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Abstract 

The bidirectional relationship between the gut microbiome and immune system plays an 

important role in host immune status: the immune system provides the gut microbiome 

the optimal environment to thrive in, and the gut microbiome helps regulate the immune 

system. This relationship is especially important in infants, whose immune system is still 

premature and rely on innate immunity.  

 

We investigated the three-way interplay among early-life exposures, the developing gut 

microbiome, and outcomes in infancy from the general population in New Hampshire, 

US. We used prospective cohort data from the New Hampshire Birth Cohort study to 1) 

determine whether timing of baby rice cereal introduction is related to respiratory 

infections, symptoms, and allergy in infancy; 2) identify gut microbiome composition 

and bacterial species that may influence respiratory infections and symptoms; 3) identify 

bacterial species and metabolic pathways that associate with antibody response to 

pneumococcal capsular polysaccharide and tetanus toxoid vaccination; and 4) develop a 

statistical approach to test the mediating effect of the microbiome on the “causal” path 

between exposure and outcome. Our studies highlight the potential to modulate the infant 

gut microbiome to improve health outcomes in infancy.  
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Chapter 1: General Introduction 

1.1 Early life exposures and immune-related outcomes in infancy 

Infections and allergy remain a leading cause of morbidity and mortality in the US. In 

additional to the physical burden on infants as a result of these outcomes are the side 

effects from treatment and long-term effects, and the substantial economic impacts1,2. 

There are several factors associated with infants’ susceptibility to disease. Prenatal 

exposures, breast feeding status, and diet can all contribute to an infant’s risk of 

developing an infection3–7 or allergy8–10. Antibiotic use, including prenatal, peripartum, 

and prenatal exposures, can also influence risks11–16.  

 

Accumulating evidence indicates that contaminants in our environment, which may come 

through our diet, also affect our immunity to disease17,18. Arsenic, a widespread toxicant, 

has been shown to have adverse effects on human health through the life course. Rice 

grown in the United States is an important source of exposure to arsenic19. In particular, 

infants, including the U.S., commonly transition to solid food with rice cereal20. As a 

result, infants who have been fed rice products have high concentrations of urinary 

arsenic21. Arsenic exposure has been associated with impaired immune response and 

increased risk of infections and chronic diseases22.  Previous research on in utero arsenic 

exposure found increase in maternal urinary arsenic associated with increased risk of 

infection and respiratory symptoms in the first year of infant life23. Findings of  elevated 
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arsenic levels among infants consuming rice products24 have raised concerns that rice 

cereal consumption may have detrimental effects on infant health. Exploring the health 

impacts of early life rice cereal exposure could elucidate this issue, but to date, very little 

research has been done on this.  

 

1.2 Gut microbiome and immunity 

The bidirectional relationship between the gut microbiome and immunity evolves 

following birth; the gut microbiome aids in the maturation of the early immune system 

while the immune system regulates host-microbe symbiosis25,26. While neonates rely on 

innate immunity to protect against pathogens, the both the innate and the adaptive 

immune systems co-evolve over time with the maturation of intestinal epithelial cells 27.  

The relationship between gut microbiome composition and immune response has been 

largely studied in mice models. Colonization of Clostridia-related Segmented 

Filamentous Bacterium induces innate and adaptive T cell28,29 and IgA response in 

mice30,31. Clostridium-abundant mice also demonstrate higher T-regs and lower IgE 

levels compared to control mice32. Bacterial symbionts, such as Bifidobacterium 

adolescentis, found in the human gut, trigger Th17 cells induction and accumulation in 

mice33,34. Both Bacteroides fragilis and Faecalibacterium prausnitzii species increase 

CD4T cells that produce IL-1035–37. Lactobacillus reuteri has shown to induce double-

positive intraepithelial T lymphocytes38, which aid in the prevention of inflammatory 

bowel disease39. Studies also have shown the gut microbiome to regulate hematopoiesis 

that can control host bacterial infection40 
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A growing body of research has linked human gut microbiome to a variety of health 

outcomes including inflammatory bowel disease and metabolic diseases in humans 41. 

Much of this work has focused on adults, whereas far less is known on the effect of early-

life gut microbiome composition on infant outcomes. The work, thus far, provides 

evidence of possible associations between infant gut microbiome and diseases such as 

type I diabetes, allergy, and necrotizing enterocolitis, with associations lasting into 

childhood and adulthood42. The infant gut microbiome has also been linked to child 

allergy and atopy43, and there are data suggesting that modulating the gut microbiome 

could reduce risk44–46. The link between the early gut microbiome and respiratory 

infections47,48 and vaccine response49–52 in infancy, while plausible, is not understood.  

 

1.3 Gut microbiome as a mediator between exposures and outcomes 

The driving factors associated with adverse health outcomes in early life also shape the 

developing gut microbiome in early life, including delivery mode, diet, and antibiotic 

use42,53. Experimentally, the microbiome can modify contaminants54.  In both laboratory 

and epidemiologic studies, arsenic may impact the gut microbiome, and in vitro 

undergoes pre-systemic metabolism to compounds with greater toxic potential 55. 

 

Mediation analyses is becoming popular in microbiome research to elucidate the 

contribution of the infant gut microbiome on the relationship between an exposures or 

treatments and downstream health outcomes.  Studies now suggest that a healthy gut 

microbiome, possibly with probiotic supplementation, may prevent infection-related 

outcomes such as necrotizing enterocolitis and late-onset sepsis associated with preterm 
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birth 56. The infant gut microbiome also may mediate the possible beneficial effect of 

farm exposure on school-age asthma57. Similarly, one study found that the infant gut 

microbiome mediated in the association between maternal pre-pregnancy overweight 

status and child overweight status between the ages of 1 and 3 years58. Mice and human 

studies also both suggest that the early gut microbiome may mediate the adverse effect of 

antibiotic exposure on later disease59–61.  

 

1.4 Statistical methods analyzing microbiome as a mediator  

The primary approach to examining mediating mechanisms is through the classical three-

step method for mediation analysis 62. While several approaches exist to mediation 

analyses, the main ones in the literature are structured equation models 63,64 and the 

causal inference-based approach predicated on counterfactuals with a single mediator 65–

67. Methods for evaluating multiple mediators are beginning to emerge 68,69, including 

those to incorporate high dimensional mediators 70–81.  Modelling the microbiome is 

especially challenging due to the high-dimensional, compositional, and zero-inflated 

nature of microbiome data. Methods for microbiome mediation analysis include those 

examining the microbiome as a whole or those identifying specific mediating taxa82–88. 

However, few existing limited methods can account for exposure-mediator interactions 

and multiple types of outcomes (continuous and dichotomous).  

 

1.5 Thesis Aims 

This thesis aims to understand the three-way interplay among early-life exposures, the 

infant gut microbiome, and outcomes in infancy. We first investigated the association 
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between timing of rice cereal introduction and respiratory infections, respiratory 

symptoms, and allergy in a general population cohort of maternal-infant dyads. We then 

examined the association between the infant gut microbiome at 6 weeks of life and 

outcomes including respiratory infections, respiratory symptoms, wheeze, diarrhea, and 

vaccine response to PCP and TT in early childhood. Finally, we proposed a novel 

hypothesis test for microbiome mediation that accounts for the high dimensional and 

compositional nature of microbiome data and dichotomous outcomes.  
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Chapter 2: Infant infections, respiratory symptoms, and allergy in 

relation to timing of rice cereal introduction in a United States 

cohort 

 

Published as Moroishi, Y., Signes-Pastor, A.J., Li, Z. et al. Infant infections, respiratory 
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2.1 Abstract 

 

Rice products marketed in the USA, including baby rice cereal, contain inorganic arsenic, 

a putative immunotoxin. We sought to determine whether the timing of introduction of 

rice cereal in the first year of life influences occurrence of infections, respiratory 

symptoms, and allergy. Among 572 infants from the New Hampshire Birth Cohort Study, 

we used generalized estimating equation, adjusted for maternal smoking during 

pregnancy, marital status, education attainment, pre-pregnancy body mass index, 

maternal age at enrollment, infant birth weight, and breastfeeding history. Among 572 

infants, each month earlier of introduction to rice cereal was associated with increased 

risks of subsequent upper respiratory tract infections (relative risk, RR = 1.04; 95% CI: 

1.00–1.09); lower respiratory tract infections (RR = 1.19; 95% CI: 1.02–1.39); acute 

respiratory symptoms including wheeze, difficulty breathing, and cough (RR = 1.10; 95% 

CI: 1.00–1.22); fever requiring a prescription medicine (RR = 1.22; 95% CI: 1.02–1.45) 

and allergy diagnosed by a physician (RR = 1.20; 95% CI: 1.06–1.36). No clear 

associations were observed with gastrointestinal symptoms. Our findings suggest that 

introduction of rice cereal earlier may influence infants’ susceptibility to respiratory 

infections and allergy. 

 

2.2 Introduction 

 

Early life is a critical period of immune system development and impacts health 

lifelong89,90. Infections remain the leading causes of mortality in children under five years 
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of age around the world91.  Feeding practices, in particular breast feeding, are known to 

protect against infections and improve child health outcomes7; however, far less is known 

about the impact of diet during infants’ transition to solid foods. Rice is an important 

dietary source of arsenic, including rice products commonly fed to infants as a first food 

and as snacks92,19,93,94. In flooded rice paddy fields, rice grains accumulate arsenic at rates 

about 10 times higher than that of other grains19,95,96. Additionally, arsenicals such as 

monosodium methanearsonate and disodium methanearsonate were used in pesticides 

and herbicides. Although these compounds are now mostly banned, residues remain in 

soil95,97,98. While rice cereal fortified with iron may be a good source of nutrients, 

concerns have been raised about this practice because of the arsenic content of rice-based 

products99. In previous studies from our cohort, infant urinary arsenic concentrations 

increased with consumption of rice products during infants transition to solid food24, and 

at one year of age, infants fed rice products had elevated urinary concentrations of arsenic 

compared to those who were not fed these products21.  

 

Exposure to arsenic early in life has been specifically associated with an impaired 

immune response and increased risk of infection 22,100,101. Infants are especially 

vulnerable to respiratory infections, in part due to their immature immune system 102. 

Studies have reported associations between in utero arsenic exposure and a number of 

adverse outcomes including infant infections and respiratory outcomes among highly 

exposed populations in Bangladesh and among US infants 23,103,104. These findings are 

supported by mechanistic evidence that in utero arsenic exposure may influence the 

epigenome of the placenta105, immune cell profiles in newborn cord blood106, and the 
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infant gut microbiome107. While epidemiologic data are lacking on allergy outcomes, 

maternal urinary arsenic concentrations during pregnancy were related to higher activated 

Th2 cells, which produce cytokines responsible for IgE production, a marker of allergic 

response108–111. In addition, there is evidence that early arsenic exposure influences 

childhood infections risk in highly exposed populations112,113.  

 

Despite health concerns114,115, a regulatory limit for arsenic in infant rice cereal has not 

yet ratified in the USA. The European Union (EU) established a standard for inorganic 

arsenic in infant rice products to a maximum level of 100 µg/kg116. The US Food and 

Drug Administration (FDA) proposed the same guidance for infant rice cereal in 2016117. 

In 2018, the Governmental Accountability Office recommended that the FDA and US 

Department of Agriculture coordinate their efforts to identify contaminants in food 

including arsenic and establish a timeline for finalizing the guidance118. An action level 

has been set by the FDA for apple juice, but not other foods119. In 2006, the USA set the 

maximum contaminant level for inorganic arsenic in drinking water to be 10 µg/L120, but 

evidence on the detrimental health impacts at even lower levels of exposure led to the 

reduction of the drinking water standard in certain states, including New Jersey121 and 

New Hampshire122, to 5 µg/L. In light of the vulnerability of infants to early life 

environmental exposures, we investigated the timing of introduction of rice cereal during 

their transition to solid food in first year of life and subsequent risk of infections, 

immune-related symptoms, and allergies as part of the New Hampshire Birth Cohort 

Study (NHBCS).  
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2.3 Methods 

2.3.1 Study Design  

Participants in this study include mother-infant dyads from the NHBCS. Pregnant women 

aged 18 to 45, receiving prenatal care at study clinics in New Hampshire, USA, were 

recruited starting in January 2009 as described previously123,124. The cohort includes only 

women who were living in the same household since their last menstrual period, not 

planning to move, living in a household served by a private water system, and with a 

singleton pregnancy. Participants completed surveys, including questions on 

sociodemographic factors, lifestyle such as smoking history, and pre-pregnancy body 

mass index (BMI), and infant birth characteristics were ascertained from a review of the 

delivery medical records. Home tap water samples were collected and analyzed by 

inductively coupled mass spectrometry to detect arsenic species125. The Committee for 

the Protection of Human Subjects at Dartmouth College approved all protocols, and 

participants provided written informed consent upon enrollment. All methods were 

performed in accordance with relevant guidelines and regulations.   

 

2.3.2 Data Collection 

Telephone interviews were conducted with caregivers when the infants turned 4, 8, and 

12 months of age and at 6-month intervals thereafter. The survey asked whether or not 

their infant ever consumed rice cereal from birth and the day of the telephone interview 

(yes/no) and the month (or age in months) that rice cereal was introduced to their diet. 

Caregivers were asked whether their child had any infections, acute respiratory symptoms 

(e.g., wheeze, difficulty breathing, and cough), diarrhea or fever since the last time they 
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were interviewed. For positive responses, participants were asked to report if the 

condition lasted for more than 2 days, if the child saw a doctor, and if the child received 

prescription medicine for the condition. Participants were further asked whether their 

child had any known allergy (e.g., cats or dogs, antibiotics, dust, grass and plants, pollen, 

insect bites, peanuts, other nuts, eggs, and other foods), and for positive responses, if the 

allergy was diagnosed by a doctor.  

 

2.3.3 Statistical Analysis 

We examined rice cereal intake prior to the occurrence of infection. Specifically, we 

examined months since first introduction of rice cereal by 4 months of age on 8-month 

outcomes, months since first introduction of rice cereal by 8 months of age on 12-month 

outcomes, and months since first introduction of rice cereal by 12 months of age on 18-

month outcomes. For example, we examined number of months since rice cereal 

consumption of a subject at 8 months, on occurrence of health outcome at 12months, 

which is the subsequent survey collection interval. For each interval (i.e., 4, 8, or 12 

months), we computed the number of months since rice cereal was introduced and 

included an indicator variable of whether rice cereal was consumed in that interval 

(yes/no). We multiplied this indicator variable by number of months since rice cereal was 

introduced as our main predictor. 

 

We then used Generalized Estimating Equation (GEE) with Poisson regression with 

AR(1) correlation structure and robust variance to assess the association between months 

since introduction of rice cereal exposures and repeated measures of longitudinal 
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outcomes126. Factors associated with both rice exposure, as determined from our data 

(Supplementary Table 2.7), and outcomes, considered a priori and used in previous 

studies23, were considered potential confounders and included in our models. These 

included smoking during pregnancy (yes/no), maternal relationship status (married, 

single, separated/divorced), maternal education (≤ high school/GED, some college, 

college graduate, postgraduate schooling), maternal pre-pregnancy BMI, maternal age of 

enrollment (years), infant birth weight (grams), breastfeeding status as of four months 

(ever/never), and consumption of other solid food than rice cereal (ever/never) at each 

time point. Because water can be used to make rice cereal and is also a surrogate for in 

utero arsenic exposure, we also adjusted for total arsenic concentrations measured in 

household tap water samples (µg/L) in our analyses. For interpretability, we 

exponentiated the coefficient values to obtain relative risk (RR) and 95% confidence 

intervals (CI). Of the 572 participants included in the analyses, 482 participants (84.3%) 

had complete data for at least one time interval on rice cereal consumption and on 

subsequent health outcomes along with all potentially confounding variables considered. 

For the other 90 participants, we assumed for the values for potential confounders were 

missing at random using multiple imputation by chained equations and the predictive 

mean matching method to impute missing data127. All analyses were performed using R 

version 3.4.3 and functions mice and geeglm in packages ‘mice’ and ‘geepack’.  

