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Abstract

The cavity-embedded Cooper pair transistor (cCPT) has been shown to be a nearly

quantum limited charge detector operating with only a single intracavity photon[1].

Here, we use the inherent Kerr nonlinearity to demonstrate a dispersive charge sensing

technique inspired by the Josephson bifurcation amplifier. Operating in the bistable

regime close to a bifurcation edge, the cCPT is sensitive to charge shifts of 0.09e in

a single-shot readout scheme with a detection time of 3 µs and a detection fidelity

of 94%. The readout is implemented with only ∼ 25 intracavity photons in the

high oscillation amplitude state, still several orders of magnitude lower than drives

used in state-of-the-art radio frequency single electron transistors (rf-SETs). We find

that a major limitation to the charge sensitivity of the device is fluctuation-induced

switching between the metastable oscillation states in the bistable region. We study

the lifetimes of these states across the gate and flux range of the cCPT and find that

the switching properties depend on the strength of the Kerr nonlinearity at the cCPT

bias point.

We also explore a second nonlinear detection scheme where we parametrically

pump the cCPT using a time-varying flux close to twice its resonance frequency

to induce parametric oscillations. Flux pumping at a detuning on the edge of the

parametric oscillation threshold makes the amplitude of oscillations sensitive to the

charge environment. With no input drive, we are able to distinguish charge states

∼ 0.1e apart in a measurement time of 1 µs with a fidelity of 83%.
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The cCPT is a rich nonlinear system in which we observe sub-harmonic oscillations

and phase coherent degenerate parametric amplification which could potentially be

used to enhance the dispersive charge sensing of the device operating with a single

intracavity photon level drive.
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Chapter 1

Introduction

Transporting and measuring electron charge is ubiquitous in modern day technology.

We have come a long way from Millikan’s oil-drop experiment that measured the

charge-to-mass ratio of an electron. Each smartphone in people’s pockets comes with

a camera based on a charge-coupled-device (CCD) [2]. These convert photons to

electrons in small pixels, each of which is read out to obtain information about the

incident light. The scanning electron microscope, a workhorse of the semiconductor

industry and playing a monumental albeit background role in this thesis, is based

on the detection of electrons to gain information about the surface topography and

composition of a sample. These tasks are typically performed by measuring several

thousands of electrons.

The past few decades have witnessed a tremendous push to use quantum comput-

ers [3, 4] to perform tasks that would be pratically impossible on a classical computer

[5]. Though superconducting qubits based on transmons [6] are the furthest-along

technology thus far, phosphorous donor spin qubits in silicon [7] are a promising

technology for a number of reasons. With the decades’ worth of expertise from the

Si-based semiconductor industry, these qubits are scalable with high precision atomic

level scanning tunneling microscopy (STM) based fabrication capabilities [8, 9]; fast
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Introduction

[10, 11], implementing single and two-qubit gates on the order of ns; and stable, ex-

hibiting T1 times of the order of seconds and T2 times of the order of a few hundred

µs [9, 12, 13].

Though the actual qubit is the spin of the electron in the Phosphorous donor, the

tiny magnetic moment of a single electron spin makes it very challenging to readout

directly. Usually, some form of spin-to-charge conversion is performed [14, 15], where

energy levels across a quantum dot are tuned such that in a magnetic field, certain

spin states can tunnel, while others cannot. The change in the electrostatic field

induced by this single tunneling electron is readout by a charge sensitive device [12]

which is capable of measuring such a single electron tunneling event. Such fast and

sensitive electrometry is important for the readout of these spin-based qubits [16],

for detecting signs of dark matter [17], for the detection of Majorana zero modes in

nanowires [18], and for the detection of electrons tunneling in quantum dots [19].

The weak-link based single electron transistor (SET) [20, 21] first demonstrated

the measurement of a fraction of an electronic charge. SETs have been used to mea-

sure electron lifetimes in a single electron trap [22], used to map static electric fields

with 100 nm spatial resolution [23] and to observe macroscopic charge quantization

[24]. However, the typical junction resistance of an SET is of the order of 100 kΩ, so

designed to ensure charging effects are visible [25], and combined with stray capac-

itances of the order of 1 nF, this corresponds to a frequency bandwidth of about 1

kHz. The rf-SET [26] embeds the SET in a high-frequency tank circuit and readout is

accomplished by monitoring the change in the reflected power from this tank circuit

as the SET modulates the effective impedance as it goes into and out of Coulomb

blockade. This increases the instantaneous bandwidth of the device to about 100

MHz operating with a charge sensitivity of 1.9 µe/
√
Hz [27]. Electron shot-noise is

the major limiting factor for the rf-SET operating at cryogenic temperatures, since
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this device still operates in the voltage-biased branch. The Cooper pair transistor

(CPT) [28] when current biased on the supercurrent branch, circumvents this issue

(though quasiparticles still play a role [29]). A cavity-embedded Cooper pair transis-

tor (cCPT) moves from the dissipative operation of the rf-SETs to a dispersive regime

where the resonant frequency of the resonant circuit encodes the charge information,

allowing us to move closer to the quantum-limit for charge detection demonstrat-

ing a charge sensitivity of 14 µe/
√
Hz [1, 30] while operating in the single-photon

regime, compared to the hundreds of thousands of photons employed by rf-SETs.

Other devices based on dispersive SETs achieving 30 µe/
√
Hz sensitivity have been

demonstrated [31, 32].

The cCPT is a rich nonlinear system [33]. It has an inherent tunable Kerr non-

linearity which is comparable to the system linewidth. This puts it in an interesting,

not-too-well understood ‘mesoscopic’ parameter regime between that of the JBAs,

which can be described as a classical Duffing oscillator [34, 35], and the two-level

transmons [6] which require full quantum description [36, 37]. The JBAs have been

used to perform single-shot readout of a qubit [38, 39]. Devices with Kerr exceeding

the system linewidth have been studied since the mid 20th century in optical systems

[40], where they have been used to create squeezed states [41], in frequency conversion

[42], in the generation of ultra-fast pulses [43], as a single-photon source [44] and could

be used to implement quantum non-demolition measurements [45]. In the microwave

regime, such systems have usually been realised using arrays of Josephson junctions

(JJs) [46, 47] and have been used to demonstrate generation of cat states [48] and

to create a ‘Kerr-cat’ qubit. The Kerr nonlinearity has also been used to implement

parametric amplifiers operating in the four-wave-mixing scheme [49, 50, 51] and the

broadband traveling wave parametric amplifiers (TWPA) [52]. Ref. [53] studies a

device with a tunable Kerr term as it transitions from the classical Duffing oscillator

3
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to a Kerr parametric oscillator in the single-photon Kerr regime.

Another interesting nonlinearity that appears in the cCPT is that which gives

rise to three-wave-mixing upon pumping the cCPT flux line at twice the resonant

frequency. Such systems have been shown to perform phase-sensitive amplification

[54, 55] and have been used to perform single-shot readout of a flux qubit [56]. Para-

metric oscillations [57, 58] and the dynamical Casimir effect [59, 60] have been ob-

served in such systems. Parametric oscillations have also been used to perform a

dispersive readout of the state of a superconducting transmon [61].

In this thesis, we use the inherent nonlinearities in the cCPT [33] to demonstrate

a novel charge sensing scheme based on the bifurcation between the bistable and the

monostable region induced by the Kerr nonlinearity [34, 35]. We demonstrate a single-

shot readout of 0.09e of charge in 3 µs with 94% readout fidelity, with fewer than 25

intracavity photons. Operating at such low powers ensures minimal back-action on

the system being measured [62]. Low power operation also aids in the integration of

these cCPT detectors with state-of-the-art first stage amplifiers such as TWPAs [52],

without running into the danger of hitting their 3 dB compression point. Such fast,

high fidelity readout is comparable to the current state-of-the-art for semiconductor

spin qubits [16].

In another charge sensing scheme using the parametric oscillations induced in the

cCPT, in order to distinguish between two charge states 0.08e apart, we choose a

set of flux pump parameters such that one of the states causes no oscillations in the

cCPT, while the other generates finite-amplitude parametric oscillations which can

be read out in a time of 1 µs with a fidelity of 83%. A similar idea was demonstrated

with lower charge resolution at room temperature in a nonlinear MoS2 mechanical

resonator [63].

We find that the limiting factor in these measurements is not the readout elec-
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tronics, but is the fluctuations-induced spontaneous switching between the metastable

states in the bistable regime. We perform a study of the dependence of the population

ratios of the two states on system and drive parameters and qualitatively compare

them to a well-understood semiclassical quantum activation model [64]. This work

studies the variation of the lifetimes and steady-state populations as the strength

of the Kerr and the drive parameters are varied, and could be important in better

understanding the dynamics of these mescoscopic systems along with the crossover

from the classical to the quantum regime.

We structure this thesis as follows: in chapter 2, we go through some of the under-

lying theory behind modelling microwave systems. We then derive the Hamiltonian

for the cCPT as a flux and charge tunable nonlinear oscillator. In chapter 3, we

describe the cCPT sample, its fabrication (done entirely by Juliang Li [65]) and the

measurement setup. We also go through some common measurements on the cCPT,

and discuss the effects of quasiparticle poisoning [66], which limits the operation of

the cCPT. In chapter 4, we first go through the semiclassical dynamics of a Kerr

cavity and discuss the semiclassical theory of switching between metastable states in

the bistable regime. We then look at some experimental data from the cCPT operat-

ing in this regime, including hysteresis, switching probabilities and their dependence

on system parameters. We then describe and perform the optimal charge sensing

experiment. In chapter 5, we introduce the semiclassical theory of parametric oscil-

lations and show some data showing the existence of a parametric oscillation region

in the cCPT. We then demonstrate a proof-of-principle unoptimised charge detection

measurement. In chapter 6, we conclude and present some possibilities for the fu-

ture. In Appendix A, we derive the Hamiltonian and the dynamics for the operation

of the cCPT as a parametric amplifier, and produce some data of its working as a

phase-coherent degenerate parametric amplifier. We present some data for the emer-
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gence of period tripling in the cCPT upon driving the flux line at thrice the resonant

frequency.

6



Chapter 2

The cavity-embedded Cooper pair

transistor - theory

The workhorse of this thesis is a cavity-embedded Cooper pair transistor (cCPT)

[33, 65, 67]. The cCPT consists of two main components - (i) a quarter wavelength

(λ/4) coplanar waveguide (CPW) superconducting microwave resonator (which we

interchangeably refer to as the cavity) and (ii) the Cooper pair transistor [28], [68],

[69]. In this chapter, we go through the theoretical background for each of these

separately and derive the Hamiltonian for the composite system. Ref. [67] is an

excellent pedagogical resource to understand these systems. In section 2.1.1, we go

through the classical description of an infinite transmission line; in section 2.1.2, we

obtain the input impedance of a shorted λ/4 transmission line such as the CPW; and

in section 2.1.3 we draw a parallel between a parallel LCR circuit and the λ/4 cavity

and derive the damping rates for this cavity when capacitively coupled to a feedline

in section 2.1.4. Once we have all this, we can finally derive the reflection parameter

(S11) using this classical model which we do in section 2.1.5. In section 2.2.1, we then

develop a quantum mechanical model of the transmission line resonator and having

established the basics of input-output theory in section 2.3, show that the same S11

7



2.1 The classical λ/4 cavity

is obtained using this quantum mechanical approach in section 2.3.1.

