
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Ph.D Dissertations Theses and Dissertations 

Spring 5-5-2022 

Approaching Quantum-limited Electrometry in the Single-photon Approaching Quantum-limited Electrometry in the Single-photon 

Regime Regime 

Sisira Kanhirathingal 
Sisira.Kanhirathingal.GR@Dartmouth.edu 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations 

 Part of the Condensed Matter Physics Commons, and the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Kanhirathingal, Sisira, "Approaching Quantum-limited Electrometry in the Single-photon Regime" (2022). 
Dartmouth College Ph.D Dissertations. 91. 
https://digitalcommons.dartmouth.edu/dissertations/91 

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital 
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/91?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


APPROACHING

QUANTUM-LIMITED ELECTROMETRY

IN THE SINGLE-PHOTON REGIME

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

in

Physics and Astronomy

by Sisira Kanhirathingal

Guarini School of Graduate and Advanced Studies
Dartmouth College

Hanover, New Hampshire

May 2022

Examining Committee:

Alexander J. Rimberg, Chair

Miles P. Blencowe

Chandrasekhar Ramanathan

Andrew D. Armour

F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies





Abstract

Mesoscopic quantum systems currently serve as essential building blocks in many

quantum information and metrology devices. This thesis investigates the potential of

quantum-limited detection in a mesoscopic electrometer named the cavity-embedded

Cooper pair transistor (cCPT). As one application, this charge detector can act as

the basis for an optomechanical system in the single-photon strong coupling regime.

The realization of this scheme would entail near quantum-limited, ultra-sensitive elec-

trometry at the single-photon level, the feasibility of which is studied at length in this

thesis.

On the one hand, we approach this question using a fundamental, first-principles

study, where an operator scattering model is used to analyze the quantum dynamics of

this device. While the cCPT is inherently a tunable, strongly nonlinear system afford-

ing diverse functionalities, we restrict our analysis to a necessary first investigation of

its linear charge sensing capabilities, limiting to low pump powers corresponding to an

average cavity photon number ≲ 1. Assuming realizable cCPT parameters, we pre-

dict the fundamental, photon shot noise-limited charge sensitivity to be 0.12µe/
√
Hz

when the pumped cavity has an average of one photon.

In practice, this lower bound is difficult to achieve using conventional detection

approaches, owing mainly to the low-frequency noise caused by the coupling of two-

level systems to the cCPT. Hence we further employ a top-down approach where the

gate-dependent tunability of the cCPT is used to implement a feedback scheme de-

rived from the Pound-Drever-Hall locking technique. This scheme effectively reduces

the fluctuations due to intrinsic charge noise. In particular, we report a reduction in

the resonant frequency fluctuations caused by the internal charge noise over a band-

width of ∼1.4 kHz when the cavity is driven at an average photon number n = 10,

and a bandwidth of 11 Hz for average n = 1. Our technique can be generalized to

achieve frequency stabilization in tunable microwave resonators that play a vital role

in today’s quantum computing architectures, thereby moderating the limitations in
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detection caused by the intrinsic 1/f -noise on such circuit devices. As a concluding

study, we incorporate these feedback techniques to improve the charge sensitivity of

the cCPT, thus demonstrating the potential of near quantum-limited charge detection

using this device.
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Chapter 1

Introduction

One extremely intriguing yet intricate task in designing observable open quantum sys-

tems is implementing schemes that enable quantum optimal detection. As physicists

in academia and leading industries continue delving deeper into the realm of quan-

tum measurements, more attention is being drawn to the sensitivity of quantum-

limited amplifiers and detectors that closely track the dynamics of the measured

systems [1, 2, 3]. One may address this question using theoretical investigations of

the fundamental quantum limits imposed by the quantum mechanical nature of the

detector itself [4]. Such investigations are important in determining the standard

quantum limits achievable during measurement. These limits are bounded by the

interplay between the measurement imprecision of the detector and its backaction

on the system [5, 6]. On the other hand, a practical viewpoint may call for a top-

down approach where the experimental limitations of the device are dealt with by

additional/alternative modes of noise control in the system [7].

The general trajectory of such schemes progressing towards optimal detection of

quantum phenomena revolves around three main objectives. Firstly, the measure-

ment of a quantum state is optimized when the detector adds the minimum possible

noise allowed by quantum mechanics, as mentioned above [4]. Secondly, one key

culprit that inhibits the detection at its quantum-limited scale is the environmental

noise that couples to the measured system or the detector itself. Hence techniques

facilitating noise decoupling are vital in preserving the quantum coherence [7, 8]. Fi-

nally, additional decoherence will occur due to the backaction of the detector on the

system [9, 10, 11, 12], which is typically reduced by adopting a weak measurement

regime, as discussed further below. In other words, we address two types of in-

teractions across the quantum-classical regime to realize optimize detection; we need

4
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Reduced
Backaction
(Chapter 6)

Measurement
Imprecision
(Chapter 5)

✓

Environmental
Decoupling
(Chapter 4)

✓

Figure 1.1: Topics covered in this thesis with focus on quantum-limited charge sensing
using the cCPT. The current emphasis is on measurement imprecision and environ-
mental decoupling. Backaction of the cCPT on a quantum system is to be investi-
gated.

pathways that transfer information across the detector at this interface in a minimally

disruptive (i.e., reduced backaction) but efficient manner, all the while isolating the

system and the detector from the rest of the environment, be it classical or quantum

mechanical.

Thesis Overview

The research work presented in this thesis involves investigations on a mesoscopic,

superconducting system named the cavity-embedded Cooper pair transistor (cCPT).

As we will establish through the discussions in subsequent chapters, in principle,

the cCPT can operate at the intersection of the three objectives mentioned above

(Fig 1.1). In the simplest sense, the characteristic features of the cCPT are modeled

as a nonlinear microwave cavity. This design promotes diverse applications in elec-

trometry, magnetometry, single-photon optomechanics, and parametric amplification

etc [13, 14, 15]. This thesis primarily features theoretical investigations of the cCPT’s

linear charge sensing properties at the single-photon scale and experimental studies

5
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on environmental noise decoupling to enhance the electrometric capabilities of this

device. The motivation behind these distinct yet related projects is presented further

below.

From a pedagogical perspective, one overarching goal of this work is to present

various measurement schemes tailored to realize near quantum-limited detection. We

will accomplish this through the focused lens of the cCPT’s diverse modes of op-

eration. While a detailed study of all the potential applications of the cCPT is

beyond the scope of the material presented here, we comment on the remaining as-

pects through brief discussions in the future work (Chapter 6) as well as by citing

references reporting these studies.

Let us now look at the various detection regimes adopted by this thesis and are

commonly practiced by the community to optimize detection. The bulk of this thesis

will follow the ‘weak and continuous measurement regime’ where a steady-state signal

collects data averaged over time such that the system being measured is minimally

disturbed [16]. In terms of the Venn diagram presented in Fig. 1.1, such a measure-

ment has dual advantages. Firstly, collecting data in small bits over a longer period

of time enhances the signal-to-noise ratio and addresses ‘the measurement impreci-

sion’ process. Secondly, this particular scheme ensures reduced backaction leading to

extended coherence properties; this is opposed to an instantaneous, strong measure-

ment that can affect the evolution drastically. While the present work does not take

into account a measured quantum dynamical system and the effects of backaction, it

instead considers a classical, simulated environment using a deterministic sinusoidal

charge modulated signal (Refer Chapter 5). Typically, weak measurements are also

adopted partly due to empirical limitations on the interaction strength between the

detector and system. In order to gain sufficient information, these detectors are op-

erated using high pump powers. However, as we will briefly touch upon in §6.1, the
cCPT architecture can realize an optomechanical system driven to the ‘ultra-sensitive,

single photon-single phonon’ strong coupling regime. Such an optomechanical system,

if realized, can lead to displacement measurement of the mechanical resonator using

a cavity that is driven merely at an average of a few photons.

Another critical distinction to consider is that the open system Hamiltonian mod-

eled in the current work involves measuring both of the quadratures of a harmonic

oscillator (i.e., a photonic cavity). This mode of measurement is termed ‘phase-

preserving detection’ in the literature. Since the two observables form a conjugate

pair (for example, the number and phase operators of the cavity) that do not com-

6
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mute, the detection (i.e., charge sensing in our context) is fundamentally limited by

the Heisenberg’s uncertainty principle. Consequently, this particular mode of charge

sensing has a fundamental lower bound for the noise added during detection which

further addresses the question of ‘measurement imprecision’ in Fig. 1.1. However,

Chapter 6 briefly addresses another mode, phase-sensitive detection, that can also be

realized in the cCPT using Hamiltonian engineering. The advantage of phase-sensitive

detection schemes is their ability to detect a single quadrature with unlimited preci-

sion. However, the second quadrature that is not measured, in turn, is loaded with

added noise to satisfy the uncertainty principle [4, 17].

Finally, the cCPT’s charge detection is based on the coupling of the system with

the microwave resonator component of the cCPT. As we will see in later chapters, this

detection is dispersive, where the coupling appears as a phase shift in the reflected

signal. This reduces the dissipation of useful information to the environment thus

contributing to ‘environmental decoupling’ in Fig. 1.1. Dispersive measurements

using microwave resonators have become a standard practice in detecting the state of

a superconducting qubit. Our focus, however, is to investigate the cCPT’s potential

to detect the position of a mechanical oscillator. For completeness, we also note

that one major difference in these two schemes is that the former is a quantum

nondemolition (QND) measurement, where the Hamiltonian of the qubit system that

is being measured commutes with the system observable (e.g., the spin). In the

latter case, as the position observable does not commute with the Hamiltonian of the

mechanical resonator, such a measurement is typically nonQND.

We now present a background into the two approaches adopted in this thesis to

investigate quantum-limited charge detection by the cCPT. As clarified below, these

two approaches form standalone projects and branches to provide relevant applica-

tions in their respective domains. However, our interests primarily lie in bridging

these two approaches to boost the efficiency of the cCPT’s performance, as presented

in Chapter 5.

It is to be taken note that a good volume of this thesis contains verbatim taken

from two relevant publications of the author [13, 18]. In order to provide a coherent

picture, we have split different sections of these two papers into different chapters and

have added further details. If a section is reproduced in this manner, we acknowledge

this fact at the beginning using footnotes.
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Introduction

Quantum-limited Electrometry - Theory1

Rapid detection of electrical charge on the scale of an individual electron has long

been an important experimental technique in such areas as readout of qubits [19, 20],

detection of individual tunneling events [21], and motion sensing of nanomechanical

resonators [22]. The most common means of performing such measurements consists

of detecting changes in the current flowing through a mesoscopic charge detector,

such as a single electron transistor or quantum point contact, due to changes in the

detector conductance [23, 19, 22, 20, 24]. Numerous studies have investigated the

limits on the charge sensitivity, which is determined by electronic shot noise in the

detector current, and where the backaction on the measured system often exceeds the

minimum required by quantum mechanics [25, 26, 27, 1].

An alternative and potentially superior mode of charge detection instead relies

on detecting changes in the capacitive or inductive reactance of a superconducting

device such as a Cooper pair box or Cooper pair transistor that is biased on its

supercurrent branch [28, 29, 30, 31]. By embedding such a device in a resonant

circuit and measuring changes in the phase of a reflected microwave probe signal, it

is possible to dispersively detect single electronic charges with a sensitivity that is

limited by photon shot noise in the probe signal and with backaction on the measured

charge that may approach the minimum allowed by quantum mechanics [32].

The first phase of this thesis work presents theoretical investigations on the cCPT

(presented in chapters 3 and 5, and published in [13]), which functions as the first am-

plifier stage of a dispersive electrometer due to its charge-dependent superconducting

reactance. We show that this device is in principle capable of achieving charge sen-

sitivities on the order of 0.1µe/
√
Hz, better than the best predicted values for single

Cooper pair transistors (SCPTs) [33] and other mesoscopic charge detectors. This is

despite using many orders of magnitude less power (attowatts instead of picowatts)

than is typical for previous electrometer devices, in particular corresponding to an

average cavity photon number occupation ≲ 1 for our cCPT device [14, 15], so that

the cCPT is well suited for applications requiring minimal backaction.

We shall utilize a first principles, operator scattering approach for investigating

the cCPT quantum dynamics that overcomes the limitations of the analyses presented

in Refs. [34, 14], as discussed in detail in §3.2. The vital objective of such a study is to

thoroughly understand this device in its linear charge sensing regime. In particular,

1We acknowledge that this section is reproduced from a Journal of Applied Physics publication
by Kanhirathingal et. al. [13], with major contributions from Profs. Rimberg and Blencowe.
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the present approach crucially provides the quantitative conditions under which the

approximate eigenfunction expansion analysis of Ref. [34] and lumped element circuit

analysis of Ref. [14] are valid. Furthermore, the scattering method provides a system-

atic way to derive the expressions for the various parameters of the effective cavity

Hamiltonian. Relevant parameters include not only those for the effective linear cav-

ity dynamics (e.g., renormalized resonant frequency), but also the explicit forms of

the higher order nonlinear cavity terms and coupling terms between the cavity and

other systems such as a nanomechanical resonator [34]. Most importantly, the scat-

tering approach yields the versatile quantum Langevin equation for describing the

effective cavity quantum dynamics, with explicit expressions for the damping and the

associated quantum noise terms that are necessary for establishing the photon shot

noise-limited charge sensitivity.

As a result of its single-photon-level charge sensitivity, the cCPT is capable of me-

diating the standard optomechanical interaction in the ultrastrong coupling regime

[see Eq. (6.5) in §6.1]. The experimental realization of single photon optomechani-

cal dynamics in this tripartite system (comprising the cavity, CPT, and mechanical

resonator) will depend on the optimized non-linear charge sensitivity of the cCPT.

As mentioned above, an analysis on such an optomechanical system is outside the

framework of this thesis; instead, we use a deterministic sinusoidal charge modulated

signal in the photon shot-noise limit as a necessary step towards such investigations.

Decoupling Environmental Noise2

The existence of two-level-system induced 1/f -noise is well-known to limit the effi-

ciency and sensitivity of devices across a breadth of applications – ranging from the

semiconductor industry, to the emerging field of quantum computing processors [35].

Understanding its microscopic origin [36, 37, 38] and exploring different approaches to

suppress this noise is a crucial step towards the realization of high coherence supercon-

ducting quantum circuits [39, 40, 41, 42], ultra-sensitive electrometry/magnetometry

[15, 43, 44, 45, 46, 47, 48], and other studies more fundamental in nature [49, 50, 51].

Many approaches to reduce low-frequency noise focus on the elimination of two-

level defects on the hosts, during fabrication and post-processing [52, 53, 54, 55, 35,

56]; or using error correction codes during the measurement itself. These branches

of research are being intensely surveyed by the scientific community. Besides often

2We acknowledge that the bulk of this section is reproduced from a publication by Kanhirathingal
et. al. [18], currently under peer review.
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being a cumbersome task that can also sometimes be expensive to implement, some

of these methods can cost anharmonicity of energy levels, which are critical for the

performance of qubits [57]. Such systems can therefore profoundly benefit from the

real-time detection and suppression of 1/f -noise while performing measurements,

thence significantly improving their performance [58, 59, 8], in such areas as qubit

metrology and quantum sensing. For instance, this can result in a more effective,

durable calibration of an operating physical qubit’s parameters (e.g., T1 and T2 times).

As a result, we may reduce the unaccounted bit-flip and phase-flip errors during a

measurement, improving gate fidelity in a multi-qubit quantum processor.

The complete noise characterization of the cCPT presented in Ref. [14] addresses

the role of the intrinsic noise in charge/flux bias leading to resonant frequency fluc-

tuations, especially in regions where the cCPT can operate as a highly sensitive

electrometer/magnetometer. By singling out bias regions where the cCPT is maxi-

mally sensitive to charge/flux fluctuations, measurements detected typical charge and

flux noise spectral densities of the form Sqq ∝ 1/f e2/Hz, and SΦΦ ∝
√

1/f Φ2
0/Hz,

respectively. The magnitude of these resonant frequency fluctuations at some bias

points is of the order of the cavity linewidth, shifting the carrier signal away from

the cavity resonance during the course of a measurement. As a result, while the ideal

cCPT can operate as a quantum, photon shot noise-limited electrometer, the actual

device in a realizable measurement setup is prone to charge fluctuations and other

reducible noise sources, to date limiting its linear charge sensitivity to values two

orders of magnitude worse [15] than the theoretically attainable minimum predicted

in the first phase of our study.

Nevertheless, these charge fluctuations can be suppressed using feedback tech-

niques that filter out the low frequency noise tampering with resonance, bringing the

linear charge sensitivity of the cCPT closer to the photon shot noise-limit (not includ-

ing the noise of the subsequent amplifier chain). Thus the second phase of the study

(Chapter 4 and [18]) reports a reduction of these frequency fluctuations induced by

the intrinsic charge/flux noise on the cCPT.

Such a study is of two-fold importance to the general circuit-QED audience.

Firstly, in many ways the cCPT mimics the resonant tunability and readout scheme

generally adopted in quantum computing architectures [60], while working with a

simpler circuit system. The basic structure consists of a quarter-wavelength super-

conducting microwave resonator (in a coplanar waveguide geometry), with non-linear

tunability introduced via a Cooper pair transistor (CPT) formed using two Josephson
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junctions in series. Dispersive reflection measurements of the resonator via capaci-

tive coupling to a pump/probe transmission line enable readout of the system state.

Similar to the devices mentioned above, the cCPT is exposed to low-frequency charge

noise due to charge traps nearby the CPT island, as well as to flux noise originat-

ing from the unpaired surface spins coupling to the SQUID loop. As the cCPT is

specifically designed to be a highly sensitive electrometer/magnetometer, it is an ideal

candidate for understanding and suppressing the associated effects of such 1/f -noise

commonly found in these devices. Secondly, stabilizing the resonant frequency fluc-

tuations can elevate the cCPT into a superior charge sensing regime compared to

previously reported results for the same cCPT device [15]. Ultrasensitive electrom-

etry can aid in the realization of a macroscopic optomechanical system in the single

photon-phonon strong coupling regime as proposed in [34, 61, 62, 63]. Furthermore,

stabilizing against charge fluctuations can provide controllable access to the neighbor-

hood of the Kerr-sourced bifurcation point of the cCPT, where the charge sensitivity

undergoes a steep increase in magnitude [30, 64, 65].

The scheme to achieve the suppression of intrinsic bias-noise follows the well-

established technique of Pound-Drever-Hall (PDH) locking, extensively used in laser

optics to stabilize laser sources during cavity reflection measurements [66]. Studies

reporting the successful tracking of the resonant frequency fluctuations in supercon-

ducting microwave resonators utilizing this technique are also available in the litera-

ture [67, 68, 52]. By carefully calibrating the circuit at each stage to provide maximum

signal-to-noise ratio (SNR), we suppress intrinsic 1/f -noise in the resonant frequency

fluctuations over a bandwidth of 10 Hz, while driving the cavity at an average of

merely a single photon. When the average photon number in the cavity is increased

to n = 10, this bandwidth increases to 1.4 kHz.

In the conventional approach to Pound-locking in microwave cavities, an error sig-

nal is used to correct the drive frequency such that it continuously tracks the fluctuat-

ing resonance. Some of the underlying factors leading to these resonant fluctuations

include the dielectric losses due to the superconducting cavity’s direct coupling to its

immediate environment [69], and radiation noise leading to quasiparticle poisoning in

the CPT [70]. However, in general, the measured fluctuations follow a 1/f -behavior

as mentioned before, and are believed to emerge from two-level system (TLS) defects

coupling through various channels into the cavity [41, 38, 71]. In the case of the cCPT

and similar tunable microwave cavities, the dominant sources of these fluctuations are

1/f -charge and flux noise coupling to the resonant frequency via its tunability. Hence,
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when the cCPT is tuned to regions of maximum charge/flux sensitivity, this also re-

sults in the parametric coupling of unwanted electrical and magnetic fluctuations to

the microwave cavity, leading to increased resonant frequency fluctuations. Locking

to a stable reference thus results in a more stable resonant frequency of the cavity,

significantly improving quantum sensing in these devices.

Background Reading

The introducing sections of each chapter will contain a presentation of the background

material supporting the topics of focus. However, this work constitutes concepts span-

ning diverse fields such as microwave engineering, quantum noise and amplification,

circuit quantum electrodynamics (cQED), dynamic feedback control, low-frequency

noise phenomena, and superconductivity. We therefore direct the reader to other

useful references that help build the necessary background and further reading.

The concepts of microwave engineering are well-covered in the textbook by Pozar

[72]. The review by Clerk et al. [1] provides an introduction to quantum noise, mea-

surement and amplification, with a focus on mesoscopic detectors and amplifiers. For

a deeper understanding of the concepts in quantum noise, the textbook by Gardiner

and Zoller [73] may be useful. Tunnelling phenomena and Josephson junctions are

discussed in depth in the textbook by Grabert and Devoret [74] and in the thesis of

Joyez [75]. The field of cQED is quite vast; the review article by Blais et al. [76]

and Schuster’s thesis [77] are good starting points. The textbooks by Walls and Mil-

burn [78], and Bowen and Milburn [79] discuss topics in quantum optics and quantum

optomechanics, respectively. The microscopic origins and the detrimental effects of

the ubiquitous 1/f -noise in superconducting circuits are reviewed by Paladino et

al. [39]. The review article by Bechhoefer et al. [80] should suffice to understand

the feedback techniques used in this thesis work; for further reading the textbook

by Frankin et al. [81] has detailed mathematical concepts covering dynamic feedback

control.

Finally, the experimental characterization of the cCPT device used in this thesis

work is extensively discussed in Brock’s thesis [65], and details about the fabrication

of the sample is presented in the thesis of Juliang Li [82]. Further investigations on

nonlinear charge sensing properties of the cCPT can be found in the thesis work of

Thyagarajan [83].
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Thesis Layout

The thesis layout is as follows. In Chapter 2, we begin by addressing the first cru-

cial component of the cCPT – a quarter-wave microwave resonator. We present a

detailed analysis of the microwave resonators using a lumped element circuit method

as well as using a scattering operator approach based on its quantum mechanical

description. This chapter also presents practical considerations while designing the

measurement configurations along with impedance matching requirements. We then

move onto Chapter 3, where we discuss the open system dynamics of the cCPT using

a first-principles investigation. The experimental characterization that follows verifies

the validity of the model. Chapter 4 provides the theoretical framework as well as

the experimental results of the feedback technique that stabilizes the resonant fre-

quency fluctuations of tunable cavities by decoupling environmental noise. Chapter

5 addresses quantum-limited charge sensing in the theoretical limit and utilizing the

feedback techniques in Ch. 4 to enhance the cCPT’s performance experimentally. In

Chapter 6, the future directions of the projects discussed in previous chapters are

laid out in brief. Finally, we conclude this thesis by summarizing the main results in

Chapter 7.

Appendices at the end will address related concepts and measurements supporting

the future directions of various projects discussed in this thesis. In Appendix A, we

present a discussion of the linearization of the optomechanical Hamiltonian relevant in

the high photon regime. In Appendix B, the discussion moves onto the optomechan-

ical Hamiltonian in the single-photon limit, which necessitates a completely different

detection scheme compared to App. A. Appendix C provides preliminary calculations

on the magnitude of the phase operator, demonstrating the need for fundamental in-

vestigations towards defining the phase operator itself in the single-photon limit.

Finally in Appendix D, we illustrate through preliminary measurements a proof of

concept to detect Poisson processes in real-time with high sensitivity.
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Chapter 2

Quarter-wave

Microwave Resonators

As a starting point, we begin our discussions by looking at a system that forms

the backbone of this thesis and in fact many cQED architectures – the supercon-

ducting microwave resonator. The microwave resonators relevant for the readout

schemes discussed in this thesis are implemented using a transmission line geometry.

In this chapter, we will look at a few different yet related approaches to understand

the physics of such microwave resonators, both in the classical and quantum limits.

In particular, we will begin with a discussion of these microwave resonators in the

context of a lumped-element equivalent circuit model, which is useful for analysis of

measurements by room temperature equipment such as vector network analyzers [Re-

fer to §2.1]. In §2.2, we will then discuss the two major measurement configurations

used in the readout of shorted quarter-wave resonators, with and without impedance

mismatch considerations. The dynamics at the sample stage requires a quantum me-

chanical description that motivates a discussion of the operator scattering approach

in §2.3, modeled using the distributed network form of transmission lines. Finally,

we will end this chapter by deriving the output power response of the quarter-wave

resonator under a coherent drive [Refer to §2.4].

Section 2.1

The Lumped-element Circuit Model

Transmission lines are an integral part of many cQED architectures, functioning both

as the input and output channels that carry the information to and from the sample,
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and as the basis for microwave resonators that enable the readout of the quantum

system itself. Since the physical dimensions of these lines and resonators are compa-

rable to the wavelengths of the signals, these structures form a distributed-parameter

network where the voltage and current along the network is a function of the length;

this is opposed to the lumped-element circuit case where the parameters do not vary

substantially over the dimensions of the circuit elements. However, transmission line

theory can be modeled from the lumped-element circuit analysis by considering the

infinitesimal lengths of the line as lumped elements, which can then be extended to

model these resonators as equivalent RLC circuits. An overview of these concepts

and the relevant parameters are discussed in this section. For a detailed discussion,

refer Pozar’s textbook for microwave engineering [72].

2.1.1. Transmission Lines

Z0, β, α

V (x), I(x)

+

-
VL ZLZin

IL

x
x = 0x = −l

Figure 2.1: A transmission line defined by the characteristic impedance Z0 and the
complex propagation constant γ = β + iα, terminated using a load resistor ZL.

The major physical parameters that determines the transmission line performance

(refer Fig. 2.1) are the inductance per unit length L, the capacitance per unit length
C, the series resistance per unit length R that originate from the finite conductivity,

and the shunt conductance per unit length G sourced from the dielectric losses. Since

the measurement readout is via superconducting lines, the losses originating from

R → 0. We will also use microwave resonators with high internal quality factors,

where the dielectric losses contributing to G are also assumed to be low. The wave

propagation in the steady-state condition can be solved in terms of the familiar wave

equation
d2F (x)

dx2
= γ2F (x), (2.1)

where F (x) can be either the voltage V (x) or the current I(x) along the line, and
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γ = α + iβ represents the complex propagation constant. Qualitatively, we can

consider the solutions to F (z) having a sinusoidal component determined by the

reactance of the circuit with the wavelength λ = 2π/β, as well as an exponentially

varying component that is determined by the resistive losses in the circuit.

An important distinction to take note is between the concepts of characteristic

impedance Z0 and the input impedance Zin. The characteristic impedance is the ratio

of the amplitudes of the voltage and current of a signal that is propagating along the

line. This is determined by the material features and geometry of the transmission

line itself and can be reduced to

Z0 =

√
L
C (2.2)

for the lossless case. However, the ratio of the voltage to the current at length l

which is a measure of the impedance seen looking into the line, is defined as the input

impedance. Along with the magnitude of Z0, Zin is also a function of the load resistor

ZL that terminates the line. In short, the input impedance of a lossy transmission

line of length l, characteristic impedance Z0, complex propagation constant γ and a

load impedance ZL is given by

Zin = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
. (2.3)

A terminated transmission line with ZL ̸= Z0 also results in the generation of

reflected waves to satisfy the condition of energy conservation. The voltage reflection

coefficient Γ is defined as the ratio of the outgoing (left propagating) voltage ampli-

tude to the incident (right propagating) voltage amplitude. The measurement of the

reflection coefficient, as we will see in the upcoming chapters, is an extremely useful

quantity that captures the information relevant to various detection schemes. It can

be expressed in terms of Z0 and ZL as

Γ =
ZL − Z0

ZL + Z0

. (2.4)

The trivial cases are Γ = −1 for ZL = 0, Γ = 1 for ZL =∞, and Γ = 0 for ZL = Z0.