 

2.4 Results 
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2.4.1 Baseline Characteristics 

Of the 1760 pregnancies enrolled in the NHBCS as of October 2017, a total of 983 

infants had complete follow-up data up to at least age of 8 months. After removing 

missing values on rice cereal consumption (54 missing) and subsequent health outcome 

information (357 missing), the final dataset contained 572 infants (Supplementary Figure 

2.1). We found that the characteristics of the 411 subjects excluded from our analyses 

were generally similar to that of included subjects, with the exception of marital status 

(Supplementary Table 2.1). Our study group included a roughly equal distribution of 

male (54%) and female (46%) infants (Table 2.1). Among infants who were introduced to 

rice cereal in the first year of life, the average age at introduction was 5.2 months (SD: 

1.3 months) (Supplementary Table 2.2). At the 4 month, 8 month, and 12 month time 

periods, rice cereal was consumed in 11.7%, 69.6%, and 68.6% of infants respectively 

(Supplementary Table 2.2). Overall, 96.5% of infants were reporting as having at least 

one infection or symptom of any duration reported up to age 18 months, 91.4% having at 

least one lasting 2 or more days, 65.2% having at least one involving a doctor’s visit, and 

52.3% having at least one resulting in a prescription medication (Supplementary Table 

2.2). For allergies, 13.5% of infants were reporting as having at least one allergy, and 

7.9% having at least one diagnosed by a doctor (Supplementary Table 2.2). Sample sizes 

and proportions of each outcome for each follow-up interval are reported in 

Supplementary Table 2.3.  Household tap water arsenic concentrations were generally 

low, with a mean 2.2 µg/L (SD: 7.1; range: 0.0 to 92.3), but with 11.1% of the study 

population having levels above the New Hampshire drinking water standard of 5 µg/L 

(Table 2.1). 
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Table 2. 1: Selected Characteristics of Mothers and Infants (N = 572) in the New 
Hampshire Birth Cohort Study Followed to Age 18 Months 

Variable Sample Size Mean (SD) or No. 
(%) 

Maternal Characteristics 
Smoking during any trimester of pregnancy, 
No. (%) 

552  

     Yes       61 (11.1) 
     No       491 (88.9) 
Relationship status, No. (%) 538  
     Married      486 (90.3) 
     Single      43 (8.0) 
     Separated/Divorced      9 (1.7) 
Highest level of educational attainment, No. 
(%) 

537  

     ≤high school/GED       52 (9.7)a 
     Some college       90 (16.8)a 
     College graduate       214 (39.9)a 
     Postgraduate schooling       181(33.7)a 

BMI before pregnancy (kg/m2), mean (SD) 560 26.1 (5.7) 
Age at enrollment (years), mean (SD) 572 31.9 (4.8) 
Arsenic in water (µg/L), mean (SD) 552 2.2 (7.1) 
Water Arsenic > 5 µg/L, No. (%) 552 61 (11.1) 
Infant Characteristics 
Sex, No. (%) 572  
     Male       310 (54.2) 
     Female       262 (45.8) 
Birth weight (g), mean (SD) 555 3416.7 (522.8) 
Ever breast fed at 4 months, No. (%) 537  
     Yes       513 (95.5) 
     No       24 (4.5) 
Other solid food consumption at 4 months, 
No. (%) b 

358  

     Yes       14 (3.9) 
     No       344 (96.1) 
Other solid food consumption at 8 months, 
No. (%) b 

437  

     Yes      120 (27.5) 
     No      317 (72.5) 
Other solid food consumption at 12 months, 
No. (%) b 

544  

     Yes       137 (25.2) 
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     No       407 (74.8) 
 

Abbreviations: SD, standard deviation; No., number; BMI, body mass index.  
Of the 572 participants included in the analyses, 482 participants (84.3%) had data at least one time-
period of rice cereal consumption, health outcome data for a subsequent time period, and complete 
data on confounders. Smoking during pregnancy was missing for 20 (3.50%) mothers, relationship 
status was missing for 34 (5.94%) mothers, education was missing for 35 (6.12%) mothers, and pre-
pregnancy BMI was missing for 12 (2.10%) mothers. Birth weight was missing for 17 (2.97%) and 
breast-feeding status was missing for 59 (10.31%) infants. Other solid food consumption at 8 months 
was missing for 1 (0.23%) infant. A total of 20 (3.50%) participants had missing data for arsenic 
species in water.  
a Percentages do not sum to 100 due to rounding 
b Percentage calculated using different sample sizes due to missing values. Sample sizes were 321, 
373, and 464 for 4 months, 8 months, and 12 months respectively.  
 

2.4.2 Rice Cereal and Infections, Respiratory Symptoms, and Allergy 

In our GEE analysis, earlier introduction of rice cereal was associated with increased 

risks of lower respiratory tract infections (i.e. bronchitis, pneumonia, bronchiolitis, 

whooping cough, and respiratory syncytial virus), respiratory symptoms, fever, and 

allergies, and to a lesser extent upper respiratory tract infections (i.e. runny stuffed nose, 

eye infection, ear infection, severe flu, sinus infection, strep throat, and laryngitis), but 

not gastrointestinal symptoms (Figure 2.1).  While the magnitudes of the associations did 

not differ greatly across the variables for a given outcome and the confidence intervals 

overlapped, there was a tendency for the risk ratios to be higher for outcomes involving a 

health care provider visit or a medication prescribed (Figure 2.1, Supplementary Table 

2.4). Relative risk estimates for upper and lower respiratory tract infections requiring a 

prescription medicine increased by 4% (RR = 1.04; 95% CI: 1.00-1.09) and by 19% 

(RR=1.19; 95% CI: 1.02-1.39) for each month earlier that rice cereal was introduced. A 

10% increase in the relative risk of acute respiratory symptoms requiring a prescription 

medicine (RR = 1.10; 95% CI: 1.00-1.22) and 22% increase of fever symptoms requiring 
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prescription medicine (RR = 1.22; 95% CI: 1.02-1.45) were observed for each month 

earlier that rice cereal was introduced. For reported allergies diagnosed by a doctor, the 

relative risk estimate was 20% higher for each month earlier that rice cereal was 

introduced (RR = 1.20; 95% CI: 1.06-1.36), and for this outcome, the relative risk 

estimate was similar to any reported allergy. We did not observe any consistent 

associations with diarrhea, including symptoms requiring a doctor’s visit (RR = 0.89; CI, 

0.74-1.06). Only three cases of diarrhea had a medication prescribed, so this outcome was 

not included in the GEE analysis.  Risk ratio estimates and confidence intervals for 

covariates included in our models are provided in Supplementary Table 2.5. Results for 

crude analyses are provided in Supplementary Table 2.6.  
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Figure 2. 1: Adjusted Risk Ratios (95% CIs) for Each Month Earlier of Introduction of 
Rice Cereal According to Outcome Severity, N = 572 infants.  
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Abbreviations: RR risk ratio.  
RR indicates risk ratio for health outcomes according to reported severity. The circles indicate RR at 
each severity level for each outcome. The lines indicate the 95% confidence intervals. The grey line 
represents the null RR=1. Number of total outcome cases in three repeated measures is denoted by n. 
Number of observed outcomes can be higher due to repeated events among time points for each infant. 
Sample size N = 571 for fever analyses. 
 
	

2.5 Discussion 

In our prospective cohort study, we found that earlier introduction of rice cereal to an 

infant’s diet was associated with higher risks of both upper and lower respiratory tract 

infections, respiratory symptoms, fever, and allergies. These associations were slightly 

stronger for what may have been more severe outcomes of lower respiratory tract 

infection, respiratory symptoms, and fever, i.e., those characterized by having a 

medication prescribed.  

 

Infections remain the most important cause of morbidity in young children, and allergic 

and atopy diseases are becoming more widespread91. In the USA, an estimated 42.8% of 

infant hospitalizations in 2003 were due to infections128. Of these, 59.0% were due to 

lower respiratory tract infections and 6.5% to upper respiratory tract infections128. In 

2013, the Centers for Disease Control and Prevention (CDC) noted an increasing trend in 

childhood food and skin allergies from 1997 to 2011129. In a 2017 CDC survey, 13% of 

children under the age of 18 years had been told they had asthma, 11% a respiratory 

allergy, 6.5% a food allergy, and 13.5% a skin allergy130. Thus, efforts to reduce infection 

and allergy prevalence in infants is of critical public health importance.  
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Early feeding practices play a critical role in the developing immune system of infants7, 

but there are limited studies of the impact of infants’ transition to solid foods. In a large 

prospective study from Dundee, Scotland (N = 545), early introduction of solid food was 

related to an increased risk of infant wheeze, but not other respiratory illnesses131. One 

prospective cohort study from the United Kingdom found infant introduction to solid 

foods before 4 months of age was associated with higher odds of any diarrhea compared 

to those introduced after 4 months of age (N = 615)132. Introduction of wheat after 6 

months of age compared to before or equal to 6 months of age was associated with a 

reduced risk of wheat allergies in a longitudinal birth cohort from Denver (N = 1612)133. 

While research linking infant rice cereal exposure to later health outcomes is lacking, our 

results align with previous studies that observed increased risks of infection with arsenic 

exposure in early childhood. A Bangladeshi cohort study of children aged 7- 17 years 

who were exposed to high levels of arsenic in utero and early childhood from 

contaminated drinking water and sex- and age-matched controls without such exposures 

observed increased respiratory symptoms such as wheezing and shortness of breath (N = 

650) in the high arsenic exposure group112. In a separate case control study from 

Bangladesh of children aged 28 days to 59 months who were hospitalized with severe and 

very severe pneumonia and age-matched controls, the odds of pneumonia were elevated 

among children with higher urinary arsenic concentrations measured both during 

hospitalization and at the convalescent period (30 days after) (N = 449)113.  Other cohort 

studies from Bangladesh and from the USA have also associated childhood infections and 

diarrhea in relation to in utero arsenic exposure23,103,104.   
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Rice products are a well-recognized route of exposure to arsenic. Arsenic exposure has 

been shown to increase risk of infections and other diseases, and emerging evidence 

points to the toxicological effects of arsenic on immune function22,134. The World Health 

Organization established a guideline for arsenic in drinking water of 10 µg/L in 1993 and 

had acknowledged arsenic contamination in rice and rice products as a public health 

concern135,136. In a 2014 EU report, concentrations of inorganic arsenic ranged from 56 

µg/kg to 268 µg/kg for infant rice products137. A similar report from the USA covering 

2012 to 2016 reported inorganic arsenic concentrations ranging from 21 µg/kg to 151 

µg/kg for infant white rice cereal and from 30 µg/kg to 254 µg/kg for infant brown rice 

cereal 138. In our cohort, 80% of infants were introduced to rice cereal in the first year of 

life, and more than half of our infants were eating rice products at one year of age21.  

Further, urinary arsenic concentrations increased with the number of rice and rice product 

servings21. The American Academy of Pediatrics has raised awareness about arsenic 

exposure from feeding infant rice products and recommends feeding infants a variety of 

foods with a variety of textures94,139.  

 

Our study has a number of strengths, but also has limitations that need to be noted. Our 

study benefitted from the availability of prospective cohort data of carefully collected 

repeated measurements of infection occurrences, respiratory symptoms, diarrhea, and 

allergies; timing of introduction of rice cereal; and a broad range of potential 

confounding factors. Among our main limitations was our inability to quantify the 

concentrations of arsenic to which infants were exposed through rice cereal. This is in 

part because the concentrations of arsenic in rice depends on a number of factors 
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including genotype, cultivation, and irrigation techniques, and concentration can be 

altered by cooking techniques140,141. Despite the heterogeneity of arsenic concentrations 

in rice, we previously found rice cereal to be a contributor to arsenic exposure among our 

infants 24. In our analyses, we also adjusted for household water arsenic concentration 

along with indicator variables for breastfeeding and consumption of other solid foods. 

Participant recall is a potential source of bias.  Efforts to minimize non-differential 

misclassification were made by including questions on duration of the illness and asking 

whether the infant saw a doctor or was prescribed medicine for their condition.  Stronger 

associations were found with outcomes involving medical care, which would be expected 

to have higher validity and reflect greater severity of illness. Furthermore, self-reporting 

of allergies that were not medically confirmed was another potential source of 

misclassification. We have found that responses from caregiver responses for infections 

and symptoms that involved a doctor visit in our cohort tend to be at least 80% 

concordant with their pediatric medical records (unpublished data).  Our findings of an 

increased risk of any reported diarrhea associated with earlier introduction rice 

consumption should thus be interpreted with caution as the relative risk estimates were 

not consistently elevated for diarrhea lasting 2 or more days or associated with a doctor’s 

visit. The possibility of unmeasured confounding also cannot be excluded; however, we 

assessed the potential confounding of factors previously found to be related to our 

outcomes of interest and found that certain factors such as family history of allergy, day 

care attendance, and parity were not associated with timing of rice cereal introduction. 

The price of rice cereal in our cohort may be indicative of socio-economic status.  

Although we did control for maternal marital status and highest level of education 
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attainment, residual confounding remains a possibility. We inspected the costs of infant 

cereals from five major grocery stores in a region of the state where recruitment took 

place. We did not find that the costs of infant rice-based cereal products differed 

appreciably from that of other grain cereals. Lastly, we computed 95% confidence 

intervals for our analyses, which do not account for multiple comparisons. 

 

In conclusion, our findings suggest that earlier introduction of rice cereal may increase an 

infant’s risk of infections, respiratory symptoms, and allergies. The widespread 

occurrence of these outcomes in young children and use of rice cereal as a first food 

underscores the importance of considering the types and timing of foods introduced when 

providing dietary recommendations for infants.  
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3.1 Abstract 

Emerging evidence points to a critical role of the developing gut microbiome in immune 

maturation and infant health; however, prospective studies are lacking. We examined the 

occurrence of infections and associated symptoms during the first year of life in relation 

to the infant gut microbiome at six weeks of age using bacterial 16S rRNA V4-V5 gene 

sequencing (N = 465) and shotgun metagenomics (N = 185). Higher infant gut 

microbiota alpha diversity was associated with an increased risk of infections or 

respiratory symptoms treated with a prescription medicine, and specifically upper 

respiratory tract infections. Among vaginally delivered infants, a higher alpha diversity 

was associated with an increased risk of all-cause wheezing treated with a prescription 

medicine and diarrhea involving a visit to a health care provider. Positive associations 

were specifically observed with Veillonella species among all deliveries and 

Haemophilus influenzae among cesarean-delivered infants. Our findings suggest that 

intestinal microbial diversity and the relative abundance of key taxa in early infancy may 

influence susceptibility to respiratory infection, wheezing, and diarrhea. 

 

3.2 Introduction 

Infections remain the leading causes of mortality in infants globally142. The human gut 

microbiome is becoming increasingly recognized for its critical role in immune function 

and the inflammatory response47,143. A bidirectional relationship emerges following birth 

whereby the gut microbiome aids the maturation of the immune system and the immune 

system regulates host-microbe symbiosis25,26. The impacts of perturbing these intricate 

relationships are evident in high-risk infants. For example, among infants with cystic 
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fibrosis, the composition of the gut microbiome is a determinant of colonization with 

opportunistic pathobionts144,145. Likewise, in preterm infants, the gut microbiome is 

associated with fatal occurrences of necrotizing enterocolitis and infection143,146,147. 

Factors driving the establishment of the gut microbiome, including delivery mode and 

breast feeding47,124,148–150, have also been related to the risk of infections3,4,47,151–153. 

Furthermore, the use of antibiotics during pregnancy, which has been found to influence 

the gut microbiome of offspring154–156, increased the risk of infant infection-related 

hospitalizations15. Encouraging results from probiotic trials suggest health benefits from 

altering the gut microbiome, including an enhanced immune response to pathogens157,158. 