Section 2.1

The classical λ/4 cavity

In this section, we follow chapter 2 of Microwave Engineering by Pozar [70], which

is the standard text for microwave systems in the classical regime. Starting with

Kirchoff’s laws for a generic transmission line, we derive the input impedance for a

λ/4 cavity.

2.1.1. Classical infinite transmission line

Figure 2.1: Schematic of a transmission line (a) showing the two conductors and the
voltages and currents, (b) lumped element equivalent circuit.

Fig. (2.1) shows a schematic of a transmission line operating in the TEM mode

(like our λ/4 cavity) which typically requires two conductors (the center line and

the ground plane of the CPW) shown in Fig. (2.1a). Each infinitesimal section of

the transmission line can be viewed as consisting of the equivalent lumped elements

shown in Fig. (2.1b), where L is an inductance per unit length, C is a capacitance per

unit length, G is a shunt conductance per unit length through the dielectric between

the center line and the ground plane of the CPT and R represents the resistive loss

8



2.1 The classical λ/4 cavity

per unit length in the transmission line. R is typically negligible when the CPW

goes superconducting as we cool our sample to dilution fridge temperatures, but we

retain it here for completeness. The voltage V (x, t) and the current I(x, t) denote

the position dependence of the voltage and current along the transmission line. It is

critical to keep track of this in microwave systems, since the electrical wavelength in

this region of the electromagnetic spectrum is comparable to the length of the system

being studied. This is in contrast to much lower frequencies, where the corresponding

wavelength is so large that the variation across typical system lengths is negligible.

The other extreme is that of systems operating near optical frequencies where the

wavelengths involved are so small that their description can be reduced to that of

geometric optics.

For the section of transmission line shown in Fig. (2.1b), we can apply Kirchoff’s

voltage law and we obtain

V (x, t)−R∆xI(x, t)− L∆x
∂I(x, t)

∂t
− V (x+∆x, t) = 0, (2.1a)

while Kirchoff’s current law gives

I(x, t)−G∆xV (x+∆x, t)− C∆x
∂V (x+∆x, t)

∂t
− I(x+∆x, t)0 = 0. (2.1b)

Dividing Eqn.(2.1a) and Eqn.(2.1b) by ∆x and taking the limit ∆x → 0, we get

the well known Telegrapher’s equations

∂V (x, t)

∂x
= −RI(x, t)− L

∂I(x, t)

∂t
, (2.2a)

9



2.1 The classical λ/4 cavity

and,

∂I(x, t)

∂x
= −GV (x, t)− C

∂V (x, t)

∂t
. (2.2b)

Writing V (x, t) = V (x)eiωt, we have

dV (x)

dx
= −(R + iωL)I(x), , (2.3a)

and,

dI(x)

dx
= −(G+ iωC)V (x). (2.3b)

Taking the derivative of 2.3a and 2.3b w.r.t x, using Eqn.(2.3b) in Eqn.(2.3a) and

vice versa, we get

d2V (x)

dx2
− γ2V (x) = 0, (2.4a)

and,

d2I(x)

dx2
− γ2I(x) = 0. (2.4b)

where γ = α + iβ =
√

(R + iωL)(G+ iωC). These equations admit traveling wave

solutions of the form

V (x) = V +
0 e

−γx + V −
0 e

γx, (2.5a)

I(x) =
V +
0

Z0

e−γx − V −
0

Z0

eγx. (2.5b)

10



2.1 The classical λ/4 cavity

where Z0 =
√

R+iωL
G+iωC

is the characteristic impedance of the transmission line and

V
+(−)
0 is the complex voltage of the forward (backward) traveling component at x =

0. For our case of a superconducting CPW with low dielectric loss, R ≪ ωL and

G ≪ ωC, we have Z0 =
√

L
C

for the characteristic impedance similar to that of a

lossless transmission line.

Reintroducing the time dependence, we have for the voltage

V (x, t) =
∣∣V +

0

∣∣ cos (ωt− βx+ ϕ+)e−αx +
∣∣V −

0

∣∣ cos (ωt+ βx+ ϕ−)eαx (2.6)

where ϕ± is the phase of the corresponding wave, and the wave number β is related

to the wavelength λ by β = 2π/λ = ω/vp with vp being the propagation velocity in

the TEM mode of a transmission line. This depends on the dielectric constant ϵr and

is given by vp =
c
ϵr
, where c is the speed of light in vacuum.

To estimate the dielectric loss in our TEM mode transmission line, we use the fact

that αd =
GZ0

2
= β tan δ

2
Np/m from chapter 3 in [70], where αd is the contribution of the

dielectric loss to the total loss, α, and tan δ = 0.004 is the loss tangent for the silicon

substrate at 300 K, which is only expected to decrease at cryogenic temperatures.

This yields a G/ωC = 0.0054 ≪ 1 at a frequency ω/2π = 5 GHz (estimated for our

C = 0.17 nF/m) [33]. We also note here that αdl =
βl tan δ

2
= π tan δ

4
≪ 1 for a λ/4

cavity with a silicon dielectric.

2.1.2. The shorted λ/4 transmission line

Now that we know the form of the voltage and current waves in an infinite transmis-

sion line which is a good approximation for the long (relative to the wavelength of

the microwave drives) coaxial cables which we use to connect our microwave instru-

ments to the λ/4 cavity at the mixing chamber of a dilution fridge, we can consider

a transmission line of finite length l terminated with a load ZL at x = 0 as show in

11



2.1 The classical λ/4 cavity

Fig. (2.2). For our specific case of a λ/4 CPW, l = λ/4 and ZL = 0.

Figure 2.2: Schematic of a transmission line loaded with a load impedance ZL.

At x = 0, using Eqns. (2.5a) and (2.5b), we now have

ZL =
V (0)

I(0)
=
V +
0 + V −

0

V +
0 − V −

0

, (2.7)

which gives us the reflection coefficient Γ,

Γ =
V −
0

V +
0

=
ZL − Z0

ZL + Z0

. (2.8)

The input impedance of the transmission line at x = −l is thus

Zin =
V (−l)
I(−l)

=
V +
0 [eγl + Γe−γl]

V +
0 [eγl − Γe−γl]

Z0 = Z0
(ZL + Z0 tanh γl)

(Z0 + ZL tanh γl)
. (2.9)

For the case of our shorted λ/4 CPW, ZL = 0 and this becomes

Zin = Z0 tanh γl

= Z0 tanh (α + iβ)l

= Z0
tanhαl + i tan βl

1 + i tan βl tanhαl
. (2.10)
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2.1 The classical λ/4 cavity

Further, we define the fundamental resonant frequency as the frequency ω0 which

has a corresponding wavelength λ1 such that l = λ1/4 (we will see later that this

is the frequency at which the input impedance as seen by a feedline to the cavity is

purely real) and we write ω = ω0 +∆ in terms of the detuning ∆. This gives us

βl =
ω0l

vp
+

∆l

vp
=
π

2
+
π∆

2ω0

, (2.11)

since ω0λ1/vp = 2π, and,

cot βl = cot
(π
2
+
π∆

2ω0

)
= − tan

π∆

2ω0

≈ −π∆
2ω0

. (2.12)

We note that this holds only close to the resonant frequency (∆ ≪ ω0). Also using

tanhαl ≈ αl for small loss, we have

Zin ≈ Z0
1 + iαl∆/2ω0

αl + iπ∆/2ω0

≈ Z0

αl + iπ∆/2ω0

(2.13)

where we have used the fact that αlπ∆/2ω0 ≪ 1.

2.1.3. Lumped element parallel LCR circuit

The input impedance ZLCR
in of a lumped element parallel LCR circuit shown in Fig.

(2.3) is given by

ZLCR
in =

( 1

RLCR

+
1

iωLLCR

+ iωCLCR

)−1
. (2.14)

Writing ω = ω0 +∆ as in sec. (2.1.2), working close to ω0 =
1√

LLCRCLCR
at which

frequency ZLCR
in is purely real, and Taylor expanding the inductive impedance to first

order around ω0, we have

ZLCR
in ≈

(
1

RLCR

+
1

iω0LLCR

− ∆

iω2
0LLCR

+ iω0CLCR + i∆CLCR

)−1

13



2.1 The classical λ/4 cavity

Figure 2.3: Schematic of a parallel LCR circuit.

=

(
1

RLCR

+
i∆

ω2
0LLCR

+ i∆CLCR

)−1

=

(
1

RLCR

+ 2i∆CLCR

)−1

=
1

(1/RLCR) + 2i∆CLCR

. (2.15)

Comparing Eqns. (2.13) and (2.15), we see that close to its fundamental resonance

at ω0, the λ/4 cavity behaves as a parallel LCR circuit with effective lumped element

parameters

RLCR =
Z0

αl
, (2.16a)

CLCR =
π

4ω0Z0

, (2.16b)

LLCR =
4Z0

πω0

. (2.16c)

2.1.4. Capacitively coupled shorted λ/4 cavity

Now that we have a classical model for the standalone cavity itself, we are in a position

to study what happens when this cavity is capacitively coupled through a capacitance

14



2.1 The classical λ/4 cavity

Cc to an external setup through a matched feedline which also has a characteristic

impedance Z0 as in Fig. (2.4a).

Figure 2.4: (a) Schematic of a λ/4 cavity capacitively coupled to a feedline with
characteristic impedance Z0. (b) Equivalent lumped element circuit.

As in [71], we replace this series combination of Z0 and Cc with a parallel combi-

nation of R′ and C ′ as in Fig. (2.4b). To find R′ and C ′, we use

Z0 −
i

ωCc

=

(
1

R′ + iωC ′
)−1

. (2.17)

Equating the real and imaginary parts on both sides, we find

C ′ =
Cc

1 + ω2Z2
0C

2
c

≈ Cc, (2.18a)
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2.1 The classical λ/4 cavity

R′ = Z0

(
1 +

1

ω2Z2
0C

2
c

)
≈ 1

ω2
0C

2
cZ0

, (2.18b)

where we have used the fact that ∆ ≈ 0 for drive tones close to resonance to write

ω ≈ ω0 and the fact that ω0Z0Cc = 0.0144 ≪ 1 for our λ/4 cavity with parameters

Cc = 7.95 fF, ω0/2π ≈ 5.76 GHz, Z0 = 50Ω, corresponding to CLCR = 434 fF,

LLCR = 1.76 nH.