Hence when the load is matched, the signal continues propagating along the line

without forming standing waves leading to an infinite return loss given by RL = -20

log|Γ| dB. This concept lies at the heart of the readout schemes, enabling transfer of

information to and from the sample without significant losses along the way.
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2.1.2. Unloaded Quarter-wave Microwave Resonators

For a shorted quarter-wave (λ/4-wave) resonator, the transmission line parameters

introduced in the previous discussion correspond to ZL = 0 and l = λ/4, resulting

in an input impedance of Zin = Z0 tanh γl. Expanding the complex propagation

constant γ about resonance ωλ/4 for a low-loss transmission line with phase velocity

vp, with β = (ωλ/4 + δω)/vp and tanhαl ≈ αl, we obtain the input impedance as

Zin =
Z0

αl + iπδω/2ωλ/4

. (2.5)

The above expression is equivalent to the input impedance about resonance of a

parallel RLC circuit with the corresponding parameters R = Z0/αl, C = π/4Z0ωλ/4

and L = 1/ω2
λ/4C. We can thus apply lumped-element circuit methods for modeling

systems involving unloaded shorted λ/4-wave resonators by reducing these resonators

to parallel RLC circuits. Note that the input impedance at resonance corresponds

to the maximum value Z0/αl in this case. As a result, a shorted λ/4-wave resonator

forms a rejector circuit with minimal current flow at the resonant frequency. More-

over, the resonant frequencies of the cavity occur where the cavity length equals

multiples of the quarter wavelength corresponding to the fundamental resonance and

are given by ωλ/4 = (2n+ 1)πvp/2l, where n = 0, 1, 2 . . . .

Another important parameter of interest while considering resonant circuits is the

rate at which information is gained/lost at resonance. This quantity defined as the

quality factor Q is given by

Q = ω
average energy stored

energy loss (or gain)/second
. (2.6)

For resonator circuits exposed to dielectric, conductor and radiation losses, we assign

an internal quality factor Qint = π/4αl (for λ/4-wave resonators) to describe channels

through which useful information is lost. This is also interchangeably used with the

concept of internal damping rate κint given by ωλ/4/Qint, and corresponds to the

internal linewidth of the resonator.

2.1.3. Loaded Quarter-wave Microwave Resonators

In order to facilitate readout, we typically couple the resonators to another transmis-

sion line (of Z
(p)
0 characteristic impedance) either capacitively or inductively. A λ/4-

wave resonator (of Z
(r)
0 characteristic impedance) weakly coupled to a pump/probe
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transmission line via a coupling capacitance Cpc ≪ C collects/provides information

at an external damping rate κext and can be equivalently described using its external

quality factor Qext.

The sum of the average electric and magnetic energies stored is twice the energy

stored on the capacitor of the resonator: Eavg = 2∗ 1
2
C ⟨V 2⟩. The average power flow

Pavg into the transmission line via Cpc is Pavg = ⟨I2⟩ Z(p)
0 , where I = ωCpcV . Hence

we obtain Qext as

Qext = ω

π

4ωλ/4Z
(r)
0

⟨V 2⟩

ω2C2
pc⟨V 2⟩Z(p)

0

=
π

4

(
ωCpc

√
Z

(r)
0 Z

(p)
0

)2

ω

ωλ/4

. (2.7)

The total damping rate κtot of the resonator thus has two effective channels

through which energy transfer occurs, and is given by κtot = κint + κext. The net

quality factor becomes
1

Qtot

=
1

Qint

+
1

Qext

. (2.8)

The coupling capacitance also leads to an added impedance and consequently a

shifted resonance of the cavity ωn obtained through the condition

Im(Zin|ω=ωn) = Im
(
− i

ωnCpc

+ Z
λ/4
in (ωn)

)
= 0, (2.9)

where Z
λ/4
in is the input impedance contribution from the unloaded resonator.

Defining Ω ≡ ωn − ωλ/4, we get

Im

(
− i

ωnCpc

+
4Z

(r)
0 Qint/π

1 + 2iQintΩ/ωλ/4

)
= 0. (2.10)

The above condition leads to a quadratic equation

4Q2
int

ω2
λ/4

Ω2 +
8Z

(r)
0 ωnCpcQ

2
int

πωλ/4

Ω + 1 = 0, (2.11)

with solutions

Ω = −2Z
(r)
0 ωnCpcωλ/4

π
and Ω = − πωλ/4

8Z
(r)
0 ωnCpcQ2

int

(2.12)
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Table 2.1: Parameter values used in the design of λ/4-wave resonator.

Parameter Value

Characteristic impedance Z
(r)
0 50 Ω

Resonant frequency ωλ/4 5.83 GHz

Parameter Value
Internal quality factor Qint 104

Coupling capacitance Cpc 10 fF

under the condition of weak coupling and high Qint.

Note that for the typical values of resonator parameters given in Table 2.1, the

renormalized second root of the resonance in the above expression Eq. (2.12) is very

close to the original value ωλ/4 (with a shift of the order of MHz), thus corresponding

to a high resulting impedance (as discussed in terms of the rejector circuit in §2.1.2)
and is of little interest. However, the resulting input impedance corresponding to the

first root in Eq. (2.12) is given by [84]

Zin(ω) ≈
π

4Z
(r)
0 Qint(ωnCpc)2

(
1 + 2iQint

δω

ωn

)
, (2.13)

where δω ≡ ω − ωn and ω−10 ≈ ω−1λ/4. The above expression can be further simplified

in terms of external coupling derived in Eq. (2.7) into

Zin(ω) ≈ Z
(p)
0

Qext

Qint

(
1 + 2iQint

δω

ω0

)
. (2.14)

Comparing this input impedance to a lumped-element circuit, we obtain the equiva-

lent model for the loaded λ/4-wave resonator as a series RLC circuit in this configura-

tion, with parameters given by R = Z
(p)
0 Qext/Qint, L = Z

(p)
0 Qext/ωn and C = (ω2

nL)
−1
.

As the input impedance is minimum at resonance, this configuration thus leads to

an acceptor circuit (where the signal enters the cavity due to its low impedance) and

can be further utilized in readout schemes to extract information about the system

using reflection coefficient measurements.

Finally, we may also obtain the simplified form of the renormalized resonant fre-

quency of a λ/4-wave resonator in the weak coupling limit as

ωn ≈ ωλ/4

(
1− Cpc

2C

)
, n = 0, 1, 2 . . . , (2.15)

where we have used the first root obtained in Eq. (2.12) as the resonance shift. We

will primarily be operating the resonator in its fundamental mode where the relative
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variation in the external quality factor is small near resonance: ∆Qext(ω)/Qext(ω0)≪
1. This allows us to work under the first Markov approximation of considering the

external damping rate to be constant over the frequency region of interest, a frequently

used simplification in modeling input-output relations in cQED systems, as will be

clarified in future discussions.

Section 2.2

Measurement Configuration

One crucial step in the microwave readout is the efficient isolation of the incoming

and outgoing signal components. This is accomplished typically using microwave cir-

culators and isolators, as well as by the careful design of the resonator-transmission

line interface. In this section, we present a discussion of the transmission or reflec-

tion measurements in a quarter-wave resonator which can be done using two different

configurations [56]. When the resonator is capacitively coupled to a single trans-

mission line that simultaneously acts as the pump and probe, the isolation of these

signals are achieved using a circulator at a later stage (Refer Fig. 2.2a). Another

useful configuration is when the resonator is connected to a transmission feedline in

a hanger geometry. This necessitates a pass-by transmission measurement where the

input signal interacts with the resonator near its resonance frequency as shown in Fig.

2.2b. We will also address the impedance matching requirements in these two con-

figurations that is essential for the accurate readout of the resonator characteristics.

2.2.1. Reflection Measurement in a Shorted Quarter-wave Resonator

As mentioned above, one approach to achieve reflection measurement in a shorted

quarter-wave resonator is illustrated in Fig. 2.2a. We will look at a detailed deriva-

tion of the reflection coefficient here; this will prove useful towards the impedance-

mismatched case in the subsequent discussions.

As shown in Fig. 2.3, the circulator divides the circuit into two loops. Loop 1

can be used to extract the signal reflected off the load into port 2 of the circulator,

which then enters port 3 and can be measured as Vout, through Loop 2 [72]. The

load resistor ZL corresponding to the loaded λ/4-wave resonator with impedance

given by Eq. (2.14) is placed at x = 0. At x = −l, the reflected signal enters

port 2 of circulator. The steady-state, general solution (at time t0) for the voltage
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Figure 2.2: (a) Configuration using a circulator for reflection measurement S11 in a
quarter-wave resonator. (b) Corresponding hanger configuration.

wave equation, given in Eq. (2.1), considering both the left and right propagating

components can be expressed as

V (x) = V +
0

(
e−iβx + Γeiβx

)
, (2.16)

where V +
0 is the input voltage amplitude, Γ = (ZL − Z0)/(ZL + Z0) is the reflection

coefficient and we neglect resistive losses (α → 0) inside pump/probe transmission

line. Hence at x = −l,
V (−l) = V +

0

(
eiβl + Γe−iβl

)
(2.17)

and at x = 0,

VL ≡ V (0) = V +
0 (1 + Γ). (2.18)

Using Kirchoff’s law in Loop 1, we get the voltage-dividing components VL and V (x =

−l) as

VL = Vg
ZL

Z0 + ZL

and V (x = −l) = Vg
Zin(x = −l)

Z0 + Zin(x = −l) , (2.19)

where Zin(x = −l) is the input impedance at the circulator port 2 seen looking
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Figure 2.3: Readout scheme for a quarter-wave resonator in reflection mode. Circu-
lator effectively separates the circuit to two separate loops.

towards the resonator, and is given by

Zin(x = −l) = V (x = −l)
I(x = −l) = Z0

V +
0

(
eiβl + Γe−iβl

)
V +
0 (eiβl − Γe−iβl)

. (2.20)

A bit of algebra combining expressions for V (x = −l) in Eqs. (2.17) and (2.19)

then provides the relation V +
0 = Vge

−iβl/2. The signal coming out of port 2 of the

circulator can thus be measured at the output via Loop 2, and can be expressed as

Vout = V +
0 Γe−2iβl =

Vg

2
Γe−2iβl. (2.21)

A vector network analyzer can be thus be used to measure the reflection coefficient

of the resonator via a signal input Vg through port 1 and a measurement at port

2 (phase delay is adjusted using calibration at the instrument stage). In short, the

scattering matrix coefficient S21 is given by

S21 =
2Vout

Vg

= Γ. (2.22)

Applying the expression for ZL from Eq. (2.14) (with Z
(p)
0 = Z0) to Γ = (ZL −

Z0)/(ZL + Z0), the magnitude and phase of S21(δω) is obtained from

S21(δω) =
2iδω + (κint − κext)

2iδω + (κint + κext)
, (2.23)
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The expression can be transformed in the inverse complex plane as

S̃21 ≡ 2 (S21 + 1)−1 =

(
1 +

Z0

Zr

)
= 1 +

κext

κint

(
1

1 + 2iδω/κint

)
. (2.24)
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Figure 2.4: (a) Magnitude of the reflection coefficient in the different coupling regimes.
(b) Corresponding phase response of the reflection coefficient.

The resonator parameters ω0, κint and κext can be extracted either through Eq.

(2.23) [65] or Eq. (2.24) [85]. The magnitude and phase of the reflection coefficient

in Eq. (2.23) are plotted in Fig. 2.4. In the S21 plane, the reflection traces a circle

with the off-resonance value at unity and the resonance corresponding to the other

intercept on the real axis, as displayed in Fig. 2.5a. Depending on the coupling ratio

ξ = κext/κint = Qint/Qext, the resonance lies on the negative real axis for ξ > 1 (over-

coupled), positive real axis for ξ < 1 (under-coupled) or origin for ξ = 0 (critically

coupled). The diameter is given by D = 2κext/κtot. Also, the corresponding points

for |δω| = κtot/2 form a diameter perpendicular to the real-axis giving the 3 dB points

of the loaded resonator.

In the S̃21 plane, the trajectory remains a circle with off-resonance and resonance

value on the positive real axis, as displayed in Fig. 2.5b. The value at resonance

is S21 > 2 for ξ > 1 (over-coupled), S21 < 2 for ξ < 1 (under-coupled) or S21 = 2

for ξ = 0 (critically coupled). The diameter is given by the coupling factor D = ξ.

Finally, the corresponding points for |δω| = κint/2 join perpendicular to the real-axis

directly extracting the 3 dB points of the unloaded resonator.
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Figure 2.5: (a) Trajectory of the reflection coefficient S21(δω) in the complex plane in
different coupling regimes. The relevant parameters of the resonator can be extracted
from the circle’s features. (b) Trajectory of S̃21(δω) in the inverse complex plane and
the corresponding resonator parameter extraction using the circle.
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2.2.2. Pass-by Measurement in a Shorted Quarter-wave Resonator

Z0

Z0
Vg

+

- Vout

+

-

ZL

I

I1

Figure 2.6: Readout scheme for a quarter-wave resonator in hanger mode. The signal
passes-by off-resonance and enters the resonator only near resonance.

This analysis follows the description provided in [85]. Transmission in a resonator

with loaded input impedance Zin = ZL can be measured using the configuration

provided in Fig 2.6. The total current I, current through the resonator I1, and the

output voltage Vout are given by

I =
Vg

Z0 +
(

Z0Zin

Z0+Zin

) (2.25)

I1 =
I

1 + Zin/Z0

(2.26)

Vout = I1Zin =
Vg

2 (1 + Z0/2Zin)
(2.27)

Note that as Zin → ∞, S21 = 1 as the signal will merely pass-by the transmission

feedline without entering resonator. Hence,

S21 =
2Vout

Vg

=
1

1 + Z0/2Zin

. (2.28)

In our specific case of quarter-wave resonator, ZL = Zin is obtained from Eq. (2.14).

However, Z
(p)
0 in this configuration is given by Z0/2 since the resonator sees two

transmission lines in parallel at the interface. Thus a measurement in the vector

network analyzer provides

S21 =

[
1 +

κext

κint

(
1

1 + 2iδω/κint

)]−1
(2.29)
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In the inverse plane, S̃21 ≡ S−121 again traces a circle with off-resonance value at unity

and resonance corresponding to the intercept on the real axis, with the parameters

extracted as shown in Fig. 2.5b.

2.2.3. Measurements in Impedance-mismatched Circuits

In practice, the measurement circuitry generally undergoes an impedance mismatch

that could arise due to imperfect sample mounting, as well as due to circulator and

amplifier return losses. This distorts the transmission/reflection measurement and

makes it less ideal to analyze the resonance as described in previous sections.

For a pass-by transmission, an extended analysis is described in Megreant’s paper

[85] where the impedance mismatch add ∆Z1 and ∆Z2 at the input and output lines,

respectively, as given in Fig. 2.7a. Following the same analysis in subsection 2.2.2,

the modified expression for S21 is given by

S21 =
2Z0

Z1 + Z2

1

1 + Z/2Zin

(2.30)

where Zi = Z0+∆Zi for i = 1, 2 and 2/Z ≡ 1/Z1+1/Z2. The constant 2Z0/(Z1+Z2)

gets absorbed in an off-resonance calibration, and as before, in the inverse plane,

S̃21 ≡ S−121 = 1 +
κ∗ext
κint

eiϕ
1

1 + 2iδω/κint

, (2.31)

where Z = |Z|eiϕ and κ∗ext ≡ (|Z|/Z0)κext. The center of the circle thus gets rotated

by an angle ϕ, with the effective diameter D = κ∗ext/κint, as shown in Fig. 2.8a.

This limits the accuracy with which we can extract the external damping factor in

an impedance-mismatched circuit.

For the case of reflection measurement in the circulator configuration, we can

extend the analysis in subsection 2.2.1 to include the impedance mismatch parameters

(Refer Fig. 2.7b). We will consider a sample mount imperfection that introduces a

∆Z1 into the load impedance, and an amplifier return loss that adds ∆Z2. Note

that the nonreciprocity and impedance matching in circulators is an intense field

of research by itself [86], but this is not taken into consideration in the following

simplified approach.

The modified reflection coefficient Γ′ = (Z ′L−Z0)/(Z
′
L+Z0) where Z

′
L = ZL+∆Z1.

At x = 0,

V ′L ≡ V (0) = V +
0 (1 + Γ′), (2.32)

26



Lumped-element Analysis Microwave Resonators

Z0 ∆Z1 ∆Z2

Z0
Vg

+

- Vout

+

-

ZL

(a)

Quarter-wave

Resonator

∆Z2

∆Z1

Z0

Z0
Vg

+

-

1

2

3

Vout

+

-
ZL

Loop 1 Loop 2

(b)

Figure 2.7: (a) Equivalent hanger-mode circuit diagram with impedance mismatch
losses. (b) Corresponding circuit diagram for single pump/probe line.

and Kirchoff’s law gives

V ′L = Vg
Z ′L

Z0 + Z ′L
. (2.33)

As before, we can then find the modified signal entering port 3 of circulator and

the net Vout = V +
0 Γ′(Z0/Z2), where Z2 ≡ Z0 + ∆Z2 (the phase delay of e−2iβl is

ignored). The final expression for Vout becomes

Vout =
Vg

2

Z0

Z2

Z ′L − Z0

Z ′L + Z0

, (2.34)

and the reflection coefficient S21 is given by

S21 =
2Vout

Vg

=
Z0

Z2

Z ′L − Z0

Z ′L + Z0

. (2.35)

The factor of (Z0/Z2) can be obtained using an off-resonance calibration, and defining

S̃21 ≡ 2 [(Z2/Z0)S21 + 1]−1, we get

S̃21 =

(
1 +

Z0

Z ′L

)
. (2.36)

In short, the modified S̃21 takes the form

S̃21 = 1 +
κext

κ∗int

1

1 + 2iδω/κ∗int,
(2.37)

where for ∆Z1/Z0 = ϵeiϕ, the resonance frequency shifts from ω0 → ω0−ϵκext sinϕ/2,
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Figure 2.8: (a) S̃21 = S−121 plotted in the over-coupled regime for different impedance
mismatched values. Rotation of the circle occurs in the direction of ϕ, and the di-
ameter is modified due to rescaling of the external damping rate. (b) Impedance
mismatch affecting S̃21 in a single pump/probe transmission line setup. The res-
onance is shifted due to the reactance component in ∆Z1, and the diameter and
measured internal damping rate changes in presence of a resistive element. The orig-
inal resonance frequency is denoted by the left-pointing triangles.
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and the internal damping rate is rescaled from κint → κ∗int = κint(1+ξϵ cosϕ). Thus an

impedance mismatch caused purely due to reactance causes a shift in the measured

resonance frequency of the resonator, and an impedance mismatch that is purely

resistive rescales the value of the measured internal damping rate. This is illustrated

in Fig. 2.8b.

2.2.4. Comparison of Measurement Configurations

The hanger geometry is a useful configuration that allows simultaneous readout

of multiple resonators using frequency-domain multiplexing through a single feed-

line [87]. This configuration has the disadvantage that the information at the interface

is not completely available as there are two channels through which the signal can

propagate. This is not the case in a single pump/probe transmission line discussed

in 2.2.1, where the entire signal is available for readout. This however implies the

addition of an extra circulator in the circuit can create stray magnetic fields, as well

as adds a bulky component in the cryogenic setup. The device used in this thesis

work will utilize the combined pump/probe transmission line configuration.

2.2.5. Experimental Data

Here we provide a comparison between the two analyses that extracts the resonator

parameters coupled to a single transmission line (Refer Fig. 2.9). The impedance

mismatch in actuality manifests as a rotation of the circle. This is believed to be

caused due to the return losses at the circulator interface.

Section 2.3
Quantum Mechanical Description

of Microwave Resonators

The classical description of the microwave resonators discussed in the previous sec-

tions is useful for measurement analysis at the room temperature stage where the

signal is typically of the order of nWs and higher. However, at the cryogenic stage,

we drive the resonator itself at the order of 1-100 photons. Since the thermal fluc-

tuations at this stage are negligible compared to the energy of even a single photon,

we require a detailed quantum mechanical description of the microwave resonator,

where the open system dynamics is explained using the quantized Hamiltonian of the

cavity-transmission line interaction. In this section, we will begin with an overview
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Figure 2.9: (a) Magnitude of the reflection coefficient of a bare cavity with resonance
near 5.74 GHz. (b) Corresponding phase response of the reflection coefficient. (c)
Trajectory of the reflection coefficient S21(δω) in the complex plane and the extracted
values of resonator parameters as per the model in Eq. (2.23) (d) Trajectory in the
inverse complex plane and the corresponding resonator parameter extraction using
the model in Eq. (2.24). Note an extra rotation of the circle due to the circulator
impedance mismatch not accounted for in 2.2.3.
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of these concepts (for the sake of an impatient reader). The subsequent discussions

will cover a first-principles, scattering operator approach that provides a fundamen-

tal description of the resonator-transmission line dynamics. This will prove useful for

describing the cCPT dynamics and charge sensitivity derivation presented in later

chapters. The reviews by Blais et al. [76], Vool et al. [88], and Devoret et al. [89]

are all useful references that provide a detailed overview of the concepts in circuit

quantum electrodynamics (cQED).

2.3.1. An Overview

As already discussed in previous sections, the electromagnetic environment inside

a microwave resonator formed using a transmission line of characteristic impedance

Z0 =
√

L/C is modeled by a LC resonator that is exposed to internal and external

resistive losses. The Hamiltonian of the quantum LC resonator is given by

HLC =
Q̂2

2C
+

1

2
Cω2

0Φ̂
2, (2.38)

where Q̂ is the charge on the mode capacitor C and Φ̂ is the flux threading the mode

inductor L. We have only accounted for a single mode here but the generalized HLC

will contain n = 0, 1, 2, . . . discrete modes that satisfies the boundary conditions of

the resonator.

The above expression is also written using these specific coordinates so that the

magnetic energy component given by the second term is analogous to the potential

energy of a mechanical oscillator with position corresponding to the flux coordinate Φ̂,

and the electric energy in the first term corresponds to the kinetic energy, expressed

in terms of the conjugate momentum Q̂. Note that this convention helps in the future

derivations involving addition of the CPT’s perturbative component to the Hamilto-

nian. We can also instead work with the swapped coordinate system considering Φ̂

as the conjugate momentum.

Taking the analogy with the mechanical oscillator further, we recognize the non-

commutativity of these two observables via the expression[
Φ̂, Q̂

]
= iℏ. (2.39)

In terms of the creation and annihilation operators â† and â, the generalized
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coordinates may be rewritten as

Φ̂ = Φ̂zp

(
a† + â

)
Q̂ = iQ̂zp

(
a†n − â

)
, (2.40)

where the zero-point fluctuations of the flux and charge are given by Φ̂zp =
√
ℏ/2ω0C

and Q̂zp =
√
ℏω0C/2, respectively. The Hamiltonian takes the familiar form (again

considering only the fundamental mode):

HLC = ℏω0

(
â†â+

1

2

)
. (2.41)

The Hamiltonian of a semi-infinite transmission line (acting as the pump/probe

line) consists of a bath of such harmonic oscillators discussed above, where the bound-

ary condition now allows a continuum of modes, with the resulting Hamiltonian given

by

Hp = ℏ
∫ ∞
0

dωω
(
âinp (ω)

)†
âinp (ω), (2.42)

where each of the mode operators satisfy the commutation relation[
âinp (ω),

(
âinp (ω

′)
)†]

= δ(ω − ω′). (2.43)

Finally, the interaction between the pump/probe line and the cavity resonator via the

coupling capacitance is generally described using input-output formalism [90]. This

assumes a linear interaction (by means of weak coupling between the in/out line and

cavity) where the net Hamiltonian of the open system takes the form

H = HLC +Hp +H(interact), (2.44)

where HLC and Hp are given by Eqs. (2.41) and (2.42), respectively. The interaction

Hamiltonian can be expressed as

H(interact) = iℏ
∫ ∞
−∞

dωωκext

[(
âinp (ω)

)†
â− â†âinp (ω)

]
, (2.45)

where κext is the external damping rate which is assumed to be a constant and in-

dependent of frequency (essentially the first Markov approximation). Note that the

limits of the integral also include the negative frequency range to account for both left

and right propagating modes. The internal losses are modeled as a second, internal
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thermal bath that corresponds to an internal damping rate κint, which accounts for

the resistive losses inside the cavity.

The steady-state system dynamics can be obtained from the standard quantum-

Langevin equation (in the time domain)

˙̂a(t) = −iω0(t)â(t)−
κtot

2
â(t)− i

√
κextâ

in
p (t), (2.46)

where we have not included the contribution from the internal bath operator. Com-

bining both the input and output going fields, we obtain

âoutp (ω) = âinp (ω)− i
√
κextâ(ω), (2.47)

the standard input-output relation in Fourier domain for the cavity undergoing a

reflection mode measurement.

Combining Eq. (2.47), the solution to Eq. (2.46) in the Fourier domain, and

adding κint as a second interactive bath dynamics, we may also obtain the reflection

coefficient r(ω) = âoutp (ω)/âinp (ω), that results in the same expression as Eq. (2.23):

r(ω) =
2i(ω − ω0) + (κint − κext)

2i(ω − ω0) + (κint + κext)
. (2.48)

2.3.2. Operator Scattering Approach 1

Figure 2.10: Circuit schematic of a bare quarter-wave (λ/4) cavity coupled to a
pump/probe transmission line via a coupling capacitor Cpc.

1We acknowledge that the bulk of this section is reproduced from a Journal of Applied Physics
publication by Kanhirathingal et. al. [13], with major contributions from Prof. Blencowe.
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In this subsection, we present a detailed, first-principles derivation of a shorted

quarter-wave resonator weakly coupled to a pump/probe transmission line via a ca-

pacitance Cpc (Fig. 2.10). The dynamics of this model is well-established using the

input-output formalism, as presented as an overview in 2.3.1. The standard input-

output theory considers the damping rates due to internal losses and coupling to the

transmission line as phenomenological parameters during the derivation [90]. In the

following, we shall instead apply the operator scattering approach [91, 88], where

we systematically recover the discrete mode cavity operators that define the cavity

Hamiltonian, together with the cavity mode renormalized frequencies and external

damping rates due to the coupling to the transmission line. This approach validates

the lumped element circuit analysis already discussed in 2.2.1. The sources of internal

losses in the cavity can originate from the interactions of the cavity with its local envi-

ronment, and are typically observed as low-frequency noise in the resonant frequency

of the cavity [52, 92, 93]. Such damping due to internal losses will be neglected (i.e.,

κint = 0) initially in this model, to be added phenomenologically later.

To outline, we begin by writing down the cavity and transmission line wave equa-

tions, along with the capacitive coupling and shorted-end boundary conditions using

Kirchhoff’s laws. The general solutions to the corresponding quantum Heisenberg

wave equations that are coupled via these boundary conditions are obtained using

the operator scattering approach. Under the condition of weak coupling, the stan-

dard form input-output quantum Langevin equation for the cavity mode operator

is recovered by approximation, together with explicit expressions for the resonant

frequency and damping rate in terms of the circuit parameters.