While studies have found possible links between early gut microbiome composition and 

infant infection47,159, few prospective studies have been conducted, particularly in the 

general population.  

 

We report on gut microbiome diversity and composition among infants during the critical 

period of early immune training and the subsequent occurrence of respiratory infections 

and symptoms, such as wheezing and diarrhea, in the first year of life as part of a 

prospective study of a cohort of pregnant women and their offspring from the general 

population in New Hampshire. Here, we measured the fecal microbiome to measure the 

gut microbiome. Wheeze and diarrhea outcomes for this study included those of any 

cause. Based on amplicon sequence variant (ASV) data generated from 16S rRNA 

sequencing, higher alpha diversity at six weeks of age was associated with having an 

additional respiratory infection or symptom of respiratory infection requiring a 

prescription medicine, with associations varying by delivery mode. Using next-
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generation sequencing (NGS), shotgun metagenomics, Veillonella in all deliveries and 

Haemophilus in cesarean deliveries were among the species in six-week stool identified 

as being related to an additional subsequent respiratory infection or symptom of 

respiratory infection requiring a prescription medicine during an infant’s first year of life. 

 

3.3 Methods 

3.3.1 Study Population 

	
Participants included mother-infant dyads from the NHBCS from whom we obtained 

infant stool samples at approximately six weeks of age. Pregnant women aged 18 to 45 

were recruited from prenatal clinics in New Hampshire, USA, starting in January 2009, 

as described previously123. Women who were living in the same household served by a 

private water system since their last menstrual period, had no plans to move, and had a 

singleton pregnancy were included in the cohort. Participants completed surveys on 

infant lifestyle questions such as feeding mode, solid food introduction, and daycare. 

Infant birth characteristics were ascertained from newborn medical records, and maternal 

characteristics were abstracted from prenatal and delivery records, including age at 

enrollment, prenatal use of antibiotics, and prepregnancy body mass index in kilograms 

per meter squared. The Committee for the Protection of Human Subjects at Dartmouth 

College approved all protocols, and participants provided written informed consent upon 

enrollment. 

 

3.3.2 Ascertainment of Infant Health Outcomes 
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Telephone interviews were conducted with infants’ caregivers in the first year of life, i.e., 

when infants turned approximately 4 months, 8 months, and 12 months of age. 

Caregivers were asked whether their child had any upper RTIs or associated symptoms 

(e.g., runny nose, stuffy nose, eye infection, ear infection, influenza, sinus infection, 

pharyngitis, or laryngitis), lower RTIs (e.g., bronchitis, pneumonia, bronchiolitis 

(including respiratory syncytial virus (RSV)), or whooping cough), acute respiratory 

symptoms (e.g., difficulty breathing, wheezing, fever, or cough), or diarrhea since the 

previous interview. For each positive response, participants were then asked whether the 

condition lasted more than 2 days, whether the child saw a physician, and whether the 

child received any prescription medications for the condition. 

 

3.3.3 Stool Sample Collection, DNA Extraction, Sequencing, and Profiling 

	
We measured the fecal microbiome of infant stool as a measure of the infant gut 

microbiome. Infant stool samples were collected at regularly scheduled ~6-week 

postpartum follow-up appointments as described previously124,160. Samples were 

aliquoted and frozen at -80 oC within 24 hours of receipt. A Zymo DNA extraction kit 

(Zymo Research) was used for DNA extraction from thawed samples, and an OD260/280 

nanodrop was used to measure sample quality and purity. The V4-V5 hypervariable 

region of the bacterial 16S rRNA gene was sequenced using Illumina MiSeq at the 

Marine Biological Laboratory in Woods Hole, Massachusetts. ASVs were then inferred 

using DADA2161, and taxonomies were assigned using the SILVA database162. Quality 

control measures were conducted as described previously124. A subset of stool samples 

was also sequenced with NGS and shotgun metagenomics sequencing as previously 
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described156. Extracted DNA samples were sheared to a mean insert size of 400 bp using 

a Covaris S220 focused ultrasonicator. The sequencing libraries were constructed using 

Nugen’s Ovation Ultralow V2 protocol, and samples were sequenced using Illumina 

NextSeq. DNA reads were merged and trimmed using KneadData163 for quality control 

before species-level taxonomic profiles were generated using Metaphlan2164. 

 

3.3.4 Statistical Analysis 

	
We examined the association between gut microbiome composition and health outcomes 

ascertained during interval interviews over the subjects’ first year of life. For our 

analyses, we examined the total number of reported outcomes, specifically upper RTIs 

and lower RTIs, as well as symptoms such as wheezing with a reported visit to a 

physician and treatment with a prescription medication. Diarrhea is not typically treated 

with prescription medications in infants; therefore, we focused the analyses on reports of 

diarrhea that involved a doctor visit. We imputed missing outcomes if the caregiver 

completed the interview but a specific question was unanswered using multiple 

imputation by chained equations and the predictive mean matching method. 

For models using 16S data, we aggregated ASVs to the genus level and calculated 

alpha diversity on read counts per genus using the inverse Simpson index. We then used a 

GEE for repeated measures with Poisson regression and AR(1) correlation structure to 

assess the association between log2-transformed 16S-based genus-level alpha diversity 

and each of the outcomes of interest. For models using metagenomics species data, we 

calculated the log2-transformed relative abundance using a pseudocount of 5x10-20 for 

zero values. We also used a GEE for repeated measures with Poisson regression and 
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AR(1) correlation structure to estimate relationships with species present in at least 10% 

of subjects. We applied an FDR threshold of 0.1 to adjust for multiple testing165. Factors 

associated with both the gut microbiome and health outcomes were considered potential 

confounders and included in all GEE analyses. These confounders included maternal 

prepregnancy BMI (kg/m2), delivery mode (vaginal/cesarean), infant sex (male/female), 

breast feeding at six weeks (exclusively breastfed/mixed fed or exclusively formula fed), 

antibiotic use during pregnancy (yes/no), and gestational age (complete weeks). We also 

conducted stratified analyses by delivery type for both alpha diversity using 16S data and 

microbial species based on metagenomics data. Due to sample size limitations, we 

conducted stratified analyses only for species-specific analyses on all outcomes combined 

and for upper RTIs. 

For interpretability, we exponentiated the coefficient values to obtain relative risk 

(RR) and 95% confidence intervals (CIs). Of the 465 participants included in the 16S 

analyses, 391 participants (84.1%) had complete data for all potentially confounding 

variables. Of the 185 participants included in the metagenomics analyses, 160 

participants (86.5%) had complete data for all potentially confounding variables. We 

assumed missing confounder entries were missing at random and used multiple 

imputation by chained equations and the predictive mean matching method to impute 

missing data. All analyses were performed using R version 3.4.3 using the functions 

diversity, mice, and geeglm in the ‘vegan’, ‘mice’, and ‘geepack’ packages. 
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3.4 Results 

3.4.1 Baseline Characteristics 

As of July 2019, we had completed 16S rRNA V4-V5 hypervariable region gene 

sequencing on 513 infant stool samples and whole-genome metagenomics sequencing on 

202 infant stool samples collected at approximately six weeks of age. After removing 

infants for whom health information was unavailable in telephone surveys, our analysis 

included 465 infants with 16S data and 185 infants with metagenomics data. Our study 

population had an approximately equal distribution of male (53.4%) and female infants 

(46.6%) (Table 3.1). Nearly half of the infants (56.2%) had been exclusively breastfed at 

approximately six weeks of age, and approximately one-fifth of mothers (18.5%) had  

reported antibiotic use during pregnancy (Table 3.1). Cesarean section deliveries 

accounted for one-third of deliveries (30.3%) (Table 3.1). The five most common genera 

in our 16S data were Escherichia/Shigella, Bacteroides, Bifidobacterium, Klebsiella, and 

Enterococcus (Supplementary Figure 3.1). The five most common species in our 

metagenomics data were Bifidobacterium longum, unclassified Escherichia species,  

Escherichia coli, Bifidobacterium breve, and Gemella haemolysans (Supplementary 

Figure 3.1). The numbers of each respiratory infection and symptom at each age are 

provided in Supplementary Table 3.1 and Supplementary Table 3.2. 
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Table 3. 1: Selected Baseline Characteristics of Mothers and Infants in the New 
Hampshire Birth Cohort Study 

 
Abbreviations: SD, standard deviation; No., frequency; kg, kilograms; m, meters. 

Of the 465 mothers included in the 16S analyses, maternal BMI was missing for 3 mothers. Parity was 
missing for 4 mothers, and antibiotic use during pregnancy was missing for 38 mothers.    
Of the 465 infants included in the 16S analyses, infant sex was missing for 1 infant, and feeding type 
was missing for 38 infants. Of the 185 mothers included in the metagenomics analyses, parity was 
missing for 1 mother, and antibiotic use during pregnancy was missing for 12 mothers. Of the 185 
infants included in the metagenomics analyses, feeding type was missing for 14 infants. 

Variable 
16S V4-V5 rRNA Metagenomics 

Sample Size Mean (SD) 
or No. (%) 

Sample Size Mean (SD) 
or No. (%) 

Maternal Characteristics 
Age at enrollment, mean 
(SD), years 

465 31.9 (4.6) 185 31.9 (4.3) 

Body Mass Index before 
pregnancy, mean (SD), 
kg/m2 

462 25.8 (5.9) 185 25.7 (5.7) 

Parity, No.  (%) 461  184  
0  217 (47.1)  92 (50.0) 
1  166 (36.0)  60 (32.6) 
2+  78 (16.9)  32 (17.4) 

Antibiotic use during 
pregnancy, No. (%) 

427  173  

Yes  79 (18.5)  36 (20.8) 
No  348 (81.5)  137 (79.2) 

Infant Characteristics 
Delivery mode, No. (%) 465  185  

Vaginal  339 (72.9)  129 (69.7) 
Cesarean  126 (27.1)  56 (30.3) 

Infant sex, No. (%) 464  185  
Male  248 (53.4)  107 (57.8) 
Female  216 (46.6)  78 (42.2) 

Breast feeding at six 
weeks, No. (%) 

427  171  

Exclusively breast 
fed 

 240 (56.2)  92 (53.8) 

Mixed fed or 
exclusive formula fed 

 187(43.7)  79 (46.2) 

Gestational age, Mean 
(SD), weeks 

465 39.1 (1.6) 185 39.0 (1.7) 
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3.4.2 16S V4-V5 rRNA Gene: Alpha Diversity 

Associations were determined via the Wald test in generalized estimating equation (GEE) 

analyses with a p-value threshold of 0.05. Alpha diversity was positively associated with 

the occurrence of any respiratory infection or symptom of infection, which included 

upper respiratory tract infections (RTIs), lower RTIs, and acute respiratory symptoms. 

Upper RTI outcomes were specifically associated. Each doubling in alpha diversity was 

associated with a 39% increase in having an additional respiratory infection or symptom 

of respiratory infection (RR = 1.39, 95% CI: 1.1-1.77) and a 40% increase in an 

additional upper RTI (RR = 1.40, 95% CI: 1.12-1.76) (Figure 3.1, Supplementary Table 

3.3). Among vaginally delivered infants, a doubling of alpha diversity was associated 

with a 62% increase in in having an additional respiratory infection or symptom of 

respiratory infection (RR = 1.62, 95% CI: 1.23-2.15) (Figure 3.1, Supplementary Table 

3.3). A doubling of alpha diversity was associated with a doubling of the risk of 

wheezing for which a medication was prescribed (RR = 2.00, 95% CI: 1.16-3.45) and an 

86% increase in diarrhea requiring a doctor visit (RR = 1.86, 95% CI: 1.14-3.03) among 

vaginally delivered infants (Figure 3.1, Supplementary Table 3.3). We did not observe 

consistent associations among cesarean-delivered infants. 
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Figure 3. 1: Dot and Whisker Plots of Adjusted Relative Risk Estimates and 95% 
Confidence Intervals from GEE Analysis of Infant 6-Week-old Stool 16S V4-V5 rRNA 
Sequencing Alpha Diversity and Infections and Symptoms of Infection over the First 
Year of Life 

	

Abbreviations: GEE, generalized estimating equation; N, sample size; RR, relative risk; RTI, 
respiratory tract infection. Overall GEE adjusted for maternal BMI, delivery type, sex, breast feeding 
at six weeks, perinatal antibiotic use, and gestational age. GEE stratified by delivery mode (vaginal 
and cesarean) adjusted for maternal BMI, sex, breast feeding at six weeks, perinatal antibiotic use, and 
gestational age. Points represent relative risk, and vertical lines above and below points represent 
upper and lower confidence bands. Relative risk estimates represent an increased risk of having an 
additional infection or symptom of infection or an increased risk of experiencing wheezing or diarrhea 
with each doubling of the inverse Simpson index. Upper RTI, lower RTI, and wheezing outcomes are 
those diagnosed by a physician for which a medication was prescribed. Diarrhea outcomes are those 
diagnosed by a physician for whom no medication was prescribed. Numbers above upper confidence 
bands indicate the total number of outcomes, which may be greater than N due to repeated measures. 
Sample sizes were N = 464 for overall and N = 125 for cesarean delivery for diarrhea analyses due to 
missing data. 
 

3.4.3 Metagenomics: Species-Level 

In the GEE of metagenomics species data, the doubling of the relative abundance of 

Veillonella unclassified was positively associated with having an additional respiratory 

infection or symptom of respiratory infection in the first year of life (RR = 1.02; 95% CI: 

1.01-1.04) (Figure 3.2.1). In examining specific outcomes, we found that diarrhea was 
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positively associated with the relative abundance of Streptococcus peroris and negatively 

associated with the relative abundance of Streptococcus salivarius (Figure 3.3). 

 

Stratified by delivery mode, we found that having an additional respiratory 

infection or symptom of respiratory infection was positively associated with 

Haemophilus influenzae among cesarean-delivered infants (RR = 1.02; 95% CI: 1.01-

1.04) (Figure 3.2.3). Veillonella parvula, Corynebacterium pseudodiphtheriticum, and 

Corynebacterium pseudodiphtheriticum were positively associated, while Clostridium 

butyricum and Coprobacillus unclassified were negatively associated, with a risk of an 

additional upper RTI among infants delivered by cesarean section (Figure 3.3). 
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Figure 3. 2: Volcano Plots of GEE Adjusted Relative Risk Estimates of the Number of 
Infections and Symptoms over the First Year of Life in Relation to 6-Week 
Metagenomics Species Relative Abundance 

1.	Overall	(N	=	185)	

	

2.	Vaginal	Delivery	(N	=	129)	 	
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3.	Cesarean	Delivery	(N	=	56)	

	

Abbreviations: GEE, generalized estimating equation; N, sample size; RR, relative risk. 
Estimates shown for taxa prevalent in over 10% of subjects. The gray line represents a log10-
transformed FDR threshold of 0.1. Blue points indicate statistically significant taxa at α = 0.05. Red 
points indicate taxa selected by FDR correction. The size of the points is scaled by relative abundance. 
Relative risk estimates represent an increased risk of having an additional infections or symptoms of 
infection with each doubling of relative abundance. a. Volcano plot of unstratified GEE adjusted for 
maternal BMI, delivery type, sex, breast feeding at six weeks, perinatal antibiotic use, and gestational 
age. b. Volcano plot of vaginal deliveries adjusted for maternal BMI, sex, breast feeding at six weeks, 
perinatal antibiotic use, and gestational age. c. Volcano plot of cesarean deliveries adjusted for 
maternal BMI, sex, breast feeding at six weeks, perinatal antibiotic use, and gestational age. Three 
taxa were removed due to high RRs and low p-values. 
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Figure 3. 3: Forest Plot of Metagenomics Species Associated with the Number of 
Infections and Symptoms of Infections in the First Year of Life 

	

Abbreviations: N, sample size; RTI, respiratory tract infection; RR, relative risk. 
Species selected by FDR correction presented in the forest plot. Species for vaginal deliveries did not 
meet the FDR threshold of 0.1. Squares represent RR, and horizontal lines represent 95% confidence 
intervals. Green represents a positive association, and purple represents a negative association. 
Relative risk estimates represent an increased risk of having an additional upper respiratory infection 
or an increased risk of experiencing diarrhea with each doubling of the relative abundance. 
 