With the circuit in the form of Fig.(2.4b), we are in a position to determine the

internal and external quality factors (Qs) of the cavity. As defined in chapter 6 of

[70], the Q is given by

Q = ω
average energy stored

energy loss/second
. (2.19)

Looking at Fig. (2.4b), we see that there are two loss mechanisms in the driven

cavity. The first (with a corresponding Qint) is due to the intrinsic loss in the cavity,

which is related to dielectric loss and is modelled by the loss through the resistor

RLCR. The second (with a corresponding Qext) is due to the external circuitry as

energy leaks into and out of the cavity through the coupling capacitor Cc as we probe

the cavity. This is modelled by the loss through the resistor R′. The total energy

stored in the circuit in Fig. (2.4b) is the sum of the energy stored in the capacitors

(CLCR and C ′) and the energy stored in the inductor (LLCR). On resonance, these

energies are equal. For a drive voltage of amplitude Vin, we have

Energy stored in LC circuit = 2× 1

2
× (CLCR + C ′)|Vin|2, (2.20a)

Energy loss through RLCR/second =
|Vin|2

RLCR

, (2.20b)

Energy loss through R′/second =
|Vin|2

R′ , (2.20c)
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2.1 The classical λ/4 cavity

where the factor of 2 in energy stored accounts for both the capacitive and the in-

ductive energies, we then have

Qint = ω
energy stored in LC circuit

energy loss through RLCR/second
= (CLCR + Cc)RLCRω0, (2.21a)

Qext = ω
energy stored in LC circuit

energy loss through R′/second
= (CLCR + Cc)R

′ω0 (2.21b)

=
(CLCR + Cc)

ω0Z0C2
c

. (2.21c)

Re-writing the above equations in terms of the parameters of the λ/4 cavity,

Qint =
π

4αl
, (2.22a)

Qext =
π

4ω2
0Z

2
0C

2
c

, (2.22b)

where we used the fact Cc ≪ CLCR based on the above design parameters. Defining

the cavity internal and external damping rates as κint(ext) =
ω0

Qint(ext)
, we have

κint =
4ω0αl

π
, (2.23a)

κext =
4ω3

0Z
2
0C

2
c

π
. (2.23b)

For our experimental devices, we typically want to be in the regime where κext >

κint. Heurisitcally, this can be thought of as saying that we want any information

leaking out of the cavity to be accessible, as opposed to being lost through some

internal lossy channel.

2.1.5. Classical S11 for the shorted λ/4 cavity

In order to calculate the reflection coefficient we change notation here from the pre-

vious Γ to S11 to make contact with the fact that this measurement is done with a
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2.1 The classical λ/4 cavity

vector network analyzer (VNA) for which it is common to talk about the scattering

(S) matrix of the device under test (DUT). We follow appendix B of [72] for this sec-

tion. The reflection coefficient S11 at the point where the feedline drives the coupling

capacitor as depicted in Fig. (2.4a), using Eqn. (2.8) is given by

S11 =
Zcav − Z0

Zcav + Z0

, (2.24)

where, (dropping the ‘LCR’ subscript for brevity)

Zcav =
1

iωCc

+

(
1

R
+

1

iωL
+ iω + C

)−1

=
iωL+R−Rω2LC − ω2RLCc

iωCc(iωL+R−Rω2LC)
. (2.25)

We then have

S11 =
1− ω2[L(Cc + C)− Z0CcL

R
] + iω

[
L
R
− Z0Cc(1− ω2LC)

]
1− ω2[L(Cc + C) + Z0CcL

R
] + iω

[
L
R
+ Z0Cc(1− ω2LC)

] . (2.26)

Since Z0

R
= αl ≪ 1 (see section 2.1.1 and Eqn. (2.16a)), and writing y = ω

ω0
where

the cavity resonant frequency, ω0 is defined as

ω0 =
1√

L(Cc + C)
≈ 1√

LC
, (2.27)

for Cc ≪ C, we have

S11 =
1− y2 + iyω0

[
L
R
− Z0Cc(1− y2ω2

0LC)
]

1− y2 + iyω0

[
L
R
+ Z0Cc(1− y2ω2

0LC)
] . (2.28)
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2.1 The classical λ/4 cavity

Eliminating R and Z0 for Qint and Qext from Eqns. (2.22a and 2.22b), we have

S11 =

1− y2 + iy

[
1

Qint
− C+Cc

QextCc

(
1− y2 C

C+Cc

)]
1− y2 + iy

[
1

Qint
+ C+Cc

QextCc

(
1− y2 C

C+Cc

)] . (2.29)

We now use the fact that we are driving close to resonance again. So, we write

y = 1 + δy where δy = ∆
ω0

and expand to first order in δy and make use of the fact

that Cc/(Cc + C) ≪ 1, to get

S11 =
−2δy + i

[
1

Qint
− 1

Qext

]
−2δy + i

[
1

Qint
+ 1

Qext

] . (2.30)

Multiplying throughout by ω0 and using the definitions of κext and κint, we have

S11(ω) =
(ω − ω0) + i(κext − κint)/2

(ω − ω0) + iκtot/2
. (2.31)

where we defined the total damping rate κtot = κint + κext.

In section 2.5, we see that the introduction of the CPT in the λ/4 cavity gives us

the ability to tune the resonant frequency ω0 using the DC gate voltage and the flux

through the cavity. Eqn. (2.31) is the model we use to extract the damping rates

and the resonant frequency across the bias range of the cCPT when operated at low

drive powers, which in turn is used to model the nonlinear behaviour of the cCPT

in chapters 4 and 5. In section 3.7, we will see a few examples of how we extract

these cavity parameters in the presence of noise in the bias parameter as described

in [33, 67, 73].
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2.2 Quantum mechanical model for λ/4 resonator

Section 2.2

Quantum mechanical model for λ/4 resonator

In this section, we show that the infinite transmission line admits traveling wave solu-

tions in both directions. This is essentially an infinite number of harmonic oscillator

modes which we quantize by introducing canonical commutation relations. We then

turn to the the λ/4 cavity and by introducing boundary conditions show that the

cavity Hamiltonian is the sum of discrete harmonic oscillator modes. We will then

introduce input-output theory in section 2.3 [74], [75] which is a standard model to

describe systems coupled to a Bosonic bath such as a transmission line in section 2.3

and re-derive the scattering parameter S11 using this formalism.

2.2.1. Quantum infinite transmission line

We begin with the same lumped element model for an infinitesimal section of an

infinite transmission line as in section 2.1.1 and Fig. (2.1), reproduced here in Fig.

(2.5) but assume it to be lossless with G = R = 0. We will see that we can re-

introduce the effect of loss using input-output theory in section 2.3. Here, we follow

the treatment in appendices C and D of [76]. Ref.[77] is also a very accessible resource

that deals with these concepts.

We define a branch flux variable [78] as

ϕ(x, t) =

∫ t

−∞
dτV (x, τ). (2.32)

In terms of the energy stored in the capacitor, which by convention behaves like

a kinetic energy, and the energy in the inductor, which by the same convention plays

the role of a potential energy in this infinitesimal section of the transmission line, the
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2.2 Quantum mechanical model for λ/4 resonator

Figure 2.5: Schematic of a transmission line (a) showing the two conductors and the
voltages and currents, (b) lumped element equivalent circuit.

Lagrangian density is then given by,

L (x, t) =
C

2
ϕ̇2(x, t)− 1

2L

(
∂xϕ(x, t)

)2
. (2.33)

where we used the fact that the current through the inductor is related to the voltage

dV across it by Lİ = dV and used the definition of the branch flux Eqn. (2.32) to

write I = 1
L
∂xϕ(x, t). The conjugate momentum to this branch flux is the canonical

charge q(x, t) given by

q(x, t) =
∂L

∂ϕ̇
= Cϕ̇(x, t). (2.34)

We can then write down the Hamiltonian density as

H =
1

2C
q2(x, t) +

1

2L

(
∂xϕ(x, t)

)2
. (2.35)

Using the Euler-Lagrange equations in ϕ, ϕ
′
= ∂xϕ and ϕ̇ = ∂tϕ, we obtain the

wave equation

∂2t ϕ(x, t) = v2p∂
2
xϕ(x, t) (2.36)
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2.2 Quantum mechanical model for λ/4 resonator

where vp = 1/
√
LC is the phase velocity as before. We note that this wave equation

can also be obtained from the Telegrapher’s equations, Eqn.(2.3a) and (2.3b), by

writing V (x, t) and I(x, t) in terms of ϕ(x, t) as above.

We now quantize H by promoting q and ϕ to operators q̂ and ϕ̂, and impose the

equal time canonical commutation relations,

[
ϕ̂(x, t), q̂(x′, t)

]
= iℏδ(x− x′),[

q̂(x, t), q̂(x′, t)
]
= 0,[

ϕ̂(x, t), ϕ̂(x′, t)] = 0. (2.37a)

The general solution to the wave equation Eqn. (2.36) can be written as the sum

of a right propagating and a left propagating wave, which in turn can be expanded

in their normal modes aR(ω) and aL(ω) respectively. We then have (dropping hats

for brevity) [30],

ϕ(x, t) =

√
ℏZ0

4π

∫ ∞

0

dω√
ω

(
e−iω(t+x/vp)aL(ω) + e−iω(t−x/vp)aR(ω)

)
+ h.c., (2.38a)

q(x, t) = −iC
√

ℏZ0

4π

∫ ∞

0

dω
√
ω

(
e−iω(t+x/vp)aL(ω) + e−iω(t−x/vp)aR(ω)

)
+ h.c.

(2.38b)

In order to obtain the mode operators aL(ω) (aR(ω)), we multiply Eqn.(2.38b) by

1
−iCω

eiω(t±x/vp) and Eqn.(2.38a) by eiω(t±x/vp) respectively and integrate the sum over

all space dx. Using the definition of the Dirac-delta function

∫ ∞

−∞
ei(ω−ω′)x/vpdx = 2πvpδ(ω − ω′) (2.39)
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we get,

aL(ω) =
1

vp

√
ω

4πℏZ0

∫ ∞

−∞

(
ϕ(x, t) +

i

ωC
q(x, t)

)
eiω(t+x/v)dx, (2.40a)

aR(ω) =
1

vp

√
ω

4πℏZ0

∫ ∞

−∞

(
ϕ(x, t) +

i

ωC
q(x, t)

)
eiω(t−x/v)dx. (2.40b)

We can then use this and the canonical commutation relation Eqn.(2.37a) to derive

the commutation relations of the mode operators to be

[
aL(R)(ω), a

†
L(R)(ω

′)
]
= δ(ω − ω′), (2.41)

with all other commutators being zero. We note here that using q = CV and ϕ = LI,

we can write

V (x, t) = −i
√

ℏZ0

4π

∫ ∞

0

dω
√
ω

(
e−iω(t+x/vp)aL(ω) + e−iω(t−x/vp)aR(ω)

)
+ h.c.,

(2.42a)

I(x, t) =
1

L

√
ℏZ0

4π

∫ ∞

0

dω√
ω

(
e−iω(t+x/vp)aL(ω) + e−iω(t−x/vp)aR(ω)

)
+ h.c. (2.42b)

In order to express the Hamiltonian in Eqn.(2.35) in terms of these mode operators,

we first write ϕ′(x, t) in Eqn.(2.35) as

ϕ′(x, t) =
−i
vp

√
ℏZ0

4π

∫ ∞

0

dω√
ω

(
e−iω(t+x/vp)aL(ω)− e−iω(t−x/vp)aR(ω)

− eiω(t+x/vp)a†L(ω) + eiω(t+x/vp)a†R(ω)

)
. (2.43)

Using Eqns.(2.43) and (2.38b) in the Hamiltonian density, and integrating over
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2.2 Quantum mechanical model for λ/4 resonator

all space dx to obtain the Hamiltonian, we have

H =

∫ ∞

0

ℏω
(
a†R(ω)aR(ω) + a†L(ω)aL(ω)

)
, (2.44)

where we have used the mode operator commutation relations Eqn.(2.41).