Referring to Fig. 2.10, the wave equations for the cavity phase field ϕc(x, t) and

the transmission line probe phase field ϕp(x, t) are

∂2ϕi

∂t2
= (LiCi)−1

∂2ϕi

∂x2
,

i = c, if 0 < x < l

i = p, if x < 0,
(2.49)

where the phase field is defined in terms of the magnetic flux field Φ(x, t) through

ϕi ≡ 2πΦ/Φ0 with Φ0 = h/(2e) the flux quantum, Li, Ci denote respectively the

inductance and capacitance per unit length of the cavity (i = c) and transmission

line (i = p), and l is the cavity center conductor length.

The current and voltage propagating along the transmission line can be expressed
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respectively in terms of the phase field as

Vi(x, t) =

(
Φ0

2π

)
∂ϕi

∂t
Ii(x, t) =

1

Li

(
Φ0

2π

)
∂ϕi

∂x
, (2.50)

such that we can retrieve the wave equation Eq. (2.1) for voltage and current by

substitution of these two expressions into Eq. (2.49). Hence the current conservation

at x = 0 and the boundary condition at x = l give respectively:

1

Lp

∂ϕp

∂x

∣∣∣∣
x=0−

=
1

Lc

∂ϕc

∂x

∣∣∣∣
x=0+

= Cpc

(
ϕ̈c − ϕ̈p

)∣∣∣
x=0

, (2.51)

ϕc(l, t) = 0. (2.52)

Working with the Heisenberg equations resulting from formally replacing the co-

ordinates with their associated quantum operators ϕ̂c(x, t) and ϕ̂p(x, t), the gen-

eral solution for the wave equation (2.49) can be written in terms of photon cre-

ation/annihilation operators as follows:

ϕi(x, t) =
2π

Φ0

∫ ∞
0

dω

√
ℏZi

πω

1

2

[
e−iω(t−t0−x/vi)a→i (ω, t0) +e−iω(t−t0+x/vi)a←i (ω, t0)

]
+h.c.,

(2.53)

where ‘h.c.’ denotes the Hermitian conjugate and we have dropped the hats on the

operators for notational convenience. Note that there should properly be a regular-

izing, upper frequency cut-off in Eq. (2.53) due to the finite length of the cavity and

transmission line. However, the actual measured quantities involve finite frequency

bandwidths about the pump frequency that are well below (and independent of)

the cut-off. The superscripts ‘→’ (‘←’) correspond to right (left) propagating modes,

with the photon creation/annihilation operators satisfying the standard commutation

relation

[ami (ω, t0), (a
n
i (ω

′, t0))
†] = δmnδ(ω − ω′), (2.54)

where m,n ∈ {‘ → ’, ‘ ← ’}. The cavity and transmission line impedances are given

by Zi =
√
Li/Ci [note Zi is the same as Z0 used in §2.1 and §2.2], and vi = (LiCi)−1/2

is the microwave phase field propagation velocity. These commutation relations,

together with the form of the solution (2.53) ensure that the phase field operators

and their conjugate momenta satisfy the standard canonical commutation relations

given in Eq. (2.39).

In essence, the operator scattering approach involves substituting the wave equa-
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tion solutions (2.53) into the boundary conditions (2.51) and (2.52) in order to express

the left propagating (i.e., “reflected” or “scattered”) probe operator a←p in terms of

the right propagating (“incident”) probe operator a→p and cavity operator a→c .

Starting with boundary condition (2.52), we have a←c (ω, t0) = −e2iωl/vca→c (ω, t0),

so that the cavity phase field solution (2.53) (with i = c) becomes

ϕc(x, t) =
2π

Φ0

∫ ∞
0

dω

√
ℏZc

πω

1

2
e−iω(t−t0) ×

[
eiωx/vc − e−iω(x−2l)/vc

]
a→c (ω, t0)

+h.c.; (2.55)

one may readily verify that solution (2.55) vanishes at x = l as required by the

boundary condition (2.52). Using Eq. (2.53) (for i = p), Eq. (2.55), and boundary

condition (2.51), we can now couple the cavity and probe phase field to arrive at the

following respective expressions for ϕp and a→c :

ϕp(x, t) =
2π

Φ0

∫ ∞
0

dω

√
ℏZp

πω

1

2
e−iωt ×

[
eiωx/vp +

(
1 + iωZpCpc

1− iωZpCpc

)
e−iωx/vp

]
ainp (ω)

−i2π
Φ0

∫ ∞
0

dω

√
ℏZp

πω

1

2
e−iω(t−t0+x/vp)

(
1− e2iωl/vc

)
×ω
√
ZpZcCpc

1− iωZpCpc

a→c (ω, t0) + h.c.

(2.56)

and[
cos (ωl/vc)−

ωZcCpc

1 + (ωZpCpc)
2 sin (ωl/vc)− i

(
ω
√

ZcZpCpc

)2
1 + (ωZpCpc)

2 sin (ωl/vc)

]
a→c (ω, t0)

= −ie−iω(t0+l/vc)
ω
√

ZpZcCpc

1− iωZpCpc

ainp (ω), (2.57)

where ainp (ω) ≡ eiωt0a→p (ω, t0) may be interpreted classically as the right propagating

component of the pump/probe line field in frequency space that enters the cavity at

time t = 0.

Under the condition of weak cavity-probe coupling, Eq. (2.57) describes the

Fourier transform of the quantum dynamics of approximately independent harmonic

oscillators (i.e., cavity modes) subject to damping and noise. The resonant mode

frequencies are obtained by setting the real, square-bracketed coefficient in the first

36



Quantum Mechanical Description Microwave Resonators

line to zero and solving for ω, while the mode linewidths are given by the imaginary

coefficient on the second line of Eq. (2.57). The term involving ainp (ω) represents the

pump drive and noise. In particular, imposing the condition of weak coupling given

by the smallness of the dimensionless parameter ζ ≡ Cpc/(Ccl) ≪ 1, and expanding

to first order in ζ, we obtain for the mode frequencies

ωn ≈ (2n+ 1)
πvc
2l

(
1− Cpc

Ccl

)
, n = 0, 1, 2, . . . , (2.58)

which coincides with the lumped element expression (2.15) for the cavity mode

capacitance: C = Ccl/2. Furthermore, under the Markovian approximation, the

pump/probe damping rate κext is given by

κext = 2Zp

C2
pc

Ccl
ω2
n, (2.59)

which matches Eq. (2.7) near ωn with the external quality factor Qext ≡ ωn/κext.

2.3.3. Validity of Scattering Approach

We can now use results obtained in 2.3.2 to derive the standard quantum Langevin

equation in the Fourier domain involving the familiar closed-system cavity mode

Hamiltonian, along with the zero-point fluctuations of the cavity phase coordinate

modes.

Simplifying Eq. (2.57) by approximation using (2.58) and restricting to a narrow

bandwidth ∆ω ≪ ωn, we obtain to first order in the capacitance ratio ζ ≡ Cpc/(Ccl)≪
1: (

ω − ωn + i
κext

2

)
an(ω) =

√
κext a

in
p (ω). (2.60)

This expression is the standard, Fourier transformed quantum Langevin equation,

where the nth cavity mode photon annihilation operator is defined as

an(ω) ≡
√

2l

vc
eiωt0a→c (ω, t0), (2.61)

for ω in the vicinity of a given mode frequency ωn [Eq. 2.58)]. This rescaling en-

sures that an(t) =
1√
2π

∫ +∞
−∞ dωe−iωtan(ω) satisfies the usual, discrete mode canonical

commutation relation [an(t), a
†
n(t)] = 1.

Thus the solution of ϕc(x, t) in Eq. (2.55) is reduced to a sum containing n
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discrete modes ϕn(x, t) with a bandwidth of ∆ω. Applying the second derivative

with respect to time to the solution of each of these modes we get the equation of

motion corresponding to the nth mode

ϕ̈n(x, t) = −ω2
nϕn(x, t). (2.62)

We can thus extract the Lagrangian of the closed system as

L =

(
Φ0

2π

)2 ∞∑
n

(
1

2
Cnϕ̇

2
n −

ϕ2
n

2Ln

)
, (2.63)

with the lumped element parameters given by the mode capacitance Cn = Ccl/2+Cpc

and the mode inductance Ln = 8Lcl/(2n+1)2π2. Defining the conjugate momentum

pn,ϕ ≡ ∂L /∂ϕ̇n, the Hamiltonian of the closed system consisting of a shorted quarter-

wave resonator with a coupling capacitance can be extracted using Hcav = Σnpn,ϕϕ̇n−
L :

Hcav =
∞∑
n=0

[(
2π

Φ0

)2 p2n,ϕ
2Cn

+

(
Φ0

2π

)2 ∞∑
n=0

ϕ2
n

2Ln

]

=
∞∑
n=0

ℏωn

(
a†nan +

1

2

)
, (2.64)

and thus comprises of n discrete harmonic oscillator modes. The first term repre-

sents the Hamiltonian for the independent lumped element LC oscillator expressed

in terms of the generalized mode phase coordinates and conjugate momenta respec-

tively, and we identify the conjugate momenta as the charge stored in the mode

capacitance: pn,ϕ = (Φ0/2π)Qn in Eq. (2.38). In terms of the creation/annihilation

operators an for the mode ‘n’ cavity operator obtained from ϕn = ϕzp,n

(
an + a†n

)
and

pn = −i (Φ0/2π)
2 ωnϕzp,n

(
an − a†n

)
, we get the familiar form of harmonic oscillator

Hamiltonian, as given in 2.41. The mode zero-point uncertainty can be written as

ϕzp,n =

(
2π

Φ0

)√
ℏ

2Cnωn

= 2

√
Zn

RK

, (2.65)

with Zn = π
√

Ln/Cn the cavity mode impedance and RK = h/e2 the von Klitzing

constant.
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Finally, the output phase field is

ϕout
p (x, t) =

2π

Φ0

∫ ∞
0

dω

√
ℏZp

4πω
e−iω(t+x/vp)aoutp (ω), (2.66)

following a similar convention as for ainp (ω) given above [just after Eq. (2.57)], and

defining aoutp (ω) ≡ eiωt0a←p (ω, t0). Within the bandwidth ∆ω and to first order in

the capacitance ratio ζ = Cpc/(Ccl), we can deduce aoutp (ω) by identifying the left

propagating (i.e., reflected) terms involving the exponential factor e−iω(t−t0+x/vp) in

the coupled cavity-probe relation (2.56). In short, we have

aoutp (ω) = ainp (ω)− i
√
κextan(ω), (2.67)

the standard input-output relation for the cavity in a reflection mode measurement,

where we have used the explicit expression (2.59) for the pump/probe damping rate

κext, and where the cavity mode annihilation operator is defined by Eq. (2.61).

Section 2.4

Output Power Measurement2

Experiments on the device performance require measurements on the steady state

response of the cavity, subject to a pump with frequency ωp typically applied in the

vicinity of the fundamental cavity resonance ω0 given by Eq. (2.58) for n = 0. In

practice, this involves a classical input pump signal at room temperature, which is

further attenuated at different stages to reach the sample placed at the cryogenic

temperature (≲ 30 mK), for which the scale of thermal fluctuations kBT ≪ ℏω0.

In the absence of driving, we consider the continuum of modes in the semi-infinite

transmission line to be in a thermal state given by

ρth =
1

Z

∞∑
{n(ω)}=0

e−βHp |{n(ω)}⟩p⟨{n(ω)}|p (2.68)

where |{n(ω)}⟩p is the transmission line Fock state, Z = Tr
(
e−βHp

)
is the partition

function, β ≡ 1/(kBT ), and the transmission line Hamiltonian takes the form in Eq.

2We acknowledge that the bulk of this section is reproduced from a Journal of Applied Physics
publication by Kanhirathingal et. al. [13], with major contributions from Prof. Blencowe.
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(2.42):

Hp = ℏ
∫ ∞
0

dωω
(
ainp (ω)

)†
ainp (ω), (2.69)

where we neglect the zero point energy term since it does not contribute to the

measured quantities.

The presence of coherent driving may be approximated by a displaced thermal

state for the pump/probe transmission line: ρα,th = D[α]ρthD[α]† [94], where D[α]

is the displacement operator that gives the coherent state |α⟩ via operation on the

vacuum state |0⟩:
D[α] |0⟩ = |α⟩ , (2.70)

and is defined as follows:

D[α] = exp

(∫
dω
[
α(ω)

(
ainp (ω)

)† − α∗(ω)ainp (ω)
])

, (2.71)

with

α(ω) =

√
P in
p T 2

p

ℏ
e−(ω−ωp)2T 2

p /2

√
ω

eiθp . (2.72)

Here, P in
p is the average pump power and θp is the pump phase. The pump coherence

time Tp is assumed to be longer than all other characteristic timescales of the system

so that the displacement wavelet is narrowly smeared about ω = ωp in this large Tp

limit.

Some general properties of D[α] is given by

D[α]†D[α] = I

D[α]âD[α]† = â− α

D[α]†â†D[α] = â† + α∗. (2.73)

We can then extract the time averaged output power (averaged over some measure-

ment time TM) in the bandwidth ∆ω centered at ωp using

P out
p (ωp,∆ω) =

〈[
Ioutp (x, t|ωp,∆ω)

]2〉
Zp, (2.74)

where the output probe current is

Ioutp (x, t) = − Φ0

2πLp

∂ϕout
p (x, t)

∂x
. (2.75)
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Substituting the quantum Langevin equation (2.60) into the input-output relation

(2.67) and using the definition (2.74) for P out
p , we obtain

P out
p (ωp,∆ω) =

ℏωp

4π

∫ ∫ ωp+∆ω/2

ωp−∆ω/2

dωdω′
(
2 sin[(ω − ω′)TM/2]

(ω − ω′)TM

)
[
r(ω)r∗(ω′) ⟨ainp (ω)

(
ainp (ω

′)
)†⟩+ r(ω′)r∗(ω) ⟨

(
ainp (ω)

)†
ainp (ω

′)⟩
]
, (2.76)

where the cavity reflection coefficient r(ω) is defined as

r(ω) =
ω − ωn − iκext/2

ω − ωn + iκext/2
, (2.77)

as expected [Refer to Eq. (2.48)]. Using the properties in Eq. (2.73), the ensemble

averages in the above expression are given by

⟨
(
ainp (ω)

)†
ainp (ω

′)⟩ = Tr[ρα,th
(
ainp (ω)

)†
ainp (ω

′)] = np(ω)δ(ω − ω′) + α∗(ω)α(ω′)

⟨ainp (ω)
(
ainp (ω

′)
)†⟩ = Tr[ρα,th

(
ainp (ω)

)†
ainp (ω

′)] = (np(ω) + 1) δ(ω − ω′) + α∗(ω)α(ω′).

(2.78)

with the transmission line average thermal occupancy np(ω) = (eβℏω − 1)−1 (which

is small in the frequency bandwidth of interest at T ≲ 30 mK). Inserting the above

expressions back into Eq. (2.76) and using ωp = ω0 and ∆ω ≪ ω0, we get

P out
p (ωp,∆ω) = P in

p +
ℏωp

2π

∫ ωp+∆ω/2

ωp−∆ω/2

dω

(
np(ω) +

1

2

)
, (2.79)

Since we set κint = 0, the pump microwaves are reflected without any absorp-

tion/emission as expected.

Internal noise/losses are modeled as a second, internal thermal bath denoted as

ρι, modifying the total input state: ρin = ρα,p ⊗ ρι. The thermal occupancies of the

pump np and internal bath nι are usually assumed to be identical, as the temperature

variations at different locations in the device are neglected. However, in reality, the

internal bath may have a different noise temperature due, for example, to coupling

with two-level defects [95]. In the presence of internal losses, the output power can
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be obtained as

P out
p (ω0,∆ω) =P in

p +
ℏω0

2π

∫ ω0+∆ω/2

ω0−∆ω/2

dω (2.80)[
np(ω) +

1

2
+

κextκint (nι(ω)− np(ω))

(ω − ωp)2 +
(
κtot

2

)2
]
, (2.81)

with the second bath average thermal occupancy nι(ω) = (eβιℏω− 1)−1 (for a bosonic

bath) determined by the internal bath temperature βι = 1/kBTι.
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Chapter 3

The Cavity-embedded

Cooper Pair Transistor

The cavity-embedded Cooper pair transistor (cCPT) consists of a shorted quarter-

wave (λ/4) resonator in a co-planar wave guide geometry (the dynamics of which are

discussed in Chapter 2), and a Cooper pair transistor (CPT) at the voltage anti-node

(Fig 3.3). In this chapter, we will present a discussion of the open system dynamics

of the cCPT and establish the inherent non-linearity of this device. We will begin

with a brief review of the Josephson junctions, the component that makes the cCPT

a non-linear harmonic oscillator. We will then proceed towards describing a theoret-

ical framework for the cCPT. Since the CPT is designed to weakly interact with the

cavity, its influence on the latter can be treated perturbatively within the operator

scattering approach described in §2.3.2. This work thus serves as a prelude to further

investigations into utilising the inherent non-linearity of the cCPT for applications in

single-photon optomechanics, quantum measurements and low-frequency noise stud-

ies. The in-depth analysis will also validate the various assumptions and bias regimes

used in the experimental characterization of the cCPT following this model [14].

Section 3.1

Josephson Junctions

In this section, we will look at the physics of the superconducting tunnel junction that

embodies Josephson junctions. These concepts are well-studied since 1962 [96] as they

form the basis of many interesting superconducting circuits and qubit architectures.
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Hence this section only provides a brief, mostly qualitative review of the Josephson

junction dynamics. For a detailed background reading, refer to Joyez’s thesis [75] and

textbooks by Grabert and Devoret [74], and Tinkham [97].

3.1.1. Single Superconducting Tunnel Junction

V VCJ CJ RT

I

+

-

+

-Superconductor

Superconductor

Insulator ×
Figure 3.1: A single JJ consist of a thin insulator sandwiched between two supercon-
ducting electrodes. On the right, the equivalent lumped-element model is given.

A Josephson tunnel junction (JJ) consists of two superconducting electrodes (form-

ing a source and drain) separated by a thin insulating barrier, which forms a junction

capacitance CJ (Refer to Fig. 3.1). The charge transport occurs between the elec-

trodes via Cooper pair tunneling. The facilitating condition for the tunneling of a

single Cooper pair across the barrier is determined by the electrostatic energy, such

that

∆E =
Q2

2CJ

− (Q− 2e)2

2CJ

> 0, (3.1)

where Q = N × 2e is the charge on the junction capacitance, with N the number of

Cooper pairs that have hopped across the junction.

Solving the Schrödinger equation in terms of the Cooper pair wave functions in

the two superconducting electrodes, we can arrive at the expressions for current and

voltage at the Josephson junctions:

I = IC sin(φ) (3.2)

V =
Φ0

2π

δφ

δt
, (3.3)

where IC is the critical current of the junction, and Φ0 = h/2e is the magnetic flux

quantum, as described in §2.3.2. Combining the above expressions using the flux

relation Φ = L(φ)I(φ) [note Φ = (Φ0/2π)φ], we can associate an inductance L(φ)
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with the junction. The expression for L(φ) is obtained as

L(φ) =
LJ

cosφ
, (3.4)

with LJ ≡ (Φ0/2π)IC the Josephson inductance of the junction. The nonlinear com-

ponent originating from the JJs is evident from the above expression for inductance.

Similarly, the energy change associated with a tunneling process can be obtained from

Etun(φ) =
∫
IV dt, and is obtained as

Etun(φ) = −EJ cosφ, (3.5)

where we define another characteristic parameter of the junction, the Josephson en-

ergy, as

EJ ≡ Φ0IC/2π. (3.6)

The total Hamiltonian of the JJ exposed to an environment that controls the

electrostatic energy of the junction will thus contain two components: 1) the envi-

ronmental contribution to the Hamiltonian corresponding to an energy of Q̂2/2CJ ,

where Q̂ = N̂ × 2e corresponding to the total charge, and 2) the tunneling energy

described in Eq. (3.5) that leads to Cooper pair hopping between the electrodes. In

short,

HJJ = 4EC N̂2 − EJ cos φ̂, (3.7)

with EC defined as the charging energy EC = e2/2CJ , the electrostatic energy asso-

ciated with one electron. Analogous to the charge-flux conjugate variables described

in §2.3.2 using Eq. (2.39), we identify the two conjugate variables of the JJ as the

non-dimensional quantities N̂ = Q̂/2e and φ̂ = (2π/Φ0)Φ that are related via the

commutation relation

[φ̂, N̂ ] = i. (3.8)

Considering the sinusoidal nature of the Hamiltonian in Eq. (3.7), we further write

down the more suitable phase coordinate form eiφ̂, and the commutation relation is

expressed as follows: [
eiφ̂, N̂

]
= −eiφ̂. (3.9)

The usefulness of the phase coordinate eiφ̂ can be best observed using the action
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of the above commutator on the number state |N⟩:[
eiφ̂, N̂

]
|N⟩ = −eiφ |N⟩(

Neiφ̂ − N̂eiφ̂
)
|N⟩ = −eiφ |N⟩

N̂
(
eiφ̂ |N⟩

)
= (N + 1)

(
eiφ̂ |N⟩

)
. (3.10)

Thus eiφ̂ raises the number state by one Cooper pair, and e−iφ̂ lowers the number

state by one, resulting in:

eiφ̂ |N⟩ = |N + 1⟩ e−iφ̂ |N⟩ = |N − 1⟩ . (3.11)

Applying the above relations to the Hamiltonian Eq. (3.7), we may rewrite the

Hamiltonian of the JJ in the number basis as

HJJ = 4EC

+∞∑
N=−∞

N2|N⟩⟨N | − EJ

2

+∞∑
N=−∞

(|N + 1⟩⟨N |+ |N − 1⟩⟨N |) . (3.12)

Thus the eigenstates of the system characterized by the Hamiltonian in Eq. (3.7)

maybe considered as a coherent superposition of an infinite number of number states

|N⟩.
For completeness, we also mention the two crucial conditions that allow a JJ to

be operated in this interesting regime, as follows. Firstly, the charging energy EC ≫
kBT , such that the junction behaviour can be accessed reliably using an external

environment and is not exposed to thermal fluctuations. Secondly, the tunneling

resistance RT ≫ RK/4, where RK = h/e2 is the resistance quantum, also known as

the von Klitzing constant (already defined in §2.3.2). This ensures that the energy

uncertainty associated with the tunneling process is much smaller compared to the

charging energy of one Cooper pair. As a result, the lifetime due to tunneling given

by RTCJ is high enough to create a localized wave function that guarantees charging

effects in the junction.

3.1.2. Double Superconducting Tunnel Junctions

We will now focus our attention on the environmental variable discussed in 3.1.1, that

allows the control of electrostatic energy of JJ systems. One neat and clever way to

accomplish this is to introduce two JJs in series, that forms an island in between the
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V

CJ1

CJ2

Cg
Island

Vg

I1

I2

+

-

×

×

φ1

φ2

Figure 3.2: Two JJs in series forming an island that can be gate controlled via Vg.

junctions. The island can then be controlled using a gate voltage Vg through another

capacitor Cg (Refer Fig. 3.2).

The combined system now has two degrees of freedom defined by the phase coor-

dinates φ̂1 and φ̂2, with corresponding conjugate variables defined by N̂1 and N̂2. A

better coordinate system to use is the average phase coordinate ˆ̄φ ≡ (φ̂1 + φ̂2)/2 and

the corresponding half-difference coordinate δ̂φ ≡ (φ̂1− φ̂2)/2. We recognize the cor-

responding conjugate variables N̂tot and N̂ by applying the individual commutation

relation in Eq. (3.8), resulting in

[ ˆ̄φ, N̂tot] = [δ̂φ, N̂ ] = i, (3.13)

where N̂tot ≡ N̂1 + N̂2 is twice the average number of Cooper pairs having crossed

both the junctions, and N̂ ≡ N̂1 − N̂2 is the excess number of Cooper pairs on the

island.

The tunneling of a Cooper pair in or out of the island is facilitated only when

the electrostatic energy condition is met. The required energy cost is tunable via the

gate voltage Vg and has a periodicity of 2e.

We will use a qualitative argument to arrive at the Hamiltonian of this configura-

tion, in the limit of symmetric junctions, i.e., CJ1 = CJ2 = CJ , EJ1 = EJ2 = EJ and

Cg ≪ CJ . As discussed in 3.1.1, the Hamiltonian will consist of the tunneling energy

component as well as the contribution from the environment. The tunneling energy
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is that of the total of each junction given by

Htun = −EJ cos φ̂1 − EJ cos φ̂2

= −2EJ cos ˆ̄φ cos δ̂φ. (3.14)

The environmental component is determined by the electrostatic energy of the

island corresponding to the number of Cooper pairs in the island Nisl, and the ca-

pacitance of the island CΣ. Using charge conservation we determine the charge on

the island as Qisl = 2e × Nisl = 2e × (N1 − N2 − ng/2), where ng ≡ CgVg/e is twice

the number of Cooper pairs associated with the current through the gate capacitor

branch. Furthermore, the island sees the three capacitors in parallel resulting in

CΣ = 2CJ + Cg. Thus the electrostatic energy of the environment is

Henv =

(
2e(N̂ − ng)

)2
2CΣ

. (3.15)

We therefore arrive at the total Hamiltonian in the charge basis to be

H2JJ = 4EC

+∞∑
N=−∞

(
N − ng

2

)2
|N⟩⟨N |

− EJ cos φ̄
+∞∑

N=−∞

(|N + 1⟩⟨N |+ |N − 1⟩⟨N |) , (3.16)

with the charging energy Ec ≡ e2/2CΣ.

Similar to the single junction configuration discussed in 3.1.1, the eigenstate of the

combined system will have a coherent superposition of an infinite number of number

states |N⟩ but this time tunable by the external parameter of gate voltage Vg. As we

will see in subsequent sections, we are especially interested in the regime of EC > EJ ,

such that the transition between each number state is reduced. This allows us to

operate in a regime where the system is sensitive to minute gate charge fluctuations.

It is also worth noting that several variations of double Josephson junctions in-

volving varying operating regimes determined by EJ and EC have been looked at

theoretically, and realized experimentally with state-of-the-art applications. Perhaps

the most famous cousin to the above-mentioned system is the transmon qubit, which

is formed by two JJs in parallel and a shunted capacitance, and fabricated in the

EC < EJ regime [60]. Configured this way, the anharmonicity in the system can
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be exploited to model the system as a qubit where low-frequency charge noise is

also exponentially suppressed due to the smallness of EC . Some other notable varia-

tions that include JJ-cQED interactions are charge qubits, flux qubits, phase qubits,

quantronium, and fluxonium [76].

Section 3.2

cCPT-Transmission Line Dynamics1

Figure 3.3: Circuit schematic of the cCPT coupled to a pump/probe transmission
line via a coupling capacitor Cpc.

We have now setup the physics of the two crucial components of the cCPT, namely

the shorted quarter-wave microwave resonator (refer to §2.3.2) and the JJs (refer to

§3.1). In this section, we move on to describing a bipartite system formed by these

two components - the cCPT. As already mentioned, the cCPT consists of a λ/4-wave

resonator in a co-planar wave guide geometry and a CPT at its voltage anti-node.

