalin for 24-48 hours, then transferred into ethanol. The

fixed tissue was sent to pathology to be embedded in paraffin and sliced in 200 µm levels.

Each slice was stained using hematoxylin-eosin to identify micro-metastases.

5.2.4 Fluorescent imaging studies

Upon tumor formation, a 30 µL of a 1:1 ratio of PFHnD and PFPnD were injected into the

tongue of the mouse and were allowed to drain into the lymph nodes for 4 hours. The lymph

nodes were imaged using a small animal fluorescence imaging system (Pearl Trilogy, LI-

COR, Lincoln, Nebraska, USA) using two channels, 700 nm and 800 nm. The PFPnD

was imaged using the 700 nm channel corresponding to the excitation of Cy5.5, while the

DiR dye fluorescence in the PFHnDs corresponded to the 800 nm channel. To correct for

background signals, both vials of nanodroplets were imaged individually and the 1:1 mix

was also imaged prior to injecting into mice.

5.2.5 Ratiometric quantification of fluorescent images

The ratiometric quantification approach was adopted from paired agent imaging [98]. Us-

ing the fluorescent image of the mixed particles, the maximum intensity of the 1:1 mix in

each channel was computed and the normalization factor was determined. The 700 nm

image corresponds to the PFPnDs and the 800 nm channel corresponds to the PFHnD-Abs.

The fluorescent images (700 nm and 800 nm) of the nodes were then filtered using a 5 by

5 pixel 2D median filter to smooth the background noise in MATLAB. Each fluorescent
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Figure 5.2: Schematic of the 1024 element matrix array ultrasound transducer co-linearly
aligned with the high intensity focused ultrasound transducer (HIFU). A polyacrylamide
coupling cone was used to ensure good contact between the imaging setup and the lymph
node. Figure courtesy of Dr. Austin Van Namen.

image was then normalized to the maximum value within the respective image. The ratio

between the 800 nm (PFHnD - targeting) and 700 nm (PFPnD non-targeted) images for

each pixel were computed and adjusted using the normalization factor if above a threshold.

The ratiometric values were then overlaid on top of the mouse for visualization.

5.2.6 Ratiometric imaging of lymph nodes using 3D matrix array ul-

trasound

After fluorescence imaging, the lymph nodes were imaged using a 1024 element 32 x 32

matrix array 3D ultrasound transducer. A high intensity focused ultrasound (HIFU) trans-

ducer (H-300 series, 150 mm diameter with a 41 mm opening, Sonic Concepts, Bothell,

WA, USA) was used to activate the nanodroplets. The HIFU transducer has a 41 mm

opening within the center allowing for co-linear alignment of the HIFU and matrix array

transducer. The PFCnDs were activated using the HIFU transducer and the image was

formed using the matrix array transducer.

A function generator was used to manually trigger the activation and imaging acquisi-
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Figure 5.3: The imaging acquisition sequence of the lymph nodes resulted in a total of 16
volumes. The first 6 volumes were used as background reference volumes, followed by
a HIFU pulse to activate the PFCnDs after the 6th volume. The PFCnD contrast would
appear in volume 7. The second HIFU pulse was triggered after the 8th volume following
the same pattern until the 14th volume. The total PFCnD signal from the volumes was
determined by taking the mean between volume 7 and 16, then subtracting from the mean
of the background reference volumes. The PFHnD-Ab signal was isolated from volumes
9, 11, 13 and 15, due to the vaporization-recondensation effect. The PFPnD signal was
isolated by subtracting the PFHnD-Ab signal from the total PFCnD signal.

tion. The HIFU transducer activation waveform was a sine wave with a frequency 515 kHz

and an amplitude of 280 mVrms. For each trigger, a total of 16 volumes were captured.

The first 6 volumes were used to average the background signal, followed by 5 HIFU pulses

within the 10 subsequent recording volumes (Figure 5.3). The total PFCnD signal from the

volumes was determined by taking the mean between volume 7 and 16, then subtracting

from the mean of the background reference volumes. The PFHnD-Ab signal was isolated

from volumes 9, 11, 13 and 15, due to the vaporization-recondensation effect. The PFPnD

signal was isolated by subtracting the PFHnD-Ab signal from the total PFCnD signal.