By associating the left-moving modes with negative frequencies, and the right-

moving modes with positive frequencies as in appendix C of [76], we then finally have

for the Hamiltonian of the infinite transmission line

H =

∫ ∞

−∞
dωℏωa†(ω)a(ω) (2.45)

The quantum λ/4 transmission line

Having dealt with the case of an infinite transmission line such as the coax cables

running the length of our dilution fridge to the cCPT sample, we will now look at the

case of the λ/4 microwave cavity forming the cCPT itself. The Lagrangian density

for this system is the same as in Eqn.(2.33), but holds only for the space between

x = 0 and x = l = λ1

4
(where l is the length of the cavity and λ1 is the wavelength of

the fundamental mode of the cavity). The wave equation Eqn.(2.36) is still satisfied

in this region, and we impose the additional boundary conditions

∂ϕ(x, t)

∂t
|x=0 = 0, (2.46a)

ϕ(l, t) = 0. (2.46b)

which are tantamount to the voltage at the shorted end of the cavity being zero

and the current at the open end of the cavity being zero. Applying these boundary
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2.2 Quantum mechanical model for λ/4 resonator

conditions, the general solution to the wave equation can be conveniently written as

ϕ(x, t) =
∑
k

Ak cos (kx+ αk) cos (kvpt+ βk),

=
∞∑
n=1

Φn(t) cos (knx),

∵ αk = 0 ∀ k, k ∈
{
kn =

(2n− 1)π

2l
, n ∈ N

}
(2.47)

where Φn(t) = An cos (knvpt+ βn) are the normal modes of the cavity. We see that the

boundary conditions give rise to a superposition of standing waves, each corresponding

to a normal mode of the cavity, as opposed to the traveling wave solutions in the

infinite transmission line earlier. To obtain the Lagrangian of this cavity, we use

Eqn.(2.47) in the Lagrangian density of the system Eqn.(2.33) and integrating over

the limits x = 0 and x = l, we have

L =
∞∑
n=1

[
lC

4
Φ̇2

n −
lk2n
4L

Φ2
n

]
. (2.48)

The Lagrangian of a single mode bears close resemblance to that of a lumped ele-

ment LC circuit [67], and thus we can conclude that the cavity behaves as a collection

of modes, each effectively an LC circuit with effective mode inductance Ln = 2L/lk2n

and effective mode capacitance Cn = lC/2.

As before, we can now find the momentum conjugate to the canonical position Φn

and use that in a Legendre transform to obtain the Hamiltonian of this system. The

momentum conjugate to the flux is the charge q, given by,

qn =
∂L
∂Φ̇n

= CnΦ̇n, (2.49)
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2.2 Quantum mechanical model for λ/4 resonator

which gives the Hamiltonian

H =
∞∑
n=1

[
q2n
2Cn

+
Φ2

n

2Ln

]
. (2.50)

As before, we quantize this Hamiltonian by promoting qn’s and Φn’s to opera-

tors (immediately dropping the hats) so that they obey the canoncical commutation

relations

[
Φm, qn

]
= iℏδmn,[

Φm,Φn

]
= 0,[

qm, qn] = 0. (2.51)

Introducing the creation and annihilation (ladder) operators defined by

an =

√
1

2ℏZn

(Φn + iZnqn),

a†n =

√
1

2ℏZn

(Φn − iZnqn), (2.52)

where Zn =
√
Ln/Cn is the mode impedance of the nth mode, and these satisfy the

usual commutation relations,

[
am, a

†
n

]
= δmn,[

am, an
]
= 0,[

a†m, a
†
n

]
= 0,

(2.53)

26



2.3 Input-output theory

we have for the Hamiltonian of the λ/4 cavity,

H =
∞∑
n=1

ℏωn

(
a†nan +

1

2

)
, (2.54)

where ωn = 1/
√
LnCn is the resonant frequency of the nth cavity mode which matches

with our classical derivation Eqn.(2.27) for the fundamental cavity mode with reso-

nant frequency ω0.

Section 2.3

Input-output theory

In this section, we will see how input-output theory [74] is a versatile theory to model

how a system such as the microwave cavity oscillator described in section 2.1.4 couples

to its environment. This will be used to model how the (nonlinear) cCPT couples to

the external microwave signals which we use to both drive the system and to probe

the dynamics of the system. We follow the text of Gardiner and Zoller [75] here, in

particular, sections (3.1), (3.2) and (5.3). Chapter 1 of [79] is also an excellent concise

reference for modelling such open quantum system dynamics.

The quantum Langevin equation, which is the quantum analog of the Langevin

equation describing the motion of a Brownian particle in a viscous medium and a

given potential, is at its heart based on the Heisenberg equation of motion. It de-

scribes a system (we will assume a single degree of freedom here) linearly coupled

to a thermal bath assumed to be a Bosonic harmonic oscillator bath with a dense

spectrum of oscillator frequencies. This linear coupling is a good model for electro-

magnetic radiation such as exists in our cavity and cCPT. We will also make the first

Markov approximation at the outset, which ensures the coupling strength between

the bath and the system is independent of the frequency of the bath mode, also equiv-
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2.3 Input-output theory

alent to saying that the bath is memoryless and correlations are very short-lived. We

thus have the following total Hamiltonian

H = Hsys +Hbath +Hint, (2.55)

where the system Hamiltonian will remain arbitrary for now, with the associated

single degree of freedom being represented by the mode operator a and a†. Further,

Hbath =

∫ ∞

−∞
dωℏωb†(ω)b(ω),

Hint = −iℏ
∫ ∞

−∞
dω

√
κ

2π

[
b†(ω)a− a†b(ω)

]
, (2.56)

where κ is the strength of the coupling between the bath and the system, b(ω) is

the bath operator associated with the bath mode with frequency ω, satisfying the

commutation relation, [
b(ω), b†(ω′)

]
= δ(ω − ω′),

and all other commutators are zero. This form of the bath is exactly that of the

infinite transmission line Hamiltonian in Eqn.(2.45), and shows that the coupling

between the transmission line and the cavity can be modelled by considering the

transmission line to be a loss channel to the microwave cavity. This form of the

interaction Hamiltonian has implicitly made the rotating wave approximation (RWA),

which justifies extending the lower limit of integration in the Hint to −∞. The RWA

essentially says that given that a(ω, t) = a(ω, 0)e−iωt (and that the h.c. evolves

similarly), Hamiltonian terms that are not stationary in the rotating frame will evolve

rapidly (oscillation period on the order of ns for microwave systems), and will average

to zero over any experimentally relevant measurement time.

The Heisenberg equations of motion for the system and bath operator a and b
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respectively are then

ḃ(ω, t) = −iωb(ω, t)−
√

κ

2π
a(t), (2.57a)

ȧ(t) = − i

ℏ
[
a(t), Hsys

]
+

√
κ

2π

∫ ∞

−∞
dωb(ω, t). (2.57b)

We now solve Eqn.(2.57a) by adding a particular solution to the solution of the

homogeneous equation, and we have (dropping explicit time-dependent notation),

b(ω) = e−iω(t−t0)b0(ω)−
√

κ

2π

∫ t

t0

e−iω(t−t′)a(t′)dt′, (2.58)

where b0(ω) = b(ω, t0). We now define an ‘in’ field with appropriate commutation

relations as

bin(t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t0)b0(ω), (2.59)

[
bin(t), bin(t

′)
]
= δ(t− t′), (2.60)

where we can derive Eqn.(2.60) from the fact that the bath operators obey the com-

mutation relation
[
b(ω), b(ω′)

]
= δ(ω − ω′). Plugging this into the integral over all

bath modes of Eqn.(2.58), we have

√
κ

2π

∫ ∞

−∞
b(ω)dω =

√
κbin(t)−

κ

2
a(t), (2.61)

where the factor of 2 in the last term comes from the fact that the peak of the delta

function is at the limit of the interval of integration. Plugging this back into the

differential equation for the system operator a(t), Eqn.(2.57b), we have

ȧ(t) = − i

ℏ
[
a(t), Hsys

]
+
√
κbin(t)−

κ

2
a(t). (2.62)

29



2.3 Input-output theory

This shows that the system dynamics in this input-output model is similar to that

due to the closed system dynamics, along with a damping term proportional to κ/2

and a driving field which couples in with strength
√
κ.

Instead of the ‘in’ field in Eqn.(2.59), if we instead defined an ‘out’ field for times

t1 > t as

bout(ω, t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t1)b1(ω), (2.63)

where b1(ω) = b(ω, t1). The Heisenberg equation for the system operator becomes

ȧ(t) = − i

ℏ
[
a,Hsys

]
+
κ

2
a(t) +

√
κbout(t). (2.64)

Equating Eqn.(2.62) and Eqn.(2.64), we obtain a boundary condition

bout(t)− bin(t) = −
√
κa(t), (2.65)

which relates the input and output (microwave) fields to the cavity (cCPT). We note

that our input-output relation Eqn.(2.65) differs from [75] by a sign because of the

different sign we used for the interaction Hamiltonian Hint defined in Eqn.(2.56).

2.3.1. The λ/4 microwave cavity coupled to a semi-infinite transmission

line

In this section, we aim to re-derive the scattering parameter S11 for a linear λ/4

microwave as in section 2.1.5, but using the input-output formalism just described.

We saw that the coupling between the transmission line Hamiltonian is exactly that of

the Bosonic baths considered in input-output theory, and so we model this coupling

as one of the two baths in the environment of the system oscillator, as shown in

Fig.(2.6). The other bath is an internal lossy port, which is attributed classically to

the dielectric and resisitve losses as in section 2.1.1. These two baths are assumed to
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2.3 Input-output theory

be uncorrelated. We consider only the fundamental mode of the cavity for clarity. All

other modes will couple similarly with the loss channels, albeit with different coupling

constants κ1,2.

Figure 2.6: Schematic of a microwave cavity coupled to two ports - a transmission
line and an internal loss channel.

Our system Hamiltonian Hsys here is given by Eqn.(2.54), with n = 0 correspond-

ing to the fundamental mode. Using this in Eqn.(2.62), we have

ȧ(t) = −iω0a−
(
κ1 + κ2

)
2

a(t) +
√
κ1ain(t) +

√
κ2bin(t). (2.66)

We solve this equation by taking the Fourier transform. In doing so, we note that

ȧ(ω) = F
{
ȧ(t)

}
=

∫ ∞

−∞
ȧ(t)e−iωtdt

= −
∫ ∞

−∞
iωa(t)eiωtdt

= −iωa(ω), (2.67)

where a(ω) = F
{
a(t)

}
. Eqn.(2.66) gives us

a(ω) =

√
κ1ain(ω) +

√
κ2bin(ω)(

(κ1 + κ2)/2− i∆
) , (2.68)

where ∆ = ω−ω0 as before. Using this solution for a(ω) in the input-output relation
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Eqn.(2.65) for each loss channel separately, we have

aout(ω) = ain(ω)−
κ1ain(ω) +

√
κ1κ2bin(ω)(

(κ1 + κ2)/2− i∆
) , (2.69a)

bout(ω) = bin(ω)−
√
κ1κ2ain(ω) + κ2bin(ω)(
(κ1 + κ2)/2− i∆

) . (2.69b)

Since we only have experimental access to the transmission line and not the inter-

nal loss port, we only concern ourselves with extracting the reflection measurements

at the transmission line (we notate this with S11). As detailed in [67], since the re-

flection coefficient acts on quadrature operators (and hence the mode operators) by

changing the magnitude and rotating in phase space (and not just a multiplicative

phase), the corresponding S11 equation is given by

aout = S∗
11ain,

a†out = S11a
†
in. (2.70)

Also, experimentally we measure only the classical expectation value of these

operators. The internal loss channel is in a thermal state with ⟨bin(out)⟩ = 0 while we

use a coherent tone with power |αin|2 on the transmission line to probe the cCPT.