We will present a first-principles derivation of the cCPT dynamics that compares to

actual devices to good approximation by allowing asymmetry in the JJs, given by

distinct junction capacitances CJ1 and CJ2, and critical currents IC1 and IC2 (refer

to Fig. 3.3).

We begin by following the same procedure as in §2.3.2; in particular, we write

down the cCPT-transmission line boundary conditions, which now accommodate the

current through the CPT at x = 0 (Fig. 3.3). This leads to two additional phase

degrees of freedom, one for each of the two JJs making up the CPT. The CPT-cavity

1We acknowledge that the bulk of this section is reproduced from a Journal of Applied Physics
publication by Kanhirathingal et. al. [13], with major contributions from Prof. Blencowe.
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coupling accomplished through the flux biased SQUID loop reduces the number of

independent phase coordinates from three down to two. We then proceed to write

down the CPT Hamiltonian, and further use adiabatic elimination of the CPT dy-

namics to expand the resulting cavity effective potential about a stable minimum.

The resulting anharmonic contributions from the CPT are highly tunable and very

strong; their effects can be observed even close to the few-photon limit [14].

3.2.1. Formulation of the Circuit Equations

Referring to Fig. 3.3, the cCPT consists of two JJs in series located at the voltage

anti-node of the cavity, with the electrostatic energy of the CPT island tuned via a

gate voltage Vg. The relevant coordinates for the cCPT system are the cavity phase

field ϕc(x, t) and the JJ phase coordinates φ1(2). Note that Eqs. (2.49), (2.52) and

(2.53) remain the same, while the boundary condition (2.51) at x = 0+ gets modified

to

− Φ0

2πLp

ϕ′p(x, t)
∣∣
x=0−

=Cpc

(
ϕ̈c − ϕ̈p

)∣∣∣
x=0

= − Φ0

2πLc

ϕ′c(x, t)|x=0+ +
Φ0

2π
CJ1φ̈1 + IC1 sinφ1

=− Φ0

2πLc

ϕ′c(x, t)|x=0+ +
Φ0

2π
(CJ2 + Cg) φ̈2 + IC2 sinφ2

− CgV̇g(t), (3.17)

where f ′(x, t) and ḟ(x, t) represent the spatial and temporal derivatives, respectively,

and recall Φ0 = h/2e is the flux quantum.

The associated SQUID loop constrains the phase coordinates through the relation

φ1(t) + φ2(t)− ϕc(0, t) ≈ 2πn+ 2π
Φext(t)

Φ0

, (3.18)

where Φext(t) is the externally applied flux bias, n is an arbitrary integer (set to

zero without loss of generality). For our cCPT device [14, 82], the magnitude of the

supercurrent Icir circulating through the cCPT loop is such that we can neglect the

resulting induced flux, i.e., (Lcl)Icir ≪ Φ0.

Equation (3.18) allows us to reduce the number of system coordinates by one, since

the average CPT coordinate φ̄ = (φ1 + φ2)/2 determines the cavity phase ϕc(x, t);

we will utilize the cavity coordinate ϕc(x, t) and the half-difference CPT coordinate
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δφ = (φ1 − φ2)/2 as the primary, independent variables. The equation of motion for

δφ can be obtained using the modified Eq. (3.17) together with Eqs. (2.53) (for i = p)

and Eq. (2.55). As we are primarily interested in deriving the charge sensitivity of

the device in this thesis, we only allow a time dependent gate voltage modulation and

neglect any time dependent magnetic flux modulation. We obtain:

Φ0CCPTCΣ

π
δ̈φ = (Cg +∆CJ)Cpc

∂V̂ in
p (0, t)

∂t
− (cCPT terms), (3.19)

where the junction capacitance asymmetry ∆CJ = CJ2 − CJ1, the CPT capacitance

CCPT = CJ1(CJ2 + Cg)/CΣ and the total island capacitance CΣ = CJ1 + CJ2 + Cg.

The ‘cCPT terms’ contribution in Eq. (3.19) is given by

[IC1 (Cg + CJ2)− IC2CJ1] sin (ϕ/2) cos (δφ)

+ [IC1 (Cg + CJ2) + IC2CJ1] cos (ϕ/2) sin (δφ) + CgCJ1V̇g,

where we have introduced a displaced cavity phase ϕ(t) to absorb the external flux

bias as follows:

ϕ(t) = ϕc(0, t) + 2πΦext/Φ0. (3.20)

The first term on the RHS of Eq. (3.19) represents the CPT’s direct coupling to the

pump/probe line:

V̂ in
p (0, t) = −i

∫ ∞
0

dω

√
ℏωZp

π
e−iωt × (1− iωZpCpc)

−1 ainp (ω) + h.c, (3.21)

to be contrasted with the more familiar indirect CPT coupling to the probe line via

the cavity. As we will see in the next steps, the former contribution appears as an

unwanted gate modulation, which can however be neglected as long as Cg ≪ CJ .

We may now similarly proceed as in Sec. 2.3.2 to employ the equation of motion

for the cavity phase ϕc(x, t), and further determine the Lagrangian and Hamiltonian

of the cCPT system. However, as this turns out to be a cumbersome task if no

approximations are made, we will first focus on the half-difference CPT coordinate

δφ, utilizing several valid approximations to simplify the analysis.

3.2.2. The Hamiltonian of the Cooper Pair Transistor

Instead of writing down the open cCPT Hamiltonian which contains contributions

from the cavity, CPT, and the pump/probe transmission line, we use the equation of

51



cCPT-Transmission Line Dynamics The cCPT

motion in Eq. (3.19) to first obtain the CPT contribution to the Lagrangian,

LCPT =

(
Φ0

2π

)2
2CJ1 (CJ2 + Cg)

CΣ

˙δφ
2

+2

(
EJ1 +

CJ1

CΣ

∆EJ

)
cos(ϕ/2) cos (δφ)

−2 [(Cg +∆CJ)EJ1 −∆EJCJ1]

CΣ

sin(ϕ/2) sin (δφ)

+
Φ0CJ1Cg

πCΣ

Vg
˙δφ− Φ0Cpc(Cg +∆CJ)

πCΣ

V̂ in
p (0, t) ˙δφ. (3.22)

The momentum conjugate to the half-difference CPT phase coordinate pδφ ≡ ∂L /∂ ˙δφ

can be derived from the above expression as

pδφ =

(
Φ0

4π

)2
2CJ1 (CJ2 + Cg)

CΣ

˙δφ+
Φ0

π

(
CJ1

CΣ

CgVg −
(Cg +∆CJ)

CΣ

CpcV̂
in
p (0, t)

)
.

(3.23)

Combining Eqs. (3.22) and (3.23) then yields the following CPT Hamiltonian using

HCPT = pδφ ˙δφ−L :

HCPT =

(
2π

Φ0

)2
1

8CCPT

(
pδφ −

Φ0

π

(
CJ1

CΣ

CgVg − Q̂in
p (0, t)

))2

− 2EJ cos (ϕ/2) cos (δφ) + 2δEJ sin (ϕ/2) sin (δφ) , (3.24)

with Q̂in
p (0, t) ≡ (Cg +∆CJ)CpcV̂

in
p (0, t)/CΣ, and the effective Josephson energy co-

efficients in the potential energy term defined as follows:

EJ =

(
EJ1 +

CJ1

CΣ

∆EJ

)
(3.25)

and

δEJ =
[(Cg + CJ2)EJ1 − EJ2CJ1]

CΣ

. (3.26)

Here, the Josephson energies of the junctions are defined as before, EJ1(2) = IC1(2)Φ0/2π,

and ∆EJ = EJ2 − EJ1.

To sum up, the corresponding quantized CPT operators obey the commutation

relations [δ̂φ, N̂ ] = i, where N̂ ≡ p̂δφ/ℏ, as already discussed in 3.1.2. In the more

suitable phase coordinate form with unit circle configuration space, the commutation
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relations take the form: [
eiδ̂φ, N̂

]
= −eiδφ. (3.27)

Equation (3.27) has a Hilbert space representation spanned by the eigenstates |N⟩ of
the operator N̂ :

N̂ |N⟩ = N |N⟩, N = 0,±1,±2, . . . (3.28)

i.e., N takes discrete, integer values which can be interpreted as the number of excess

Cooper pairs on the CPT island. Similarly, we can also define the gate polarization

number ng in single electron units as follows:

ng ≡
2Φ0CJ1Cg

ℏπCΣ

Vg =
2CJ1Cg

eCΣ

Vg. (3.29)

The CPT Hamiltonian in the number basis then becomes

HCPT = 4EC

+∞∑
N=−∞

[
N − 1

2

(
ng − N̂ in

p

)]2
|N⟩⟨N |

− EJ cos (ϕ/2)
+∞∑

N=−∞

(|N + 1⟩⟨N |+ |N − 1⟩⟨N |)

− iδEJ sin (ϕ/2)
+∞∑

N=−∞

(|N + 1⟩⟨N | − |N − 1⟩⟨N |) , (3.30)

where ϕ is defined in Eq. (3.20), the charging energy EC = e2/(8CCPT), and the

effective, polarization charge number noise operator is given by N̂ in
p (t) = 2Q̂in

p (0, t)/e.

Equation (3.30) reduces to the familiar form of the CPT Hamiltonian [refer to Eq.(3.16)]

in the limiting case of junction symmetry ∆EJ = ∆CJ = 0 and Cg ≪ CJ (with

CJ ≡ CJ1 = CJ2) [75]:

HCPT = 4Ec

+∞∑
N=−∞

(
N − ng

2

)2
|N⟩⟨N |

−EJ cos(ϕ/2)
+∞∑

N=−∞

(|N + 1⟩⟨N |+ |N − 1⟩⟨N |) ,

(3.31)

where EC ≈ e2/(2 · 2CJ).

The cavity’s direct coupling to the CPT appears as an unwanted gate modulation,

as can be inferred from Eq. (3.30). This can however be neglected as long as Cg ≪ CJ .
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Table 3.1: Numerical values of the parameters used in the simulations. The param-
eters are based on the experimental cCPT device.

Parameter Value
Length of microwave resonator l 5135 µm
Capacitance per unit length Cc 0.17 nF/m
Inductance per unit length Lc 0.41 µH/m
Coupling capacitance Cpc 7.95 fF
Bare cavity resonance ω0 5.76 GHz
CPT capacitance CCPT 90 aF
Gate capacitance Cg 6.27 aF
Charging energy EC/h 53.49 GHz
Josephson energy EJ/h 15.17 GHz
Asymmetry in Josephson energy δEJ 205 MHz

3.2.3. Adiabatic Elimination of the CPT Dynamics

We now look at the CPT dynamics utilizing the Hamiltonian dervied in Eq. (3.30)

under the limiting case EJ < EC . Specifically, we will assume the parameter values as

given in Table 3.1, and also take into account a small asymmetry in the JJ energies.

The accompanying simulations allow us to look at a truncated basis of the CPT

Hamiltonian.

Treating ϕ(t) and N in
p as static, commuting numbers, the Hamiltonian (3.30) can

be diagonalized assuming an approximate, finite dimensional Hilbert space truncation

to obtain the CPT energy eigenvalues. Figure 3.4 shows the CPT ground and first

excited energy eigenvalue characteristics within a gate polarization range 0 ≤ ng ≤ 2

and a displaced cavity phase range 0 ≤ ϕ ≤ 2π. Figure 3.4a plots the maximum

error of the CPT ground energy as a function of ϕ for different charge state basis

number truncations relative to a ten charge state basis truncation. As is evident

from this figure, a five charge state approximation gives negligible error, and will thus

be employed for all subsequent simulations and experimental characterization of the

cCPT.

Assuming small N in
p , we see that the CPT approaches charge degeneracy as ng →

±1 (Fig. 3.4b). As a result, the system has an increased probability of transitioning to

the first excited energy eigenstate in this limit. The experimental characterization [14]

also observes quasiparticle poisoning close to charge degeneracy, as a consequence of

lower electrostatic energies of odd electron-states as compared to the CPT charging

energy [98, 99]. Taking into account both these factors, we further limit our considered

gate polarization range to −0.9 ≤ ng ≤ 0.9. The CPT level splitting between the

ground and excited states over this modified range of bias space (ng, ϕ) is much
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Figure 3.4: (a) Maximum absolute error in the CPT ground state energy for different
charge state number-truncations as a function of the displaced cavity phase ϕ. The
maximum value is determined by scanning across the entire range of gate-bias ng.
(b) The ground and first excited energy band-structure of the CPT. Note that the
adiabatic approximation may break down in the vicinity of charge degeneracy: ng =
±1. (b) Energy splitting between the ground and first excited state in the vicinity
of charge degeneracy. For |1 − ng| ≥ 0.1, the adiabatic approximation holds since
the energy splitting is much greater than the characteristic frequencies of the system.
The parameter values used for these simulations are provided in Table 3.1.
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larger than the other characteristic frequencies of the system, namely the bare cavity

fundamental mode frequency and similar drive frequency (≈ 5.76 GHz), and the gate

modulation frequency ωg (∼ tens of MHz) (Fig 3.4c). We thus impose the valid and

essential approximation going forward to the effect that if the cavity ‘dressed’ CPT is

initially in its lowest energy eigenstate with energy E
(0)
CPT, it will remain in this state

for the duration of the measurement, evolving adiabatically.

3.2.4. Effective Cavity Dynamics

The adiabatic elimination of the CPT from the total Hamiltonian dynamics effec-

tively replaces the Hamiltonian (3.30) by its ground state energy E
(0)
CPT, which can

subsequently be used to obtain the cavity phase equation of motion counterpart to

Eq. (3.19). Invoking the wave equation (2.49) and boundary condition (3.17), we

arrive at

ϕ′c(0
+, t)− CCPT

Cc
ϕ′′c (0

+, t)− Lc

Lp

ϕ′p(0
−, t)−

(
2π

Φ0

)2

Lc
∂E

(0)
CPT

∂ϕc

= −2πLcCgCJ1

Φ0CΣ

V̇g.

(3.32)

We identify the above expression as the modified boundary condition at x = 0 cou-

pling the cavity and pump/probe transmission line, and including the dressed CPT

contribution as a perturbation [c.f. Eq. (2.51)]. We may now follow the same oper-

ator scattering method steps as carried out for the bare cavity case in Sec. 2.3.2 to

obtain the renormalized resonant cavity fundamental frequency. Before deriving this

explicitly, we first simplify Eq. (3.32) by renormalizing the bare cavity Hamiltonian

(2.64), which now has an effective potential given by

Veff = (Φ0/2π)
2 ϕ2

0/2L0 + E
(0)
CPT(ϕ0), (3.33)

restricted to the fundamental phase coordinate mode ϕ0, where L0 = 8Lcl/π
2 is the

corresponding fundamental mode inductance.

The CPT introduces anharmonicity to varying orders when expanded about the

equilibrium point ϕ̄0(ng,Φext) obtained through the condition,((
Φ0

2π

)2
ϕ0

L0

+
∂E

(0)
CPT

∂ϕ0

)∣∣∣∣∣
ϕ̄0

= 0. (3.34)
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As is evident in Fig 3.5a, this shift in equilibrium is much less than one in magnitude

over the considered (ng,Φext) bias range, and can be neglected. This simplifies the

dependence ϕ(ϕc,Φext) to ϕ(Φext) in Eq. (3.20).

Following the same operator scattering method steps as utilized for the bare cavity

case (§2.3.2), we can now derive the tunable resonance of the cCPT, but now with

the boundary condition (3.32) replacing the simpler, bare cavity boundary condition

(2.51). For a sinusoidal gate modulation frequency ωg ≪ ω0 and amplitude δn
(0)
g ≪ 1,

the term in the RHS of Eq. (3.32) can be neglected. Under these assumptions, we

proceed by Taylor expanding the term ∂E
(0)
CPT/∂ϕc in Eq. (3.32) to obtain:

ϕ′c(0, t)−
CCPT

Cc
ϕ′′c (0, t)−

Lc

Lp

ϕ′p(0, t) (3.35)

−
(
2π

Φ0

)2

Lc

∞∑
n=1

n∑
k=0

1

n!

(
n

k

)
ϕc(0, t)

k × ∂n+1E
(0)
CPT

∂ϕk+1
c ∂nn−k

g

∣∣∣∣∣
ng=n

(0)
g ,ϕc=0

δnn−k
g = 0, (3.36)

where
(
n
k

)
is the binomial coefficient, ng(t) = n

(0)
g + δng(t) and the gate modulation

δng(t) = δn
(0)
g cos (ωgt)−N in

p (t).

Utilizing the operator scattering solutions in Eq. (2.55) for the cavity phase field

and in Eq. (2.56) for the pump phase field, we arrive at the following modified

pump-cavity coupled equation in frequency space:{
cos (ωl/vc)− ωZc

[
Cpc

1 + (ωZpCpc)
2 + δC

]
sin (ωl/vc)

}
a→c (ω, t0)

− i

(
ω
√

ZcZpCpc

)2
1 + (ωZpCpc)

2 sin (ωl/vc) a
→
c (ω, t0) = −ie−iω(t0+l/vc)

ω
√

ZpZcCpc

1− iωZpCpc

ainp (ω)

− Zc

(
2π

Φ0

)2 ∞∑
n=2

A(n,2)
∂(n+1)E

(0)
CPT

∂ϕ2
c∂n

(n−1)
g

∣∣∣∣∣
ng=n

(0)
g ,ϕc=0

+O(ϕ2
c), (3.37)

where we have limited the expansion to first order in ϕc, leaving out anharmonic

terms. As for the bare cavity case [Eq. (2.57)], the renormalized frequency due to the

CPT and transmission line coupling can be obtained by equating the terms in curly

brackets to zero. However, the resonant frequency shift contains an extra term due
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Figure 3.5: (a) The shift in the equilibrium point corresponding to the minimum
effective potential energy as function of ng and Φext. (b) The smallness of the ratio
of cavity inductance to the CPT inductance ensures that the CPT weakly perturbs
the cavity. (c) Resonance frequency shift of the cavity across the tunable bias range.
(d) Plot of zero-point fluctuations as a function of ng and Φext. The shift from the
original value is negligible for our system.
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to the shifted δC in the above expression given by

δC = CCPT − ω−2
(
2π

Φ0

)2
∂2E

(0)
CPT

∂ϕ2
c

∣∣∣∣∣
ϕc=0

. (3.38)

The LHS of the second line corresponds to the cavity damping rate due to coupling

to the transmission line, the RHS of the second line describes the transmission line

noise, and the third line gives the gate voltage and noise modulations of the cavity

frequency, where the coefficient A(n,2) takes the form

A(n,2) =
1

2π

∫ +∞

−∞
dt

∫ ∞
0

dω′√
ωω′

ei(ω−ω
′)(t−t0−l/vc) δng(t)

n−1

(n− 1)!
sin (ω′l/vc) a

→
c (ω′, t0).

(3.39)

As before, defining the dimensionless frequency as ω̃ ≡ ωl/vc and the small di-

mensionless CPT-transmission line coupling parameter ξ = vcCpcZc/l = Cpc/Ccl≪ 1,

we can express the term in curly brackets as

cos ω̃ −
[

ω̃ξ

1 + (ω̃ξ)2
+ ω̃

CCPT

Ccl
− ω̃−1

Lcl

LCPT

]
sin ω̃, (3.40)

with the CPT inductance LCPT defined as

L−1CPT =

(
2π

Φ0

)2
∂2E

(0)
CPT

∂ϕ2
c

∣∣∣∣∣
ϕc=0

=
∂2E

(0)
CPT

∂Φ2
ext

, (3.41)

utilizing Eq. (3.20). Setting expression (3.40) to zero, and in the limit where the CPT

weakly perturbs the cavity fundamental resonance, i.e., CCPT/Ccl and Lcl/LCPT ≪ 1

(Fig 3.5b), we obtain the following expression for the tunable resonance:

ω0(ng,Φext) ≈
πvc
2l

[
1− Cpc + CCPT

Ccl
+

(
2

π

)2 Lcl

LCPT

]
. (3.42)

The simulated frequency response as per this model for the parameters given in

Table 3.1 is plotted in Fig. 3.5c.
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3.2.5. The cCPT Hamiltonian

Let us now look at the Hamiltonian of the cavity-CPT system that explicitly shows

the inherent nonlinearity of this system. As shown in Eq. (3.33), the higher terms in

the expansion of the effective potential Veff give rise to anharmonicity in the combined

cCPT system which takes the form:

Veff =

(
Φ0

2π

)2
ϕ2
0

2L0

+
∞∑
n=2

n∑
k=2

1

n!

(
n

k

)
ϕk
0δn

n−k
g

∂nE
(0)
CPT

∂ϕk
0∂n

n−k
g

∣∣∣∣∣
ng=n

(0)
g ,ϕ0=0

, (3.43)

where renormalization and having the minimum potential at ϕ0 ∼ 0 lead to vanishing

terms for k = 0 and 1, respectively. Expression (3.43) also involves an expansion in

the gate polarization variation δng in order to account for gate voltage modulations

relevant for electrometry (discussed in Chapter 5). The total Hamiltonian is

HcCPT =

(
2π

Φ0

)2
p20
2C0

+ Veff, (3.44)

where C0 is renormalized to C0+CCPT following the renormalized frequency expression

in Eq. (3.42). As for the bare cavity case [see Eq. (2.64)], the phase operator of the

fundamental cavity mode is expressed in terms of the photon creation/annihilation

operators as follows: ϕ0 = ϕzp

(
a0 + a†0

)
, with the zero-point fluctuations given by

[c.f. eq. (2.65)]

ϕzp =

(
2π

Φ0

)√
ℏ

2C0ω0

. (3.45)

The generalized nonlinear cCPT Hamiltonian thus becomes

HcCPT = ℏω0(ng,Φext)a
†
0a0 +

∞∑
n=3

n∑
k=2

Vn,k

(
a0 + a†0

)k
, (3.46)

where the resonance shift is tunable as derived in Eq.(3.42) and the coefficient Vn,k

can be expressed as

Vn,k =
1

n!

(
n

k

)
ϕk
zpδn

n−k
g

∂nE
(0)
CPT

∂ϕk∂nn−k
g

∣∣∣∣∣
n
(0)
g ,2πΦext/Φ0

. (3.47)

We now make a few remarks about the Hamiltonian (3.46). First, the tunability

of the cavity frequency results in the tunability of the zero-point fluctuations of the
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cavity phase coordinate itself, i.e., ϕzp = ϕzp(ng,Φext). Typical applications of similar

devices generally operate in the high-photon limit, where the relatively small varia-

tions in the zero-point motion of the cavity do not have a substantial effect. In the

low-photon limit however, the tunability in the zero-point fluctuations can become

relevant, as this may potentially be utilized to access stronger quantum fluctuation

regimes. For our device, the range of variation of ϕzp is found to be ∼ 5% in the

tunability range of our interest (Fig 3.5d).

Second, the experimental characterization is typically conducted in the limit of

small gate modulation magnitude |δng| ≪ 1. Additionally, the noise N in
p originating

via the probe coupling to the CPT can also be neglected as long as Cg ≪ CΣ. We

may thus restrict the potential energy expansion in (3.46) to first order in δng. The

simplified form becomes

HcCPT = ℏω0(ng,Φext)a
†
0a0 +

∞∑
n=3

Vn,n

(
a0 + a†0

)n
+
∞∑
n=3

Vn,n−1

(
a0 + a†0

)n−1
. (3.48)

The above Hamiltonian can be engineered as per the specific application by fixing

the drive frequency and power, as well as via gate and flux modulations. For instance,

the cCPT can be selectively setup to perform as an ultra-sensitive (both linear and

nonlinear) electrometer, magnetometer, parametric amplifier etc. We will briefly look

at some of these interesting regimes below.

Rotating Wave Approximation: We may use a rotating wave approximation

(RWA) to simplify the Hamiltonian to contain only terms leading to an unchanged

photon number in the cavity. In particular, when we transform to the rotating frame

of the pump frequency ωp driven near the fundamental resonance ω0, contributions

leading to changing photon number rapidly oscillate in this frame and can thus be

neglected. For simplicity, we will restrict to the cases valid up toO(ϕ4
0). Consequently,

we arrive at the simplified Hamiltonian of the cCPT device:

HcCPT = ℏ (ω0 + gδng) a
†
0a0 + ℏ

(
K

2
+ gKδng

)
a†20 a20, (3.49)

where the renormalized resonance frequency is given by

ω0(ng,Φext)→ ω0(ng,Φext) +
ϕ4
zp

2ℏ
∂4E

(0)
CPT

∂ϕ4

∣∣∣∣∣
(n

(0)
g ,2πΦext/Φ0)

, (3.50)
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the gate polarization coupling g can be derived as

g =

[
ϕ2
zp

ℏ
∂3E

(0)
CPT

∂ϕ2∂ng

+
ϕ4
zp

2ℏ
∂5E

(0)
CPT

∂ϕ4∂ng

]∣∣∣∣∣
(n

(0)
g ,2πΦext/Φ0)

, (3.51)

the Kerr nonlinear contribution to the cavity is determined by the Kerr coefficient K:

K =
ϕ4
zp

2ℏ
∂4E

(0)
CPT

∂ϕ4

∣∣∣∣∣
(n

(0)
g ,2πΦext/Φ0)

, (3.52)

and Kerr-enhanced charge sensing can be achieved using the gate polarization gK

gK =
ϕ4
zp

4ℏ
∂5E

(0)
CPT

∂ϕ4∂ng

∣∣∣∣∣
(n

(0)
g ,2πΦext/Φ0)

. (3.53)

In this thesis work, we will focus on the gate polarization coupling g given in Eq.

(3.51) in the few-photon limit. Details about the applicability of the cCPT as an

ultra-sensitive, quantum-limited electrometer in this regime is presented in chapter

5. Kerr nonlinear applications of the cCPT are discussed extensively in Brock’s [65]

and Thyagarajan’s theses.

Section 3.3

Experimental Realization

The experimental realization of the cCPT sample is presented in the form of a sum-

mary in this section. The subsection 3.3.3 provides extraction of the parameters of

the cCPT considering its two-dimensional tunability, and a comparison with the the-

ory. For a thorough review of the fabrication and the experimental characterization

of the cCPT, consult the theses by Juliang Li [82] and Ben Brock [65], respectively.

3.3.1. Fabrication

The cCPT sample fabrication was primarily carried out by Juliang Li, a former gradu-

ate student of the Rimberg Lab. The λ/4-wave resonators were fabricated by William

Braasch, another former graduate student, under the guidance of McDermott’s Lab

in the University of Wisconsin.

The sample images of the cCPT are shown in Fig. 3.6. The λ/4-wave resonator is

62



Experimental Realization The cCPT

Figure 3.6: cCPT sample images as reported by Brock et al. [14]

a Nb cavity with a coplanar waveguide geometry and is fabricated using photolithog-

raphy. Since Nb becomes superconducting at 9.2 K, the cavity displays a high internal

quality factor at cryogenic temperatures due to reduced resistive losses. As shown in

this figure, the CPT connects the voltage antinode and the ground plane of the cavity

and is formed using two JJs in series. The CPT fabrication involves ebeam lithogra-

phy and a double layer shadow evaporation with Al acting as the superconductor and

Al2O3 as the tunnel barrier. The tunability is induced via controlling the charge and

flux of the environment. The island charge is tuned via a gate voltage Vg through a ca-

pacitance Cg. The cavity phase and the junction phases are coupled via an L-shaped

SQUID loop, which is controllable via an external flux, introduced using another

coplanar line placed perpendicular to the cavity to reduce cavity losses induced by

the current line. The input/output transmission line couples to the cavity through an

interdigitated capacitor Cpc (labeled Cc in the figure). In order to achieve impedance

matching, all the coplanar lines are designed to have a characteristic impedance of 50

Ω.