 

3.5 Discussion 

In our prospective study of infants from the general population in New Hampshire, USA, 

we observed patterns of the early microbiome that were related to the occurrence of 

infant respiratory infections, wheezing, and diarrhea. Higher diversity of the early infant 

gut microbiome was associated with a greater number of respiratory infections and 
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symptoms over the first year of life. Relationships between early microbial patterns and 

infant outcomes differed by delivery mode, a known contributor to the developing 

microbiome13, with stronger associations with alpha diversity among infants born by 

cesarean section. Using metagenomic sequencing, we found that Veillonella in any 

delivery mode and Haemophilus in cesarean deliveries were among the species 

associated with an increased risk of infant respiratory infections and symptoms.  

 

Our analyses found associations with many bacterial species that are commonly found in 

oral flora, though these bacteria have also been detected in the gut. An early driver of the 

gut microbiome is diet. One prospective study found that exclusive breastfeeding was 

inversely related to lower respiratory tract infections among infants and asthma and 

allergic rhinitis among children four years of age166. The same study highlighted the 

potential mediating effect of the gut microbiome on the relationship between exclusive 

breastfeeding and outcomes. Additionally, infants born operatively may be relatively 

more likely to acquire the genera of such species through breast milk160. 

 

Respiratory	Infections	

In our study, Veillonella, specifically Veillonella parvula, was positively associated with 

upper respiratory infections, especially in cesarean-delivered infants. Veillonella parvula 

is commonly found in oral flora, although it is observed in both oral and gut 

ecosystems167. We are not aware of studies that have examined Veillonella parvula. 

However, consistent with our findings, a prospective study of 120 Dutch infants found an 

abundance of three Veillonella operational taxonomic units using 16S V4 rRNA 



	 39	

sequencing among one-week-old infants that was associated with a higher number of 

respiratory infections in the first year of life47. In mechanistic studies, Veillonella parvula 

produces propionate in the human gut, which may stimulate IL10-producing Treg 

differentiation168,169, and in the small intestine, it induces IL-8, IL-1β, IL-10, and TNF-

α170.  

 

Among cesarean-delivered infants in our study, a higher relative abundance of 

Corynebacterium species was associated with a greater risk of upper RTIs. 

Corynebacterium species are generally characterized as pathobionts in the respiratory 

tract171. Case series have suggested that Corynebacterium pseudodiphtheriticum in the 

sputum is a driver of pulmonary infection172,173, and a case-control study of the 

nasopharyngeal microbiome from France found enriched Corynebacterium 

pseudodiphtheriticum in subjects with viral respiratory tract infections compared to 

healthy controls (N = 178)174. 

 

Upper respiratory tract infections in our cohort were associated with a decreased 

abundance of Clostridium butyricum in infant stool samples. One Clostridium butyricum 

strain upregulated inhibitory cytokines such as IL-10 in a mouse model175. Clostridium 

species can promote Treg production and inhibit inflammatory cytokines32,176, with some 

associated with systemic infections in humans177. Thus, the potential inhibitory impact of 

Clostridium butyricum on an infant’s immune response to infection requires further 

investigation. 
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Cesarean-delivered infants in our study had a positive association between 

Haemophilus influenzae and the number of any respiratory infections and symptoms. 

Haemophilus influenzae is a bacterial species known to cause several types of infectious 

diseases, including those of the respiratory tract. Although previous studies have not 

found associations between Haemophilus influenza in the gut microbiome and respiratory 

infections, the species do reside in the intestinal tract178. Further explorations of the gut-

lung axis, as well as the origin of such bacteria in the gut, are warranted179.   

 

Other studies have also found associations between the gut microbiome and 

respiratory infections. Observations from epidemiologic studies that were not found in 

our study included a higher abundance of Bifidobacterium and Enterococcus and a lower 

abundance of Escherichia-Shigella, Prevotella, Faecalibacterium and Enterobacter in 

subjects aged 0 to 3 years with pneumonia compared to healthy controls (N = 33) in a 

cross-sectional study of Mongolian children46. A case-control study of US infants found 

that infants with a higher gut alpha diversity of Bacteroides had a higher likelihood of 

developing bronchiolitis (N = 155)48. Findings from the aforementioned Dutch 

prospective study found several associations between the bacterial taxa of the infant gut 

microbiome and the number of respiratory infections, including associations with 

Bifidobacterium, Bacteroides, and Enterococcus (N = 120). These findings, as well as 

ours, require further confirmation. 

 

We found a positive prospective association between the overall alpha diversity at 

six weeks of life and the risk of upper RTIs. Although our findings for alpha diversity 
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may seem contradictory to some prior studies that reported negative associations between 

alpha diversity and health outcomes180, our study focuses on the early microbiome when 

diversity is low in healthy babies. We further prospectively examined associations with 

respiratory infections. Similar to our study, other studies found no associations between 

alpha diversity and adverse health outcomes but observed differences in the abundance of 

specific microbes158. A cross-sectional study from the US found that infants hospitalized 

for severe RSV infection had slightly lower alpha diversity of the gut than infants with 

moderate RSV infection and controls (N = 95)159. However, as the infants’ gut 

microbiomes were assessed after the onset of disease, reverse causality was possible in 

this study; thus, further prospective studies are needed to understand how the overall 

microbial diversity and colonization of the neonatal and early infant gut reflect immune 

response to infections. 

 

Wheezing 

Wheezing is a respiratory symptom associated with infection, atopy, allergy or a later 

diagnosis of asthma. We found an association between a higher alpha diversity and an 

increased risk of wheezing identified by a physician, and this was largely among 

vaginally delivered infants. Epidemiologic studies have reported associations between the 

infant gut microbiome and atopic wheezing and asthma in childhood181–184. Whether our 

findings translate to a later risk of asthma will require longer-term follow-up of our 

cohort. 
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Diarrhea 

Among infants in our study, higher alpha diversity was associated with an increased risk 

of diarrhea requiring a physician visit in the first year of life. Other prospective studies 

are lacking, and to our knowledge, prior work includes only case-control studies that 

measured the infants’ stool microbiomes at the time of symptoms. For example, in a 

small case-control study from South Africa, lower alpha diversity was observed in the 

stool of infants with gastrointestinal disease compared to infants with respiratory disease 

and infants with other diseases (N = 34)185. In addition to the issue of reverse causality, 

diarrheal diseases in the US vary in etiology and consequences compared to those in 

other geographic regions. 

 

We observed that an increased relative abundance of Streptococcus peroris and a 

reduced relative abundance of Streptococcus salivarius were associated with a higher risk 

of diarrhea seen by a physician. Limited data also exist on microbiome composition in 

relation to diarrheal disease, again with most studies being cross-sectional and with 

relatively small sample sizes. A study from China of 20 infants with diarrheal illness and 

13 controls found differences in gut microbiome composition, with two patients having a 

higher abundance of Streptococcus peroris than controls186. Other studies designed to 

detect pathogens among ill infants and young children compared to controls using 16S 

rRNA sequencing have also noted a higher abundance of Streptococcus species 

associated with diarrheal illness187,188. In mice, Streptococcus salivarius strains inhibited 

inflammation with severe and moderate colitis189. In the same experiment, Streptococcus 

salivarius inhibited the activation of the NF-κB pathway, which induces 



	 43	

proinflammatory gene expression in intestinal epithelial cells189. Together, these findings 

raise the possibility of a role of Streptococcus species in susceptibility to diarrhea in early 

childhood. 

 

Our study had a number of strengths as well as limitations. We carefully collected 

infant stool samples at approximately six weeks of age from a cohort of pregnant women 

and their offspring from the general population, and we examined repeated measurements 

of infection occurrences, respiratory symptoms, and diarrhea and a broad range of 

potential confounding variables, such as maternal prepregnancy BMI, delivery mode, 

infant sex, breast feeding at six weeks, antibiotic use during pregnancy, and gestational 

age, for the analyses. A major challenge to the analysis of microbiome sequencing data is 

the ability to fully capture their correlated, compositional, and high-dimensional nature 

when assessing longitudinal outcomes. Therefore, we performed our analyses on the 

relative abundance of individual species and corrected for multiple hypotheses using the 

false discovery rate (FDR). Our outcomes were not ascertained by viral or bacterial 

culture or PCR to confirm the type of infection; as a result, we relied on responses of 

telephone surveys from caregivers. Additionally, we could not differentiate between the 

various causes of wheezing and diarrhea in our dataset. Participant recall is a potential 

source of bias; however, efforts were made to reduce misclassification by including 

questions on the duration and severity of illness and limiting our analyses to outcomes 

that involved either a physician visit or a prescription medication. In a review of infants’ 

pediatric medical records, we found caregiver responses to be at least 80% concordant 

with physician assessments documented in the medical record (unpublished data). 
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Furthermore, while our study is one of the largest overall, we had limited statistical 

power in our analyses stratified by delivery mode. 

 

In conclusion, our findings from a prospective birth cohort of US infants suggest 

that the composition of the microbiome in early life influences the most common health 

outcomes of infancy, which in turn may have consequences for lifelong disease risk. 

While higher alpha diversity was associated with respiratory infections and symptoms 

overall and among vaginal deliveries, the doubling of the relative abundance of 

unclassified Veillonella species and Haemophilus influenza species increased the risk of 

an additional respiratory infection or symptom overall and among cesarean-born infants 

respectively. Our findings may help to inform interventions aimed at altering the 

microbiome during this critical window of immune training27. 
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4.1 Abstract 

The establishment of the gut microbiome plays a key symbiotic role in the developing 

immune system; however, its influence on vaccine response is yet uncertain. We 

prospectively investigated the composition and diversity of the early-life gut microbiome 

in relation to infant antibody response to two routinely administered vaccines. Eighty-

three infants enrolled in the New Hampshire Birth Cohort Study were included in the 

analysis. We collected blood samples at 12 months of age and assayed the isolated serum 

to quantify total IgG and measured antibody to pneumococcal capsular polysaccharide 

and tetanus toxoid. Stool samples were collected from infants at six weeks of age and 

sequenced using 16S rRNA, and a subset of 61 samples were sequenced using shotgun 

metagenomics sequencing. We observed differences in beta diversity for 16S six-week 

stool microbiome and pneumococcal and tetanus IgG antibody responses. Metagenomics 

analyses identified species and metabolic pathways in six-week stool associated with 

tetanus antibody response, in particular, negative associations with the relative abundance 

of Aeriscardovia aeriphila species and positive associations with the relative abundance 

of species associated with CDP-diacylglycerol biosynthesis pathways. The early gut 

microbiome composition may influence an infant’s vaccine response.  

 

4.2 Introduction 

Vaccines reduce infant mortality and morbidity from infections worldwide190. The World 

Health Organization and the US American Association of Pediatrics guidelines outline a 

standard schedule of immunizations for infants to provide protection against potentially 

fatal infectious diseases. Rates of vaccine administration vary globally191. Among 
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children born in the US in 2016 and 2017, approximately 99% of infants received 

vaccines, with only 1.2% not receiving any vaccines by 24 months of age192. However, 

immune responses to vaccinations vary by host with reported factors being 

sociodemographic characteristics, perinatal exposures, breast or formula feeding, 

antibiotic use, and variation in timing and other characteristics of the vaccination itself193.  

 

The early establishment of infant gut microbiome is now known to play an essential role 

in the development of the immune system25,26. Growing evidence points to the impact of 

the gut microbiome on immune response to vaccination, including among infants treated 

with antibiotics 59,194–197. For example, recent studies examined the relation between 

infant gut microbiota and response to oral poliovirus, bacille Calmette-Guérin, tetanus 

toxoid, hepatitis B virus, and rotavirus vaccines among infants living in Bangladesh, 

Ghana, and Pakistan49–51. These studies identified specific bacterial taxa in the intestinal 

microbiome associated with differential vaccine response and microbial compositions in 

high vaccine responders to be similar to those of healthy infants from high income 

countries50,51. Prospective studies are lacking in common vaccine response in relationship 

to the very earliest development of the intestinal microbiome. To gain a better 

understanding of the role of the infant gut microbiome on vaccine response, we 

investigated the association between the early infant gut microbiome composition and 

antibody response to two common vaccines administered in the first year of life -- 

pneumococcal capsid protein and tetanus toxoid -- at one year of age in the New 

Hampshire Birth Cohort Study (NHBCS).  
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4.3 Methods 

4.3.1 Study Population 

The current study included participants in the NHBCS who had stool samples collected at 

approximately 6 weeks of age for microbiome analyses and infant blood samples at 

approximately 12 months of age for vaccine response assays. The NHBCS comprised of 

pregnant women aged 18-45 with a singleton pregnancy who received care at prenatal 

clinics in New Hampshire, USA as described previously123. We collected longitudinal 

survey data for maternal and infant lifestyles, and we ascertained infant birth 

characteristics and vaccine information from delivery and pediatric medical records. The 

Committee for the Protection of Human Subjects at Dartmouth College approved all 

protocols, and informed consent was obtained from all participants upon enrollment. 

 

4.3.2 Blood sample collection, serum isolation, and assaying 

Infant blood samples were collected from well child visits scheduled at approximately 

12-months of age post-partum. Serum was isolated from the blood samples, frozen at -

80oC, and shipped to Stanford University in Palo Alto, California for serological analysis. 

Antibody responses to pneumococcus capsule-based vaccines were measured using 

VaccZyme Anti-PCP IgG Enzyme Immunoassay kit (Binding Site, Birmingham, UK). 

Antibody responses to tetanus toxoid-based vaccines were measured using Tetanus 

Toxoid IgG ELISA (Genway Biotech, San Diego, CA).  
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4.3.3 Stool sample collection, DNA extraction, sequencing, and profiling 

Infant stools samples were collected at approximately 6 weeks of age as described 

previously124,160. These samples were aliquoted and frozen at -80oC, and DNA was 

extracted from thawed samples using Zymo DNA extraction kit (Zymo Research, Irvine, 

CA). OD260/280 nanodrop was used to measure sample quality and purity. Samples were 

sent to Marine Biological Laboratory in Woods Hole, Massachusetts for bacterial 16S 

rRNA gene sequencing of the V4-V5 hypervariable region using Illumina MiSeq 

(Illumina, San Diego, CA). We conducted quality control measures internally by 

amplifying in triplicate with one negative control as described previously160. We inferred 

amplicon sequence variants (ASVs) using DADA2161 and assigned taxonomies using the 

SILVA database162. A subset of stool samples also underwent shotgun metagenomics 

sequencing using Illumina NextSeq (Illumina, San Diego, CA) as previously 

described156. DNA samples were extracted and sheared to a mean insert size of 400 bp 

using a Covaris S220 focused ultrasonicator, and sequencing libraries were constructed 

with Nugen’s Ovation Ultralow V2 protocol. We merged and trimmed DNA reads using 

KneadData163, inferred taxonomic profiles at the species-level using Metaphlan3198, and 

profiled metabolic pathways using HUMAnN3.0198.  

 
4.3.4 Statistical Analysis 

We examined the association between the stool microbiome and antibody response to 

pneumococcal capsular polysaccharide (PCP) and tetanus toxoid (TT). Using the 16S 

data, we aggregated ASVs to genera and calculated beta diversity using Bray-Curtis 

dissimilarity. We used PERMANOVA to test the differences between groups. Using the 

metagenomics data, we log2-transformed the relative abundance of bacterial species and 
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metabolic pathways. We removed species that were present in less than 10% of subjects 

and performed linear regression on all remaining taxa. We further investigated metabolic 

pathways by removing pathways that were present in less than 10% of subjects and 

standardizing the relative abundance of pathways. We used elastic-net to select pathways 

with possible associations with vaccine response. We then conducted linear regression on 

each elastic-net selected pathway with FDR correction.  