Eqn.(2.69a) then becomes

αout =
∆+ i(κ2 − κ1)/2

∆ + i(κ1 + κ2)/2
αin. (2.71)

Comparing this to Eqn.(2.70), we see that

S11 =
∆− i(κ2 − κ1)/2

∆− i(κ1 + κ2)/2
. (2.72)

This matches up with Eqn.(2.31) if we recognize κext = κ1 and κint = κ2. Generalizing
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2.4 The Cooper pair transistor (CPT)

this to a system Hamiltonian which could be nonlinear in the single degree of freedom,

we write down the quantum Langevin equation for the system operator and the input-

output relation for the two loss channels to be

ȧ(t) = − i

ℏ
[
a,Hsys

]
−
(
κext + κint

)
2

a(t) +
√
κextain(t) +

√
κintbin(t), (2.73a)

with,

aout(t) = ain(t)−
√
κexta(t), (2.73b)

bout(t) = bin(t)−
√
κinta(t). (2.73c)

We will see in the coming sections that the cCPT can be treated as a flux- and

gate-tunable nonlinear oscillator. Eqns.(2.73a) and (2.73b) will be our primary tools

in modelling and analyzing the dynamics of the system and to extract parameters

such as the resonant frequency ω0, and the internal and external damping rates κint

and κext.

Section 2.4

The Cooper pair transistor (CPT)

The second component of the cCPT is the Cooper pair transistor. The building block

of the CPT itself is the Josephson junction (JJ). A JJ consists of two superconducting

electrodes interrupted by a ‘weak link’ [80]. In this section, we will treat the JJs

phenomenologically starting from the Josephson equations. We will use the branch

flux formalism we used for the infinite transmission line to derive the Hamiltonian of

the JJ. We will then see how the CPT consists of two JJs forming a superconducting

island and how this behaves as a charge- and flux-tunable inductor.
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2.4.1. The Josephson junction

We derive the Hamiltonian for a single JJ here following chapter 6 of Tinkham [81].

The JJ is described by an RCSJ (resistively and capacitively shunted) model as shown

in Fig.(2.7b). The current in the supercurrent channel is described by the DC Joseph-

son effect

Figure 2.7: (a) A voltage biased Josephson junction denoted by the boxed cross. (b)
Equivalent circuit in the RCSJ model.

I = Ic sinϕ, (2.74)

where Ic is the critical current of the junction and ϕ is the difference in phase of the

Ginzburg-Landau order parameter across the junction. This current flows through

the junction even at V = 0. The resistive branch accounts for transport due to

quasiparticle tunneling across the JJ. The resistance R ≈ RN close to Tc where RN

is the normal state resistance of the JJ. It goes exponentially at lower temperatures

T as R = RNe
∆/kBT where ∆ is the superconducting gap, and kB is the Boltzmann

constant, and we neglect this term for our operating temperatures well below Tc of alu-

minium JJs. The capacitive channel describes the displacement current arising from

the geometric capacitance between the two electrodes forming the JJ. The critical
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current Ic of the JJ is related to its normal state resistance RN by the Ambegaokar-

Baratoff formula [82]

IcRN =
π∆

2e
tanh

∆

2kBT

≈ π∆(0)

2e
, (2.75)

where the approximation holds for T ≪ Tc.

When a voltage V ̸= 0 is applied to the JJ, the phase difference across the JJ

evolves according to the AC Josephson equation

V =
Φ0

2π

dϕ

dt
, (2.76)

where Φ0 = h/2e = 2.067 × 10−15 Wb is the magnetic flux quantum. Since ϕ is

not gauge invariant and can’t describe a physical quantity such as the current I, we

now define a gauge invariant phase difference φ ≡ ϕ − (2π/Φ0)
∫
A.ds where A is

the vector potential integrated between the two electrodes forming the weak link and

rewrite the Josephson equations in terms of this quantity.

One way to proceed is to write down Kirchoff’s laws for the RCSJ model and

to recognize that this corresponds to a particle with mass (ℏ/2e)2CJ moving in an

effective potential as in [81, 69] which can then be quantized, but we follow the

approach of [67] here instead.

Kirchoff’s laws for the circuit in Fig.(2.7b) can be written as (neglecting the R as

mentioned above)

V =
Q

CJ

=
Φ0

2π

dφ

dt
, (2.77a)

I = −Q̇ = Ic sinφ. (2.77b)
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Combining these equations, we have

CJ
Φ0

2π

d2φ

dt2
+ Ic sinφ = 0. (2.78)

Introducing a branch flux ΦJ using the definition in Eqn.(2.32), we have

ΦJ =
Φ0

2π
φ(t), (2.79)

which has units of magnetic flux. We can then write Eqn.(2.78) as

CJΦ̈J + Ic sin

(
2πΦJ

Φ0

)
= 0. (2.80)

This equation of motion is found to satisfy the Lagrangian

L =
1

2
CJΦ̇

2 +
Φ0

2π
Ic cos

(
2πΦJ

Φ0

)
. (2.81)

The charge qJ conjugate to ΦJ is given by

qJ =
∂L

∂Φ̇J

= CJΦ̇J , (2.82)

and performing the Legendre transformation, the Hamiltonian reads

H =
q2J
2CJ

− EJ cos

(
2πΦJ

Φ0

)
, (2.83)

where we defined the Josephson energy EJ = IcΦ0/2π. We now quantize this Hamil-

tonian as before by imposing the canonical commutation relations on these charge

and flux variables (we immediately drop the hats)

[
ΦJ , qJ

]
= iℏ. (2.84)
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Anticipating using the excess number of Cooper pair on the CPT island as our

variable in forthcoming sections, we define a charge number variable N = qJ/2e.

Using the dimensionless gauge-invariant phase difference across the JJ, and defining

the charging energy, EC = e2/2CJ , which is the energy required for an electron to be

added to the capacitor plate, we have

H = 4ECN
2 − EJ cosφ, (2.85)

where N and φ now satisfy this commutation relation

[
φ,N

]
= i. (2.86)

So we see that the JJ Hamiltonian consists of two terms. The first is, as mentioned

above, the classical electrostatic cost of adding an electron to the electrode of the JJ.

CJ behaves like a parallel plate capacitor whose capacitance can be estimated to be

CJ =
ϵA

d
, (2.87)

where ϵ is the dielectric constant of the material between the two electrodes of the

JJ (Al2O3 in the case of our cCPT, as shall be seen), A is the area of the electrodes

forming the JJ, and d is the thickness of the dielectric. The second Josehpson coupling

energy term is a tunneling term between neighbouring charge states. Joyez [68] draws

a nice analogy to the tight binding model of a 1D lattice where the charging energy

plays the role of the atomic orbitals, and the Josephson term that of the hopping

between nearest neighbours.

We will now follow [69] to express the Hamiltonian in Eqn.(2.85) in the charge

basis. The Hamiltonian can be solved exactly in the phase basis in terms of Mathieu
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functions as in the reference above, but we choose to work in the charge basis instead.

We will see that solving for the eigenvalues in this basis requires a truncation of the

Hilbert space, but note that for our charge-sensitive CPT working in the EJ/EC < 1

regime, a few (< 10) dimensional Hilbert space is sufficient [68, 67]. In order to

express φ in the charge basis, we first note the cyclic property of the phase operator

(single-valuedness of phases separated by 2π). Using this in tandem with the fact

that the operator N is the generator of translations in φ based on the commutation

relation Eqn.(2.86), we have

|φ+ 2π⟩ = ei2πN |φ⟩ = |φ⟩ , (2.88)

which tells us that the eigenvalues of N have to be integers with associated eigenkets.

Conversely, φ is the generator of translations in N , and we have

|N + 1⟩ = eiφ(1) |N⟩ . (2.89)

Applying this operator on an infinite superposition of number eigenbras
∑
N∈Z

⟨N |,

this gives us

2 cosφ = eiφ(1) + eiφ(−1) =
∑
N∈Z

(
|N + 1⟩ ⟨N |+ |N⟩ ⟨N + 1|

)
, (2.90)

using which we can write the total JJ Hamiltonian Eqn.(2.85) in the charge basis as

H = 4EC

∑
N∈Z

N2 |N⟩ ⟨N | − EJ

2

∑
N∈Z

(
|N⟩ ⟨N + 1|+ |N⟩ ⟨N + 1|

)
(2.91)

which makes the identification of the Josephson energy as a tunneling term linking

neighbouring charge states more apparent.
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2.4.2. The Cooper pair transistor (CPT)

We now turn to the analysis of the Cooper pair transistor which consists of two JJs in

series, forming a superconducting island, which is gated by an electrode biased with

a voltage. The schematic for this device is shown in Fig.(2.8). We will see in section

2.5 that I corresponds to the current in the λ/4 cavity due to the cavity flux. For

now, this notation serves in understanding the dynamics of the system.

Figure 2.8: Schematic of a Cooper pair transistor with the island formed by two JJs
in series, gated by a capacitance Cg and Φext is the flux threading the CPT circuit.
We assume that the CPT is embedded in a superconducting loop, as is the case for
the cCPT which we consider in the next section.

We assume here that the two JJs are identical. Ref.[69] deals with asymmetry

between the two junctions, but we ignore this here since the asymmetry in our ex-

perimental device is found to be quite small [30]. The JJs have a capacitance CJ and

a critical current Ic. The charge on the junction capacitances is denoted by q1 and
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q2 respectively, corresponding to a voltage drop V1 and V2. I1 and I2 are the currents

through each of the junctions. We denote the phase across each junction to be φ1

and φ2 respectively. Applying Kirchoff’s current law through each JJ separately, we

have

I = I1 +
Φ0

2π
CJ

d2φ1

dt2

= Ic sinφ1 +
Φ0

2π
CJ

d2φ1

dt2
, (2.92a)

I + CgV̇g −
Φ0

2π
Cg
d2φ2

dt2
= I2 +

Φ0

2π
CJ

d2φ2

dt2

⇒ I = Ic sinφ2 +
Φ0

2π

(
CJ + Cg

)d2φ2

dt2
− CgV̇g, (2.92b)

where we have used the two Josephson’s equations (2.74) and (2.76) and the fact that

the voltage of the island is Visland = Φ0

2π
dφ2

dt
, which is the voltage across JJ number 2.