After the first HIFU activation pulse, it is assumed that both the PFPnD and the PFHnD-

Abs will both be activated and produce ultrasound contrast (volume 7) and the PFHnD-Abs

will recondense back into a liquid nanodroplet eliminating its ultrasound contrast until the

next HIFU pulse (volume 9), however the PFPnD contrast will remain constant through the

subsequent volumes. After isolating the respective PFCnD signal from the volumes, a pixel

by pixel ratio calculation was performed between the PFHnD-Ab and PFPnDs and overlaid

on top of the ultrasound image.
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Figure 5.4: The size distribution of both paired agents PFPnD (500 ±20 nm; n=3) and
antibody conjugated PFHnD-Ab (680 ±7 nm; n=3)

5.3 Results

5.3.1 Size characterization of PFHnDs and PFPnDs

The size distribution of both paired agents PFPnD (500 ±20 nm; n=3) and antibody con-

jugated PFHnD-Ab (680 ±7 nm; n=3). The nanodroplet concentrations were determined

using the concentration calculators in the Malvern Zetasizer software. The concentration

of the PFPnDs was determined to be 4.31 × 107 nanodroplets/µL and 4.76 × 107 nan-

odroplets/µL for the PFHnD-Abs.

5.3.2 Fluorescence imaging of PFCnDs in-vitro

To determine the binding specificity of the PFHnD-Abs and the PFPnDs were fluorescently

tagged with DiD and FITC respectively. Both nanodroplets were mixed together with HN-

SCC FaDu cells and were incubated for 30 minutes. As controls, the nanodroplets were

individually also allowed to incubate with FaDu cells. Each of the groups were imaged

using a fluorescence microscope in the dark field, DiD and FITC channels.
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Figure 5.5: Both nanodroplets, PFHnD-Abs and PFPnDs were mixed together with FaDu
cells to evaluate specific binding. After washing the unbound nanodroplets, it was deter-
mined that the PFHnD-Abs were selectively bound to the cells, while the PFPnDs were
washed out as confirmed by fluorescence microscopy (a). The fluorescent intensity per
cell was determined for each group for the two different fluorescent channels. The FITC
fluorescence was low as expected, due to the unbound PFPnDs washing out.
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5.3.3 Ratiometric imaging of lymph nodes using fluorescence

An in-vivo orthotopic mouse model was used to evaluate paired agent imaging of the

two ultrasound contrast imaging agents. The non-targeted PFPnDs (700 nm) and targeted

PFHnD-Abs (800 nm) were administered together in the tongue and were allowed to drain

into the lymph nodes for 4 hours. The ratio between the two fluorescent channels was

corrected with the normalization factor computed using a fluorescent image of both of the

nanodroplets mixed together. As a control, the same study was done using mice without

tumors.

Mice containing tumors did not show ratiometric accumulation of the PFHnD-Abs in

the lymph nodes after correcting with the normalization factor, however there was accu-

mulation of the targeted nanodroplets in the drainage pathway to the lymph nodes (Fig-

ure 5.6(f)). The control mice did not show any ratiometric accumulation of the PFHnD-

Abs. Histological analysis of the lymph nodes determined that the lymph nodes were not

metastatic in the tumor model.

5.3.4 Ratiometric imaging of lymph nodes using ultrasound

After fluorescence imaging of the mice for 4 hours, the lymph nodes were imaged using the

custom HIFU 3D matrix array ultrasound imaging system. The PFH and PFP signals were

isolated from the ultrasound volumes and the ratio between PFH and PFP were calculate

for each pixel and the ratiometric values were overlaid on top of the ultrasound image. For

pixels with a ratio of 1, indicating that the pixel contained a PFHnD-Ab, the ultrasound

time signature showed repeated vaporization (Figure 5.7). For pixels with a ratio less 1, in-

dicating a mix of PFP and PFH nanodroplets, the ultrasound time signature initially showed

an increase in the baseline signal after the first pulse, followed by a repeated vaporization