 

We applied a False Discovery Rate (FDR) threshold of 0.1 to adjust for multiple testing. 

Factors associated with both the gut microbiome and vaccine response were considered 

potential confounders and included in all analyses, including infant birth weight (g), 

breast feeding at 6 weeks (exclusively breast fed/ever formula fed), and maternal pre-

pregnancy BMI (kg/m2). Since delivery mode is not associated with vaccine response, it 

was not considered a potential confounder. For missing confounding data, we assumed 

entries were missing at random and used multiple imputation by chained equations and 

the predictive mean matching method to impute missing data in a randomly chosen 

iteration. All analyses were performed in R version 3.4.3, using functions diversity, 

vegdist, ade4, adonis, mice, and cv.glmnet in packages ‘vegan’, ‘mice’, and ‘glmnet’.  

 

We also performed a sensitivity analysis of 65 infants in whom we verified that they had 

received at least one dose of Pneumococcal Conjugate Vaccine (PCV) 13 or Diphtheria, 

Tetanus, and acellular Pertussis vaccine (DTaP) in their pediatric medical records.  
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4.4 Results 

4.4.1 Baseline Characteristics 

We measured vaccine response in 155 study infants for PCP and 133 subjects for TT. Of 

those with PCP vaccine response data, 80 stool samples were analyzed by 16S and 59 by 

metagenomics sequencing. For TT response, 68 infants had 16S data and 53 had 

metagenomics sequencing data. Our study group had a roughly equal distribution of male 

(54.2%) and female (45.8%) infants (Table 4.1). Nearly 80% of subjects were delivered 

vaginally, and roughly half (53.4%) had been exclusively breast fed at 6 weeks of life 

(Table 4.1). Mean infant birth weight was 3342g and mean maternal pre-pregnancy BMI 

was 26.1 (Table 4.1). The mean PCP antibody response was 30.4mg/L (SD = 22.5), and 

the mean tetanus toxoid antibody response was 0.932 IU/mL (SD = 0.759). The 80 

infants in our study who had both pneumococcal vaccine response measurements and 16S 

sequence data all had pneumococcal vaccine response measurements above the preferred 

PCP protection threshold of 0.2 mg/L199. Of the 68 infants who had tetanus vaccine 

response measurements and 16S data, 6 subjects (8.8%) had measurements below the 

preferred TT protection threshold of 0.1 IU/mL (Supplementary Figure 4.1)200.  
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Table 4. 1: Selected Baseline Characteristics of Infants and Mothers in the New 
Hampshire Birth Cohort Study (N = 83) 

 
Variable Sample Size No. (%) or Mean 

(SD) 
Infant Characteristics   
Sex, No. (%) 83  

Female  38 (45.8%) 
Male  48 (54.2%) 

Delivery Mode, No. (%) 83  
Vaginal   65 (78.3) 
Caesarian  18 (21.7) 

Breast Feeding at 6 Weeks, No. (%) 73  
Exclusively breast fed  39 (53.4) 
Fed any formula  34 (46.6) 

Breast Feeding at 1 Year, No. (%) 73  
Exclusively breast fed  19 (26.0) 
Fed any formula  54 (74.0) 

Daycare (ever in first year of life), No. (%) 63  
Yes  35 (55.6) 
No  28 (44.4) 

Birthweight (g), mean (SD) 82 3342g (558) 
Received PCV13 vaccine, No. (%) 66  

At least one dose recorded in medical record  65 (98.5) 
None  1 (1.5) 

Received DTaP vaccine, No. (%) 66  
At least one dose recorded in medical record  65 (98.5) 
None  1 (1.5) 

PCP Vaccine Response (mg/L), mean (SD) 80 30.4 (22.5) 
TT Vaccine Response (IU/mL), mean (SD) 68 0.932 (0.759) 

Maternal Characteristics   
Maternal pre-pregnancy BMI (kg/m2), mean 
(SD) 

83 26.1 (5.7) 

Parity, No. (%) 83  
0  44 (53.0) 
1+  39 (47.0) 
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4.4.2 16S V4-V5 rRNA Gene: Beta Diversity 

In PERMANOVA analyses of pair-wise community composition, we observed a weak 

association between PCP antibody response at or below versus above the median 

(PERMANOVA P = 0.112) (Figure 4.1.1). We further observed a borderline statistically 

significant difference in beta diversity for TT antibody response at or below the TT 

protection threshold and above the threshold (PERMANOVA P = 0.065) (Figure 4.1.2).  

 

Figure 4. 1: PCoA plots of bacterial 16S V4-V5 rRNA sequencing Bray-Curtis 
Dissimilarity for PCP and TT. PCP groups assigned by median PCP IgG concentration 
threshold. TT groups assigned by preferred protection threshold of 0.1IU/mL. 
Percentages on the X and Y axis of plots represent percentage of variance explained by 
first two eigenvectors.  

 

	

4.4.3 Metagenomics: Species and Pathways 

Streptococcus oralis species was inversely associated with PCP antibody response 

although the association did not meet FDR threshold (Figure 4.2.1). Aeriscardovia 

aeriphila was inversely associated with TT antibody response, whereas Staphylococcus 

aureus, Escherichia coli, Streptococcus thermophilus, and Anaerococcus vaginalis were 
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positively associated with TT antibody response (Figure 4.2.2). Of these, only 

Aeriscardovia aeriphila remained statistically significant after FDR correction (Figure 

4.2.2) (Supplementary Table 4.1).  

 
Figure 4. 2: Associations between metagenomics bacterial species and vaccine response. 
Dots indicate bacterial species, and size of dots vary by mean abundance. Blue indicates 
species with p-value < 0.05. Red indicates species with p-values <0.05 and meet FDR 
correction.  
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Several metabolic pathways were found to be associated with vaccine response. The 9 

pathways associated with lower PCP vaccine response included higher abundance of taxa 

related to aerobic respiration I (cytochrome c), superpathway of L-phenylalanine 

biosynthesis, superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, 

myo-, chiro-, and scillo-inositol degradation, and ketogenesis (Fig. 4.3.1) (Supplementary 

Table 4.2). In contrast, higher abundance of taxa related to pantothenate and coenzyme A 

biosynthesis III, superpathway of pyrimidine ribonucleosides degradation, 

methylphosphonate degradation II, and superpathway of pyrimidine ribonucleotides de 

novo biosynthesis were associated with higher PCP antibody response (Fig. 4.3.1) 

(Supplementary Table 4.2). Five pathways were positively associated with TT antibody 

response, including CDP-diacylglycerol biosynthesis I, purine nucleotides degradation II 

(aerobic), queuosine biosynthesis, CDP-diacylglycerol biosynthesis II, and adenosine 

nucleotides degradation II (Fig. 4.3.2) (Supplementary Table 4.2). No inverse 

associations were observed for TT.  

	

Figure 4. 3: Associations between elastic-net and metabolic pathways and vaccine 
response. Dots indicates effect size, and horizontal bands indicate 95% CI. Green dots 
represent positive association, while purple dots represent negative association. Size of 
dots vary by p-value: larger dot indicates smaller p-value. Only pathways selected by 
elastic net and FDR correction shown here.  
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Our sensitivity analyses of infants with medical record confirmation of vaccination 

revealed similar results. Results are provided in Supplementary Figure 4.2, 

Supplementary Figure 4.3, and Supplementary Figure 4.4 for beta diversity, bacterial 

species, and metabolic pathways respectively.  
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4.5 Discussion 

In a prospective study of the infant gut microbiome using both 16S and metagenomic 

sequencing, we observed differences in infant gut microbiome composition at six weeks 

of age in relation to pneumococcal conjugate and tetanus toxoid vaccines at one year of 

age. Microbial community structure (beta diversity) was associated with both PCP and 

TT antibody response although with limited statistical power. In analyses of individual 

bacterial species, associations were observed with decreased antibody response to TT 

including Aeriscardovia aeriphila after correction for multiple comparisons. Pathway 

analyses indicated several potential mechanisms by which microbial metabolites might 

influence vaccine response especially those related to CDP-diacylglycerol biosynthesis. 

 

Guidelines by the AAP in the US state that children under 2 years of age should receive 

three doses of PCV13 that provide protection against 13 strains of Streptococcus 

pneumoniae201. These microbes are responsible for the majority of invasive bacterial 

infections in infants and young children, including otitis media infections, resulting in 

significant morbidity, antibiotic exposure, and at times difficulty with hearing202. 

Streptococcus also results in pneumonia, “pink eye”, and other infectious illnesses in 

children 2 months and older, hindering daycare attendance, and with consequent financial 

loss to working parents. Following PCV, antibodies to PCP antigens conjugated to a 

carrier protein are induced by both T cell and B cell responses203. Tetanus is a life-

threatening infection that is caused by Clostridium tetani and is preventable by a toxoid 

vaccine. It is part of several combination vaccines including DTaP201. DTaP primarily 
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induces T cell response204. By age one, most infants in the US would have received three 

doses of PCV13 and DTaP201.  

 

Using 16S V4-5 rRNA sequencing data, we found marginally statistically significant 

between-group (beta diversity) differences in PCP and TT antibody response. One prior 

study of Chinese infants observed differences in beta diversity among those with and 

without a positive oral poliovirus IgA vaccine response based on 16S rRNA analyses of 

stool collected the day of vaccination. However, many prior studies have not detected 

such differences with either oral poliovirus205 or rotavirus vaccination206,207.  

 

The association between specific microbial taxa and infant vaccine response has been 

examined in only a few prospective studies of infants. In a study of 48 Bangladeshi 

infants, positive associations were found for Corynebacterium and Bifidobacterium and 

negative associations for Escherichia/Shigella and Acinetobacter and T cell proliferation 

response to tetanus toxoid vaccine among young infants (measured at 15 weeks of life)49. 

In this study, a positive association for Actinomyces and a negative association for 

Staphylococcus with IgG response to TT vaccine also were observed. Further, a positive 

association was identified between Bifidobacteriaceae and tetanus toxoid T cell 

proliferation response. This contrasts with our finding of an inverse association with 

Aeriscardovia aeriphila, a bacterial species of the family Bifidobacteriaceae. A later 

publication from the Bangladesh cohort of infants found a positive association between 

Bifidobacterium and CD4 and IgG response to vaccines, including to the TT vaccine at 

age 2 years52. Other studies have focused on vaccine response to oral live attenuated 



	 59	

rotavirus. For instance, a case-control study of 78 Ghanaian infants found negative 

correlations between rotavirus vaccine response in serum collected four weeks after the 

last vaccine dose and Bacteroides and Prevotella species, and positive correlations with 

bacteria in the Bacilli phylum in 6 week stool samples collected before vaccination50. 

Similarly, in a study performed in Pakistan, a case-control study found positive 

correlation between rotavirus vaccine response 28 days after the last vaccine dose and 

relative abundance of Clostridium cluster XI and Proteobacteria, including Serratia and 

Escherichia coli in the pre-vaccination stool of 20 infants51. A randomized control trial 

found correlations between Bifidobacteria and antipoliovirus IgA response in 30 French 

infants208. Another study of polio vaccine in 107 Chinese infants found increased 

Firmicutes and decreased Actinobacteria in stool collected the day of the last oral 

poliovirus vaccine dose among infants with negative IgA response205. Many of these 

studies investigated response to oral vaccines, and gut microbiota may interact differently 

with oral vaccines compared to intramuscular vaccines due to direct contact between oral 

vaccines and the gut. Thus, further studies are needed in diverse study populations and 

with response to multiple types of vaccines.  

 

External factors that influence both the gut microbiome and vaccine response highlight 

opportunities for recommendations and interventions to improve vaccine response. Germ-

free mice treated with antibiotics and mice deficient in toll-like receptor 5 expression 

have demonstrated lower responses to influenza vaccine, but not other vaccines197. 

Diminished vaccine response was restored after reconstituting their gut microbiome with 

flagellated E. coli. In another mouse experiment, lower antibody response after 
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ovalbumin and Freund's adjuvant immunization was observed in infant mice whose 

mothers were treated with antibiotics during pregnancy196. The study also observed that 

germ-free mice with deficient antibody response can increase their response after 

introduction to normal gut flora, raising the possibility that interventions may be able to 

enhance immune response. A similar study in mice found associations between maternal 

and early-life antibiotic exposure and gut microbiome dysbiosis and lower IgG responses 

for several vaccines, including PCV13 and Hexa, which produces antibodies to tetanus59. 

Further, impaired PCV13 response in mice treated with antibiotics was not observed if 

they received fecal transplant from age-matched untreated mice, while impaired response 

remained in mice treated with antibiotics and fecal transplant from antibiotic treated 

mice. Further experimental studies and mediation analyses will help establish the 

potential for microbiome-directed interventions to bolster immune response to vaccines. 

 

Further evidence of the importance of the microbiome on vaccine response comes from 

studies on beneficial effects of probiotics. A study of 20 French infants found those given 

Bifidobacterium breve strain C50 and Streptococcus thermophilus supplementation in the 

first 4 months of life had higher antipoliovirus IgA response at 4 months208. Interestingly, 

in our analyses, we observed a positive association between Streptococcus thermophilus 

and TT antibody response, although this was no longer statistically significant after FDR 

correction. Prenatal and early life supplementation with Lactobacillus rhamnosus GG, L. 

rhamnosus LC705, Bifidobacterium breve Bbi99, and Propionibacterium freudenreichii 

ssp. shermanii in the first 6 months of life was associated with higher IgG antibody 

response to Haemophilus influenzae type b at 6 months of age in a randomized controlled 
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study of 61 allergy-prone Finnish infants209. A randomized control study of 61 mothers 

and their infants found maternal Lactobacillus rhamnosus GG supplementation starting at 

36 weeks gestation was associated with lower IgG response of tetanus toxoid, 

Haemophilus influenzae type b, and several serotypes of PCV7 vaccines in infants at 12 

months of age210. Thus, further research on antibiotic use and prenatal and early life 

probiotic supplementation is warranted to elucidate immunomodulation by gut 

microbiota.  

 

Based on metagenomic analysis, we found several metabolic pathways associated with 

PCP and TT vaccine response. Nucleotides including purine and pyrimidine have an 

important role in the immune system. Several pathways involving pyrimidine were 

associated with differential response to PCP. A link between pyrimidine biosynthesis and 

the immune system has been observed211,212. Furthermore, the purine nucleotide 

degradation II pathway was observed to be positively associated with TT response in our 

study. CDP-diacylglycerol biosynthesis I and II were positively associated with TT 

response in our study. CDP-diacylglycerol has an important function in lipid metabolism, 

which could affect the immune system213.  

 

The main strength of our study is the prospective analyses of early-life infant gut 

microbiome and vaccine response. However, there also were limitations. Due to the high 

dimensional nature of microbiome data and available sample size, our analyses had 

limited statistical power. Therefore, we applied a filtering process as well as 

regularization techniques for dimension reduction and variable selection. Delivery mode 
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was not related to vaccine response, and therefore, not included as a covariate in our 

analyses.  Several potential confounders, such as breast feeding, were adjusted for in our 

analyses; however, residual confounding remains a possibility. Further work is warranted 

to investigate the gut microbiome as a possible mediator or effect modifier on the 

relationships between exposures and vaccine response. Delivery mode and breast feeding 

are two such exposures associated with relative abundance of gut bacteria214, and 

associations with these exposures have been observed in our cohort124,215. Breast feeding 

may influence a child’s vaccine response193. Analyses with larger sample sizes may be 

able to identify mediating or modifying effects as well as to corroborate or refute 

associations lacking statistical significance after correction for multiple hypotheses found 

in our species and pathway analyses. 