3.3.2. Measurement Setup

The circuit diagram enabling reflection measurements are shown in Fig. 3.7. The

input and outlines are separated via a microwave circulator. The attenuators placed

at different temperature stages of the dilution refrigerator ensure high SNR of the

input signal entering the cavity. The output signal is amplified at multiple stages,

with a HEMT as the first-stage amplifier. Finally, separate rf lines for gate and flux

allows for the modulated-response of the cavity.
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Figure 3.7: Circuit schematic used for the reflection measurements of the cCPT, taken
from [14].

3.3.3. cCPT Characterization

In order to compare the validity of our model presented in §3.2, we now characterize

the observed tunable resonant frequency response of the cCPT. Note that we may

also arrive at an identical expression for ω0(ng,Φext) [see Eq.(3.42)] of the cCPT using

a simplified lumped-element model under the limits of CCPT/C0, L0/LCPT ≪ 1. In

this case, the Josephson inductance of the cCPT is modeled as a parallel addition

to the lumped-element model of the microwave resonator considered in §2.2 [see Eq.

(2.23)], as follows.

Equation (2.15) for the cavity resonant frequency can be reexpressed in terms

of a renormalized total capacitance C0 → C0 + Cpc where we consider the fun-

damental mode Cn = C0. Hence, the addition of the CPT shifts the resonance

via an effective capacitance CcCPT = C0 + Cpc + CCPT, and an effective inductance

L−1cCPT = L−10 + L−1CPT. Consequently, under the conditions CCPT/C0, L0/LCPT ≪ 1,

the cCPT resonant frequency is renormalized to

ωcCPT ≈ ωλ/4

(
1 +

L0

2LCPT

− Cpc + CCPT

2C0

)
, (3.54)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: (a) Reflection coefficient measured as a function of flux current. This
data is used to calibrate the flux offset by identifying the maxima as Φext = 0 Φ0 and
minima as Φext = 0.5 Φ0. (b) Reflection coefficient measured as a function of gate
voltage at Φext = 0 Φ0. Gate offset is identified from the minimum of the resonant
frequency value, and the periodicity = 2e. The quasiparticle poisoned regime is
also visible in this plot as indicated by the suddent switching from the near-quadratic
response of the cCPT. (c) Extracted resonant frequency as a function of gate and flux.
(d) Fit for the resonant frequency data in (a) using the theoretical model discussed
in §3.2. (e) Extracted value for external damping rate as a function of gate and flux.
(f) Extracted values for the internal damping rate. The analysis adopts the reflection
coefficient model presented in Eq. (2.37).
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Parameter Value
Length of microwave resonator 5135 µm
Resonant frequency of quarter-wave resonator ωλ/4 5.81 GHz
Resonant frequency of loaded quarter-wave resonator ω0 5.76 GHz
Cavity capacitance per unit length C 1.7e-10 F/m
Cavity inductance per unit length L 4.14e-07 H/m
Cavity capacitance C0 0.44 pF
Cavity inductance L0 1.72 nH
Coupling capacitance Cpc 7.95 fF
Charging energy EC 53.5 ± 1.44 GHz
Effective Josephson energy EJ 15.17 ± 0.511 GHz
Josephson energy asymmetry ∆EJ 0.2 ± 0.0187 GHz
Gate capacitance Cg 0.006 fF
cCPT capacitance CCPT 0.09 fF

Table 3.2: Extracted values for the parameters of the cCPT following the experi-
mental characterization and analysis adapting an asymmetric model of the cCPT.

where the mode capacitance Cn = Ccl/2 + Cpc and the mode inductance Ln =

8Lcl/(2n+ 1)2π2, as defined in Eq. (2.63).

By measuring the reflection coefficient S21(δω) of the cCPT as a function of gate

and flux, and further using the impedance-mismatched model for S̃21 [see Eq. (2.37)],

we first extract the resonant frequency, internal damping rate and external damping

rate of the cCPT’s response to gate and flux. The relevant parameters shown in Table

3.2 are then extracted by applying the model for the resonant frequency in Eq. (3.54).

A 5-charge truncated basis is used for this analysis to extract the inductance LCPT

[see Fig. 3.4a]. The analysis is done separately for the symmetric and asymmetric

models of the cCPT (i.e., considering ∆CJ ̸= 0 and ∆EJ ̸= 0).

The results of this analysis are plotted in Fig. 3.8. The deviation of the cCPT

characteristics in an experimental setting when compared to our theoretical model

occurs due to two limiting factors. One important feature to take note of is the

switching of the resonance to the odd parity due to quasiparticle poisoning. In the

particular sample used for this analysis, the quasiparticle poisoning begins to domi-

nate at ng = 0.65. As a result, the data points over the regime |ng| ≤ 0.65 was used

for checking the model validity, and the regime |ng| ≥ 0.7 is typically inaccessible at

most bias points. Moreover, notice the variation in the internal and external damping

rates over varying bias points. This deviation occurs due to increased low-frequency

noise in the resonant frequency of the cCPT in the flux and charge sensitive regimes,

i.e., near Φext = 0.25 Φ0 and ng → 1, respectively. These fluctuations are averaged
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out in reflection measurements by the VNA causing the measured damping rates to

increase from the original values. Analysis that takes these fluctuations into account

is discussed in Ref. [14]. Stabilization of such frequency fluctuations is important

to achieve ultra-sensitive measurements using the cCPT; this can be achieved using

feedback techniques as reported in the next chapter.
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Chapter 4

Environmental

Noise Decoupling1

We concluded the previous chapter pointing towards the manifestation of the low-

frequency noise in the experimental characterization of the cCPT. The complete noise

characterization of this charge- and flux-tunable microwave cavity reported in Ref.

[14] addresses the role of the intrinsic noise in charge/flux bias leading to resonant

frequency fluctuations, especially in regions where the cCPT can operate as a highly

sensitive electrometer/magnetometer. By singling out bias regions where the cCPT

is maximally sensitive to charge/flux fluctuations, measurements detected typical

charge and flux noise spectral densities of the form Sqq ∝ 1/f e2/Hz, and SΦΦ ∝√
1/f Φ2

0/Hz, respectively.

While there exist several detection techniques for the measurement of such low-

frequency noise [100, 67, 101], methods to suppress these fluctuations in real-time

can lead to major breakthroughs in several areas of research, ranging from charge de-

tection to applications in qubit metrology [35, 39, 102]. In this chapter, we report a

reduction of these resonant frequency fluctuations induced by the intrinsic charge/flux

noise on the cCPT. The scheme to achieve this reduction follows the well-established

technique of Pound-Drever-Hall (PDH) locking, extensively used in laser optics to

stabilize laser sources during cavity reflection measurements [66]. As mentioned in

the introduction, such a study is of two-fold importance to the general circuit-QED

audience. Firstly, as the cCPT is specifically designed to be a highly sensitive elec-

trometer/magnetometer, it is an ideal candidate for understanding and suppressing

1We acknowledge that a good volume of this chapter is reproduced from a publication by Kan-
hirathingal et. al. [18], currently under peer review.
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the associated effects of such 1/f -noise commonly found in these devices. Secondly,

stabilizing the resonant frequency fluctuations can elevate the cCPT into a superior

charge sensing regime compared to previously reported results for the same cCPT

device [15].

The chapter layout is as follows. First, in Sec. 4.1, we present a brief review

of the Pound locking technique which can be implemented to detect low-frequency

noise in microwave resonators. In §4.2, we then describe the basic circuit scheme

that suppresses the resonant frequency fluctuations caused by intrinsic charge/flux

noise in tunable microwave cavities, along with a theoretical model using cavity field

operators. In this same section, we will also discuss the scheme for the specific case of

the cCPT, with particular consideration given to its Kerr-nonlinearity, as well as to

the two-dimensional parameter space spanned by gate and flux tunability. We next

provide the actual experimental setup in Sec. 4.3, discussing in detail the series of

steps to maximize the SNR at the single-photon level. Following this, we report the

results proving resonant frequency stabilization under feedback locking in Sec. 4.4.

In §4.5, the empirical limitations as well as potential improvements of our technique

are explored.

Section 4.1

Pound-Drever-Hall Locking

As in the previous chapters, this beginning section presents an overview of the topic

of interest. We will set up the concepts describing feedback techniques in the noise

characterization of resonators. In particular, we will look at the renowned technique of

Pound-Drever-Hall (PDH) locking, originally used in laser optics and further adapted

to noise measurements of microwave resonators.

4.1.1. Concept

Pound locking is a well-established technique in optics that ensures the frequency

stabilization of unstable laser sources by locking the signal to the resonant frequency

of a stable optical cavity. A conceptual discussion of the technique can be found in

Black et. al. [66]. Here, an unstable commercial laser source is stabilized to provide

a signal at the cavity resonance ω0 using a feedback mechanism. In essence, the idea

is to extract an error signal that can correctly track the sign and magnitude of the

deviation of the drive signal from resonance and utilize this dynamic information to
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correct for the net frequency shift. It relies on the fact that the reflected intensity,

for e.g., in a Fabry-Perot cavity, is minimum at resonance. As a result, the derivative

of reflected intensity with respect to the frequency, about the resonant frequency is

antisymmetric, i.e., ω < ω0 is negative and ω > ω0 is positive. The setup measures

and nullifies this variation which is fed back into the laser source, thus correcting the

signal frequency in real time.

In practice, the frequency variation required to extract info on the derivative of

reflected intensity is better achieved by phase modulating the input signal. Following

[66], for a cavity with reflection coefficient given by r(ω), the reflected power Pref =

P0 |r(ω)|2. Thus for a phase-modulated input beam,

Pref (ω + ωmβ cos(ωmt)) ≈ Pref(ω) + ωmβ cos(ωmt)
dPref

dω
, (4.1)

where the phase modulation θ = β cos(ωmt) modifies the frequency via ω = dθ/dt

such that ω → ω+ωmβ cos(ωmt). The sinusoidal features are determined by the phase

modulation amplitude β and the modulation frequency ωm. The second term in the

above expression thus oscillates at the frequency ωm and contains the quantity of our

interest, which is the derivative of the intensity dPref/dω. To extract this quantity, the

reflected beam is first directed to a photodetector to measure the reflected power. A

mixer then extracts the component at the modulation frequency which is proportional

to the derivative of reflected intensity, giving the error signal.

It is important to note that the rate at which the frequency is modulated provides a

varying error signal in the regimes ωm ≫ κtot and ωm ≪ κtot. This can be understood

in terms of interference of the input signal before entering the cavity with the leaked

signal from the cavity. If we vary the frequency slowly, the delayed signal after

entering the cavity interferes with the instantaneous input beam of some frequency

within the line width of cavity, creating a non-ideal scenario. For faster modulation,

the signal produces sidebands about the carrier frequency well outside the line width

of the cavity. This ensures the sidebands do not enter the cavity, thus making the

detection easier by separating the two tones and resulting in a much sharper and

linear response. Demonstration of both these regimes are provided in the following

subsection.
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4.1.2. Pound Locking in Superconducting Microwave Resonators

Unlike laser optics, measurements in superconducting microwave resonators pose an

inverse issue. These resonators are susceptible to higher internal losses, in general

caused due to two-level system defects on the substrate. Coupling to such fluctuating

systems results in jitter of the resonant frequency of the resonator. Reflection and

transmission measurements are mostly done using vector network analyzers (VNAs),

where the time span of these measurements are usually larger than the typical fluc-

tuation time scales, leading to inaccuracy in the measured damping rates. Numerous

techniques are available in the literature to look into such frequency noise generated

in the superconducting resonators [100, 67, 101].

One scheme [67] that has proven incredibly efficient in the detection of these fluc-

tuations is an adaptation of the Pound locking technique. In this case, the extracted

error signal is fed back into a PID controller that corrects the drive frequency such

that it continuously tracks the fluctuating resonant frequency of the resonator. A few

advantages of using such a scheme to characterize low-frequency noise are

• The resonant fluctuations can be tracked in a time scale much faster than typical

measurements that use averaged-VNA data or a spectrum analyzer to extract

the noise components.

• The efficiency of many cavity-based detectors rely on a steady input tone exactly

at the cavity resonance. A real time tracking of the fluctuating resonance (which

otherwise affects the efficiency) can thus be helpful towards building detectors

with better performance.

• Detection occurs at the phase modulation frequency (typically MHz) which is

less susceptible to vibrational and other external noise factors. On the other

hand, phase-locked loops operating near the resonant frequency range (typically

GHz) can couple to such external noise and limit the characterization of internal

noise parameters.

The thesis by Burnett [103] provides an insightful background into theory and a

detailed discussion of this setup in microwave systems. Following the analysis in this
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reference, we obtain the expression for the error signal as

Verr ∝
(
Re[S21(ωc)]

{
Im[S21(ωc + ωm)] + Im[S21(ωc − ωm)]

}
− Im[S21(ωc)]

{
Re[S21(ωc + ωm)] + Re[S21(ωc − ωm)]

})
, (4.2)

with S21(ω) representing the reflection coefficient of the cavity at frequency ω.

(a) (b)

(c)

Figure 4.1: (a) Simulated X quadrature as a function of carrier signal for varying
modulation frequencies. (b) Corresponding simulated Y quadrature. (c) Parametric
plot of X and Y quadrature in phase space. Parameter values: resonant frequency
ω0 = 5.756 GHz, internal quality factorQint = 104, external quality factorQext = 5000
and β = 1.8.

The above expression indicates the response of the error signal for different mod-

ulation frequency regimes as mentioned in 4.1.1. We observe that for off-resonance

values, the real coefficient of S21(ω) is one and the imaginary coefficient is zero. Near

resonance, the imaginary components are non-zero except exactly at resonance. As a

result, in the configuration where ωm ≫ κtot, the error signal is a monotonic function

near resonance and zero elsewhere. Figure 4.1b simulates this response. Clearly, at a

higher modulation frequency, the response is sharper and linear as compared to lower

values. Also, note the presence of two other peaks at values ωc = ω0 ± ωm which
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can accidentally be detected during feedback operation. However, the slopes in these

regions is opposite to those of near ωc = ω0. Hence once the feedback polarity is

accurately fixed, these regimes are not expected to interfere with the operation.

As a stepping stone towards understanding the operation, limitations and acces-

sibility of the scheme presented in the subsequent sections, we first studied the noise

characteristics of the cCPT under the standard Pound locking scheme. For complete-

ness, the circuitry that was used for the detection is given in Fig. 4.2. We will,

however, refrain from any detailed discussions of this measurement in this section to

remove redundancy.
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Figure 4.2: Circuitry used for the noise characterization of the cCPT following
the standard Pound locking setup. The measurement followed the description given
in [103]. The majority of these measurements were carried out at Google’s Quantum
Computing Hardware Lab in Santa Barbara.
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Figure 4.3: Basic feedback-based circuit scheme to stabilize cavity resonant frequency
in the presence of intrinsic bias fluctuations δbint(t). The phase-modulated input
signal encodes the magnitude of bias fluctuations after reflection from the cavity.
By continuously tracking and correcting for the fluctuations in the component of
P(ω−kωm, δbint) oscillating at frequency ωm, we stabilize the resonance via an applied
δbapp(t).

Section 4.2
Feedback Stabilization of

Microwave Cavities (Theory)

We now move on to the major focus of this chapter, which is the feedback stabilization

of the resonant frequency in tunable microwave cavities. This section will begin with

a description of the generalized scheme using a field operator approach; we will then

look at the details of how to apply the scheme to a two-dimensional tunable cavity –

the cCPT.

4.2.1. Concept

We will begin with a tunable cavity at resonance ω0(b), displaying a linear reflection

coefficient S11(∆), with tunability induced via parameter b, and detuning defined by

∆ = ω−ω0(b). The cavity undergoes resonant fluctuations due to undesired coupling

with other systems in its environment. Let us assume that these fluctuations are

dominated at any time by the intrinsic fluctuations in the bias parameter b(t) =
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b0+δbint(t). The exact origins of these fluctuations are not of relevance in the current

work. However, we are especially interested in low-frequency noise where the power

spectral density (PSD) of the bias noise, given by Sbb(ω), is predominantly 1/f in

nature. As detailed below, Fig. 4.3 then provides a feedback-based scheme to stabilize

the resonant frequency fluctuations by effectively decoupling the low-frequency bias

fluctuations from the cavity.

The dashed box in Fig. 4.3 represents our sample, containing a quarter-wave mi-

crowave resonator tunable via the parameter b. The cavity undergoes reflection mea-

surements and is connected to the external drive-pump/ measurement-probe trans-

mission line via a coupling capacitor Cpc. Due to the intrinsic noise δbint(t) (typically

charge/flux noise), the apparent length of the cavity fluctuates and destabilizes the

resonant frequency from its desired point of operation ω0(b0), where we take b0 to

be the bias magnitude at the sample at time t0. The cavity is driven using a carrier

signal ωc = ω0(b0) phase modulated with a modulation amplitude β and modulation

frequency ωm several times larger than the cavity linewidth κtot. As we are particu-

larly interested in cases where the cavity is driven at very low pump powers, we will

follow the operator scattering approach used in §3.3 to describe the resulting system

dynamics.

Input Field : Treating the system semiclassically, the driving signal is described

using ⟨ainp (t)⟩, where ainp (t) is the annihilation operator of the transmission line input.

Phase modulation of the carrier signal transforms the drive as below:

⟨ainp (t)⟩ =
√

P in
p

ℏωc

e−i(ωct+θc)

→
√

P in
p

ℏωc

k=∞∑
k=−∞

Jk(β)e
−i(ωc+kωm)t,

(4.3)

where we have applied the Jacobi-Anger expansion to the exponential of the pump

phase θc = β sin(ωmt), with Pin the average pump power, and where Jk is the Bessel

function of the first kind. In Fig. 4.3, we denote the input signal using its spectral

components as ainp (ω − ωc, kωm). We have adopted this notation everywhere in the

figure to indicate that the signal is centered around the reference frequency described

in the first argument. Thus for the case of ainp (ω − ωc, kωm) the signal is centered

around ωc, and contains sidebands at the second argument kωm.

Output Field Response : Since the sidebands lie outside the cavity linewidth,
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the phase of the delayed reflected signal at ωc interferes with these sideband signals

after exiting the cavity. The steady-state system dynamics can be obtained from

the quantum Langevin equation, expressed in the time domain as compared to the

Fourier domain one in Eq. (2.60):

ȧ(t) = −iω0(t)a(t)−
κtot

2
a(t)− i

√
κexta

in
p (t), (4.4)

where a(t) is the cavity annihilation operator, and κtot = κint + κext is the total

damping rate, with κint and κext the internal and external damping rates, respectively.

Assuming δbint(t)≪ b0, the fluctuating resonance ω0(t) = ωc + δω0(t) takes the form

ω0(t) = ωc + gbδbint(t), (4.5)

where we define gb as the coupling coefficient to the bias parameter b: gb = (dω0/db)|b=b0
.

Using the transformation ã(t) = a(t) eiδω0t [104] corresponding to the rotating frame

defined by the fluctuations δbint(t), and the solution ansatz ã(t) = α̃(t)exp[−iωct −
κtott/2], we obtain for ⟨a(t)⟩:

⟨a(t)⟩ = −i
√

P in
p κext

ℏωc

k=∞∑
k=−∞

Jk(β)e
−i(ωc+kωm)t

i[δω0(t)− kωm] + κtot/2
, (4.6)

where we neglect the contributions from the term containing dδω0/dt as (dδω0/dt)∆t≪
δω0(t) assuming a nanosecond time scale for ∆t (corresponding to the shortest time

scale given by inverse of the cavity resonant frequency), compared to slowly chang-

ing fluctuations in resonance. Next, we obtain the output field ⟨aoutp (t)⟩ using the

input-output relation aoutp (t) = ainp (t)−
√
κexta(t) [see Eq. (2.67)]:

⟨aoutp (t)⟩ =
√

P in
p

ℏωc

k=∞∑
k=−∞

rk(t)Jk(β)e
−i(ωc+kωm)t, (4.7)

where rk(t) can be written as,

rk(t) =
kωm − δω0(t) + i(κint − κext)/2

kωm − δω0(t) + i(κint + κext)/2
. (4.8)

Notice that rk(t) takes the general form of a reflection-coefficient at ωc + kωm, but

is slowly time-varying due to the low-frequency fluctuations in the cavity resonance
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itself. Typical measurements of cavity reflection coefficients using a vector network

analyzer output the value averaged over the measurement time, and often smear out

the effects of these resonant fluctuations [101, 100].

The output power can be obtained using ⟨P out
p (t)⟩ = ⟨V out

p (t)⟩2/Zp, where Zp is the

transmission line impedance and V out
p (t) is the output voltage given by the following

[as can be obtained using Eqs. (2.53) and (2.50)]:

V out
p (t) = −i

∫ ∞
0

dω

√
ℏω
4πZp

[
e−iωtaoutp (ω)− eiωt

(
aoutp (ω)

)†]
. (4.9)

Note that the output power spectral components have an implicit dependence on time

due to the low-frequency fluctuations δbint(t) of the bias parameter.

Power Detection : Furthermore, detection of ⟨P out
p (t)⟩ will result in an oscillat-

ing signal with frequencies kωm. The DC component of this signal gives the reflected

intensity, and has its minimum at δω0 = 0, with a symmetric response about this

point. As already discussed in §4.1.1, we are interested in measuring the contribution

oscillating at ωm, which can be obtained as

P(t) =J0(β)J1(β)P
in
p[

eiωmt (r0(t)r
∗
1(t)− r∗0(t)r−1(t)) + e−iωmt

(
r∗0(t)r1(t)− r0(t)r

∗
−1(t)

)]
,

(4.10)

where we have neglected the contribution from the second harmonics and above as-

suming smallness of Jk(β) for k > 1.

The above expression represents the first derivative of the reflected intensity en-

coded in the first sideband ωm, which will behave as a monotonically increasing

function with its zero at δω0 = 0. Thus, as long as (dω0/db) varies monotoni-

cally as a function of b, we can utilize this information as a potential error signal

to counteract the fluctuations δbint(t). In Fig. 4.3, the output signal is denoted

by aoutp (ω − ωc, kωm, δbint), indicating that the signal is centered about ωc, has side-

bands at kωm, and contains information about the intrinsic bias noise. Similarly, the

P(ω − kωm, δbint) term in Fig. 4.3 indicates that the signal has frequencies at kωm.

Extraction of the Error Signal : To maximize the sensitivity in detecting the

fluctuations δω0(t), we utilize the sine quadrature of expression (4.10). We achieve

this experimentally using a lock-in amplifier with the reference signal taken from the

original modulation source. Quantitatively, the in-phase cosine quadrature X(t) is

insensitive to these resonant fluctuations while the sine quadrature Y (t) is given by
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[comparable to Eq. (2.53)]

Y (t) = 2J0(β)J1(β)P
in
p (4.11)(

Im[r0(t)]
(
Re[r1(t)] + Re[r−1(t)]

)
− Re[r0(t)]

(
Im[r1(t)] + Im[r−1(t)]

))
.

For ωm well outside the cavity line-width, Im[r±1(t)]→ 0 and Re[r±1]→ 1 for cavity

resonances ω0(b) in the vicinity of ωc. In short,

Y (t) = 16κextJ0(β)J1(β)P
in
p

gbδbint(t)

κ2
tot + 4g2bδbint(t)

2
. (4.12)

The above expression captures the fluctuations δbint accurately in the limit 2gbδbint(t)≪
κtot. In the regime 2gbδbint(t) > κtot, the function starts falling towards zero. The

bandwidth where the function monotonicity switches is obtained using the condition

d Im[r0]

dδω0

∣∣∣∣
ω0=ωbw

= 0, (4.13)

to give ωbw = κtot.

Lock-in Amplifier Characteristics: The normalized transfer function of the

lock-in amplifier is that of a single-pole, low-pass filter. In other words, the dynamics

of the lock-in amplifier can be modeled as a lumped-element RC low-pass filter via

the expression [80]

ẏ(t) = − 1

RC
y(t) +

1

RC
u(t), (4.14)

where u(t) and y(t) are the input and output voltages, respectively. In the Fourier

domain, this expression becomes

ωy(ω) = − 1

RC
y(ω) +

1

RC
u(ω), (4.15)

such that the transfer functionGLA(ω) ≡ y(ω)/u(ω) = (1+iωτLA)
−1, where τLA = RC

is the lock-in amplifier time-constant. As mentioned above, the transfer function has

a single pole in the complex plane given by ω = −1/τLA.
Net transfer function : In the region where the approximation δbint ≪ κtot/2gb

is valid, the net transfer function of the open-loop setup can be written as

G(ω) =
Y (ω)

δbint(ω)
=

G0

1 + iωτLA
, (4.16)
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where G0 is the net gain,

G0 =

(
4J1(β)

J0(β)

)
nℏω0(b0)gbGamp, (4.17)

and we have expressed the input power in terms of n = 4κextJ
2
0 (β)P

in
p /ℏω0(b0)κ

2
tot, the

average number of photons in the cavity. Here, Gamp is the net gain of the amplifier

chain, including that of the power detector and the lock-in amplifier. Note that we

have neglected the secondary fluctuations of n and ω0 in the above expression, induced

due to the bias fluctuations. Also, we withhold commenting on the dimensions of

G(ω) (which is typically dimensionless) as we have considered δbint as a generalized,

fluctuating variable to begin with.

Moreover, the PSD of fluctuations in Y (t) takes the form

SY Y (ω) =

(
G2

0

1 + ω2τ 2LA

)
Sbb(ω), (4.18)

where Sbb(ω) is the PSD of the bias noise.

Feedback Characteristics : We can now close the feedback loop in our setup

by applying a control law that effectively counteracts for δbint. For a beginner’s

overview for understanding the concepts in feedback dynamics, the review article by

Bechhoefer [80] is a good starter-reference. Following [80], we may reduce the closed

loop dynamics to a block diagram form as given in Fig 4.4.

K(ω) G(ω)+-Yref

e(ω) δbint(ω)
Y (ω)

Figure 4.4: Reduced block diagram illustrating the closed-loop control of the fluctu-
ations in a tunable cavity.

In the above figure, the fluctuations δbint is detected by the lock-in amplifier

using a net transfer function G(ω) as derived in Eq. (4.16), which outputs the sine

quadrature Y (ω). The error signal e(ω) is obtained with reference to the desired

control signal Yref = Y (t0) such that e(ω) = Y (ω) − Yref . For cavities with linear

reflection coefficients discussed above, note that this control value Yref is zero for any

time t, as can be determined from Eq. (4.11).
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We can now apply a control law K(ω) through a PID controller, such that Y (t)

follows the control signal Yref = Y (t0) as closely as possible. Interpreting the diagram,

we get the closed loop transfer function as

Y (ω) = K(ω)G(ω)e(ω) =
L(ω)

1 + L(ω)
Yref , (4.19)

with the loop gain L(ω) ≡ K(ω)G(ω). Hence under the condition of K(ω)G(ω)≫ 1,

Y (ω) → Yref . It may occur to the reader that using high values for K(ω) might be

an efficient way to operate the feedback loop. However, increasing K(ω) also results

in the amplification of the added noise by the amplifier chain. As discussed in more

detail in §4.3, balancing these two factors, i.e., fixing K(ω)G(ω)≫ 1 and K(ω) such

that the loop does not pick up substantial sensor noise [80], turns out to be one major

challenge of our setup in the single-photon limit. Once these conditions are met, we

can however compensate for the fluctuations δbint(ω) up to a bandwidth of 1/τLA.