Further, given the fact that A = (Φ0/2π)∇ϕ (where ϕ is the difference in the phase

of the Ginzburg-Landau order parameter across the JJ) and the fact that the phase

has to be single-valued, we obtain for the superconducting loop encompassing the 2

JJs enclosing the flux Φext (as in chapter 6 of [81]),

φ1 + φ2 =
2πΦext

Φ0

(mod 2π) (2.93)

As in [68, 69], since n1, n2, φ1 and φ2 are not good quantum numbers, we now

introduce the phase coordinates φ̄ and δφ which have conjugate variables n̄ and N

where

φ̄ =
φ1 + φ2

2
=
πΦext

Φ0

,

δφ =
φ1 − φ2

2
,

n̄ =
n1 + n2

2
,
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N =
n1 − n2

2
. (2.94a)

Here, n̄ can be interpreted as the total number of Cooper pairs having passed

through the entire transistor, and N as the number of Cooper pairs on the supercon-

ducting island. Using these new coordinates in Eqns.(2.92a and 2.92b) and adding

and subtracting the two resulting equations, we have

CJ
Φ0

2π
¨̄φ+ Ic sin φ̄− CgV̇g

2
= I, (2.95a)

CJ
Φ0

2π
δφ̈+ 2Ic cos φ̄ sin δφ+ CgV̇g = 0. (2.95b)

where we have made the assumption that Cg ≪ CJ (Cg ≈ 7 aF and CJ ≈ 200 aF for

our sample). We now introduce the branch flux ΦJ =
(
Φ0/2π

)
δφ as we did for the

single JJ, and Eqn.(2.95b) becomes

2CJΦ̈J + 2Ic cos

(
πΦext

Φ0

)
sin

(
2πΦJ

Φ0

)
+ CgV̇g = 0. (2.96)

We immediately see that this equation of motion can be derived from the La-

grangian

L = CJΦ̇
2
J + 2

Φ0Ic
2π

cos

(
πΦext

Φ0

)
cos

(
2πΦJ

Φ0

)
+ CgVgΦ̇J . (2.97)

The conjugate momentum to this branch flux ΦJ is found as before to be the

charge variable qJ , which is given by,

qJ =
∂L

∂Φ̇J

= 2CJΦ̇J + CgVg. (2.98)

Performing a Legendre transformation as before, the Hamiltonian is found to be

H =
1

4CJ

(
qJ − CgVg

)2
+ 2EJ cos

(
πΦext

Φ0

)
cos

(
2πΦJ

Φ0

)
, (2.99)
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where EJ = Φ0Ic
2π

denotes the Josephson energy as before. The operators qJ and ΦJ

are quantized again, and obey the commutation relations,

[
ΦJ , qj

]
= iℏ. (2.100)

As for a single JJ, we define N =
(
1/2e

)
qJ with the corresponding commutation

relation
[
δφ,N

]
= i, defining the charging energy EC = e2/2CΣ where CΣ =

(
2CJ +

Cg) ≈ 2CJ , and the gate charge ng = CgVg/e, we have,

H = 4EC

(
N − ng

2

)2

− 2EJ cos

(
πΦext

Φ0

)
cos δφ (2.101)

Expressing this in the charge basis using Eqn.(2.90) as for a single JJ, we finally

have,

H = 4EC

∑
N∈Z

(
N−ng

2

)2

|N⟩ ⟨N |−EJ cos

(
πΦext

Φ0

)∑
N∈Z

(
|N⟩ ⟨N + 1|+|N + 1⟩ ⟨N |

)
.

(2.102)

Looking at this Hamiltonian, we note that in addition to being able to tune

the CPT into and out of Coulomb blockade using the gate, the CPT embedded in

a superconducting loop gives us the ability to tune the Josephson energy with an

applied external magnetic flux, Φext.

Fig.(2.9) shows the ground and first excited state energies of a CPT with EJ =14.8

GHz and EC =54.1 GHz computed numerically using an eigensolver. The Hilbert

space was truncated to 9 charge states which produces a good approximation of

the eigenstates obtained from the exact solutions to the Mathieu equation for our

EJ/EC < 1.

In order to observe single Cooper pair tunneling phenomena through a JJ, two

conditions need to be met. First, the normal state resistance (RN) of the tunnel
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Figure 2.9: First two energy states of a CPT with EJ = 14.8 GHz and EC = 54.1
GHz as a function of the gate charge (ng) and the external flux Φext. The energies
are in frequency units.

junction forming the JJ must be larger than the resistance quantum for Cooper pairs

- RN ≫ RK/4 = 6.4 kΩ. This ensures that the Cooper pair wavefunction is localized

on the island of the CPT. The second, is that the charging energy is large enough

that thermal fluctuations are not sufficient to add an electron to the CPT island.

This gives us EC ≫ kBT , which considering the fact that even ultrasmall junctions

typically have capacitances larger than a few 100 aF, requires the operation of these

devices at mK temperatures in a dilution fridge. Chapters 1 and 2 in [25] go through

these concepts in much more detail.

We will see in the next section that the CPT behaves as an inductor which can

be tuned using the voltage gating the island and by the flux threading the supercon-

ducting loop.

2.4.3. The CPT as a tunable inductor

Following chapter 5 in [71], we will now see how the CPT behaves as a charge and flux

tunable nonlinear inductance. This will admit a simple description of the cCPT as
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2.4 The Cooper pair transistor (CPT)

a parallel LCR circuit (the cavity) as in section 2.1 along with a tunable inductance

(the CPT) in parallel. In order to view this as a tunable inductance LJ(φ), we first

follow this procedure to view a single JJ as a nonlinear inductor, write it in terms

of the derivative w.r.t φ of the energy stored in an inductor and then generalise this

procedure to the CPT. We compare the AC Josephson equation Eqn.(2.76) to the

typical voltage relation for an inductor LJ which is V = LJ İ. Also using the DC

Josephson equation Eqn.(2.74), we have

V = LJ İ =
Φ0

2π
φ̇,

⇒ LJ =
Φ0

2πIc cosφ
=

L
(0)
J

cosφ
=

L
(0)
J√

1−
(
I/Ic

)2 , (2.103)

where

L
(0)
J =

Φ0

2πIc
. (2.104)

In analogy with the equation for energy stored in an inductor, we have

E =
Φ2

J

2LJ

, (2.105)

⇒ LJ =

(
d2E

dΦ2
J

)−1

, (2.106)

for this form of the energy, but this can be generalised to a non-quadratic form for the

energy (such as the CPT) by Taylor expanding and evaluating the second derivative

about the equilibrium point for the energy function. Formally, this means that for

the CPT Hamiltonian Eqn.(2.102), we can write the Josephson inductance as

LJ(ng,Φext) =

(
Φ0

2π

)2(
∂2ECPT

0 (ng, φ)

∂φ2

)−1∣∣∣∣
φ=2πΦext/Φ0

, (2.107)
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where this is now tunable with both the gate charge and the loop flux.
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Figure 2.10: L
(0)
j vs (a) flux at different gates (b) gate for different fluxes for a CPT

with EJ = 14.8 GHz and EC = 54.1 GHz.

Fig.(2.10) shows the variation of the Josephson inductance for nominal values of

EJ and Ec. It’s to be noted that the Josephson inductance spans positive as well as

negative values depending on the curvature of the ground state at a given bias point.

We will see that this enables us to tune the resonant frequency above and below the

bare cavity frequency, and also the Kerr coefficient of the cCPT.

Section 2.5

The cavity-embedded Cooper pair transistor

(cCPT)

The cCPT is formed by hooking up a CPT across the center line and the ground

plane at the voltage anti-node of a λ/4 cavity as shown in Fig.(2.11). It is gated with

a voltage Vg across a capacitance Cg and is threaded by a flux Φext.

In this section, we first describe the cCPT using the equivalent model in Fig.(2.11b),

where the tunable Josephson inductance LJ allows for tuning of the resonant fre-

quency of the effective LC system. We will then present the Hamiltonian of the

cCPT as the sum of that of its parts - (i) the λ/4 cavity and (ii) the CPT, and see

how the superconducting SQUID loop formed by the pair of systems gives rise to a
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2.5 The cavity-embedded Cooper pair transistor (cCPT)

Figure 2.11: Schematic of the cCPT where (a) the CPT is shown to be hooked up
at the voltage anti-node of a shorted λ/4 cavity (b) The equivalent circuit where
the CPT behaves as a tunable inductance in parallel with the equivalent LC circuit
corresponding to the fundamental mode of the λ/4 cavity.

flux quantization constraint similar to the one in section 2.4. Then performing an adi-

abatic approximation, since all relevant energy scales are much less than the energy

required to cause transitions between the ground state and the first excited state (see

Fig.(2.9)), we can approximate the CPT to remain in its ground state throughout the

dynamics of the cCPT, and derive an effective Hamiltonian for the system. This is

not a derivation from first principles, for that see [30], where the modification of the

cavity modes (as in section 2.2) by the CPT and the coupling capacitor Cc is treated

in detail using scattering analysis, along with the system’s coupling to a transmission

line. We follow here the approach described in [33].

2.5.1. Resonant frequency tuned by Josephson inductance

Close to its resonant frequency (we consider only the fundamental mode for now),

we saw in section 2.1.3 that the cavity behaves as an LCR circuit. Hooked up at its

voltage anti-node, the CPT appears in parallel with this LCR circuit as a tunable
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inductor as shown in Fig.(2.11). The resonant frequency of this circuit is then

ω0(ng, φ) =

√
1

C0

(
1

LJ(ng, φ)
+

1

L1

)
(2.108)

= ω
λ/4
0

√(
1 +

L1

LJ(ng, φ)

)
, (2.109)

where ω0(ng, φ) is the (tunable) resonant frequency of the cCPT, and ω
λ/4
0 = 1/

(√
L1C1

)
is the resonant frequency of the fundamental mode of the cavity before the CPT was

hooked up. Since L1 ≪ LJ(ng, φ), this can be written to first order in L1/LJ as,

ω0(ng, φ) = ω
λ/4
0

(
1 +

L1

2LJ(ng, φ)

)

= ω
λ/4
0

(
1 + L1

(
2π

Φ0

)2
∂2ECPT

0 (ng, φ)

∂φ2

)
, (2.110)

and so we see that the Josephson inductance pulls the resonant frequency of the cCPT

in either direction of that of the bare cavity depending on the sign of the curvature of

the ground state energy of the CPT. We will see in the next section that the resonant

frequency variation derived above by modelling the system as a parallel LC oscillator

with a tunable inductor matches with the frequency shift obtained by considering the

Hamiltonian of the system.

2.5.2. cCPT Hamiltonian

The Hamiltonian of the cCPT can be written as the sum of its parts

HcCPT =Hcavity +HCPT

=
∞∑
n=1

[
q2n
2Cn

+
Φ2

n

2Ln

]
(2.111)
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+ 4EC

∑
N∈Z

(
N − ng

2

)2

|N⟩ ⟨N | − EJ cos φ̄
∑
N∈Z

(
|N⟩ ⟨N + 1|+ |N + 1⟩ ⟨N |

)
,

(2.112)

where we have used Eqn.(2.50) and Eqn.(2.102) for the respective Hamiltonians.

Given the quantization of the flux in the superconducting SQUID loop in Fig.(2.11a)

we have

Φ0

2π

(
φ1 + φ2

)
− ϕ(0, t) = 2πmΦ0 + Φext; m ∈ Z,

Φ0

2π

(
φ1 + φ2

)
−
∑
n∈N

Φn = Φext. (2.113)

where we have used Eqn.(2.47) for ϕ(0, t), and absorbed the constant into Φext. We

see that this equation couples the cavity degrees of freedom with that of the CPT.