 

In conclusion, we found patterns of the developing gut microbiome captured at a very 

early time point in development associated with differential response to vaccines 

administered in the first year of life. The microbes and pathways associated with antibody 

response to PCP and TT may offer clues to the critical role the developing microbiome 

plays in shaping the immune system as measured by vaccine response. Our findings 

provide insight into possible interventions to optimize antibody response and improve 

vaccine efficacy during a critical time in early immune maturation and when 

susceptibility to infection is at its highest.  
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5.1 Abstract 

 

The human microbiome has an important role in determining health. Mediation analyses 

quantify the contribution of the microbiome in the causal path between exposure and 

disease; however, current mediation models cannot fully capture the high dimensional, 

correlated, and compositional nature of microbiome data and do not typically 

accommodate dichotomous outcomes. We propose a novel approach that uses inverse 

odds weighting to test for the mediating effect of the microbiome. We use simulation to 

demonstrate that our approach gains power for high dimensional mediators, and it is 

agnostic to the effect of interactions between the exposure and mediators. Our application 

to infant gut microbiome data from the New Hampshire Birth Cohort Study revealed a 

mediating effect of 6-week infant gut microbiome on the relationship between maternal 

prenatal antibiotic use during pregnancy and incidence of childhood allergy by 5 years of 

age. 

 

5.2 Introduction 

 

The human gut microbiome and immune system interact to form a bidirectional 

relationship 26, and the developing gut microbiome plays a crucial role in immune system 

maturation in infancy 25. As a result, perturbations in the gut microbiome is linked to 

clinical outcomes through infancy and childhood, and into adulthood. External factors 

shape the gut microbiome including delivery mode, diet, and antibiotic use 53. 

Understanding the three-way interplay among external factors, the gut microbiome, and 
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clinical outcomes can help generate opportunities for intervention such as therapeutics 

and probiotics for modulating the gut microbiome to improve health outcomes.  

 

Mediation analysis quantifies the contribution of a variable in the causal pathway 

between an exposure or treatment and an outcome. These analyses are especially useful 

in health research to determine possible interventions to prevent disease or produce better 

health outcomes. Upon development of approaches to mediation analysis including 

traditional approaches 63,64 and causal inference approaches 65–68,216, many extensions of 

mediation analyses have also been published in recent years. These include models for 

multiple mediators 68,69 and those that account for interactions between exposures and 

mediators 217,218. Other approaches include inverse odds ratio weighting (IORW) 219 or 

inverse odds weighting (IOW) 220 to quantify the total, direct, and indirect effects. Testing 

the mediation effect can be conducted using common approaches such as the Sobel test 

221 and the joint significance test 64.  

 

Mediation analysis for high dimensional mediators has become increasingly popular for 

modeling biomarkers. These include methods using PCA and regularization for 

dimension reduction 70–73, multiple testing procedures 74–79, and others 80,81. Methods for 

mediation analysis have also extended to microbiome data: many test for mediation with 

continuous outcome 82–87, some account for interactions between exposure and mediators 

84,87, and one conducts mediation analysis for dichotomous outcomes 88. Most of these 

methods, however, require specification of the microbiome model, which is difficult due 

to the sparse, high dimensional, and compositional nature of microbiome data. 
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Furthermore, to our knowledge, none of them can accommodate both dichotomous 

outcomes and high dimensional microbiome mediators.  

 

We propose a novel approach, HT-MMIOW, a Hypothesis Test approach for 

Microbiome Mediation using IOW, that tests the mediation effect of high dimensional 

microbiome data on both continuous and dichotomous outcomes using IOW. This 

approach uses the isometric log-ratio transformation (ilr) to account for the compositional 

nature of microbiome data and reduces dimensions using the Uniform Manifold 

Approximation and Projection (UMAP). The components generated form UMAP serve 

as mediator variables. A permutation test is performed to determine the statistical 

significance of the overall microbial mediation effect. Our simulation results demonstrate 

that this new approach is well powered when the number of true mediators is large or the 

indirect effect is large. We present an application of our approach to infant gut 

microbiome data to detect a mediating effect between antibiotic exposure and a diagnosis 

of allergy before the age of 5. 

 

5.3 Methods 

5.3.1 Identification 

Suppose the exposure, mediator, and outcome are denoted by an #	×	1 vector (, an 

#	×	!	matrix ), and an #	×	1 vector * respectively. * is known to succeed ), and ) is 

known to succeed (. The microbiome matrix ) is composed of abundance of ! taxa for 

each subject in #, and there are + true mediators in ). For simplicity, let both ( and * be 

dichotomous. Let , be an #	×	- matrix of covariates. Under the Baron and Kenny’s 
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classical mediation framework for a single mediator ., mediation analysis is represented 

by the following equations: 

 

/012+(Pr * = 1	 6)) = 	89 + 8;(	

([.|6] = 	?9 + ?;(	

												/012+(Pr * = 1	 6,A)) = 	 B9 + B;( + BC.	

 

The direct effect of ( on * is B;, the indirect effect of ( on * through . is ?;BC, and the 

total effect is 8; = B; + ?;BC. The Sobel test determines the existence of an indirect 

effect with the hypothesis D9: ?;BC = 0 vs DG: ?;BC ≠ 0.  

 

5.3.2 Dimension reduction of microbiome data 

The standard mediation model requires the knowledge of true mediators. Mediation 

models for multiple mediators exist, but many assume that mediators are independent or 

that the causal relationship between mediators are known. However, microbiome data is 

high dimensional, compositional, and correlated. We do not know which microbial taxa 

are true mediators, and we do not know the causal relationships among taxa. We propose 

mapping the microbiome data from the Aitchison-simplex to Euclidean space and 

reducing the dimensions to obtain a smaller set of mediation features.  

	
The ilr is an extension of log-ratio transformations for compositional data that extends on 

traditional additive (alr) and centered (clr) log-ratio transformations. Briefly, alr is the 

log-ratio of a value in the composition and a reference value, and clr is the log-ratio of a 

value and the geometric mean of values in the composition. There are, however, 
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limitations to these approaches; alr produces transformations do not preserve distances, 

and clr produces transformations with a singular covariance matrix. In Ilr, distance is 

preserved when data is transformed from the !-dimensional Aitchison space to the ! − 1 

dimensional Euclidean space, and the resulting vectors are orthogonal and interpretable in 

analyses 222. Each value of ilr transformation is a !balance" between two subsets of ), 

denoted by J for those on the left of the balance and K for those on the right of the 

balance:   

2/L J, K = 	
LM

L + M
log	

1(AQ)

1(AR)
 

 

where L is the cardinality of J, M is the cardinality of K, AQ are the values in J, AR are 

the values in K, and 1 ∙  is the geometric mean function.  

	
We impute a pseudocount of 0.5 to zero values and apply ilr to the microbiome data to 

account for compositionality. After ilr, we reduce dimensionality using UMAP. Briefly, 

UMAP is a fast dimension reduction procedure that models the manifold with a fuzzy 

topological structure by searching for a low-dimensional projection with the closest 

possible equivalent fuzzy topological structure 223. UMAP allows for non-linear 

dimension reduction and meaningful separation between clusters. Applying UMAP on 

2/L ) 	transforms our microbiome data to an #	×	B matrix T, where B is a user-specified 

number of components.  
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5.3.3 Compute the indirect effect and perform permutation test for mediation 

The IORW and IOW approach for causal mediation analysis allows for the 

decomposition of the total effect to direct effect and indirect effect. This approach can 

accommodate multiple mediators due to a weighting procedure that removes the need to 

specify the model to regress the multiple mediators on exposure. This approach is 

advantageous for microbiome data because of the difficulty in modeling the joint 

conditional density of high dimensional, compositional, and correlated microbiome 

features. Using the IOW approach, the total effect of exposure ( on outcome *, given 

covariates U, can be estimated using the model: 

	

ℎ * (, U = 	V9 + (V; + UVC	
 (1) 

where V; represents the total effect of ( on *, given U.  ℎ(∙) is the user-specified link 

function and W represents the error. We implement IOW to condense the association 

between ( and mediators T, conditional on U. The weights can be estimated using the 

model with a user-specified link function	X(∙): 

	

X ( T, U = 	Y9 + TY; + UYC	
 (2) 

For each observation, the weight is the inverse of the predicted odds in the exposed group 

and 1 for the unexposed group. Using IOW as opposed to IORW stabilizes the weights, 

though it may introduce small bias to estimates 220. We then use a weighted regression 

model to estimate the direct effect of ( on *, conditional	on	U.  

	

ℎ `* `(,`U =	a9` +`(a; +`UaC	
 (3) 
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where a; represents the direct effect of ( on *, given U, and ` is an #	×	1 vector of 

weights. Due to this weighting procedure, we do not need to specify interactions between 

(	and T.  

 

We can now estimate the indirect effect using parameters from (1) and (3), which 

becomes our observed test statistic for our permutation test:  bcde = 	V; −	a;. The null 

hypothesis of no mediation effect of the microbiome is expressed by: 

D9 ∶ V; −	a; = 0, 

and the alternative hypothesis that a mediation effect of the microbiome exists is 

expressed by: 

DG ∶ V; −	a; ≠ 0. 

Our permutation test can calculate the P-value using the formula	 g( b(h) >j
kl;

bcde )/n, where B is the total number of permutations, g ∙  is an indicator function,  

b(k) is the test statistic under the null hypothesis for permutation X = 1,… , n.  

 

 

5.4 Simulation 

3.1 Simulation overview 

 

We conducted simulations to evaluate the power of our proposed approach on continuous 

and dichotomous outcomes. We simulated ( and ) using SparseDOSSA 224. Briefly, this 

tool uses zero-inflated log-normal distribution to simulate realistic microbial community 

structure of human stool and covariates that correlate with the simulated microbiome 
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data. We applied UMAP on ) to reduce dimensionality to 2 components. We set the 

effect size of the exposure on outcome at 5, the percentage of microbial features 

associated with the exposure at 50%, and effect size of the exposure on mediator at 3 for 

simulated data generation using SparseDOSSA. We simulated outcomes * using a 

standard logistic regression with the exposure and scaled relative abundance of true 

microbial taxa. mediators selected at random from those associated with the exposure, 

with the effect size of the exposure on outcome set at 5 and a random noise of of p 0,1 . 

Exposure variables were dichotomous, and outcome variables were continuous and 

dichotomous. 

 

To fine-tune our approach, we evaluated the performance of HT-MMIOW with various 

dimension reduction techniques. These include 1) UMAP as described previously; 2) 

PCA to n-components then UMAP; 3) PCA with components explaining 100% of the 

variance; and 4) PCA with components explaining 80% of the variance. We investigated 

varying effect sizes of true mediators on outcome (effect size = 0.5, 1, 5), which serve as 

proxy for smaller to larger indirect effects, and varying number of true mediators in the 

microbiome sample (+ = 1, 5, 10). We also varied sample sizes (# = 50, 70, 100, 150, 

300, 500) and the number of taxa in the microbiome data (! = n, 2n). We compared the 

performance of HT-MMIOW with a distance-based omnibus test using Bray-Curtis and 

Jaccard distances 83. Though the omnibus test is designed for continuous outcomes, we 

sought to examine its performance on dichotomous outcomes due to the lack of methods 

for high dimensional microbiome mediators and dichotomous outcomes. All analyses 
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were conducted using R version 4.0.2 and packages “SparseDOSSA2”, “magrittr”, 

“dplyr”, “ggplot2”, “compositions”, “umap”, “foreach”, “doParallel”, and “bda”.  

	

3.2 Simulation results 

 

Figures 5.1 and 5.2 display the simulation results of HT-MMIOW for continuous 

outcomes under varying conditions compared with the omnibus test. HT-MMIOW with 

UMAP dimension reduction performs better than HT-MMIOW with PCA and UMAP 

when the number of taxa are twice the of sample size. HT-MMIOW also performs better 

than the omnibus test for all conditions, especially when the number of true mediators is 

small. Using HT-MMIOW with only PCA as the dimension reduction technique did not 

perform well. HT-MMIOW with PCA components explaining 80% of the variance 

generally performed better than HT-MMIOW with PCA components explaining 100% of 

the variance, and this may be because fewer components in the inverse odds ratio 

mediation approach provides more power. These power calculations were based on an 

empirical threshold of 0.05. Though type I error for continuous outcomes were around 

0.05 based on the 0.05 empirical threshold, type I error based on an empirical threshold 

of 0.01 were smaller (Supplementary Figure 5.1). HT-MMIOW using a 0.01 empirical 

threshold continued to yield higher power than the omnibus distance test (Supplementary 

Figure 5.2) .        
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Figure 5. 1: Power calculations for varying sample size, effect size, and number of true 
mediators for continuous outcomes and ! = #. Results are based on 200 simulations. 
Each line represents the hypothesis test procedures evaluated.  
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Figure 5. 2: Power calculations for varying sample size, effect size, and number of true 
mediators for continuous outcomes and ! = 2#. Results are based on 200 simulations. 
Each line represents the hypothesis test procedures evaluated. 

 

 

For dichotomous outcomes, HT-MMIOW performed well with stronger effect of 

mediators on Y and with larger numbers of true mediators in M (Figure 5.3, Figure 5.4). 

Using UMAP performed just as well as using PCA and UMAP. HT-MMIOW also 

performed better than the omnibus test in all conditions.  Again, HT-MMIOW’s 

performance was lower when using only PCA as the dimension reduction technique. As 

expected, performances for both continuous and dichotomous outcomes increased with 

increasing sample size. Again, the above power calculations were based on an empirical 

threshold of 0.05. The type I error for dichotomous outcomes were inflated when an 
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empirical threshold of 0.05 was used; however, type I error based on an empirical 

threshold of 0.01 were close to zero (Supplementary Figure 5.1). HT-MMIOW using a 

0.01 empirical threshold for dichotomous outcomes yielded higher power than the 

omnibus distance test (Supplementary Figure 5.3).  

 

Figure 5. 3: Power calculations for varying sample size, effect size, and number of true 
mediators for dichotomous outcomes and ! = #. Results are based on 200 simulations. 
Each line represents the hypothesis test procedures evaluated. 
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Figure 5. 4: Power calculations for varying sample size, effect size, and number of true 
mediators for dichotomous outcomes and ! = 2#. Results are based on 200 simulations. 
Each line represents the hypothesis test procedures evaluated. 

	
 

5.5 Application to NHBCS data 

Prenatal antibiotic use has been linked to development of infant and childhood allergy 

16,156, and it is also associated with compositional differences in the infant gut 

microbiome 225. We applied HT-MMIOW to test the effect of the infant gut microbiome 

as a potential mediator in the causal path between prenatal antibiotic use and allergy on 

data from the New Hampshire Birth Cohort Study (NHBCS).  The NHBCS is a 

prospective birth cohort of mother-infant dyads who received prenatal care in New 

Hampshire clinics. The study recruited pregnant women with ages ranging between 18 
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and 45, who had a singleton pregnancy and were served by a private water system as 

described previously 123. Prenatal use of antibiotics was reported in prenatal records. The 

child’s caregivers reported whether the child had any allergies diagnosed by a physician 

during telephone interviews conducted when infants turned approximately 4, 8, 12, and 

18 months of age, and then at 1 year intervals thereafter. Infant stools samples were 

collected at approximately 6 weeks of age and sequenced using Illumina MiSeq 

(Illumina, San Diego, CA) for bacterial 16S rRNA gene sequencing of the V4-V5 

hypervariable region at Marine Biological Laboratory in Woods Hole, Massachusetts. We 

inferred amplicon sequence variants using DADA2 161 and assigned taxonomies using the 

SILVA database 162.  

 

A total of 412 mother-infant dyads were included in this analysis. Of these, 72 mothers 

(17.5%) self-reported to antibiotic use during pregnancy, and 39 children (9.5%) had 

been diagnosed with allergy by 5 years of age. Based on the 16S sequencing reads of our 

stool samples, we identified 705 different genera of bacteria. In our mediation test, HT-

MMIOW produced a P-value of 0.02; this gives us evidence to reject the null hypothesis 

and suggest that the infant gut microbiome mediates the relationship between antibiotic 

use during pregnancy and incidence of allergy. Due to variable duration of follow-up, we 

adjusted for age at which allergy was first diagnosed or age at last follow-up in our 

model. 
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5.6 Discussion 

We proposed a novel hypothesis test for microbiome mediation effect that utilizes a 

dimension reduction procedure for microbiome data and a mediation analysis procedure 

utilizing IOW to test if an indirect effect exists. Our simulation scenarios evaluated the 

power of our approach under varying conditions. HT-MMIOW was highly powered when 

the effect of the mediator on the microbiome was large or when the number of true 

mediators in the microbiome data was large. Compared to a conventional hypothesis test, 

HT-MMIOW generally performed better for both continuous and dichotomous outcomes. 