4.2.2. Application to the cCPT

The scenario discussed in the previous section is frequently observed in many open

quantum systems, where the tunability control of the system of interest introduces

noise and results in reduced measurement sensitivity or in some cases, decreased

coherence properties [40, 105, 106]. In this section we discuss the implementation of

the scheme presented in Sec. 4.2 in one such system, the cCPT.

Similar to the system described in Fig. 4.3, the cCPT communicates with the

external pump/probe setup through its quarter-wave superconducting microwave res-

onator. The non-linear Josephson inductance emerging from the Cooper pair transis-

tor introduces two-dimensional tunability to the resonance, either via the gate voltage

Vg controlling the island charge of the Cooper pair transistor, or via the external flux

bias Φext, coupling the cavity phase and the differential phase of the Josephson junc-

tions via a SQUID loop; the current work mainly focuses on the suppression of the

resonant frequency fluctuations caused due to charge noise coupling to the cavity at

low frequencies. The resulting reduction of the 1/f -noise, as detailed in Sec. 4.4,

is significant enough to potentially allow the cCPT to operate in an ultra-sensitive

regime for electrometry.

Operational Bias Regimes: Following the formalism in Sec. 4.2, we now

have the bias vector b⃗ = (ng,Φext) and the resonant frequency shift δω0(⃗b) inversely
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Figure 4.5: (a) Contour plot displaying the resonant frequency ω0 as a function of
the two-dimensional bias space. We avoid feedback locking in regions where the
cavity is sensitive to both bias parameters simultaneously, so as to avoid accidentally
destabilizing the cavity away from the bias point of interest. (b) Measured resonant
response as a function of flux along ng = 0 (purple line in (a)), where the charge
noise is minimal. The purple plus sign denotes point of maximum flux sensitivity.
(c) Measured resonant response as a function of gate along Φext = 0, where the
flux sensitivity is minimal (red line in (a)). The charge sensitivity increases towards
charge degeneracy (ng = 1), but we avoid operating the feedback loop in the region
|ng| > 0.65 because of quasiparticle poisoning. The red plus sign denotes a point of
high gate sensitivity. (d) Simulated Y(ng) calculated about different bias values of

n
(0)
g . The monotonicity for small ng − n

(0)
g is steeper for higher values of n

(0)
g and

non-existent at n
(0)
g = 0. (e) Simulated Y(Φext) calculated about different bias values

of Φ
(0)
ext. Unsuitable points of feedback operation are near Φ

(0)
ext = 0 and Φ

(0)
ext = 0.5Φ0.
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proportional to the Josephson inductance LCPT given by [see Eq. (3.41)]

L−1CPT =
∂2E

(0)
CPT

∂b22
, (4.20)

where E
(0)
CPT is the ground state energy of the CPT described by the Hamiltonian with

matrix coefficients [see Eq. (3.30) considering junction symmetry]

⟨N |HCPT|N⟩ = 4Ec

(
N − b1

2

)2

, (4.21)

and

⟨N |HCPT|N + 1⟩ = ⟨N |HCPT|N − 1⟩ = EJ(b2), (4.22)

where Ec and EJ(b2 = Φext) are the charging and the Josephson energies of the CPT,

respectively. The ket |N⟩ denotes the number of excess Cooper pairs on the CPT

island and the gate polarization number b1 = ng is related to the externally applied

gate voltage Vg via ng = CgVg/e.

Fig. 4.5(a) provides a simulated 2-D contour plot of the tunable resonant fre-

quency based on the experimental characterization of the cCPT. As can be seen in

this contour plot, a single value of ω0 can correspond to a continuum of possible values

in the bias space. The feedback scheme corrects for the bias fluctuations purely based

on the detuning of the carrier signal from the resonance. As a result, applying the

technique to a simultaneous charge and flux sensitive region can result in increased

instability in the applied bias along a contour while still stabilizing the resonant

frequency fluctuations. We therefore limit our measurements (presented in later sec-

tions) to the regimes where the cCPT is sensitive to one of the bias parameters while

minimizing the coupling to the other ones.

Figs. 4.5(b) and 4.5(c) provide the measured frequency response around these

bias-sensitive regimes. Fig. 4.5(b) plots ω0(b2) while b1 = 0 such that the gate is

effectively decoupled from the cavity. Similarly, Fig. 4.5(c) plots ω0(b1) while b2

is set to zero, i.e., with minimal flux noise. Notice that for 0.1 ≤ |ng| ≤ 0.65, ng

corresponds to frequency shifts that are monotonic on the order of tens of MHz -

several times larger than the typical cavity linewidths. Thus our feedback scheme

can be applied across an appreciable span along ng. The region |ng| > 0.65 is highly

prone to quasi-particle poisoning, and we avoid operation in this regime, as discussed

later in Sec. 4.4. The simulated Y (b) response is plotted in Figs. 4.5(d) and 4.5(e).
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Figure 4.6: (a) Error signal simulated at (ng,Φext) = (0.6, 0) for different input powers
driving the cCPT and the carrier frequency fixed at ωc = ω0(b0) = 5.81 GHz. The
input power is expressed in the units of the critical input power Pcrit, defined at the
onset of bistability. The Kerr coefficient K = −0.67 MHz. The control value of
Yref(b0) deviates from zero in this case. For higher input powers, we no longer have
a one-to-one mapping between the gate fluctuation and Y . (b) Corresponding plots
for ωc = ω0(b0) + nK that effectively resolve the issues in (a).

As expected, near n
(0)
g = 0, Y (ng) is symmetric and does not have a one-to-one

mapping onto its respective bias value making this the regime unsuitable for the

feedback application. Similar conclusions about feedback applicability in flux noise

suppression can be deduced from Fig. 4.5(e).

Limitations due to Kerr Nonlinearity : The results reported in this work

also involve driving the cavity to Kerr-shifted regimes. The resulting non-linear re-

flection coefficient takes the form of Eq. (4.8) with δω0 → δω0+Kn(δω0), where K is

the Kerr-coefficient and n(δω0) is the average number of photons in the cavity given

by the roots of the following equation [14]:

n3K2 + 2δω0Kn2 + [δω2
0 + κ2

tot/4]n− κextPin/ℏω0 = 0. (4.23)

As the Kerr-coefficient can be strong enough to produce a Kerr-shift comparable

to the cavity linewidth of the cCPT for n ≥ 5, it is important to look at its effects

on the error signal generation. The simulations illustrating these effects are compiled

in Fig. 4.6, for input powers less than the critical input power Pcrit, defined at the

onset of bistability. Depending on the specific application of interest, we may require

driving the cavity exactly at linear resonance with ωc = ω0(b0). The reference signal

Yref(b0) in this case corresponds to a non-zero value (as illustrated in Fig. 4.6a), and
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the Kerr-induced asymmetries in rn(t) can be strong enough for the error signal to

deviate from the preferred, smooth, monotonic behavior about the resonance (as can

be seen for Pin = 0.8Pcrit in Fig. 4.6a). The former merely requires a recalibration

of Yref(b0) at each bias point. However, the latter effectively acts as an upper bound

in limiting the application of the feedback technique at higher input powers. This

limitation can be circumvented by fixing the carrier signal at the point of minimum

reflection coefficient, given by ωc = ω0(b0) + nK. The feedback scheme can then be

applied for input powers Pin < Pcrit such that the reference control Yref remains at

zero (see Fig. 4.6b).

Section 4.3

Experimental Setup

We present in this section the experimental realization of the scheme discussed in the

previous sections. The underlying circuitry behind the detection of the error signal

is similar to the Pound-Drever-Hall technique applied to superconducting microwave

resonators [67]. In contrast to the conventional technique, which corrects the drive

frequency, we use the PID output to change the bias parameter, thereby stabilizing

the resonant frequency of the cavity itself. The circuitry enabling such a measurement

is shown in Fig. 4.7, and is detailed in the following.

4.3.1. Circuitry

The input drive consists of a carrier signal ωc at the cavity resonance frequency,

which is phase-modulated (using an Analog Devices HMC-C010 phase-shifter) at a

frequency ωm. The reflected output signal is amplified at different stages and is sent

into a directional coupler where the signal is to split into two routes: the feedback loop

component A and the actual measurement component B. The -20 dB coupled port

sends signal B to a spectrum analyzer, which can be used to track the power spectral

components when the feedback loop is active. Signal A enters a highly sensitive power

detector (SDLVA HMC-C088), which outputs a voltage proportional to the input

power, with frequency components at the harmonics of ωm. The lock-in amplifier

then mixes this signal with the reference signal at ωm to output the two quadrature

components. The error signal of interest is contained in the Y-quadrature such that

a fluctuation of the cavity resonance frequency is typically measured as a non-zero

value [see Fig. 4.11(b)]. When the cCPT is biased at points where flux/charge
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Figure 4.7: Experimental setup for the dynamic feedback control of the intrinsic bias
noise coupling to the cavity.
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causes the dominant source of intrinsic noise, we attribute these measured resonance

frequency fluctuations to disturbances in that bias parameter. The output of the

PID controller then corrects the error in the bias parameter (gate voltage in our case)

via a summing amplifier. The summing amplifier is bandwidth-limited to 1 MHz.

This reduces high-frequency noise, while allowing modulations for charge-sensitivity

measurements up to a few 100 kHz. Note that an important modification from the

experimental characterization setup at the cryogenic stage (see Fig. 3.7) is removal

of the bias tee in the gate line, which otherwise limits the transfer function at ∼1
kHz disabling PID integration with the original gate signal at a faster rate.

The cCPT used for the following measurements is the same sample discussed in

§3.3.3, and exhibits a total tunability of about 140 MHz, centered about the bare

cavity frequency at 5.757 GHz. Following a model that accounts for frequency fluc-

tuations in the cavity [101], the typical external and internal damping rates observed

at (ng,Φext) = (0, 0) are ∼0.97 MHz and ∼0.3 MHz, respectively. We therefore fix

the modulation frequency ωm to be 30 MHz, one order of magnitude higher than the

total damping rate.

4.3.2. Benchmarking

Since the measurements are performed in the few-photon limit, we have optimized

our setup at each stage to attain the maximum signal-to-noise ratio (SNR) at the

output. Firstly, as the magnitude of the error signal is proportional to J1(β)/J0(β)

[refer Eq. (4.17)] for a fixed average photon number in the cavity, we choose β = 1.84

to provide increased sensitivity. This value is chosen such that J1(β) is maximized,

and J0(β) is not too low a coefficient to achieve cavity driving.

The circuitry is further refined to ensure the error signal behaves in a manner

discussed in Sec. 4.2. For example, choosing higher values of β implies deviation from

our theoretical model as discussed in Eq. (4.10) where we have assumed smallness of

β. By increasing β, the error signal Eq. (4.11) can also have increased contributions

from the cross-terms involving sidebands at ±ωm and ±2ωm. A tunable bandpass

filter with center frequency near resonance and bandwidth less than 4ωm is inserted

after the room temperature amplifiers to partially filter out these extra signals. This

prevents unwanted noise in the DC, ωm and 2ωm components, reducing the saturation

of the power detector and ensuring a larger SNR at the power detector output by

reducing the input noise [103].

Figure 4.8a plots the response of the phase modulated signal to varying values of
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Figure 4.8: Initial calibration before the measurements. (a) Phase modulator is cali-
brated to ensure a reliable control on the number of photons driving the cavity. The
sideband peaks are measured for each control voltage of the phase shifter and Bessel
function dependence is extracted from this data. (b) Quadrature outputs from the
lock-in amplifier displayed as a parametric plot. The data is measured for varying ωc,
with resonance fixed at ω0(0,0), where both the flux and charge noise is a minimum
for the cCPT, and the cavity is driven at photon number n = 1. The black plot
represents the data before the phase delay correction. All the feedback measurements
are carried out with the phase of the reference signal set to the one in the red plot.
This ensures that the error signal has maximum sensitivity to fluctuations. (c) Vi-
sualization of TWPA’s response to control bias parameters, i.e., the drive frequency
and drive power. For this measurement, the gain profile and the noise floor are mea-
sured using a VNA, and a spectrum analyzer, respectively. The SNR is calculated
corresponding to frequencies in the cCPT’s tunable range (5.68-5.82 GHz) and a noise
bandwidth of 80 MHz (that of the tunable bandpass filter). (d) Mean standard devi-
ation for the frequency range in (c) to quantify ripples in the profile.
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modulation amplitude β. This is an important calibration step that accurately sets

the value of β, and therefore ensures a known number of photons driving the cavity,

as detailed further below. The phase-shifter is calibrated by measuring the response

of the sidebands to varying control voltages, and later fitting these curves to Bessel

functions Jn(β).

A near quantum-limited traveling wave parametric amplifier (TWPA) [107] at

the first-stage amplification improves the real-time detection of the resonant fre-

quency fluctuations at the single-photon level. For the efficient detection of the

phase-modulated signal by the power detector, the bias power and frequency of the

TWPA pump are chosen such that the mean SNR across the cCPT’s tunable range

is maximum, corresponding to a noise bandwidth of 80 MHz (equal to that of the

tunable bandpass filter), and a signal of one photon. The gain profile also displays

minimal ripples at these bias values to achieve relatively symmetric response at either

of the sidebands. This ensures the error signal response is not influenced by the gain

profile features, and the cavity response is closely tracked. The results plotting the

mean and standard deviation of the SNR across the TWPA’s bias parameters are

plotted in Figs. 4.8c and 4.8d, respectively.

Since the output signal reflected from the cavity goes through several meters of

cable and other microwave components as compared to the reference signal used by

lock-in amplifier, the sine quadrature output is typically phase-shifted to a different

quadrature. We correct for this phase delay using a frequency sweep of the carrier

signal and simultaneous measurement of both quadratures, with the cCPT biased at

the minimally flux and gate sensitive point (ng,Φext) = (0, 0). Figure 4.1c illustrates

the quadrature response when the power detector output is mixed to the reference

frequency without a delay. As shown in Fig. 4.8b, a phase delay causes a rotation in

the phase space, and can be corrected for accordingly.

4.3.3. Charge and Flux Noise in the cCPT

Prior to conducting closed loop measurements to stabilize the resonant frequency of

the cCPT, we first ensure the open loop configuration detects the intrinsic charge or

flux noise with reliable accuracy. In short, such a measurement involves biasing the

cCPT at a point sensitive to the particular noise (charge or flux) we are interested in,

while simultaneously protecting the cCPT from coupling to the other noise source,

by biasing it in a regime insensitive to the latter source.

The measurement is preceded by a series of calibration steps to ensure the cCPT
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VNA scan at low pump
powers for varying flux.
Extract Φext : 0 → Φ0

as a function of the
applied DC flux current.

VNA scan for varying
gate at flux insensitive
point. Extract ng : 0 →
2e as a function of the

applied DC gate voltage.

Fix (ng,Φext). Ex-
tract the parameters
ω0, κint and κext.

Measure resonant
frequency shift as a

function of input power.
Extract input attenuation
and number of photons
n driving the cavity.

Fix β and set the
carrier signal such that
J0(β) corresponds to n
photons in the cavity.

Tune center frequency
of the bandpass filter
to resonant frequency.
Set lock-in amplifier

reference to cancel phase
delay. Set sensitivity
and time constant
to optimized values.

Figure 4.9: Flow chart for the calibration code that is run before the start of an
actual measurement.

(a) (b)

Figure 4.10: (a) Resonant features of the cCPT at (ng,Φext) = (0.4, 0), analyzed
using a model that tracks the frequency fluctuations caused due to charge noise [101].
The obtained values are ω0 = 5.79 GHz, κint = 0.55 MHz and κext = 0.98 MHz. (b)
Linear dependence of the resonance shift on the input power can be used to extract
the number of photons n driving the cCPT at the sample [14].

is biased at the right (ng,Φext) and is driven at a known number of photons n in

the cavity. These steps are compiled in Fig. 4.9. The resonance parameters such

as ω0, κint and κext are extracted using the frequency fluctuations model reported

by Brock et al. [101] [see Fig. 4.10a]. The average photon numbers driving the

cavity are calculated employing a model that considers the linear relation between

the input power at the sample and the associated Kerr-shift in the cavity resonance

frequency [14] [see Fig. 4.10b].

Fig. 4.11(a) constitutes an accurate representation of the sine quadrature as

a function of carrier signal around resonance, after accounting for the phase delay

correction, and for varying average photon number in the cavity. As can be seen, the
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zero-point of the error signal remains at the Kerr-shifted resonance value, allowing

us to set the reference value for the feedback signal at zero, even when the cavity is

driven into the Kerr-regime.

The fluctuations in Y (t) as measured by the digitizer, given by SY Y (ω), for the

open-loop setup when the cavity is driven at n = 10 is provided in Fig. 4.11(b). The

PSD of the time-domain data collected over 10 sec at 100 kHz sampling rate is plotted

in this figure. The data is scaled to the amplitude of the noise floor to clearly display

the signal-to-noise ratio (SNR) of the measurement. The off-resonance noise mea-

surement of the Y-quadrature of the lock-in amplifier outputs a single-pole, low-pass

filter transfer function given by G(ω) = (1+ iω/ωLPF)
−1, where ωLPF = 2π× 1331 Hz,

close to the lock-in amplifier bandwidth set by the time constant 100 µsec. The time

constant is set to measure a reasonable bandwidth of low-frequency fluctuations; a

higher bandwidth detects more fluctuations but it necessitates an associated decrease

in the measurement time, negatively affecting the SNR simultaneously.

In order to calculate the PSD of the intrinsic charge noise Sint
qq (ω), we first obtain

the DC gain G0 = G(ω)|ω=0. This is calculated from the slope of Ȳ (|δng| ≤ 0.01),

where Ȳ (|δng|) corresponds to the time-averaged value of Y (|δng|) in the vicinity of

our bias point of interest, which for the case discussed in Fig. 4.11(c) is at ng = 0.6.

After accounting for the noise floor, we may utilize Eq. (4.18) to obtain the measured

charge noise Smeas
qq (ω).

As described in Fig. 4.5(c), the cCPT is susceptible to quasiparticle poisoning

(QP) for ng closer to charge degeneracy. The effects of QP poisoning appear as

random telegraph noise in the data and can be modeled as a Lorentzian [14]. We thus

employ a combined model including a Lorentzian and a power law fit to describe the

measured apparent charge noise S̃meas
qq (ω) = SQP+Sint

qq . However, the roll-off frequency

for the Lorentzian fit is not resolvable using this measurement, as the bandwidth of

the fit is limited by the lock-in roll-off frequency 1331 Hz. Moreover, the accuracy

decreases for frequencies > 200 Hz where the SNR ∼ 1. Hence, the noise floor due

to QP appears to be white noise rather than Lorentzian. As the contributions to

this offset-noise were observed to decrease for lower ng values where the effects of

quasiparticles are also reduced, we believe our Lorentzian model holds validity. Note

that this could potentially have been due to Kerr fluctuations as well, but Fig. 4.11b

validates the effects of Kerr fluctuations are in fact minimal. Fig. 4.11(c) displays
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Figure 4.11: (a) Measured Y (ωc) as a function of the detuning ωc- ω0(0, 0) and varying
photon number n, where ω0(0, 0) is the Kerr-shifted resonance. The zero-point of the
error signal corresponds to the Kerr-shifted resonance value, enabling us to set the
reference value for feedback as zero, even in strongly Kerr-nonlinear regimes. Each
point is the average of a 1 sec acquisition with sampling rate of 1 kHz. The time
constant of the lock-in amplifier is set to 10 ms to average out fluctuations and
improve resolution. The data is taken for β = 1.08. (b) The PSD of fluctuations in
Y (t) given by SY Y (ω) for the open-loop setup. The blue plot displays the noise floor
measured at the lock-in amplifier sine quadrature output. The red plot is the single-
pole, low-pass filter fit applied to the above data. The cut-off frequency obtained is
1331 Hz, set by the lock-in amplifier time constant. The orange plot captures the
charge fluctuations when the cCPT is biased in the increased charge-sensitive regime
(ng,Φext) = (0.6, 0), and the cavity is driven at n = 10. The green plot captures the
Kerr fluctuations when the cCPT is biased at (ng,Φext) = (0, 0), and n = 10. These
measurements are completed in 10 sec with a sampling rate of 100 kHz. The data
displayed in the plot is scaled to the amplitude of the noise floor to better indicate
the SNR. (c) PSD of the charge noise calculated for the data in (b). S̃meas

qq (ω) is the
total charge noise with contributions from the intrinsic charge noise fluctuations Sint

qq

at the CPT (red plot varying as ∼ 1/f), and the fluctuations SQP due to quasiparticle
switching with a Lorentzian noise floor (blue plot). Note the Lorentzian floor appears
as white noise as the roll-off frequency for Lorentzian fit is not resolvable using this
measurement. The purple plot corresponds to the net fit SQP+Sint

qq . (d) Calculated
flux noise SΦ,Φ(ω). The data is obtained for the maximum flux sensitive point of
(ng,Φext) = (0, 0.25).
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the calculated Sint
qq (ω) varying as

Sint
qq (ω) = (5.5× 10−7)

( ω

2π

)−0.89
e2/Hz. (4.24)

The total standard deviation of charge fluctuations calculated over the bandwidth

1 Hz to ωLPF/2π Hz is found to be 2.5 ×10−3 electrons. This value aligns with

previously reported measurements of charge fluctuations for this device to within

an order of magnitude [14], with the discrepancy in magnitude attributed to the

approximations and measurement limitations of the two models. Similarly, we can

also find the intrinsic flux noise of the cCPT by biasing at the flux sensitive point

(ng,Φext) = (0, 0.25), the results of which are shown in Fig. 4.11d.

4.3.4. Feedback Control Optimization

As mentioned in Sec. 4.2, ideally we preferK(ω)≫ G(ω)−1 such that Y (t) follows Yref

closely. However, this is accompanied by an increase in the pick-up of the noise floor

as well [80]. We may balance out the combined effects of faster noise suppression and

increased sensor-noise pick-up by shaping the net loop gain. In particular, looking at

the behavior of the fluctuations in Fig. 4.11(b), we can qualitatively assert that the

control law can have higher magnitude at low frequencies and requires to be of lower

magnitude as ω → ωLPF. Thus the net loop gain T (ω) ≡ L(ω)/(1 +L(ω)) as derived

in Eq. (4.19) in the simplest form is desired to follow a linear, single-pole function

T (ω) = (1 + iω/ω′)−1, where ω′ is the feedback bandwidth.

The control law can be back-calculated from the net loop gain to give

K(ω) =
T (ω)

1− T (ω)
G−1(ω) =

ω′

G0ωLPF

(
1 +

ωLPF

ω

)
, (4.25)

which takes the form of a proportional-integral control, where a control of the form

Ki

∫ t

−∞ e(t′)dt′ in addition to the proportional control termKpe(t) eliminates a steady-

state error that the controller measures over a set timescale. The net control law can

then be expressed as

K(ω) = Kp +
Ki

ω
, (4.26)

with Kp = ω′/G0ωLPF and Ki = ω′/G0. We can furthermore choose ω′ such that

K(ω)G(ω) = ω′/ω ≫ 1 in the region where we have an appreciable SNR [refer to Fig.

4.11(b)], but drops later as the SNR plunges.

Another potential approach to optimizing the control values involve simulations,
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Figure 4.12: Results of the simulation illustrating a decrease in the charge noise.
The program input is time-domain, open-loop data that contains information about
frequency fluctuations of the cCPT. By applying a PI control to this data, the mean
and standard deviation of the response is calculated, and further minimized over a
set of Kp, Ki values to find the optimum control parameters.

where the simulated response of a time-domain data to proportional-integral control

is optimized over a set of realizable Kp and Ki values. A preliminary illustration of

this approach is plotted in Fig. 4.12 where the program outputs (Kp, Ki) values that

returns minimum mean and standard deviation of the error signal across a timescale

much larger than the rate of frequency fluctuations. It is to be noted that these

results are demonstrative in purpose, and there is significant room for improvement

in fixing the conditions of the simulation to an experimental scenario.

Finally, the setup can be further refined to accommodate a derivative control that

counteracts for sudden fluctuations in the charge noise. This is especially beneficial

towards our objective as the detection of resonant frequency fluctuations to the charge

nosie is more second-order in nature. Since an addition of the derivative control can

often negatively impact the feedback if not properly configured, we do not explore

this goal in the current work as the SNR at the few-photon scale is already low to

begin with.

Section 4.4

Results

The feedback correction for the charge noise is measured via the simultaneous detec-

tion of Y (t) and the input gate correction, by means of a digitizer. Figures 4.13(a)

and 4.13(b) provide proof of concept for our scheme. Both Y (t) [refer to 4.13(a)] and
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Figure 4.13: (a) Proof of concept for charge noise correction under feedback locking.

The cCPT is gate-swept from 0 ≤ n
(0)
g ≤ 1, for ωc = ω0(0.4, 0) and n = 5. Each

point corresponds to the averaged value of the measurements spanning 1 sec with
a sampling rate 1 kHz, and the time constant set to 10 msec. Error-bars are also
plotted to display the scale of fluctuations. For e.g., at n

(0)
g = 0.4, the standard

deviations of the measured data are 135 mV and 50 mV for open-loop and closed-
loop configurations, respectively. (b) Net corrected n

(app)
g for the data in (a). (c)

Comparison of measured SY Y (ω) displays a definitive suppression in the resonant

fluctuations at n = 10 and bias point (0.6,0). (d) PSD of n
(app)
g correcting the

intrinsic bias noise at the cCPT in the frequency range 2-300 mHz. The measurement
is completed in 7.5 × 103 sec with a sampling rate of 10 Hz. The cCPT is biased at
(0.6,0) and the cavity is driven at n = 10. The orange plot displays an inverse-fit
to this data accounted for frequencies up to 0.3 Hz. (e) Reflection coefficients of the
cavity taken after the measurement in (d). Red and green plots correspond to cCPT

biased at n
(0)
g = 0.6 (red), and n

(0)
g = 0.6 + δn

(app)
g = 0.622 (green), respectively.

Due to a discrete jump in gate charge, the resonant frequency shifted nearly 4 MHz,
and the feedback configuration accurately tracks this event. (f) S

(app)
qq (ω)/S̃

(int)
qq (ω) in

units of dB for different photon numbers n. The dashed purple plot is the fit obtained
from Fig. 4.11(d) and corresponds to the apparent intrinsic charge noise, to act as
a reference. The actual intrinsic charge noise is represented in the dashed red plot.
The legends display n and the calculated 3 dB roll-off frequency for the corresponding
plot. Except for n = 10, the rest of the measurements were taken with the lock-in
amplifier time constant set at 300 µsec. The cCPT is biased at (0.6, 0) for n = 10
and n = 5, and at (0.4, 0) for n = 3 and n = 1.
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the total averaged gate charge including the PID correction, n
(app)
g , [refer to 4.13(b)]

are measured as the cCPT is gate-swept from 0 ≤ n
(0)
g ≤ 1, for ωc = ω0(0.4, 0). The

quadrature Y (t) is nulled, and n
(app)
g is set to ng = 0.4, across |δng| ≤ 0.1. Note that

the feedback correction continues in the right direction as long as sgn(δng) = sgn(Y ),

until Y crosses zero; hence the corrected bandwidth applies to δω0 > κtot as well, and

the feedback, once locked, is robust against discrete gate-jumps of small magnitude.