We find the Hamiltonian of the full system to be

HcCPT =
∞∑
n=1

[
q2n
2Cn

+
Φ2

n

2Ln

]
+ 4EC

∑
N∈Z

(
N − ng

2

)2

|N⟩ ⟨N |

− EJ cos

(
π

Φ0

∑
n∈N

Φn + Φext

)∑
N∈Z

(
|N⟩ ⟨N + 1|+ |N + 1⟩ ⟨N |

)
. (2.114)

We next make an adiabatic approximation to say that the CPT remains in its

ground state throughout its dynamic evolution. To justify this approximation, we see

from Fig.(2.9) that the energy spacing between the ground and first excited state is of

the order of a few tens of GHz at all bias points away from the charge degeneracy point

(ng = 1) at Φext = ±0.5Φ0. As long as we stay away from the region |1− ng| < 0.15,

the energy spacing is several factors larger than the fundamental frequency of our

cCPT sample (ω
λ/4
0 ≈ 5.76 GHz). As long as we are only driving the fundamental

mode of the cavity, none of our input tones should be able to drive the qubit transition.

Additionally, our sample is mounted at the mixing chamber of a dilution fridge with
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a temperature of 30 mK. Since kBT ≡ 600 MHz at 30 mK, the thermal fluctuations

are unable to drive the transitions too. It should be noted that the cavity is designed

to operate at 5.76GHz where the thermal occupation of the cavity is nearly that of

the vacuum state.

Making this approximation, we then write the Hamiltonian in terms of the ground

state energy ECPT
0 which is of course the expectation value of the cCPT Hamiltonian

for the ground state |g⟩, i.e. ECPT
0 = ⟨g|HcCPT |g⟩. The cCPT Hamiltonian then

becomes

HcCPT =
∞∑
n=1

q2n
2Cn

+ Veff

=
∞∑
n=1

q2n
2Cn

+
∞∑
n=1

Φ2
n

2Ln

+ ECPT
0 . (2.115)

We now consider the CPT Hamiltonian to be a perturbation to the simple har-

monic potential of the cavity modes, and Taylor expand the effective potential Veff

about the equilibrium point of the potential Φ(eq). As shown in [67] using a bounding

argument, Φ(eq) ≤ 0.035 ≪ 1. Defining ϕ = 2π
Φ0
Φext which is a dimensionless flux, we

then arrive at the Hamiltonian,

HcCPT =
∞∑
n=1

[
q2n
2Cn

+
Φ2

n

2Ln

]
+

∞∑
k=2

1

k!

∂kECPT
0 (ng, ϕ)

∂ϕk

(
2π

Φ0

∞∑
n=1

Φn

)k

, (2.116)

where we neglect k = 0 as just an additive constant, and the k = 1 term is zero at

the equilibrium point around which we are performing the Taylor expansion.

We now focus on the fundamental mode of the cavity n = 1 and drop all terms

n ≥ 2 along with the mode index n. We note here that in addition to neglecting

dynamics of higher order modes of the cCPT whose direct readout is experimentally

inaccessible, this immediately ignores all cross-mode effects such as cross-Kerr terms
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[36, 47] and non-degenerate parametric amplification terms [83, 84]. For the fun-

damental frequency at ω0, the next higher order mode fo the λ/4 cavity will have

resonant frequency 3ω0. This means that as long as we are driving the cavity close to

ω0, the rotating wave approximation (RWA) implies that these higher order modes

will not affect the dynamics of the fundamental mode. However, they could come

into play when applying a parametric drive to the cavity.

We now recognise the k = 2 term to be proportional to the LJ(ng, ϕ) defined in

Eqn.(2.107) and we define as in section 2.5.1

1

Ltot(ng, ϕ)
=

(
1

L1

+
1

LJ(ng, ϕ)

)
, (2.117)

and the Hamiltonian becomes

HcCPT =
q2

2C
+

Φ2

2Ltot(ng, ϕ)
+

∞∑
k=3

1

k!

∂kECPT
0 (ng, ϕ)

∂ϕk

(
2π

Φ0

Φ

)k

. (2.118)

where we have dropped non-stationary terms (a2 and a†2) under the RWA assuming

only a near resonant drive. We will see later that these terms become important

when applying parametric drives to the cCPT. We already recognise the first two

terms of the other Hamiltonian to be that of an LC oscillator tunable with the gate

voltage and loop flux, but introduce creation annihilation operators to write the total

Hamiltonian in the familiar form for an oscillator as in Eqn.(2.54). We define

a =

√
1

2ℏZtot

(
Φ + iZtotq

)
, (2.119a)

a† =

√
1

2ℏZtot

(
Φ− iZtotq

)
, (2.119b)

where
[
a, a†

]
= 1, Ztot =

√
Ltot/C and we can write the inverse transformations
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Φ = Φzp

(
a+ a†) =

√
ℏZtot

2

(
a+ a†), (2.120a)

q = iqzp
(
a† − a) = i

√
ℏ

2Ztot

(
a† − a). (2.120b)

We then find the familiar form of the Hamiltonian (dropping constants)

HcCPT = ℏω0(ng,Φext)a
†a+

∞∑
k=3

1

k!

(
2π

Φ0

√
ℏZtot

2

)k
∂kECPT

0 (ng, ϕ)

∂ϕk

(
a+ a†)k, (2.121)

where ω0(ng,Φext) = 1/
√
Ltot(ng,Φext)C.

We refer to the Hamiltonian of the cCPT with RWA applied for a drive close

to resonance and neglecting terms with k > 2 as the linear cCPT Hamiltonian. A

detailed characterization of the linear behaviour of the cCPT has been carried out in

[33]. It is worth noting here that the relative strengths of the higher order terms in

the Hamiltonian in Eqn.(2.125) are decided by the factor ϕzp =
(
2π/Φ0

)
Φzp which

is a dimensionless form of the zero point flux fluctuations in Eqn.(2.120a) since the

n-th derivative of the CPT ground state energy switches between a sine and cosine

dependence for even and odd n’s respectively. To evaluate Φzp, we have

Φzp =

√
ℏZtot

2
=

√
ℏ
2

√
Ltot

C

=

√√√√ℏ
2

√
1

C

(
1

LJ(ng,Φext)
+

1

L1

)

≈
√

ℏZ
2

(
1− L1

4LJ(ng,Φext)

)
(2.122)

≈
√

ℏZ
2

= 0.028Φ0, (2.123)

where we have made the empirically justified assertion that L1 ≪ LJ again and
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Z =
√

L
C is the characteristic impedance of the cavity (L and C are the inductance

per unit length and conductance per unit length respectively, see section 2.2.1), as

before and is ≈ 50Ω for our sample (since
√
L1/C1 = (4/π)(

√
L/C) = Z0 = (4/π)Z).

This gives us the dimensionless quantity

ϕzp =
2π

Φ0

Φzp ≈ 0.176. (2.124)

The final Hamiltonian can then be re-written as

HcCPT = ℏω0(ng,Φext)a
†a+

∞∑
k=3

1

k!
(ϕzp)

k∂kϕE
CPT
0 (ng,Φext)

(
a+ a†)k, (2.125)

where we have defined

∂kϕE
CPT
0 (ng,Φext) =

∂kECPT
0 (ng, ϕ)

∂ϕk

∣∣∣∣
ϕ=2πΦext/Φ0

, (2.126)

as in [33].

Also, using the definitions Eqn.(2.123) and Eqn.(2.124) in the equation for the

tunable resonant frequency Eqn.(2.110), we have

ω0(ng,Φext) = ω
λ/4
0 +

ϕ2
zp

ℏ
∂2ϕE

CPT
0 (ng,Φext), (2.127)

which is plotted in Fig.(2.12) for the parameters of our cCPT device.

The next higher order term in the above Hamiltonian that contributes to the

stationary dynamics of the cCPT when driven near resonance is the Duffing term

(k = 4). We will discuss the dynamics of the system in more detail in chapter

4, but for now, we show that this term contributes an intracavity photon number

resonant frequency shift of the cCPT, which we see will be used to determine the

input attenuation of the dilution fridge circuitry in chapter 3. Expanding the k =4
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Figure 2.12: resonant frequency shift vs (a) flux at different gates and (b) gate for
different fluxes for a cCPT with EJ = 14.8 GHz and EC = 54.1 GHz.

term in powers of the creation/annihilation operators, applying the commutation

relations, and the RWA, we obtain for the Duffing Hamiltonian

HDuff =
1

4
ϕ4
zp∂

4
ϕE

CPT
0 (ng,Φext)

(
a†a+ 1

)
a†a

=
ℏ
2
K(ng, ϕext)

(
a†a+ 1

)
a†a

=
ℏ
2
K(ng, ϕext)

(
n+ 1

)
a†a, (2.128)

where we have defined the intracavity photon number n = a†a and the Kerr coefficient

K as

K =
1

2ℏ
ϕ4
zp∂

4
ϕE

CPT
0 (ng,Φext). (2.129)

So we see that if we drive the cavity with a large enough power to cause nK > κtot

(typically for 3 < n < 10 for our cCPT system), we will see a resonant frequency shift

larger than the cavity linewidth, and this depends linearly on the cavity occupation

n. We can then experimentally measure this frequency shift to extract the input

attenuation as we shall see in chapter 3.

Fig.(2.13) shows the simulated variation of the Kerr coefficient for our cCPT

sample with an EJ = 14.8 GHz and an EC = 54.1 GHz. As expected it varies

sinusoidally in flux, reaching minimum and maximum at Φext = 0 and Φext = 0.5Φ0
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Figure 2.13: Simulated variation of the Kerr coefficient as a function of the gate and
flux bias for an EJ = 14.8 GHz and an EC = 54.1 GHz.

respectively. An interesting aspect to the Kerr coefficient is that we can tune it to 0

close to Φext = 0.25Φ0. We will see in Appendix A that we can implement a degenerate

parametric amplifier Hamiltonian using the cCPT Hamiltonian in Eqn.(2.125). It has

been studied that the Kerr term is one of the limiting factors for the dynamic range

of parametric amplifiers working in both the three and four-wave mixing scheme [85,

86, 87] because of the above Kerr induced resonant frequency shift. As the amplifier

does its job and the intracavity photon number increases, the resonant frequency

quickly shifts away from the optimum pump detuning, and an equilibrium between

amplification and the detuning is reached. Work has been done in engineering the

Hamiltonian of devices such as the ‘SNAIL’ parametric amplifier (SPAs) to minimize

the effect of the Kerr term [88, 89]. Similar to these devices, the Kerr can be tuned

in-situ in our cCPT using the flux to an optimal working point. We will see in chapter

5 and appendix A that the strength of the parametric pump and the gain depends

on the slope of the resonant frequency with respect to flux, and this is maximized at

Φext = 0.25Φ0, the same bias point at which the Kerr is minimized. We note that the
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Kerr also has some tunability with the gate ng, which we will look at in chapter 4.