Our approach is one of the only hypothesis tests that can test for the indirect effect in 

high dimensional microbiome mediators and dichotomous outcomes. 

 

Our proposed hypothesis test is flexible in its application. HT-MMIOW can be used for 

multiple types of exposure and outcome data; the user may specify their own link 

functions in the regression models. Our approach can also be adjusted to account for 

other types of high dimensional mediation analysis, including genomics, by replacing the 

centered log-ratio transformation step to a transformation of the user’s choice. The total 

effect, direct effect, and indirect effect can be calculated using the IOW approach, and 

confidence intervals can be estimated using bootstrap methods. 

 

The main strength of our approach is that HT-MMIOW reduces high-dimensional 

microbiome data to a few independent components that are representative of microbial 

community structure. The IOW procedure accommodates multiple mediators in the 

mediation model. Furthermore, the IOW frameworks eliminates the need to specify a 
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model to regress the exposure on the joint conditional density of multiple compositional 

mediators. Another strength is that IOW does not require us to specify the interaction 

between exposure and mediators, even if they exist.   

Despite its strengths, HT-MMIOW is not without limitations. One limitation of our 

approach is that the mediation effect of true microbial mediators must be large for the 

approach to detect an indirect effect. We must also assume that there is no unmeasured 

confounding. Additionally, the number of true mediators must be large for smaller 

mediation effects and smaller samples sizes. Our method also cannot detect the mediation 

effect of specific microbes or clusters of microbes. Nevertheless, this approach serves as 

an important first step in determining whether a mediation effect exists. Further work is 

warranted to identify key microbial features and interactions responsible for driving this 

effect. 
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Chapter 6: Concluding Remarks 

There is increasing recognition of the important role exposures and the early gut 

microbiome play in the health of infants and young children. In this thesis, I investigated 

the three-way interplay among exposures, the infant gut microbiome, and outcomes in 

infants enrolled in the NHBCS. Our longitudinal analysis of 572 infants found that each 

month earlier of introduction to rice cereal, which contains inorganic arsenic, was 

associated with increased risk of upper RTI, lower RTI, acute respiratory symptoms, and 

allergy. We also found positive associations between 16S alpha diversity of 6-week gut 

microbiome and respiratory infections in infancy. Microbial species profiled from 

metagenomics sequencing also were found to be associated with respiratory infections in 

infancy. Our analysis of six-week gut microbiome and vaccine response detected several 

bacterial species and metabolic pathways associated with PCP and TT antibody response. 

Lastly, we introduced HT-MMIOW, a hypothesis test procedure that detects microbiome 

mediation using UMAP to reduce the number of dimensions in the mediator and IOW to 

quantify the overall indirect effect. HT-MMIOW detected a statistically significant 

indirect effect of the six-week gut microbiome on the “causal” path between maternal 

antibiotic use during pregnancy and incidence of child allergy up to five years of age.  

 

This thesis found associations between exposures, the early gut microbiome, and 

outcomes in infancy and early childhood; however, we cannot conclude causal 

relationships. We attempted to rule out associations that may be driven by other 

covariates with confounder adjustment in our analyses. In our mediation models assumed 

that unmeasured confounding did not have a large contribution to our risk ratios as this 
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assumption is required for performing mediation analysis with observational data. Further 

research is warranted to identify the mechanisms that explain the causal link among 

exposures, gut microbiota, and outcomes.  

 

Infant infections are still a leading cause of morbidity and mortality in the US and other 

countries. Further, the widespread prevalence of allergy is of great public health concern. 

In addition to the health-related burden for the individual, allergies can pose a significant 

economic burden in terms of healthcare costs and loss of caregiver income. 

Understanding the three-way interplay among exposures, the gut microbiome, and infant 

and child outcomes may aid the development of novel interventions or therapies aimed at 

modulating the gut microbiome to reduce the rates of infant morbidity and mortality with 

lifelong health impacts, such as infections and allergies.   
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Appendices 

Supplementary Figure 2. 1: Flow	Diagram	of	Study	Participants	with	Inclusion	and	

Exclusion	Criteria	

 
 
Abbreviations: NHBCS, New Hampshire Birth Cohort Study; GEE, generalized estimating equation.  

 

 

 

1760	NHBCS	pregnancies	

enrolled	as	of	October	2017	

1760	Infants	with	at	least	

one	complete	follow-up	

survey	

983	Infants	with	follow-up	

data	from	8	to	18	months	

808	Excluded	due	to	

incomplete	follow	up	to	age	

of	8	months	

54	excluded	due	to	

restriction	to	those	with	rice	

cereal	consumption	

information,	and	357	

excluded	due	to	additional	

restriction	to	those	with	

incomplete	outcome	data	at	

the	next	follow-up	interval	
572	Infants	included	in	GEE	

analysis	
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Supplementary Table 2. 1:  Selected	Characteristics	of	Mothers	and	Infants	(N	=	411)	in	

the	New	Hampshire	Birth	Cohort	Study	Not	Included	in	Main	Analyses	Followed	to	Age	

18	Months	

Variable Sample Size Mean (SD) or No. 
(%) 

Maternal Characteristics 
Smoking during any trimester of pregnancy, 
No. (%) 

372  

     Yes       55 (14.8%) 
     No       317 (85.2 %) 
Relationship status, No. (%) 366       
     Married       293 (80.1) 
     Single  56 (15.3) 
     Separated/Divorced       17 (4.6) 
Highest level of educational attainment, No. 
(%) 

367  

     ≤high school/GED  49 (13.4)a 
     Some college       70 (19.1)a 
     College graduate       135 (36.8) a 
     Postgraduate schooling       113 (30.8)a 
BMI before pregnancy (kg/m2), mean (SD) 398 26 (6.0) 
Age at enrollment (years), mean (SD) 411 31.1 (4.9) 
Arsenic in water (µg/L), mean (SD) 390 4.2 (13.5) 
Water Arsenic > 5 µg/L, No. (%) 390 66 (16.9) 
Infant Characteristics 
Sex, No. (%) 410  
     Male       188 (45.9) 
     Female       222 (54.1) 
Birth weight (g), mean (SD) 398 3447 (496) 
Ever breast fed at 4 months, No. (%) 350  
     Yes       333 (95.1) 
     No  17 (4.9) 
Other solid food consumption at 4 months, 
No. (%) c 

88  

     Yes       78 (88.6) 
     No  10 (11.4) 
Other solid food consumption at 8 months, 
No. (%) c 

47  

     Yes       26 (55.3) 
     No  21 (44.7)      
Other solid food consumption at 12 months, 
No. (%) c 

315  

     Yes       53 (16.8)      
     No       262 (83.2) 
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a Percentages do not sum to 100 due to rounding 

	

	

	

Supplementary Table 2. 2: Infant	Rice	Cereal	Consumption	and	Immune-Related	

Outcome	Prevalence	

Variable N Mean (SD)  
or N (%) 

Ever consumed rice cereal before age of 12 months 572  
Yes  435 (76.0) 
No  137 (24.0) 

Age of rice cereal introduction of those consumed 
before age of 12 months (months) 

435 5.2 (1.3) 

Rice cereal introduced before 4 months of age  27 (6.2) 
Rice cereal introduced between 4-8 months of age  381 (87.6) 
Rice cereal introduced between 8-12 months of 
age 

 27 (6.2) 

Rice cereal consumption at 4 monthsa 358  
     Yes       42 (11.7) 
     No       316 (88.3) 
Time since rice cereal introduction at 4 months 
(months) 

435 0.02 (0.1) 

Rice cereal consumption at 8 monthsa 438  
     Yes       305 (69.6) 
     No       133 (30.4) 
Time since rice cereal introduction at 8 months 
(months) 

572 1.4 (1.3) 

Rice cereal consumption at 12 monthsa 544  
     Yes       373 (68.6) 
     No       171 (31.4) 
Time since rice cereal introduction at 12 months 
(months) 

572 4.4 (2.7) 

Infections or symptoms within 5-18 months of life 572  
     At least one outcome  552 (96.5) 
     At least one outcome lasting ≥ 2 days  523 (91.4) 
     At least one outcome resulting in a doctor visit  373 (65.2) 

At least one outcome treated with prescription 
medication 

 299 (52.3) 

Allergy within 5-18 months of life 572  
     At least one outcome  77 (13.5) 
     At least one outcome resulting in a doctor visit  45 (7.9) 

Reported an allergy to peanuts    5 (0.9) 
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Reported an allergy to other nuts  3 (0.5) 
Reported an allergy to eggs  7 (1.2) 
Reported an allergy to other foods  39 (6.8) 
Reported an allergy to antibiotics  21 (3.7) 
Reported an allergy to cats or dogs  4 (0.7) 
Reported an allergy to pollen  9 (1.6) 
Reported an allergy to latex  2 (0.3) 
Reported an allergy to dust  2 (0.3) 
Reported an allergy to insect bites  2 (0.3) 
Reported an allergy to grass  5 (0.9) 

	
Abbreviations: SD, standard deviation.  

aPercentage calculated using different sample sizes due to missing values. Sample sizes were 358, 

438, and 544 for 4 months, 8 months, and 12 months respectively.  
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Supplementary Table 2. 3: Number	of	Immune-related	Outcomes	over	5-18	Months	at	Each	Time	Period,	N	=	572 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

a Sample size N = 571 for fever analyses 

b Participants only asked about any allergies and whether these allergies had been doctor diagnosed  

Outcome Time Period Any report 
of the 

outcome 
No.(%) 

Lasting ≥ 2 
days  

No.(%) 

Involving a 
doctor visit  

No.(%) 

Requiring a 
prescription 
medication 

No.(%) 
Upper Respiratory 
Infections  
 

8 months 206 (74.9)  177 (64.4) 103 (37.5) 58 (21.1) 
12 months 340 (83.1)  292 (71.4)  155 (37.9)  119 (29.1) 
18 months 399 (90.9) 341 (77.7) 171 (38.9) 146 (33.3) 

Lower Respiratory 
Infections  
 

8 months 17 (6.2)  17 (6.2) 16 (5.8) 9 (3.3) 
12 months 28 (6.8) 27 (6.6)  26 (6.4)  18 (4.4) 
18 months 33 (7.5) 28 (6.4) 31 (7.1) 24 (5.5) 

Acute Respiratory 
Symptoms  
 

8 months 133 (48.4) 99 (36.0)  53 (19.3)  18 (6.5)  
12 months 202 (49.4) 143 (35.0) 70 (17.1) 31 (7.6) 
18 months 251 (57.2) 189 (43.1) 81 (18.5) 44 (10.0) 

Diarrhea 
 

8 months 46 (16.7)  15 (5.5)  11 (4.0)  0 (0.1)  
12 months 124 (30.3)  40 (9.8) 16 (3.9) 2 (0.5) 
18 months 159 (36.2) 57 (13.0) 18 (4.1) 1 (0.2) 

Fever Symptoms a 
 

8 months 101 (36.7)  32 (11.6)  36 (13.1)  4 (1.5)  
12 months 210 (51.3)  84 (20.5) 70 (17.1)  12 (2.9) 
18 months 252 (57.8) 95 (21.6) 85 (19.4) 23 (5.2) 

Allergy  
 

8 months 11 (4.0)  
N/Ab 

6 (2.2)  
N/Ab 12 months 27 (6.6)  17 (4.2)  

18 months 53 (12.1) 37 (8.4) 
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Supplementary Table 2. 4: Adjusted	Risk	Ratio	Estimates	and	95%	Confidence	Intervals	From	GEE	in	Repeated	Measures	over	5-18	
Months	for	One	Month	Earlier	Introduction	of	Rice	Cereal	on	Risk	of	Immune-related	Outcomes,	N	=	572a. 

 

Abbreviations: RR, risk ratio; CI, confidence interval.  
a GEE adjusted for smoking during pregnancy, maternal relationship status, maternal education, maternal pre-pregnancy BMI, maternal age of 
enrollment, arsenic concentrations in household tap water samples, infant birth weight, breastfeeding, and other solid food consumption. Risk ratios 
represent increased risk of health outcome with every month earlier of introduction to rice cereal.  
b Sample size N = 571 for fever analyses 
c Too few observations to perform analysis 
d Participants only asked about any allergies and whether these allergies had been doctor diagnosed 
 

Outcome	 Any	report	of	the	outcome	
RR	(95%	CI)	

N	of	total	events	

Lasting	≥	2	days		
RR	(95%	CI)	

N	of	total	events	

Involving	a	doctor	visit	
RR	(95%	CI)	

N	of	total	events	

Requiring	a	prescription	medication		
RR	(95%	CI)	

N	of	total	events	
Upper	Respiratory	
Infections		
	

1.03	
(1.02-1.04)	

945	

1.03	
(1.01-1.05)	

810	

1.02	
(0.98-1.06)	

429	

1.04	
(1.00-1.09)	

323	
Lower	Respiratory	
Infections		
	

1.14	
(1.01-1.29)	

78	

1.10	
(0.97-1.24)	

72	

1.13	
(1.00-1.29)	

73	

1.19	
(1.02-1.39)	

51	
Acute	Respiratory	
Symptoms		
	

1.05	
(1.02-1.08)	

586	

1.05	
(1.01-1.10)	

431	

1.03	
(0.96-1.10)	

204	

1.10	
(1.00-1.22)	

93	
Diarrhea	
	

1.08	
(1.04-1.13)	

329	

1.05	
(0.96-1.15)	

112	

0.89	
(0.74-1.06)	

45	

	c	
	
3	

Fever	Symptoms	b	
	

1.04	
(1.01-1.07)	

563	

1.03	
(0.97-1.09)	

211	

1.07	
(1.00-1.14)	

191	

1.22	
(1.02-1.45)	

39	
Allergy		
	

1.18	
(1.07-1.30)	

91	

N/A	d	 1.20	
(1.06-1.36)	

60	

	N/Ad	
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Supplementary Table 2. 5: Crude	Risk	Ratio	Estimates	and	95%	Confidence	Intervals	From	GEE	for	all	Other	Covariates	on	Risk	of	
Immune-related	Outcomes,	N	=	572a. 

a Outcomes include those treated with prescription medication for upper RTI, lower RTI, acute respiratory symptoms, and fever symptoms and those 
diagnosed by a doctor for diarrhea and allergy.  
b Sample size N = 571 for fever analyses 
 

Variable Upper Respiratory 
Infections 

Lower Respiratory 
Infections 

Acute Respiratory 
Symptoms Diarrhea Fever Symptomsb Allergy 

Intercept 0.21 
(0.06, 0.66) 

0.00  
(0.00, 0.07) 

0.02 
(0.00, 0.20) 

0.14 
(0.00, 5.82) 

0.01 
(0.00, 0.26) 

5.98 
(0.17, 212.93) 

Indicator of Rice Cereal Consumption 1.32 
(0.98, 1.78) 

0.70  
(0.27, 1.83) 

0.77 
(0.41, 1.43) 

2.35 
(0.82, 6.72) 

0.94 
(0.24, 3.62) 

1.42 
(0.53, 3.84) 

Other Solid Food Consumption 1.19 
(0.89, 1.63) 

1.07  
(0.44, 2.57)  

1.43 
(0.83, 2.48) 

2.22 
()0.86, 5.78 

2.04 
(0.66, 6.29) 

2.68 
(1.02, 7.05) 

Smoking during any trimester of pregnancy 1.26  
(0.91, 1.74) 

0.80  
(0.29, 2.18) 

1.35 
(0.67, 2.71) 

1.36 
(0.63, 2.94) 

0.89 
(0.35, 2.30) 