The reduction of resonant frequency fluctuations can be directly observed by com-

paring the open and closed loop PSDs for Y (t). This is shown in Fig. 4.13(c) and

is measured under the same configuration as discussed in Figs. 4.11(c) and 4.11(d).

Note that the detected 60, 120 and 180 Hz peaks are primarily from the compressors

and pumps feeding our cryostat, and are sources of external noise. The system was

monitored for 7.5 × 103 sec (∼2 hours), with n
(0)
g chosen as 0.6 and the flux at a

minimally sensitive point, with the cavity driven at n = 10. Figures 4.13(d) and (e)

demonstrate the efficiency of the closed-loop system during the event of a discrete

jump in gate charge, as mentioned above. Figure 4.13(d) displays the PSD of n
(app)
g

in the frequency range 2-300 mHz, corresponding to time-domain data collected with

a sampling rate of 20 Hz. Figure 4.13(e) plots the reflection coefficient |S11(ω)| after
the measurement, with n

(0)
g = 0.6+δn

(app)
g corresponding to the feedback-locked value

(green), and with n
(0)
g = 0.6 corresponding to the unlocked value (red). As can be

seen, the resonance undergoes a shift of nearly 4 MHz due to a gate-charge jump

during the measurement, and gets accurately tracked by the loop. It is to be noted

that longer measurements also undergo a slow drift in the internal bias noise due to

the presence of low-frequency components. As a result, Y (t) deviates from the linear

response described in Eq.(4.11), and becomes second-order, picking up contributions

from δb2int(t). The PSD of the charge noise extraction from SYY(ω) as described in

Eq. (4.18) breaks down in this regime.

Finally, Fig. 4.13(f) captures the feedback response for varying photon numbers

n = 10, 5, 3 and 1, by plotting the PSD of the applied gate charge, S
(app)
qq (ω), in

comparison to the apparent intrinsic charge noise S̃
(int)
qq (ω). The dashed purple and

red plots are shown for reference, and represent the 0 dB point and S
(int)
qq (ω)/S̃

(int)
qq (ω),

respectively. We cannot accurately extract the noise floor in the closed loop setup

since the gain of the transfer function changes. However, by placing S̃
(int)
qq (ω) as a

reference, we can ensure that the net corrected gate PSD does not over-compensate

for the noise floor fluctuations. This is important because of the smallness of the

SNR, especially at n = 1. As can be observed, at n = 10, n
(app)
g (ω) follows the
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measured apparent charge noise closely. This implies a significant correction for the

intrinsic charge noise, and the stabilization of the resonant frequency, with a roll-off

set by the 3 dB point at ∼1.4 kHz. Due to the decrease in SNR(ω) as n is lowered

[refer to Eq.(4.17)], we use a longer time constant for n=5 through n=1, resulting in

a significant decrease in roll-off frequency near the single-photon limit.

Note that since the chosen bias point for n=10 and 5 in Fig. 4.13(e) is (ng,Φext) =

(0.6, 0), the net applied gate charge also accounts for the QP switching noise. This

is evident from the figure where the correction overshoots the actual intrinsic charge

noise S
(int)
qq (ω), represented by the dashed red plot. In contrast, the bias point is fixed

at (ng,Φext) = (0.4, 0) for the cases of n = 3 and 1. The resulting feedback response

better tracks the actual intrinsic noise in this regime since the QP interference is

significantly reduced.

Section 4.5

Discussion

We observe that a major limitation in the efficient correction for charge noise at

single photon occupancy of the cavity is the drastic decrease in SNR(ω). Along

with the noise contributions from the amplifier chain at the TWPA, HEMT, and

FET stages, the power detector amplifies the noise floor correlations at ωm over the

tunable bandpass filter bandwidth of 80 MHz. This can be best circumvented by

using a series of notch filters before the detector with effective stop-bands within the

80 MHz bandwidth of the band-pass filter, but with pass-bands at ωc and ωc ± ωm.

This ensures that detector input consists of mostly signal frequencies, thus decreasing

the noise floor of the transfer function [refer to Fig. 4.11(c)].

As is evident in the previous discussion, another limiting constraint in our setup

is the existence of quasiparticle poisoning in the CPT. This affects our choice of pa-

rameters in three ways. Firstly, the probability of switching to the odd electron state

increases steadily towards charge degeneracy, due to its more favorable electrostatic

energy configuration as compared to CPT’s even band [98, 99]. The effect of quasi-

particles on the extraction of the error signal can be observed in Fig. 4.13(a) near ng

= 0.8, where the resonance has completely switched to the odd parity. We therefore

avoid operating the feedback at |ng| ≥ 0.65 to evade accidental destabilization of the

loop. Moreover, near ng = 0.5, δωqp
0 = |δω(odd)

0 − δω
(even)
0 | < κtot. This can smear out

the smooth monotonic function preferred for the accurate detection of charge noise
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using Y (t). Finally, ωm is chosen such that the sidebands are ensured to be away

from both of the resonant frequencies. If |ωm−δωqp
0 | < κtot, this assumption does not

hold and results in a non-zero |Y (ng)| at resonance. In other cases, the sine quadra-

ture is expected to detect a null signal whenever the cavity switches out of resonance

(typically at frequencies 1 kHz - 100 kHz) and the effects of QP can be accounted for

empirically as discussed in Sec. 4.3 [108].

The demonstration of charge noise correction reported in this work can also, in

principle, be extended to reduce the effects of flux noise in the cCPT. However, in

our setup, the DC flux line undergoes heavy filtering (with a cut-off frequency of

10 Hz) due to the RC low pass filter formed by the current limiting resistor and

capacitor. The parasitic capacitance in the gate line leads to a RC filtering with

cut-offf frequency >400 kHz. This ensures the feedback correction is not affected by

the transfer function of the gate line itself, as opposed to the flux source.
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Chapter 5

Measurement Imprecision

The highly tunable and strongly nonlinear nature of the cCPT is evident from the

analysis in Chapter 3. In this chapter, we narrow our focus to examine the operation of

the cCPT as a linear charge detector. A comprehensive understanding in the linear

response regime is an essential first step before widening the scope of the device

operation to include nonlinear contributions, for example to realize phase-sensitive

amplification via squeezing.

In §5.1, we theoretically investigate the potential of the cCPT to be operated in

the quantum-limited electrometric regime. In §5.2 we present actual charge sensi-

tivity measurements using feedback techniques borrowed from Chapter 4, effectively

demonstrating improvements in the observed charge sensitivity with and without

environmental noise decoupling.

Section 5.1

cCPT as a linear electrometer (Theory)1

In the simplest terms, we see from Eq. (3.49) how a sinusoidal modulation in the

gate charge appears as a renormalization-shift in the cavity resonance frequency. In

particular, this gate modulation may be induced using a mechanical quantum dynam-

ical system coupled at the CPT gate [34], thus facilitating sensing of the mechanical

system via charge detection. A typical measurement involves driving the cavity near

resonance, and detecting the sidebands via measurements of the output power aver-

aged over some time TM that is long compared to the characteristic time-scales of the

1We acknowledge that the bulk of this section is reproduced from a Journal of Applied Physics
publication by Kanhirathingal et. al. [13], with major contributions from Prof. Blencowe.
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cCPT-mechanical system dynamics.

In line with such a scheme, we will first look into the output power generation in

the presence of an electrically simulated, sinusoidal gate modulation “signal” δng(t) =

δn
(0)
g cos (ωgt). This will enable a determination of the charge sensitivity of the cCPT

in the low-average photon number drive limit, which we will find to be comparable to

previously reported or predicted values for electrometers [109, 33, 30, 110, 111, 112,

32]. Most importantly, the behavior of the cCPT in this low drive power regime is

limited by photon shot noise in the transmission line, which results in an attainable

quantum-limited lower bound for charge sensitivity.

5.1.1. Output Power

The output power at the sample stage in the presence of a gate modulated signal

can be estimated using the same series of steps as for the bare cavity in Sec. 2.4.

In particular, we proceed to derive a modified quantum Langevin equation (5.1) and

then extend the resulting input-output equation to find the analogous expression

to Eq. (2.76) that represents the output power (5.8). Details of this derivation

are given below, where we observe from Eqs. (5.4)-(5.7) that the gate modulation

introduces sidebands into the cavity frequency spectrum, and is detected by measuring

the output power as expressed in Eq. (2.74).

Internal noise/losses are modeled as a second, internal thermal bath denoted as

ρι, modifying the total input state: ρin = ρα,p ⊗ ρι. The thermal occupancies of the

pump np and internal bath nι are usually assumed to be identical, as the temperature

variations at different locations in the device are neglected. However, in reality, the

internal bath may have a different noise temperature due, for example, to coupling

with two-level defects [95].

Limiting the relevant frequency space to the region of the fundamental cavity

mode frequency: |ω−ω0| ≪ ω0, we obtain from Eq. (3.37) the following, approximate

modified quantum Langevin equation to first order in ξ = Cpc/(Ccl)≪ 1:

(
ω − ω0 + i

κext

2

)
a0(ω) =

√
κexta

in
p (ω) + g

∫ ∞
0

dω′F (ω, ω′), (5.1)

where a0 is given by Eq. (2.61) for ω in the vicinity of the cCPT renormalized,

fundamental mode frequency ω0 [Eq. (3.42)] and κext is given by Eq. (2.59) similarly

in terms of the cCPT renormalized fundamental resonance frequency. Note that the
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Figure 5.1: (a) Gate polarization coupling in MHz across the tunable bias range.
The coupling becomes stronger in the direction of charge degeneracy. (b) The ratio√
ω0/|g| as a function of Φext for different values of ng. The fundamental charge

sensitivity δq is proportional to this ratio and the improved values are attained closer
to charge degeneracy. (c) δq for an average of one photon in the cavity, with ωg/κ = 1.
The values reported here assume contribution from a single side-band. (d) Comparing
δq in the bad-cavity and good-cavity limit. The bias point is chosen at (Φext =
0.5Φ0, ng = 0.9) which gives δq = 0.17 µe/

√
Hz for an average of one photon in the

cavity in the bad-cavity limit.
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gate modulation introduces higher order corrections to a0(ω) via the term

F (ω, ω′) =
1√
2π

ω0√
ωω′

e−i(ω−ω
′)l/vc

×
{√

π

2
δn(0)

g [δ (ω − ω′ + ωg) + δ (ω − ω′ − ωg)]

−N in
p (ω − ω′)

}
sin (ω′l/vc) a0(ω

′). (5.2)

We may further simplify Eq. (5.1) by neglecting N in
p (ω − ω′) in Eq. (5.2) owing

to the smallness of its noise contribution, and noting also that the ω, ω′ dependent

terms multiplying a0(ω
′) in Eq. (5.2) can be approximately evaluated at ω0 since

we assume ωg, κext,∆ω ≪ ω0, where ∆ω is the measured output power bandwidth

centered at the pump frequency ωp. Introducing internal effective cavity losses using

a phenomenological constant damping rate κint, channeled via an additional non-

measurable input port ainι (ω), we obtain:(
ω − ω0 + i

κtot

2

)
a0(ω) =

√
κexta

in
p (ω) +

√
κinta

in
ι (ω) + g

∫ ∞
0

dω′A(ω − ω′)a0(ω
′),(5.3)

where

A(ω) =
1

2
δn(0)

g [δ (ω + ωg) + δ (ω − ωg)] . (5.4)

Solving Eq. (5.3) perturbatively in the limit of small g, we have

a0(ω) =
∑
n=0

gn In(ω), (5.5)

where the zeroth order term in (5.5) is

I0(ω) =
√
κexta

in
p (ω) +

√
κinta

in
ι (ω)(

ω − ω0 + iκtot

2

) , (5.6)

and the iterative solution relation for In(ω) is given by

In(ω) =
∫ ∞
0

dω′
In−1(ω′)A(ω − ω′)

ω − ω0 + iκtot

2

. (5.7)

Considering the time-domain expression for a0(t) using Eq. (5.3), we obtain the

following necessary condition for linear charge detection: gδn
(0)
g /ωg ≪ 1. In this

linear detection regime, the output power reaching the first-stage amplifier is given
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by

P out(ω0,∆ω) = P in
p

∫ ω0+∆ω/2

ω0−∆ω/2

dω

{
δω2 +

(
κext−κint

2

)2
δω2 +

(
κtot

2

)2 δ(ω − ωp) +

(
κextgδn

(0)
g /2

)2
δω2 +

(
κtot

2

)2
×
[

1

(δω + ωg)
2 +

(
κtot

2

)2 δ(ω + ωg − ωp) +
1

(δω − ωg)
2 +

(
κtot

2

)2 δ(ω − ωg − ωp)

]}

+
ℏω0

2π

∫ ω0+∆ω/2

ω0−∆ω/2

dω

[
np(ω) +

1

2
+

κextκint (nι(ω)− np(ω))

(ω − ωp)2 +
(
κtot

2

)2
]
.

(5.8)

Since gδn
(0)
g /ωg ≪ 1, we neglect the noise floor contribution of g2 order. We also

neglect the order g2 signal contribution at ω = ωp, which is dominated by the reflected

pump tone; the actual signal is obtained from either (or both) of the sidebands at

ωp ± ωg.

5.1.2. Photon Shot-noise Limited Charge Sensitivity (Theory)

The major motivation behind the theoretical framework provided in this section is

to identify the potential applicability and fundamental limitations of the cCPT as

a linear charge detector subject to the laws of quantum mechanics. This essentially

implies disregarding the sources of noise that may arise from any experimental ma-

terials complexity and which are not limited in principle by quantum mechanics. To

address this fundamental charge sensitivity limit, we shall therefore neglect the inter-

nal bath by setting κint = 0, and consider the response of the cCPT at absolute zero

temperature for the pump/probe line, i.e., np = 0. The cCPT performance under

these conditions is determined by its essential coupling with the pump/probe line

at the output and the measured system at the input. In the absence of a physical

system at the input, the noise feeding the input of the subsequent amplifier stage thus

originates from the vacuum photon shot noise of the transmission line, determining

the lower bound for the charge-sensitivity. In reality, additional noise source channels

can prevent achieving this fundamental charge sensitivity limit, as discussed further

below.

The charge sensitivity δq (e/
√
Hz) of an electrometer is defined as the rms charge

modulation amplitude that corresponds to a signal-to-noise ratio of one (in a band-

width of 1 Hz) at the amplifier input [30]. We can thus solve for the fundamental
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charge sensitivity of the cCPT from the total output power expression (5.8) by setting

ωp = ω0, and looking at the output power variation about ω0±ωg within a bandwidth

of ∆ω = 2π × 1 Hz to obtain:

δq = |g|−1
√

ℏω0

(
ω2
g + (κ/2)2

)
4P in

p

e/
√
Hz, (5.9)

where κ now denotes the damping solely due to the coupling to pump/probe line

κext, given by Eq. (2.59) in terms of the cCPT renormalized fundamental resonance

frequency (3.42). Equation (5.9) may alternatively be expressed in terms of the

average photon number in the cavity ncav as follows:

δq = |g|−1
√(

ω2
g + (κ/2)2

)
κ ncav

e/
√
Hz. (5.10)

The sensitivity may be further improved using a homodyne detection scheme,

where the combined contribution of both the sidebands lead to values lower by a

factor of
√
2 [111].

The most charge sensitive points can be identified using the plots in Fig. 5.1.

Regardless of the input drive and signal frequency ωg, the charge sensitivity in general

improves as ng approaches (but does not equal) one [Fig. 5.1(b)]. In the case of an

average of one photon in the cavity with ωg/κ = 1, Fig. 5.1(c) shows the fundamental

charge sensitivity behavior across the entire bias range for a single sideband. We

obtain δq = 0.39µe/
√
Hz at (Φext, ng) = (0.5Φ0, 0.9) for the above parameter values,

while working well within the adiabatic approximation limit. Moreover, the efficiency

of the charge detector can be best exploited in the bad-cavity limit ωg ≪ κ, where the

value of δq saturates to 0.17µe/
√
Hz for an average of one cavity photon [Fig. 5.1(d)].

The values used in our numerical simulations are given in Table 3.1; however an

optimization of the EC , EJ values may further improve the charge sensitivity slightly.

Kerr Considerations: It is worthwhile noting that the highly anharmonic,

effective potential (3.47) of the cCPT leads to non-negligible contributions from the

quartic Kerr potential term even near an average of one cavity photon. In theory, it is

possible to substantially improve the performance of the cCPT by driving the cavity

at the onset of bistability (and where the cCPT still behaves as a linear electrometer)

as long as the signal is within gδn
(0)
g /ωg ≪ 1 [64, 30].
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Section 5.2

cCPT as a linear electrometer (Experiment)

Despite the cCPT’s potential as an ultra-sensitive charge detector as demonstrated

through theory in the previous section, the experimental limitations during fabrication

and measurements can hinder its ability to perform at this optimum sensitivity. In

addition to the noise contributions at the sample stage, the measurement precision

is also limited by the noise added at the subsequent amplifier stages (where the

minimum noise added by a quantum-limited phase insensitive amplifier is ℏω0/2). As

mentioned in §3.5, other transport mechanisms such as quasiparticle poisoning may

dominate the resonance characteristics when we operate closer to charge degeneracy.

The internal damping of the cavity further limits the charge sensitivity, modifying

the fundamental, quantum limited expression (5.9) as follows:

δq = |g|−1 κtot

κext

√
ℏω0

(
ω2
g + (κtot/2)2

)
4P in

p

e/
√
Hz. (5.11)

The sources of these internal losses primarily considers the direct interactions of

the cavity with its local environment [52, 92, 93]. As investigated in detail in chapter

4, in practice, there also exist sources of dephasing via microscopic two level system

(TLS) degrees of freedom located in the vicinity of the CPT, for example within the

underlying substrate and Josephson tunnel junction oxide layers. These defects couple

via their electric and magnetic dipole moments to the cCPT system charge and flux

coordinates [39, 113, 114] and cause resonant frequency fluctuations during real-time

measurements that are typically manifested as 1/f noise (see Fig. 4.11). This makes

it challenging to precisely set the pump tone on resonance as we have assumed in

the last section. While characterizing the experimental device performance, it is thus

crucial to take these fluctuations into account since they can be erroneously equated

with additional damping.

The observed charge sensitivity of the actual cCPT device in the presence of such

intrinsic charge noise is reported to be nearly three times worse than our theoretical

predictions [15] and is limited by the low-frequency resonant frequency fluctuations

of the cCPT. In this section, we investigate methods to improve the experimental

electrometric properties of the cCPT closer to the photon shot-noise limited value.

In particular, we will utilize the techniques discussed in Chapter 4 to decouple the
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charge noise and stabilize the resonant frequency of the cavity.

5.2.1. Measurement Setup

In essence, the measurement of the charge sensitivity in an experimental setting

requires driving the cavity near resonance, in the presence of a gate modulated signal

δng(t) = δn
(0)
g cos (ωgt), and further analysing the sideband features of the output

field. The latter can be achieved either by the direct measurement of the power

spectrum using a spectrum analyzer [15], or using a homodyne/heterodyne detection

scheme via a digitizer. A homodyne detection essentially mixes the output with

a local oscillator (LO) at the resonant frequency. This results in increased SNR

by combining the information-carrying sidebands into one single frequency. As the

detection is ultimately limited by the low-frequency noise near the DC, a heterodyne

scheme (involving LO displaced from resonance) is sometimes preferred, especially at

lower ωg values.

In this section, we will however perform power spectral density measurements us-

ing a spectrum analyzer. Such a measurement is more easy to incorporate into the

circuit scheme given in Fig. 4.7, where a directional coupler is used to route one

component of the output signal to a spectrum analyzer, and the other component si-

multaneously allowing for feedback correction of the resonant frequency. The output

power measured at the spectrum analyzer is directly proportional to the expression

in Eq. (5.8), with the proportionality constant determined by the gain features of the

subsequent amplifier chain. However, the noise floor is elevated due to the presence

of the near-quantum-limited amplifier, the TWPA, that further adds few photons of

noise into the signal, besides the photon shot-noise represented by the third line in

Eq. (5.8). It may thus help to consider the cCPT as a zeroth-stage, linear, quantum-

limited amplifier of charge fluctuations, followed by another quantum-limited ampli-

fier in the first stage of the net chain (see Fig. 5.2). As each of these amplifiers add

a minimum of ℏω/2 of noise, the detection is quantum-limited by a noise floor of ℏω.
Finally, following the definition for charge sensitivity δq presented above Eq. (5.9),

we may measure the magnitude of δq from the power spectral output using [15]

δq =
qrms√

2B × 10SNR/20
, (5.12)

where qrms is the rms of the charge modulation amplitude δn
(0)
g , B is the resolu-

tion bandwidth of the spectrum analyzer, and SNR is the signal-to-noise ratio of the
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cCPT TWPAδq

h̄ω/2h̄ω/2
aoutp (δω, δω ± ωg)

ainp (δω)

Figure 5.2: Quantum-limited charge sensing using the cCPT and TWPA which adds
a total of ℏω of noise during detection.

single sideband in dB. We can thus compare the observed magnitudes to the theo-

retical model predicted using Eq. (5.11) and determine the fidelity of charge sensing

measurement in the quantum limit.

5.2.2. Charge Modulation Amplitude at 30 mK

For the accurate extraction of qrms at the sample stage, a measurement of the at-

tenuation in the gate line is required since the applied voltage at room temperature

undergoes a low-pass transfer function. In our setup, this attenuation occurs in two

stages. Firstly, the summing amplifier that adds the input gate, PID correction, and

the gate modulation is bandwidth-limited near 1 MHz. Therefore, we first measure

the transfer function of the gate line at room temperature before it enters the dilution

fridge (see Fig. 5.3a). Next, since the Cu wire used as the gate line inside the fridge

and the associated parasitic capacitance forms a second RC filter, the applied qrms is

further attenuated at 30 mK. The output power at the sidebands in Eq. (5.8) as a

result can be re-expressed as

P out(ωp ± ωg) =
BP in

p (ωp)[
δω2 + (κtot/2)

2]
(
κextgq

RT
rms

)2[
(δω ∓ ωg)

2 + (κtot/2)
2] [1 + (ωg/ωCu)

2] , (5.13)

where qRTrms is the rms gate modulation amplitude measured at the room temperature

(obtained for ωg = 0), and ωCu is the single-pole, low-pass cutoff frequency of the

gate line down to 30 mK.

Hence for ng values where the charge noise does not add a substantial 1/f -noise

to δω, we may use the above expression to extract ωCu. In order to remove any Kerr

nonlinear effects, we also fix P in
p (ωp) corresponding to n < 1. As a result, Eq. (5.13)
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(a) (b)

(c) (d)

Figure 5.3: (a) Transfer function of the gate line at room temperature with contri-
butions from the summing amplifier and the voltage divider. The cutoff frequency
obtained for the fit is 0.2 MHz, and the voltage divider ratio is 765. (b) Fitting ∆P
as given in Eq. (5.15). Results of the fit are δω/2π = 0.44 MHz and κtot/2π = 2.17
MHz. Note the total damping rate of the fit is higher as we have not included the
frequency fluctuations due to low-frequency noise and the backaction from TWPA
in this model. (c) Fitting the output power of both the sidebands as a function of
gate frequency ωg, per Eq. (5.14). The values obtained are κtot/2π = 2.18 MHz
and ωCu/2π = 0.736 MHz and δω/2π = 0.44 MHz. This cutoff frequency is close to
the estimated value at room temperature considering the length of the Cu wire. (d)
Output power of each sideband plotted in log scale, following the fits in (b) and (c).
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can be used to obtain ωCu using the model

T (ωg) =
C[

(δω − ωg)
2 + (κtot/2)

2] [1 + (ωg/ωCu)
2] , (5.14)

under a change of variable ωg → −ωg for negative sidebands, and C set as the

proportionality constant (including the gain of the amplifier chain). Furthermore the

asymmetry can be quantified using ∆P ≡ P out(−ωg)/P
out(+ωg):

∆P =
(δω − ωg)

2 + (κtot/2)
2

(δω + ωg)
2 + (κtot/2)

2 . (5.15)

The results of these fits are plotted in Fig. 5.3, where we obtain a cut-off frequency

of 736 kHz for the gate line.

5.2.3. Enhanced Charge Sensing

We are now equipped to look at the enhanced charge sensing properties of the cCPT

as a consequence of its decoupling from the environmental charge noise, achievable

through feedback techniques detailed in Chapter 4. In short, we measure the charge

sensitivity of the cCPT by looking at the output power response as given in Eq. (5.12),

with and without feedback. The results of these measurements are given in Fig. 5.4

where the cavity is driven at n = 10 and n = 1, and is biased at the charge-sensitive

point (ng,Φext) = (0.6, 0).

As illustrated in Fig. 5.4a, we observe a definite improvement in the magnitude

of the charge sensitivity in the presence of feedback. This improvement is significant

for n = 10, especially for higher ωg values. We attribute this enhancement to the res-

onant frequency stabilization in the low-frequency noise up to 1.4 kHz, as previously

demonstrated through Fig. 4.13. However, it is to be noted that this operation is well

outside the single-photon charge sensing regime discussed in §5.1, since for n = 10

the Kerr-effects are significant to even drive the cavity beyond the Kerr bifurcation

point. Thus Fig. 5.4a is to be looked at from a demonstrative viewpoint only.

On the other hand, Fig. 5.4b demonstrates enhancement of the charge sensing

capabilities of the cCPT at the single photon level. Unfortunately, we observe that

the detection scheme we adopted measures charge modulations approximately 10

times worse than the optimized value reported for the same device by Brock et.

al [15], even in the absence of the feedback. Such a drastic difference is a consequence

of two factors that were not taken care of during these preliminary measurements.
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Figure 5.4: Results of the charge sensitivity measurement by the spectrum analyzer
with and without feedback. The cavity is biased at (ng,Φext) = (0.6, 0) and the
resolution bandwidth of the specturm analyzer is set to 1 Hz. (a) The cavity is driven
at an average of 10 photons, which is well into the bifurcation regime. (b) The cavity
is driven at the single-photon level.

One, the gate input line in Fig. 4.7 is devoid of any attenuators and bias tees as

opposed to the circuit scheme used by [14]. As a result, the minute charge modulation

voltage amplitudes applied at room temperature undergo a decrease in SNR due to

addition of thermal noise, thus making the system prone to high-frequency external

noise. Secondly, the TWPA parameters used to achieve first-stage amplification is

the optimized value for the cCPT’s entire tunable range. By optimizing the TWPA’s

drive pump and frequency such that the added noise at this stage when the cCPT

is biased at (ng,Φext) = (0.6, 0) corresponds to ∼1.2 photons as reported by [14], we

can potentially elevate the measurement performance to a comparable regime.

Nevertheless, it can be safely deduced from these promising results that the cCPT

can perform as a near quantum-limited electrometer in the single-photon limit, by
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decoupling the intrinsic charge noise and stabilizing it’s resonant frequency in real

time. The underpinning detrimental features of the setup utilized in this scheme

has significant room for improvement, and can be implemented via the addition of

attenuators along the gate line and a recalibration of the TWPA’s drive parameters.
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Chapter 6

Future Work

In this chapter, we present a summary of the future directions branching out of

the main content presented in this thesis. In particular, §6.1 details the need for

investigating the concept of phase operator measurement in the low-photon regime.