time signature (Figure 5.8).
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Figure 5.6: A cocktail of non-targeted PFPnDs (700 nm) and targeted PFHnD-Abs (800
nm) were injected into the tongue of the mouse and allowed to drain into the lymph nodes
for 4 hours. Fluorescent images were acquired in both the 700 nm and 800 nm channels
and the pixel wise ratio between the two channels was computed and corrected using the
normalization factor (NF). a-b) are the fluorescent images from the 700 nm and 800 nm
channels for a control mouse, and the ratiometric image is displayed in c). d-e) are the
fluorescent images from a mouse with an orthotopic tongue tumor model, and f) is the
corresponding ratiometric image corrected using the normalization factor. A slightly higher
PFHnD-Ab signal was observed in the tumor mouse in the drainage pathway to the lymph
nodes. Histology confirmed that the lymph nodes were not metastatic.
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Figure 5.7: a) A differential ultrasound slice of the ultrasound volume in the x-z plane of
a lymph node. The selected pixel (red dot) indicated a ratio between PFH and PFP of 1.
b) the ultrasound time signature resembles that PFH, indicated by the increased ultrasound
signal after each HIFU pulse (frames 7,9,11,13,15) showing repeated vaporization.

Figure 5.8: a) A differential ultrasound slice of the ultrasound volume in the x-z plane
of a lymph node. The selected pixel (red dot) indicated a ratio between PFH and PFP of
0.5. b) the ultrasound time signature resembles a combination of both PFP and PFH, indi-
cated by the increased ultrasound signal baseline after the first HIFU pulse (frame 7). The
overall ultrasound signal increases after each HIFU pulse (frames 7,9,11,13,15) showing
repeated vaporization of the PFH, but the recondensation is signal magnitude is set to the
new baseline compared to in Figure 5.7.
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5.4 Discussion

The use of a paired agent imaging approach for multiplexing perfluorocarbon core nan-

odroplets to improve ultrasound contrast in-vivo and reliably detect metastasis shows promise.

Ratiometric imaging allows for relative quantification between the two paired agent, allow-

ing for better insight. Both nanodroplets, the targeted PFHnD-Abs and the non-targeted PF-

PnDs, exhibited high fluorescence signal in the small animal fluorescence images, but when

ratiometrically compared, no specific targeting was observed. Without the non-targeted

agent, the fluorescent signal from the targeted droplet would have been misleading. By

using a normalization factor, the initial fluorescence intensities for the two channels are not

binding, (i.e if one agent has a stronger signal than the other, it can be corrected). How-

ever, a limitation in the normalization factor approach is that the factor is calculated using

the nanodroplet mix, but is applied to signals in-vivo and does not account for tissue at-

tenuation. None of the lymph nodes from the mice subjected to tumors were determined

metastatic when validated by histology, explaining the lack of ratiometric signal within the

lymph nodes. However, the ratiometric signal observed in the drainage pathway shows

promise. Further studies need to be performed with a metastatic mouse model to truly

validate selective binding using the nanodroplets and fluorescence paired agent approach.

The ultimate goal of this chapter was to assess if the paired agent approach could be

adopted for paired agent ultrasound imaging to enable multiplexing. While the targeted

PFHnD-Ab nanodroplets were hypothesized to selectively attach to the metastatic lymph

nodes, imaging the nodes using the developed 3D matrix array ultrasound system still

showed signs of being able to differentiate between the PFH and PFP nanodroplets based

on the time signature. The time series differentiation between the two particles was shown

in two pixels within a node as a proof of concept, but further assessment is needed. With

metastatic lymph nodes, it is hypothesized that there would be a higher accumulation of

PFHnD-Abs in the lymph node, leading to ratiometric visualization of the node and con-

firmed by the time signature. However, the time signature from pixels with a ratio of 0.5
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show promise to be able to use the imaging system with multiplex imaging. There are

many perfluorocarbon based nanodroplets for different applications such as drug delivery

[80, 94, 95] that rely on optical activation, which is limited by tissue attenuation and depth

penetration. The use of this system would allow for deeper activation and imaging. The

use of a targeted nanodroplet and non-targeted nanodroplet can open doors to selective tar-

geting for diagnosis followed by one time activation for drug delivery using the different

nanodroplets.