0.56 
(0.20, 1.59) 

Relationship status – Married (baseline) VS Single 1.01  
(0.65, 1.58) 

0.95  
(0.32, 2.80) 

2.09 
(1.01, 4.32) 

1.91 
(0.70, 5.19) 

0.73 
(0.19, 2.91) 

0.89 
(0.30, 2.63) 

Relationship status – Married (baseline) VS 
Separated/Divorced 

1.28  
(0.76, 2.16) 

0.86  
(0.11, 6.58) 

2.26 
(0.83, 6.18) 

1.41 
(0.27, 7.39) 

3.05 
(0.87, 10.71) 

1.90 
(0.20, 17.77) 

Highest level of educational attainment –  ≤high 
school/GED (baseline) VS Some college 

0.78  
(0.50, 1.22) 

0.82  
(0.28, 2.39) 

1.04 
(0.46, 2.32) 

0.98 
(0.35, 2.73) 

1.95 
(0.43, 8.90) 

0.51 
(0.18, 1.43) 

Highest level of educational attainment –  ≤high 
school/GED (baseline) VS College graduate 

1.03  
(0.70, 1.52) 

0.64  
(0.24, 1.66) 

1.04 
(0.46, 2.38) 

0.71 
(0.24, 2.09) 

1.47 
(0.33, 6.55) 

0.45 
(0.17, 1.23) 

Highest level of educational attainment – ≤high 
school/GED (baseline) VS Postgraduate schooling 

0.89  
(0.58, 1.36) 

0.89  
(0.34, 2.36) 

1.48 
(0.62, 3.52) 

0.86 
(0.23, 3.22) 

1.31 
(0.27, 6.32) 

0.74 
(0.26, 2.13) 

BMI before pregnancy 1.00  
(0.99, 1.02) 

1.06 
(1.02, 1.10) 

1.02 
(0.99, 1.06) 

0.98 
(0.92, 1.05) 

0.99 
(0.95, 1.04) 

0.92 
(0.87, 0.98) 

Age at enrollment 1.00  
(0.98, 1.02) 

1.04  
(0.98, 1.10) 

1.02 
(0.97, 1.06) 

0.97 
(0.90, 1.05) 

1.05 
(0.98, 1.11) 

0.95 
(0.89, 1.01) 

Birth weight 1.00  
(1.00, 1.00) 

1.00  
(1.00, 1.00) 

1.00 
(1.00, 1.00) 

1.00 
(1.00, 1.00) 

1.00 
(1.00, 1.00) 

1.00 
(1.00, 1.00) 

Ever breast fed at 4 months 1.25  
(0.75, 2.08) 

1.53  
(0.39, 5.95) 

1.71 
(0.50, 5.87) 

0.73 
(0.15, 3.49) 

0.58 
(0.20, 1.65) 

0.28 
(0.11, 0.74) 

Arsenic in water 0.99  
(0.97, 1.01) 

1.01  
(0.98, 1.04) 

1.01 
(0.98, 1.04) 

1.00 
(0.97, 1.06) 

0.88 
(0.77, 1.01) 

1.00 
(0.97, 1.03) 
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Supplementary Table 2. 6: Crude	Risk	Ratio	Estimates	and	95%	Confidence	Intervals	From	GEE	in	Repeated	Measures	over	5-18	
Months	for	One	Month	Earlier	Introduction	of	Rice	Cereal	on	Risk	of	Immune-related	Outcomes,	N	=	572a.	

	

	
Abbreviations: RR, risk ratio; CI, confidence interval.  
a Crude GEE. Risk ratios represent increased risk of health outcome with every month earlier of introduction to rice cereal.  
b Sample size N = 571 for fever analyses 
c Too few observations to perform analysis 
d Participants only asked about any allergies and whether these allergies had been doctor diagnosed 

Outcome	 Any	report	of	the	
outcome	

RR	(95%	CI)	
N	of	total	events	

Lasting	≥	2	days		
RR	(95%	CI)	

N	of	total	events	

Involving	a	doctor	visit	
RR	(95%	CI)	

N	of	total	events	

Requiring	a	prescription	medication		
RR	(95%	CI)	

N	of	total	events	

Upper	Respiratory	
Infections		
	

1.03	
(1.01-1.04)	

945	

1.03	
(1.01-1.04)	

810	

1.02	
(0.98-1.05)	

429	

1.04	
(0.99-1.08)	

323	
Lower	Respiratory	
Infections		
	

1.14	
(1.01-1.28)	

78	

1.10	
(0.97-1.24)	

72	

1.14	
(1.00-1.29)	

73	

1.18	
(1.01-1.38)	

51	

Acute	Respiratory	
Symptoms		
	

1.05	
(1.02-1.08)	

586	

1.05	
(1.01-1.09)	

431	

1.03	
(0.96-1.09)	

204	

1.11	
(1.01-1.23)	

93	

Diarrhea	
	

1.08	
(1.03-1.13)	

329	

1.06	
(0.97-1.15)	

112	

0.89	
(0.75-1.07)	

45	

	c	
	
3	

Fever	Symptoms	b	
	

1.03	
(1.00-1.06)	

563	

1.02	
(0.96-1.08)	

211	

1.06	
(0.99-1.13)	

191	

1.25	
(1.03-1.51)	

39	
Allergy		
	

1.17	
(1.07-1.29)	

91	

N/A	d	 1.19	
(1.07-1.33)	

60	

	N/Ad	
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Supplementary Table 2. 7: Associations	between	Rice	Cereal	Introduction	Age	in	Months	
and	Confounders,	N	=	572a		

 
Confounder Estimate Standard Error P-Value 
Smoking during any trimester of pregnancy    
     Yes 0.1970 0.1970 0.0194 
     No (reference)    
Relationship status    
     Married (reference)    
     Single -0.7455 0.2224 0.0009 
     Separated/Divorced -1.3096 0.4715 0.0057 
Highest level of educational attainment    
     ≤high school/GED (reference)    
     Some college 0.2373 0.2563 0.3550 
     College graduate 0.4876 0.2317 0.0359 
     Postgraduate schooling 0.7134 0.2367 0.0027 
BMI before pregnancy (kg/m2) -0.0255 0.0111 0.0223 
Age at enrollment (years) 0.03234 0.0132 0.0150 
Birth weight (g) -0.0001 0.0001 0.2810 
Ever breast fed at 4 months    
     Yes 1.1638 0.3009 0.0001 
     No (reference)    

 
a Associations calculated using univariate linear models. 
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Supplementary Figure 3. 1: Composition of 6-week Gut Microbiome of Infants in the 
NHBCS 

A.	Heat	map	of	20	most	common	genera	from	16S	sequencing	data	(N	=	465)	
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B.	Heat	map	of	20	most	common	species	from	metagenomics	sequencing	data	(N	=	185)	
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Supplementary Table 3. 1: Number of Immune-related Outcomes over 12 Months at Each 
Time Period for 16S Analysesa 

Outcome Time Period Overall 
N = 465 

Vaginal Delivery 
N = 339 

Cesarean Delivery 
N = 126 

Any Infections or 
Symptoms 

4 months 55 37 18 
8 months 189 133 56 
12 months 244 200 44 

Upper Respiratory 
Infections  
 

4 months 30 21 9 
8 months 109 79 30 
12 months 156 126 30 

Lower Respiratory 
Infections  
 

4 months 5 4 1 
8 months 26 18 8 
12 months 18 16 2 

Wheezing  
 

4 months 4 2 2 
8 months 19 14 5 
12 months 20 16 4 

Diarrhea 
 

4 months 7 5 2 
8 months 11 9 2 
12 months 18 13 5 

 
a For any infections or symptoms, 18 entries were imputed. For upper RTI, 3 entries were imputed. For 
lower RTI, 3 entries were imputed.  
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Supplementary Table 3. 2: Number of Immune-related Outcomes over 12 Months at 
Each Time Period for Metagenomics Analysesa 

Outcome Time Period Overall 
N = 185 

Vaginal Delivery 
N = 129 

Cesarean Delivery 
N = 26 

Any 
Infections or 
Symptoms 

4 months 16 11 5 
8 months 72 42 30 
12 months 119 96 23 

Upper 
Respiratory 
Infections  
 

4 months 12 10 2 
8 months 48 31 17 
12 months 72 58 14 

Lower 
Respiratory 
Infections  
 

4 months 0 0 0 
8 months 6 3 3 
12 months 8 7 1 

Wheezing  
 

4 months 1 0 1 
8 months 6 3 3 
12 months 11 8 3 

Diarrhea 
 

4 months 3 2 1 
8 months 4 3 1 
12 months 7 5 2 

 
a For any infections or symptoms, 7 entries were imputed. 
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Supplementary Table 3. 3: Adjusted Relative Risk Estimates and 95% Confidence Intervals from GEE Analysis of Infant 6-Week 
Stool 16S V4-V5 rRNA Sequencing Alpha Diversity and Infections and Symptoms of Infection over the First Year of Life a 

 

 

 
Abbreviations: GEE, generalized estimating equation; N, sample size; No., number; RR, relative risk; CI, confidence interval; RTI, respiratory tract 
infection. 
*indicates statistical significance at ! = 0.05. 
a Overall GEE adjusted for maternal BMI, delivery type, sex, breast feeding at six weeks, perinatal antibiotic use, and gestational age. GEE stratified by 
delivery mode (vaginal and cesarean) adjusted for maternal BMI, sex, breast feeding at six weeks, perinatal antibiotic use, and gestational age. Relative 
risk estimates represent an increased risk of having an additional infection or symptom of infection or an increased risk of experiencing wheezing or 
diarrhea with each doubling of the inverse Simpson index. Upper RTI, lower RTI, and wheezing outcomes are those diagnosed by a physician for which a 
medication was prescribed. Diarrhea outcomes are those diagnosed by a physician for which no medication was prescribed. 
b Total number of outcomes may be greater than N due to repeated measures. 
c Any infection or symptom is the sum of upper respiratory tract infections (RTI), lower RTI, and acute respiratory symptoms. 
d Sample sizes N = 464 for overall and N = 125 for cesarean delivery for diarrhea analyses due to missing data.     
 

Outcome 

Overall 
N = 465 

Vaginal Delivery 
N = 339 

Cesarean Delivery 
N = 126 

No. of 
Outcomesb 

RR 
 

95% CI No. of 
Outcomesb 

RR 
 

95% CI No. of 
Outcomesb 

RR 
 

95% CI 

Any Infection or 
Symptomc 488 1.39* (1.1, 1.77) 370 1.62* (1.23, 2.15) 118 0.95 (0.58, 1.55) 

Upper RTI 295 1.40* (1.12, 1.76) 226 1.85 (0.98, 3.51) 69 0.94 (0.27, 3.29) 
Lower RTI 49 1.50 (0.87, 2.6) 38 1.89 (0.96, 3.72) 11 0.94 (0.28, 3.21) 
Wheezing 43 1.30 (0.81, 2.07) 32 2.00* (1.16, 3.45) 11 0.47 (0.20, 1.12) 
Diarrhead 36 1.44 (0.92, 2.25) 27 1.86* (1.14, 3.03) 9 0.74 (0.32, 1.69) 
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Supplementary Figure 4. 1: PCP and TT IgG antibody concentrations. 

a. PCP  

 

 

 

b. TT 

 

 

 

Violin plots of PCP and TT IgG concentration indicating concentration quartiles. Red dotted line 
indicates preferred protection threshold of 0.2mg/L for PCP and 0.1IU/mL for TT.  
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Supplementary Table 4. 1: Bacterial species associated with vaccine response after correction for multiple comparisons 

	
Outcome Species Estimate P-value 95% CI 
TT Aeriscardovia aeriphila -0.037 < 0.001 (-0.057, -0.017) 
	
	
Supplementary Table 4. 2: FDR selected metabolic pathways associated with vaccine response 

	
Outcome Pathway Estimate P-value 95% CI 
PCP PWY-3781: aerobic respiration I (cytochrome c) -0.271 0.045 (-0.530, -0.013) 
PCP PWY-4242: pantothenate and coenzyme A biosynthesis III 0.263 0.046 (0.010, 0.515) 
PCP PWY-6628: superpathway of L-phenylalanine biosynthesis -0.238 0.057 (-0.478, 0.002) 
PCP PWY-7209: superpathway of pyrimidine ribonucleosides degradation 0.305 0.021 (0.053, 0.556) 
PCP PWY-7211: superpathway of pyrimidine deoxyribonucleotides de novo 

biosynthesis 
-0.275 0.034 (-0.522, -0.027) 

PCP PWY-7237: myo-, chiro- and scillo-inositol degradation -0.239 0.058 (-0.482, 0.003) 
PCP PWY-7399: methylphosphonate degradation II 0.334 0.007 (0.100, 0.567) 
PCP PWY0-162: superpathway of pyrimidine ribonucleotides de novo biosynthesis 0.323 0.011 (0.084, 0.562) 
PCP PWY66-367: ketogenesis -0.234 0.063 (-0.476, 0.008) 
TT PWY-5667: CDP-diacylglycerol biosynthesis I 0.882 < 0.001 (0.468, 1.295) 
TT PWY-6353: purine nucleotides degradation II (aerobic) 0.707 < 0.001 (0.284, 1.13) 
TT PWY-6700: queuosine biosynthesis 0.784 < 0.001 (0.368, 1.199) 
TT PWY0-1319: CDP-diacylglycerol biosynthesis II 0.881 < 0.001 (0.468, 1.294) 
TT SALVADEHYPOX-PWY: adenosine nucleotides degradation II 0.706 0.002 (0.282, 1.129) 
	
	
	  



	 98	

Supplementary Figure 4. 2: Sensitivity analysis PCoA plots of bacterial 16S V4-V5 
rRNA sequencing Bray-Curtis dissimilarity for PCP and TT 

 
a. PCP (PERMANOVA P = 0.688) 

 

b. TT (PERMANOVA P = 0.112) 

 

PCP groups assigned by median PCP IgG concentration threshold. TT groups assigned by preferred 
protection threshold of 0.1IU/mL. Percentages on the X and Y axis of plots represent percentage of 
variance explained by first two eigenvectors.  
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Supplementary Figure 4. 3: Sensitivity analysis associations between metagenomics 
bacterial species and vaccine response. 

a. PCP 

 

 

b. TT 

 

 

Dots indicate bacterial species, and size of dots vary by mean abundance. Blue indicates species with 
p-value < 0.05. Red indicates species with p-values <0.05 and meet FDR correction.  
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Supplementary Figure 4. 4: Sensitivity analysis associations between elastic-net and 
metabolic pathways and TT response. 

 

No associations were found for PCP response. Dots indicates effect size, and horizontal bands indicate 
95% CI. Green dots represent positive association, while purple dots represent negative association. 
Size of dots vary by p-value: larger dot indicates smaller p-value. Only pathways selected by elastic 
net and FDR correction shown here.  
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Supplementary Figure 5. 1: Type I error calculations for varying sample size, number of 
taxa, and type of outcome.  

	

	
	
Results are based on 1000 simulations. Each line represents type I error at varying empirical 
thresholds. 
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Supplementary Figure 5. 2: Power calculations for HT-MMIOW with a 0.01 threshold 
and the omnibus distance test for continuous outcomes, with varying sample size, effect 
size, and number of true mediators and number of taxa.  

	
	
Results are based on 200 simulations. Solid lines indicate ! = 2$, and dashed lines indicate ! = $. 
Green lines represent HT-MMIOW with a 0.01 empirical threshold, and blue lines represent the 
omnibus distance test. 
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Supplementary Figure 5. 3: Power calculations for HT-MMIOW with a 0.01 threshold 
and the omnibus distance test for dichotomous outcomes, with varying sample size, effect 
size, and number of true mediators and number of taxa.  

	
	
Results are based on 200 simulations. Solid lines indicate ! = 2$, and dashed lines indicate ! = $. 
Green lines represent HT-MMIOW with a 0.01 empirical threshold, and blue lines represent the 
omnibus distance test. 
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