Section 6.2 covers topics on ways to generalize the suppression of environmentally-

induced noise in superconducting, tunable microwave cavities. In §6.3, we briefly look

at an alternate mode of charge sensing possible using the cCPT – phase-sensitive

detection.

Section 6.1
Standard Quantum Limit

in the Single-photon Regime

One of the key applications of the cCPT is to perform quantum measurements using

phase-preserving amplification of an observable of another measurable quantum sys-

tem, such as a qubit or a mechanical resonator. Of particular interest is a tripartite

coupling involving the cavity and a mechanical resonator interacting via the CPT,

where the resulting, tunable CPT-induced effective optomechanical interaction may

approach the single photon-single phonon ultrastrong coupling regime [34].

Since the device operation is limited by quantum noise, a natural extension of the

work presented in §5.1.2 is to investigate how closely the cCPT detector approaches

the standard quantum limit, with the back-action of the cCPT on the measured

system taken into account. In the conventional case of large photon driving, the

coupling term in the opto-mechanical Hamiltonian can be linearized in the cavity

and mechanical oscillator coordinates, and the information about the position of the
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mechanical resonator can be extracted using a single quadrature measurement [79],

as discussed in Appendix A.

Furthermore, the force acting on the mechanical resonator (MR) due to the action

of cavity can be obtained using

FL =
∂Ĥ
∂x̂

=

√
2ℏG
xzp

X, (6.1)

where X is the in-phase quadrature of the cavity [Eq. (A.14)], H is the open-system

Hamiltonian [Eq. (A.8)], and G is the optomechanical coupling as defined in Appendix

A. The radiation pressure force power spectral density thus becomes

SFF (ω) =
8

κ

(
ℏG
xzp

)2

SXinXin
(ω), (6.2)

where we used the relation in Eq. (A.14). Similarly, the minimum possible measure-

ment (imprecision) noise Simp
xx is obtained from Eq. (A.14) as

Simp
xx =

κ

8

(
xzp

G

)2

SYinYin
. (6.3)

Combining the two results in (6.2) and (6.3), we obtain the uncertainty in the back-

action noise SFF (ω) and the imprecision noise in position Simp
xx (ω) bounded by the

inequality [79]

SFF (ω)S
imp
xx (ω) ≥

(
ℏ
2

)2

(6.4)

using the commutation relation [Xin, Yin] = i.

In the low average cavity photon number limit, however, we must retain the

original form of the opto-mechanical Hamiltonian [62]:

H = ℏ∆a†a+ ℏΩ b†b+ ℏGa†ax, (6.5)

where a and b denote the cavity and mechanical resonator annihilation operators

respectively, x is the oscillator position, ∆ = ω0 − ωp, Ω is the mechanical oscillator

frequency, and G determines the optomechanical coupling. As shown in Appendix

B, the information about the position of the mechanical resonator can no longer be

extracted using a X quadrature measurement; rather, the displacement information

is encoded in the phase of the reflected signal.
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Furthermore, the force experienced by the the MR due to the cavity is given by

[following the definition in Eq. (6.1)]

FL =

(
ℏG
xzp

)
a†a, (6.6)

and subsequently, the radiation pressure force power spectral density takes the form

SFF (ω) =

(
ℏG
xzp

)2

SNN(ω), (6.7)

where SNN is the cavity photon number noise and xzp is the mechanical resonator po-

sition zero-point uncertainty. Drawing parallels between the two regimes, we deduce

that the corresponding imprecision noise spectral density Simp
xx (ω) depends on Sθθ(ω)

(since [Xin, Yin] = [N, θ] = i).

Investigations probing the standard quantum limits achievable in the combined

cCPT-mechanical oscillator system in the presence of low average photon number

drive thus requires considering ways to measure the phase operator θ̂(ω) itself. How-

ever, the definition of the phase operator has evolved over the years; one possible

definition is the Susskind-Glogower (SG) formalism [78, 115]. In short, we may define

the operators

Ê ≡ (aa†)−1/2a = eiθ̂ (6.8)

Ê† ≡ a†(aa†)−1/2 = e−iθ̂ (6.9)

Ĉ =
1

2

(
Ê + Ê†

)
(6.10)

Ŝ =
1

2i

(
Ê − Ê†

)
(6.11)

where the relevant commutation relations are [Ĉ, N̂ ] = iŜ and [Ŝ, N̂ ] = −iĈ. As

before, we can similarly write down the equations of motion for some of these ob-

servables and try solving these in Fourier space. However, these calculations get

excessively complicated unless the approximation Ŝ ≈ θ̂ is made.

Thus the measurement of the phase operator in experiments typically assumes the

smallness of θ. For example, using a definition of θ that relates aout = reiθain, Clerk’s

review [1] approximates ⟨θ⟩ = ⟨Y ⟩/⟨X⟩. While this form is valid for high n, further

investigations are required to devise a formalism to measure the phase operator in

the low-photon limit, especially how it shows up in the quadrature detection schemes.
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It is worthwhile noting that the above approximation for the phase in terms of the

quadratures, ⟨θ̂⟩ = ⟨Ŷ ⟩/⟨X̂⟩, no longer holds in this limit (refer Appendix C); further

studies at a fundamental level are required to understand the behaviour of the phase

operator, both theoretically and experimentally [116, 117, 118, 119, 120, 115].

Section 6.2
Environmental Noise Decoupling in Tunable

Superconducting Cavities - Generalization

As extensively discussed in Chapter 4, it is possible to achieve resonant frequency

stabilization in the cCPT by decoupling charge noise over a bandwidth greater than

1 kHz, while the cavity is driven at an average of 10 photons. The cCPT is a cavity-

qubit system that mimics the tunability and noise features of many cQED archi-

tectures. Hence the future directions would by default involve the generalization of

this technique – to capture and decouple noise in tunable superconducting microwave

cavities.

Noise Decoupling in the 2-dimensional Space: The technique we discuss

in this thesis work is based on PDH locking, where we extract an error signal that

monotonically depends on the magnitude of fluctuations of the tunable bias parame-

ter (i.e., island gate charge). A major caveat of our study is that in order to enable

efficient feedback locking, the cCPT must be biased at points where the charge re-

sponse is significant with the flux effectively decoupled, or vice-versa. An optimized

operation of this particular technique, involving a simultaneous compensation for the

intrinsic charge and flux noise in tunable microwave cavities, has direct applications in

devices where the performance is affected by intrinsically induced resonant frequency

fluctuations.

A potential approach towards this objective is the use of double feedback. In

particular, the goal would be to route the error signal between two feedback loops, by

distinguishing the contribution from each noise source separately. Clearly, this would

require a precalibration step, where the extent of noise fluctuations along each source

is first extracted by biasing the cCPT with sole contributions from that particular

source.

Detection of Coherent Noise Contributions: Apart from the low-frequency

noise, another significant noise phenomenon observed is the coupling between the

electric dipole moment of a fluctuating near-resonant TLS, and the oscillating electric
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fields in the device [121, 122]. This coupling manifests itself as an avoided crossing

or suppressed T1 time in tunable qubit systems as the qubit frequency is tuned near

the coherent TLS frequency. It may be possible to explore the combined dynamics of

such systems using a scheme that utilizes positive feedback to amplify the magnitude

of such couplings, both theoretically and experimentally. The key objective here is

to get insights into the interesting dynamical processes occurring at a fast time scale

on the substrate interface and potentially explore ways to minimize its manifestation

during readout. Needless to say, as the noise regime we are interested in is at GHz

frequencies, the associated error signal detection would entail an entirely different

scheme as opposed to the low-frequency lock-in amplifier setup.

Detection of Poisson Process Switching: As detailed in §4.5, the suppres-

sion of the frequency noise in the cCPT was primarily limited by the interference

of quasiparticle poisoning in the cCPT. These processes are Poissonian in general,

where the switching between the odd and even parity energy states of the cCPT are

incoherent. It is important to extract the lifetimes of each state [123] in order to

understand the physical origins of these processes.

One potential implementation is to use the concepts discussed in Chapter 4 to

detect such random telegraph switching events that cause additional channels of dis-

sipation in cQED systems [98]. In particular, Fig. 6.1a provides an extrapolation of

the odd and even energy band structure of the cCPT. The discussions in Chapter

4 exploited the information in the Y quadrature to extract frequency fluctuations

about resonance. On the other hand, we observe that the X quadrature is insensi-

tive to these fluctuations at resonance, with peaks corresponding to carrier frequency

values at ω0 ± ωm. As a result, the modulation frequency can be chosen such that

ωm = δωqp
0 or 2ωm = δωqp

0 , where δωqp
0 = ω

(odd)
0 −ω

(even)
0 is the difference between the

resonant frequencies. Subsequently, the resonance switching events can be detected

by the lock-in amplifier with high sensitivity in real time. A proof of concept for this

scheme is discussed in Appendix D, where we introduce a deterministic switching

event via a gate pulse signal that is detected by the lock-in amplifier accurately.

The reflection measurement using a vector network anaylzer at the bias points

where quasiparticle switching events are frequent, outputs incorrect damping rates

during the analysis. Quantitatively, the total reflection coefficient is modified as

S
(VNA)
11 (∆) = P(even)S11(∆) + P(odd)S11(∆− δωqp

0 ), (6.12)
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Figure 6.1: (a) Extrapolated energy band states of the odd and even parity resonances
of the cCPT corresponding to Φext = 0. (b) Response of the X-quadrature as a
function of carrier frequency discussed in Fig. 4.1.

where Pi is the probability of the cCPT to being in the state i. Extraction of the

proper characteristic time scales of these switching events using the above method-

ology can be used to calculate Pi. This in turn provides us with the actual damping

rates of the cavity using an otherwise incorrect VNA measurement.

Section 6.3

Phase Sensitive Detection using the cCPT

Let us recall the generalized nonlinear cCPT Hamiltonian obtained in §3.2.5 [Eq.

(3.43)] with focus on the second-order term: (a0 + a†0)
k, where n = k = 2. The
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component we are interested in can be expressed as

Vn,k

(
a0 + a†0

)k
=

ϕ2
zp

2

∂2E
(0)
CPT

∂ϕ2

∣∣∣∣∣
ng ,2πΦ

(0)
ext/Φ0

(
a20 + a†20 + a0a

†
0 + a†0a0

)
, (6.13)

where we now allow a flux modulation via Φext = Φ
(0)
ext + δΦext cos(ωf t+ θf ), with the

flux modulation frequency fixed at twice the drive frequency of the cavity near reso-

nance, i.e., ωf ∼ 2ωp. In the earlier case of the rotating wave approximation without

a flux modulation, the terms a20 and a†20 were neglected as these were fast-rotating

terms. However, comparing to the CPT Hamiltonian in Eq. (3.30), these terms rotate

in the lab frame in the presence of a flux modulation as assumed in the current case.

As a result, we may selectively amplify or attenuate either of the quadratures a20 or a
†2
0

by fixing the modulation phase accordingly. This mode of detection is phase-sensitive,

and can be utilized to extract information about the coupled quantum mechanical

system via a single quadrature measurement, as mentioned in Chapter 1.
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Chapter 7

Conclusion

Recognizing the importance of gaining better insights into the techniques leading to

optimal quantum detection, this thesis covered topics on understanding the funda-

mental limits determining the measurement imprecision of charge sensing, as well as

devising experimental schemes that leads to environmental noise decoupling. In the

first phase of this dissertation, the open system dynamics of the cCPT were theoret-

ically explored [13] where we propose that this device can perform quantum-limited,

linear charge sensing at very low pump powers. Furthermore, since the cCPT can

operate at the single-photon limit, it can be coupled to another quantum system

such as a mechanical resonator [34], or a qubit, with minimal back-action. However,

experimentally, the sensitivity of the cCPT was observed to be primarily limited by

charge noise induced by the two-level system defects in its environment [15]. Hence in

the next phase, we successfully demonstrated the suppression of resonant frequency

fluctuations induced by this intrinsic charge noise via dynamic feedback control of

the system [18]. The relevant results of these two projects are summarized as follows.

In Chapter 3, we presented a first principles, theoretical model of a quantum-

limited linear electrometer. The model uses adiabatic elimination of the CPT dynam-

ics, such that the cCPT passively mediates the interactions between the microwave

cavity and the measured system (e.g., mechanical resonator) via linear charge sensing.

For parameters similar to those of the experimental device described in Ref. [14], we

predict the fundamental, quantum noise limited charge sensitivity of the cCPT linear

electrometer to be 0.12µe/
√
Hz under a homodyne detection scheme, as discussed in

Chapter 5. This sensitivity corresponds to the pumped cavity having an average of

one photon, with the cCPT operated in the gate tunable range 0 ≤ ng ≤ 0.9, where

the adiabatic approximation is valid and the effects of quasiparticle poisoning may
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be reduced in an experimental device.

In Chapter 4, we successfully demonstrated the feedback stabilization of a tunable

microwave cavity against intrinsic charge noise by locking the cavity to a stable ref-

erence. We report stabilization of the cavity resonance over a 3dB bandwidth of 1.4

kHz at n = 10. When the cavity is driven at the single photon level, this bandwidth

is reduced to 11 Hz, due to the accompanying decrease in SNR. Compensation for

intrinsic bias noise stabilizes the resonant frequency with respect to the carrier sig-

nal over the course of an actual measurement, as in electrometry and qubit readout.

We believe that the resulting enhancement in charge sensitivity can raise the cCPT’s

performance to operate in the regime of single photon-phonon coupled optomechanics.

Moreover, the feedback scheme reported here can also be extended to tunable

microwave cavities in general, provided the dominant source of resonant frequency

fluctuations originate from the intrinsic bias noise at the sample. The technique

can thus realize real-time detection and correction for bias noise in these devices,

potentially improving the coherence and measurement fidelities in superconducting

qubits.

In order to demonstrate the feasibility of the concepts discussed in the above

mentioned projects, we further complete a charge sensitivity measurement in the

few-photon regime, while the cCPT is decoupled from low-frequency noise. As ex-

pected, we observe the electrometric capabilities of the cCPT are enhanced in the

presence of the feedback, with significant potential for improvement under some cir-

cuit remodeling.

In summary, the cCPT forms a mesoscopic system functioning at the classical-

quantum regime capable of achieving phase-preserving, near quantum-limited, ultra-

sensitive charge detection in the single-photon limit. This device thus have enormous

potential to be operated in both linear and non-linear regimes, mediating interactions

between quantum systems without the addition of significant backaction.
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Appendix A

Linearized Optomechanical

Hamiltonian

Let us begin with a cavity described using the photon annihilation operator â and

a mechanical oscillator defined by the phonon operator b̂. The amplitude and phase

quadrature operators X̂ and Ŷ for the cavity can then be defined as

X̂ =
a+ a†√

2
(A.1)

Ŷ =
a− a†√

2i
. (A.2)

Similarly the dimensionless position and momentum operators Q̂ and P̂ for the me-

chanical resonator (MR) are

Q̂ =
b+ b†√

2
=

1√
2

x̂

xzp

P̂ =
b− b†√

2i
. (A.3)

The quantum Langevin equations for the resonator and the cavity can then be

deduced from the Heisenberg equation of motion for a closed system given by

˙̂
O = − i

ℏ
[Ô,H] + ∂Ô

∂t
. (A.4)

In short, we will assume that the cavity is weakly coupled to a bath of independent

oscillators, where the cavity damping κ remains constant in our frequency region of

interest, i.e., taking the Markovian limit. Assuming a coherent input drive at a
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frequency ωp near resonance with αin = ⟨ain⟩ ≠ 0, and performing a rotating wave

approximation on the system-bath Hamiltonian H = Hsys +Hbath where we neglect

the counter-rotating terms, the quantum-Langevin equation can be modified into the

familiar form [79]

˙̂
O = − i

ℏ
[Ô,H]− [Ô, a†]

(κ
2
a−√κain(t)

)
+
(κ
2
a† −√κ a†in(t)

)
[Ô, a]. (A.5)

For the mechanical resonator case, the analogous form can be written as

˙̂
O = − i

ℏ
[Ô,H] + i

√
2Γ [Ô, Q̂] Pin(t) +

Γ

2iΩ

{
[Ô, Q̂],

˙̂
Q
}
, (A.6)

where Ω and Γ denote the resonant frequency and damping of the resontator, respec-

tively, and Pin is the dimensionless input momentum fluctuations.

In the limit of high intra-cavity photon number n = ⟨a⟩2 ≡ α2, we can simplify

the dynamics by looking at the small quantum fluctuations around a classical steady

state. To that end, we may displace a → α + a and b → β + b, and the coherent

optical drive in (A.5) can be absorbed into the system Hamiltonian such that ain in

(A.5) can also be written as the quantum fluctuations about αin. The generalized

open optomechanical Hamiltonian thus becomes [79]

H = ℏ∆a†a+ ℏΩ b†b+ ℏGa†ax̂+ ℏϵ(a+ a†), (A.7)

where ϵ ∝ αin. With an appropriate choice of steady-state optical and mechani-

cal displacement, i.e., α and β, the effects of coherent optical driving and coherent

mechanical driving can be cancelled (Refer §2.7 of [79]). As a result, the linearized

optomechanical Hamiltonian can be written as

H = ℏ∆a†a+ ℏΩ b†b+ ℏG(a+ a†)(b+ b†), (A.8)

where the overall detuning ∆ → ∆ + 2G2/Ω with G ≡ xzpGα. Furthermore, for

zero detuning ∆ = 0, the equations of motion for the quadrature operators can be
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obtained using (A.5) and (A.6) as

Ẋ = −κ

2
X +

√
κXin, (A.9)

Ẏ = −κ

2
Y +
√
κYin − 2GQ, (A.10)

Q̇ = ΩP, (A.11)

Ṗ = −ΩQ− 2GX +
√
2ΓPin − ΓP. (A.12)

Remark A.1. Note that X and Y equations of motion are independent and the mechan-

ical displacement information is contained in the Y quadrature alone. As discussed

in §6.1 and appendix B, this is not the case for cCPT-MR and the equations are more

complicated to solve.

In the bad cavity limit κ≫ Ω, we can treat X, Y with the assumption that these

reach equilibrium much faster than other system variables, i.e., Ẋ = Ẏ = 0. As a

result,

X =
2Xin√

κ
, (A.13)

Y =
2

κ

(√
κYin − 2GQ

)
. (A.14)

Remark A.2. In the proposed cCPT-MR system [34], the dynamics occurs closer to

the good cavity limit for the actual device. However, as the charge sensitivity can be

best exploited at the bad cavity limit as discussed in Fig. 5.1d, we first focus on this

scenario.

Using the input-output relation aout = ain−
√
κa and Eq (A.14), the output phase

quadrature fluctuations can be written as

Yout = −Yin +

√
8

κ

( G
xzp

)
x. (A.15)

Thus the information about the position of the mechanical resonator can be ex-

tracted using a single quadrature measurement of the cavity.
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Appendix B

Single-photon Optomechanics

In the single-photon regime with n closer to 1, we retain the general form of Hamil-

tonian such that

H = ℏ∆a†a+ ℏΩ b†b+ ℏGa†ax̂

= ℏ∆a†a+ ℏΩ b†b+ ℏGa†aQ̂, (B.1)

where ∆ = ωc − ωp and G =
√
2xzpG, with the definitions following description in

Appendix A.

Solution for the photon annihilation operator a(ω): Let’s begin by writing

down the relevant equations of motion derived from Eqs. (A.5) and (A.6):

ȧ(t) = −i (∆ + GQ(t)) a(t)− κ

2
a(t) +

√
κ (ain(t) + αin) (B.2)

where ain → αin + ain with αin = ⟨ain⟩ is a constant in the pump rotating frame. For

the mechanical resonator,

Q̇(t) = ΩP (t) (B.3)

Ṗ (t) = −ΩQ(t)− Ga†a+
√
2ΓPin − ΓP (B.4)

can be combined into a single second-order equation

Q̈(t) + ΓQ̇(t) + Ω2Q(t) =
√
2ΓPin − Ga†a. (B.5)
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As we are interested in the steady-state solution, we obtain in the Fourier domain

Q(ω) = χ(ω)
(√

2ΓPin(ω)− Ga†a(ω)
)

(B.6)

where χ(ω) = Ω/(Ω2 − ω2 − iωΓ). Thus the solution for Q(ω) is a Lorentzian with

peaks at ±Ω. For further calculation, Q(ω) is approximated to be delta functions at

±Ω.
As a result, we can now find the steady-state solution for a(ω) at ∆ = 0 using

Eq.(B.6) as(
−iω +

κ

2

)
a(ω) =

√
κ
(
ain(ω) + αinδ(ω)

)
− iG

(
Q(Ω)a(ω − Ω) +Q(−Ω)a(ω + Ω)

)
(B.7)

where we used the Fourier property

F
(
Ô1(t)Ô2(t)

)
=

∫ ∞
−∞

Ô1(ω − ω′)Ô2(ω
′)dω′. (B.8)

Similarly writing down (B.7) for ω = ω ± Ω and neglecting the corresponding

second side band terms a(ω ± 2Ω), we obtain(
−i(ω ± Ω) +

κ

2

)
a(ω ± Ω) =

√
κain(ω ± Ω)− iG Q(±Ω)a(ω). (B.9)

Substituting for a(ω ± Ω) in (B.7) using (B.9), we get the solution for a(ω) close to

zero-detuning as(
−iω +

κ

2

)
a(ω) =

√
κ
(
ain(ω) + αinδ(ω)

)
−i√κG

(
Q(Ω)ain(ω − Ω)

−i(ω − Ω) + κ
2

+
Q(−Ω)ain(ω + Ω)

−i(ω + Ω) + κ
2

)
+O(G)2. (B.10)

Note that this coincides with the result obtained in Eq. (5.3) that descibes detec-

tion of a sinusoidal gate modulation (a simulated environment instead of an actual

mechanical resonator) by the cavity component of the cCPT.

Displacement information in quadrature Writing down the equations of
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motion for X(t) and Y (t) gives

Ẋ(t) = GQ(t)Y (t)− κ

2
X(t) +

√
κ
(
Xin(t) +

√
2αin

)
(B.11)

Ẏ (t) = −GQ(t)X(t)− κ

2
Y (t) +

√
κYin(t) (B.12)

Note that the two equations are coupled, and both the quadrature information is

required to measure the displacement of mechanical resonator.

Furthermore, let’s also look at the equation of motion for a†(t)a(t) given by

d

dt

(
a†(t)a(t)

)
= −κa†(t)a(t) +√κ (Xin(t)X(t) + Yin(t)Y (t)) . (B.13)

As can be deduced from the above expression, there is no Q information stored in the

number quadrature of the cavity a†a(t), implying the need to investigate its conjugate

observable θ̂.
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The Phase Operator
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Figure C.1: (a) Expectation of cos operator with ⟨C⟩ → 1 for N ≫ 1. (b) Standard
deviation of phase operators both die down for N ≫ 1. (c) Corresponding uncertainty
relations with ∆N∆S = ∆N∆θ = 1/2 for N ≫ 1.

As mentioned in §6.1, it is important to look at the range of fluctuations of the

phase shift. This can be verified by looking into ⟨Ĉ⟩ and ⟨Ŝ⟩, and the variance

around the expectations ∆C and ∆S. We will assume an input coherent state such

that ain|α⟩ = (α+ δain)|α⟩ and the cavity annihilation operator a ≈ 2ain/
√
κ+O(G)

at resonance using (B.10). Hence we will assume that the cavity state is a coherent

state as well, with a photon number closer to 1. We will also take ⟨δa†inδain⟩ ≪ |α|2
since kBT/ℏω ratio gives very low photon occupancy. Thus for a coherent state

|α⟩ = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n⟩. (C.1)

For real α, we have ⟨Ĉ⟩ = ⟨Ê⟩ and ⟨Ŝ⟩ = 0. Hence we can make the assumption
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Ŝ ≈ θ̂ if ∆S is small.

⟨Ĉ⟩ = ⟨Ê⟩ = ⟨Ê†⟩ = e−|α|
2
∞∑
n=0

|α|2nα
n!
√
n+ 1

. (C.2)

Clearly for |α| < 1, ⟨Ê⟩ = O(α) and ⟨Ê⟩2 = O(α2). Similarly,

⟨Ê2⟩ = ⟨Ê†2⟩ = e−|α|
2
∞∑
n=0

|α|2nα2

n!
√

(n+ 1)(n+ 2)
. (C.3)

The variance ∆C2 is given by ⟨Ĉ2⟩ − ⟨Ĉ⟩2 where

⟨Ĉ2⟩ = 1

2

(
1 + ⟨E2⟩

)
. (C.4)

Similarly,

∆S2 =
1

2

(
1− ⟨E2⟩

)
. (C.5)

As seen in Fig C.1, the variations in sin operator Ŝ dies down in the high photon

limit making it possible to make the approximation Ŝ ≈ θ̂. Since ∆N =
√
N , the

uncertainty relation ∆N∆θ = 1/2 for N ≫ 1 as expected.

Note that for N = 1, ∆S = 0.51 and sin θ ≈ θ may hold (sin−1 0.51 = 0.54).

Hence we may assume the fluctuations about Ŝ to be small in the lower photon limit

as long as N > 1, enabling us to proceed our calculations using Ŝ ≈ θ̂. But as seen

in Fig C.1(c), the uncertainty relation ∆N∆θ peaks above 1/2 before saturating.
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Appendix D

Detection of Two-mode Switching

Following figures provide a proof of concept for the the real-time detection of Poisson

processes using a phase-modulated tone. These measurements are completed by pulse-

modulating the gate of the cCPT at 50 Hz. As result, the X quadrature of the

derivative of the reflected intensity captures the switching events with high sensitivity,

when the modulation frequency is half the difference of the resonant frequencies of

the two states.

Figure D.1: Detection of the switching between two ng states. Following the scheme
discussed in §6.2, the lock-in amplifier detects the switching events occurring at 50 Hz
frequency and a duty cycle of 50%, as is illustrated in this time-domain measurement.
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Detection of Two-mode Switching

Figure D.2: Reflection measurement using VNA with the cCPT gate modulated
using a pulse signal with different duty cycles D. The pulse frequency of the gate
input and the IF bandwidth of the VNA are set to 50 and 10 Hz, respectively, such
that the switching between two bias points is captured. Duty cycles for the plots on
the left is 50% and on the right is 90%. The bottom plots capture the response in the
complex plane with corresponding fits following Eq.(6.12), where P1 = D/100 and
P2 = 1−D/100.
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[28] M. A. Sillanpää, T. Lehtinen, A. Paila, Yu. Makhlin, L. Roschier, and P. J.

Hakonen. Direct Observation of Josephson Capacitance. Phys. Rev. Lett.,

95(20):206806, November 2005.

[29] F. Persson, C. M. Wilson, M. Sandberg, and P. Delsing. Fast readout of a single

Cooper-pair box using its quantum capacitance. Phys. Rev. B, 82:134533, 2010.

[30] L. Tosi, D. Vion, and H. Le Sueur. Design of a Cooper-pair box electrome-

ter for application to solid-state and astroparticle physics. Phys. Rev. Appl.,

11(5):054072, May 2019.

132



BIBLIOGRAPHY
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[118] H. Gerhardt, H. Welling, and D. Frölich. Ideal laser amplifier as a phase measur-

ing system of a microscopic radiation field. Appl. Phys. A, 2(2):91–93, August

1973.

[119] Bo-Sture K Skagerstam and Bjørn Å Bergsjordet. On the quantum phase op-
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