5.5 Conclusions

In this chapter, the use of paired agent imaging using two ultrasound contrast agents, one

molecularly targeted and one non-targeted, were explored for multiplexing applications. By

exploiting the the difference in perfluorocarbon core boiling points, differentiation between

the two nanodroplets in-vivo was demonstrated based on their unique time signatures. Flu-

orescence imaging was used to validate selective binding and the paired agent approach

in-vivo. While none of the lymph nodes in the tumor mice were proven to be metastatic,

the ratiometric imaging showed selective targeting within the lymph node drainage path-

way, showing promise to be able to image metastatic lymph nodes. The normalization

factor in the ratiometric images was determined based on the fluorescent image of vial con-

taining a mix of both of the particles, however, this can lead to errors due to the difference

in fluorescent attenuation in-vivo and in-situ. To correct of this, picking a spot in the in-vivo

images where the drainage between both particles is expected to be same would result in a

more accurate normalization factor. An alternative strategy is to inject a small volume of

the mixture of both particles subcutaneously in the arm or leg to create an in-vivo reference

signal to determine the normalization factor.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

The purpose of this thesis was to combine the specificity of molecular imaging with the

functionality of ultrasound and photoacoustic imaging through the use of nanodroplets for

metastatic lymph node detection in head and neck squamous cell carcinomas (HNSCC).

The lymph node metastatic state is used in staging and treatment planning highlighting the

need for accurate detection. Metastatic lymph nodes have irregular vasculature leading to

differences in blood oxygen saturation compared to healthy lymph nodes [28]. Addition-

ally, metastatic lymph nodes have shown to over express EGFR, making it a great target

for molecular imaging [100].

6.1.1 Ultrasound photoacoustic imaging system and deep learning neu-

ral network for blood oximetry

In this thesis, an ultrasound photoacoustic imaging system to estimate blood oxygen satu-

ration (sO2) was developed. The USPA system can also be used with exogenous contrast

agents for nanodroplet molecular imaging as well. It was shown that the USPA system

could accurately estimate sO2 (r2 = 0.95) by modulating bovine blood with CO2 and O2.
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The ground truth sO2 was measured using a optical reflectance probe. While photoacoustic

imaging is able to estimate blood oxygen saturation, the estimations are based on assump-

tions leading to errors in estimates calculated by linear unmixing. Another limitation is

light attenuation in tissue leading to inaccurate estimations deeper in tissue. To correct

for this, a deep learning model, O-Net, was developed that can segment and estimate sO2

from photoacoustic images from two wavelengths. The model was trained on Monte Carlo

simulated data using a custom loss function that only optimized the sO2 within the blood

vessels. The O-Net with the custom loss function outperformed the same model using the

mean squared error (MSE) loss function, and the traditional linear unmixing approach. The

O-Net also showed that it was capable of estimating sO2 from experimental photoacoustic

images collected from our USPA system. The sO2 estimation accuracy of the experimental

data was was lower than the simulated data, but much better then linear unmixing using the

same data. More experimental data is needed for better results.

6.1.2 Phase change perfluorocarbon nanodroplets for molecular imag-

ing of lymph nodes

The USPA system is also capable of imaging phase change perfluorocarbon nanodroplet

(PFCnDs) contrast agents. The perfluorocarbon core of the nanodroplets is encapsulated

by a lipid shell that can be functionalized for molecular targeting applications. The con-

trast from the PFCnDs is only visible upon activation from an optical or acoustic stimulus

to produce localized heating that induces a phase change of the PFC core from a liquid nan-

odroplet to a gaseous microbubble. The localized heating can be induced either optically

by incorporating a dye within the nanodroplet (photoacoustics) or by the peak negative

pressure (acoustic droplet vaporization). PFCnDs were developed with a perfluorohexane

core with EGFR antibodies (PFHnD-Ab) functionalized on the surface through stable hy-

drazone bonds. EGFR antibodies were chosen due to EGFR over expression in HNSCCs.

The PFHnD-Abs exhibited high molecular targeting to HNSCC (FaDu) cells compared to
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non targeted perfluorohexane nanodroplets (PFHnDs) as confirmed by fluorescence mi-

croscopy. The PFHnD-Abs conjugated to cells also exhibited higher ultrasound contrast

when imaged with a custom high intensity focused ultrasound (HIFU) imaging system.

The high targeting efficiency and high ultrasound contrast from the PFHnD-Abs shows

promise to be able to detect metastatic lymph nodes.

6.1.3 Multiplexing of PFCnDs using paired agent imaging for metastatic

lymph node detection

The PFHnD-Ab nanodroplets developed showed high targeting levels and increased ultra-

sound contrast when attached to HSNCC cells. However some non specific binding of the

non-targeted PFHnDs was evident. When translating to an in-vivo model, quantification of

the contrast can be a challenge to determine the metastatic state. Paired agent imaging is a

clever way of being able to ratiometrically quantify binding through the use of two differ-

ent imaging agents together, one targeted and one non-targeted [97]. The premise is that

since the flow kinetics are the same for both imaging agents, if a lymph node is metastatic,

then the targeted agent will accumulate while the non targeted agent will continue to flow,

leading to a high ratiometric difference between the signals from the two imaging agents

[97]. The paired agent imaging strategy was adopted for contrast enhanced ultrasound by

using two ultrasound phase change contrast agents, each with a different perfluorocarbon

core. The PFHnD-Ab which was developed served as the targeting agents, while a per-

fluoropentane (PFP) core PFPnD was developed to used as the non targeted agent. The

signal between the two nanodroplets can be distinguished based on their time signature

matrix. The boiling point of PFP is below the body and room temperature, so once acti-

vated the PFP core stays as a gaseous microbubble. In comparison, perfluorohexane has

a boiling point above body and room temperature, recondensing back into a liquid nan-

odroplet within milliseconds leading to a blinking effect [59]. While developing metastatic

lymph nodes within mice has been a challenge, initial ultrasound imaging of the lymph
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nodes were still able to detect ratiometric differences between the two nanodroplets. To

our knowledge, paired agent imaging using ultrasound contrast agents and acoustic activa-

tion has not been done before, opening the door to ultrasound guided molecular imaging

with multiplexing approach. While ultrasound imaging is the main focus of this work, we

also showed that paired agent imaging using the same contrast agents could work in flu-

orescence imaging as well, if a fluorescent dye is embedded into the nanodroplet. Future

experiments with a positive metastatic lymph nodes is needed to fully validate this concept,

nonetheless, the results so far show promise for this new frontier.

6.2 Future Directions

6.2.1 USPA imaging system and O-Net

The USPA system and accompanying O-Net deep learning neural network showed ability

to be able to estimate sO2 in blood, however there is room for improvement in accuracy. The

photoacoustic image quality can be improved with a higher frequency transducer, but at a

trade off of depth penetration. Depending on the application, a higher frequency transducer

could be preferred. Training the O-Net on more experimentally acquired data will improve

its performance and sO2 estimation. The current model is trained on Monte Carlo simulated

data that assumes that the sO2 of the blood vessel is uniform throughout, whereas in-vivo

that is not the case and the sO2 follows more of a Gaussian distribution. Generating new

Monte Carlo data with Gaussian sO2 distributions within the vessels for model training

would be needed. Secondly, the experimental data used to train the model contained only

two vessel orientations. Collecting more experimental data with different vessel depths,

and including epidermis and dermis layers on top could aid in training the model.

While the primary focus of the imaging system is sO2 estimation, the use of PFCnDs

in blood can augment the images and introduce super-resolution imaging [46]. Combin-

ing the USPA imaging system with the PFHnD-Abs and super resolution imaging could
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improve the image quality and resolution in imaging lymph nodes. Additionally, photoa-

coustic images with nanodroplets and blood could be used to train the O-Net for further

classification. The computational speed of the O-Net shows promise for real time imaging

and processing. Connecting the image acquisition algorithms with the O-Net for real time

image processing still needs to be explored.

6.2.2 Ultrasound molecular imaging using PFCnDs

The antibody conjugated PFHnDs showed great targeting efficiency to HNSCC cells. The

nanodroplets developed were targeted to EGFR, due to it’s overexpression in FaDu cells,

but the same antibody nanodroplet conjugation can be employed for other IgG antibodies

as well, introducing a molecular contrast targeting strategy rather than a molecular con-

trast agent. Creating a suite of PFHnDs all conjugated to different targets can expand this

imaging method to other cancers such breast. Since ultrasound is used to activate the nan-

odroplets, deeper tissues can also be imaged. The targeted nanodroplets can also be used

for super resolution imaging with acoustic activation instead of optical.

While the improved contrast has been shown, the size of the nanodroplets could be of

concern. The smaller the nanodroplet diameter, the higher probability of reaching the target

site. The size of the nanodroplets can be reduced by optimizing the following; DSPE-

PEG:DPPC lipid ratios in the lipid cake step, the probe tip sonication energy and time,

the centrifugation settings used in washing out the larger particles and finally by using an

extruder with a pore size filter. It was shown that the ratio between lipids plays a role in

the size of the resulting PFCnD [101]. The sonication methods currently used include an

initial longer low power sonication (1 % amplitude, 1 sec on, 5 seconds off) followed by a

quick high power sonication ( 50 % amplitude, 1 sec on, 10 seconds off) which was adapted

from [101]. Experimenting with the sonication settings to see the effects on size uniformity

would be interesting. Lastly, the centrifugation steps currently used are aimed to remove

the big particles from the solution and only keep the smaller ones. Further optimization
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of this step could result in smaller particles. Spinning down the supernatant from the last

centrifuge step could yield smaller particles, but at a trade off of a lower concentration.

Performing a DLS size measurement of the supernatant would provide information on the

size of the particles left over. Lastly, using an extruder will help in obtaining monodisperse

particles. A 0.4 µm pore filter has been used before and resulted in nanodroplets in the 400

nm range, but extrusion was not applied to particles with conjugated antibodies. It would be

interesting to see the effects of extrusion on the surface conjugation of antibodies. Reducing

the size of the nanodroplets will be important when translating to in-vivo studies.

While specific targeting was shown on using the PFHnD-Abs, one additional control

experiment should be carried out to ensure that the cellular binding is due to the antibody-

receptor binding. Conjugating isotype control antibodies onto the surface of the PFHnDs

as a control would be a way to fully prove specific antibody binding. An alternative would

be to incubate the PFHnD-Abs with an EGFR-negative cell line, we would expect to not

see any binding.

6.2.3 Paired agent imaging of PFCnDs for multiplexing applications

The natural next step after developing many different molecular targeting PFCnDs, is to

use them in tandem. Paired agent imaging allows for a method to validate and quantify de-

livery, but with the use of different PFC cores in the nanodroplets, the activation thresholds

can also be modulated to selectively activate only a subset of PFCnDs for true multiplex-

ing. Combinatory strategies could then be employed, for example, one nanodroplet can be

used to break open vasculature or the blood brain barrier, while a second nanodroplet could

be used as drug delivery mechanism, all while providing ultrasound contrast and imaging

feedback allowing the whole setup to be a diagnostic/theranostic imaging tool. Drug deliv-

ery using PFC nanodroplets has been explored extensively [80, 95, 94], however they rely

on optical activation for the release and imaging. Depending on the PFC core used in those

studies, existing nanodroplets should be able to interface with the imaging setup developed.
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While the fluorescent imaging of the paired agents serves as a validation metric, the

experimental setup needs further optimization to be accurate. Firstly, the initial tumor

seeding needs to be optimized to ensure that the primary tumor metastasized. Currently, the

mice either produce large tumors at a really fast rate, or are not able to generate a primary

tumor. Injecting three mice with three different initial seeding concentrations of cells would

be a way to assess the perfect number of cells to inject into the primary tumor to develop

metastasis. Secondly, the normalization factor currently used to correct for the fluorescent

paired imaging is currently based on the fluorescent image of the mixed particles. This

method does not take into account the fluorescent attenuation from the tissue and skin in

the mouse. A better approach would be to choose a spot where the flow rate between both

paired agents is expected to be the same, however we had difficulties identifying a place

in the mouse that met that criteria. An alternative method would be to include a small

subcutaneous injection of the paired agent mix in the arm or leg away from the lymph

nodes and use that spot as the normalization factor.

The 3D matrix array - HIFU imaging system has shown capabilities in being able to dif-

ferentiate between PFP and PFH nanodroplets using the ratiometric paired agent approach

based off the ultrasound time signature, however the image quality and experimental setup

could use improvement. The system is currently in its first iteration, further characterization

is needed to determine the proper ratiometric thresholds and limitations of the system.

Overall, the combination of the antibody targeted ultrasound contrast agents, the paired

agent multiplex imaging approach and the developed ultrasound system shows promise to

be able to detect metastatic lymph nodes and augment to use of ultrasound in diagnostic

and theranostic applications.
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