We have shown in this chapter that the cCPT is a rich nonlinear system in which

different terms in the Hamiltonian, Eqn.(2.125), can be driven into resonance under

the RWA, each giving rise to interesting dynamics, some of which we will study in the

coming chapters. We have also derived some of the tools such as the reflection coef-

ficient, S11, for the linear cCPT Hamiltonian with which we can probe the dynamics

of the cCPT and obtain several useful experimental parameters as we shall see in the

following chapters.

55



Chapter 3

Experimental setup and techniques

In this chapter, in section 3.1 we first briefly describe the cCPT sample fabrication

and then discuss the mounting of this chip on a printed circuit board (PCB) inside a

sample box which is mounted at the mixing chamber of a dilution fridge. In section

3.2 we discuss some details of the RF and DC dilution fridge circuitry that we use

to probe the sample, and some room temperature measurement schemes. In section

3.3, we will then touch upon a few analysis techniques that we regularly use.

Section 3.1

The cCPT sample

The cCPT sample studied in this thesis was made entirely by Juliang Li [65]. We

go through the general idea behind the fabrication process, and discuss more details

in chapter 6 where we report on our attempts to combine the cCPT with a nanores-

onator system (cCPT-NR) to reach the single photon-phonon strong coupling regime

of optomechanics. The detailed fabrication of this cCPT device are described in [65].
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3.1 The cCPT sample

Figure 3.1: Optical microscope image of the cCPT showing the CPW forming the
λ/4 cavity, the coupling capacitor Cc, the gate and flux transmission lines. The insets
show a close-up of the interdigitated coupling capacitor, the connection of the cCPT
between the ground plane and the center line of the CPW, and a scanning electron
micrograph of the two 50 nm x 50 nm JJs forming the superconducting island between
them, which is gated by an electrode biased with a voltage Vg. Figure from [33].

3.1.1. Fabrication process

The cCPT sample we used is shown in Fig.(3.1). The first step in the making of

the cCPT is to sputter niobium (Nb) on to a silicon wafer. We use an undoped

silicon wafer with no oxide layer, but a high intrinsic resistance >20 kΩcm. The

co-planar waveguide (CPW) design that will form our λ/4 cavity is then patterned

by photolithography. The coupling capacitor is designed to have a capacitance of ≈ 8

fF, which should yield an overcoupled system (κext > κint) (see section 2.4). On the

other side of the coupling capacitor is an impedance matched transmission line which

will be connected through the PCB and to the fridge electronics denoted ‘In/Out’

in Fig.(3.1) through which we insert microwave signals into and out of the cCPT to

study its response.

The CPW, as its name implies, is a 2D microwave cavity where the center line and
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the ground plane forming the two conductors of the transmission are separated by

the Si dielectric. The two conductors are shorted at the right end of the transmission

line in Fig.(3.1), with a length of 5135 µm between the short and the interdigitated

coupling capacitor shown in the enlarged image in Fig.(3.1) corresponding to a res-

onant frequency of roughly 5.5 GHz. The other important parameter we control on

the CPW is the characteristic impedance (see section 2.1.4), which depends on the

geometry of the CPW in terms of the ratio of the spacing between the center line and

the ground plane; the width of the center line; and the thickness of the substrate.

Using the Eqns. in section 3.1.5 of [90], and based on Sonnet simulations, we settle

upon a center line width = 9.67 µm, and a spacing of 6.6 µm between the center line

and the ground plane for our 300 µm thick silicon substrate.

The photolithography step also defines the transmission line denoted ‘IΦ’ in Fig.(3.1)

which is shorted to the ground plane at its lower extreme and the one denoted ‘Vg’

which provides a gate bias to the CPT island. The Nb in the negative space defined

by the photolithography is then etched using a reactive-ion etch.

Once the Nb has been sputtered, it quickly forms a self-terminating oxide on its

surface. Our next step is to make the Al/Al2O3 JJs which need to hook up to the

ground plane and the center line of the cavity as shown in the inset in Fig.(3.1). In

order to facilitate contact between the Al and the oxidized Nb, we lithographically

define the rectangular gold (Au) pads shown in the inset. The sample is then placed

in a thermal evaporator equipped with an ion mill, pumped to 1× 10−6 Torr vacuum

levels, and the Nb on the exposed Au pad is milled clear of the oxide. A thin 10 nm

layer of Au is evaporated onto the rectangular spaces without breaking the vacuum.

The SQUID loop formed by the shorted cavity and the 2 JJs forming the CPT

shown schematically in Fig.(2.11) is imperative for the coupling of the CPT to the

cavity and hence to the operation of the device. This thin Au layer which is part of
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that SQUID loop also goes superconducting by virtue of the proximity effect [91].

The wafer is then diced into individual chips which are about 7 mm x 5 mm

broad. The JJs are then patterned using ebeam lithography one chip at a time.

The important design parameters for the CPT are the charging energy EC and the

Josephson energy EJ . As we saw in section 2.4, in order to see charging effects,

we want the charging energy to be quite high. The charging energy is in turn a

function of the self-capacitance of the CPT island, which is mostly dominated by the

junction capacitances, CJ (section 2.4). Using a parallel plate capacitor model, since

the typical thickness of the oxide formed between two Al electrodes is 1 nm, and the

relative dielectric constant for Al2O3 is 9.34, we shoot for junction sizes of 50 nm x

50 nm which corresponds to capacitances of 206.7 aF. For the CPT consisting of 2

such JJs, this gives an EC ≈ 47GHz. The other parameter we control independently

(though this also depends on the thickness of the oxide) is the tunneling resistance of

the junction which controls the critical current Ic and hence the Josephson energy EJ

through the Ambegaokar-Baratoff relation [82] (see section 2.4.1). We will see how

we can tune the tunneling resistance once we go through the Dolan bridge or shadow

evaporation technique for the CPT fabrication.

We begin the ebeam lithography process by cleaning off the protective photoresist

layer on the diced chips with the CPW patterned on it. We do this by putting the

chips in an acetone or PG remover bath at 50◦ c for 15 mins. We then rinse the chip

in IPA, blow dry it and sonicate in acetone and subsequently in IPA for 2 mins. Any

organic residue is removed by doing an O2 ash in an RIE for 2 mins at 30 W.

We use a bilayer ebeam resist stack with the bottom layer consisting of Microchem

MMA EL(9) spin coated for 45 s at 4000 rpm leading to a layer about 350 nm thick

and bake it on a hot plate at 150◦c for 1.5 mins. We then pre-expose the chip to UV

light for 3 minutes, with a generic store-bought UV light source. The second resist
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Figure 3.2: (a) Sequence of steps of the shadow evaporation technique showing the
patterning of a single rectangular structure. Notice the undercut formed in the resist
stack because the EL9 is more sensitive to the ebeam than the 950. The SiN is for
the cCPT-NR sample, but the process is identical for the cCPT, though without the
SiN. (b) This allows us to form two separated shadows of a single polygon structure
when it meets some design constraints (see text). The undercut using a bilayer stack
is also used in simple deposition techniques to facilitate liftoff.
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3.1 The cCPT sample

layer is a Microchem PMMA 950 A4 layer also spun on at 4000 rpm to a thickness of

200 nm, similarly baked for 1.5mins but at 180◦ c. The different baking temperatures

is as indicated on the datasheets for the respective resists, but doesn’t make too much

of a difference in practice. We then pattern the desired structure on this ebeam resist

using the Dartmouth electron microscopy facility’s FEI XL30/Scios2/Helios5 or the

Harvard CNS’ JEOL JSM 7000 using Joe Nabity’s excellent NPGS software. As with

high resolution SEM imaging, we use a high accelerating voltage (30 keV, the highest

setting on all the above microscopes), and relatively small aperture size yielding a

compact spot size for the finest structures (the JJs). An aperture corresponding to

the 21 pA beam current setting on the Helios5 worked well to produce sub-50 nm

structures.

After patterning, the resist is developed in methyl-isobutyl-ketone(MIBK):IPA::1:3

for 45 s and rinsed in IPA for 30 s. Organic residue on the exposed pieces of substrate

was again cleaned using a low power O2 plasma ash before mounting the chip in the

sample holder (stage) of our thermal evaporator. We have mechanical control on the

axis of the stage with respect to the evaporation source, and we use 10 rotations

of the screw in each direction of the horizontal mounting position (corresponding to

about 15◦ in each direction) for layer 1 and 2 of the deposition respectively. Having

loaded 99.999% pure Al pellets 1/8 ” dia. x 1/8 ” long from Kurt J. Lesker in the two

evaporation sources for layer 1 and 2 respectively, we pump the chamber to a high

vacuum of < 1× 10−6 Torr.

The idea behind the double angle technique is that the vertical ‘fingers’ of the ‘π’

shaped leads of the CPT (Fig.(3.1)) which form the source and drain of the CPT are

patterned to fall a few 100 nm short of the horizontal arm of the ‘π’ which forms the

island. So the 1st layer of deposition with the stage tilted by +15o will then overlap

with the 2nd layer of the vertical fingers and we can perform a controlled oxide growth
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3.1 The cCPT sample

on the first layer before the second layer is deposited on top of this oxide. The second

layer of the island deposition is visible in Fig.(3.1) as a floating piece of metal.

Fig.(3.2b) shows the geometry of a shadow. Using some simple trigonometry, we

have

tan θ1 <
u

t2
for P1 > 0,

tan θ2 <
u

t2
for P2 > 0, (3.1)

where u is the width of the undercut, θ1(2) are the tilt angles of the stage with respect

to the horizontal, and t1(2) are the thicknesses of the respective resist layers. u depends

on the chemical properties of the resist stack and the dose delivered to this structure

by the ebeam. In order for all of the deposited metal to land on the substrate and not

on the sidewall, we need P1, P2 > 0 and achieve this by attaining the above condition.

Deposition on the sidewall causes a slight peeling of that edge of the structure, and

is often visible as a bright spot of metal when the device is imaged after processing.

Deposition on the sidewall also makes liftoff harder. From Eqns.(3.1), we see that the

simplest way to prevent this from happending is by not tilting the sample too much.

We will see below that while a high tilt angle will increase the separation d between

the two layers, this should be avoided when possible and the increased separation

should be achieved in other ways (like controlling resist thicknesses t1 and t2 instead,

or by reducing the width of the patterned structure w).

We also see that

w1 = w − t1 tan θ1,

w2 = w − t2 tan θ2, (3.2)

where w1(2) are the widths of the structure deposited on the substrate during layer 1
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3.1 The cCPT sample

and layer 2 respectively, given that the width of the structure after development is w

on the top layer. We also have for the separation d between the two layers

d =
(
tan θ1 + tan θ2

)(
t1 + t2

)
− w, (3.3)

where we see that once the width of the patterned structure is larger than a given value

(usually a few 100nms), we don’t see any separation between the two layers, which

is why the larger structures patterned using the double angle evaporation method

appear as one solid piece, though you can see a small step around one edge of a large

step if inspected closely.

In practice, these equations above only work as guidelines which tell us which

direction to tune a certain parameter to achieve a certain effect, since most of these

parameters denoted here are nonlinear functions of control knobs such as the pat-

terned width, the dose delivered, the spin speed for the resist coating and so on,

which will all have to be sorted out by trial-and-error. These concerns of separation

and width are not crucial to the cCPT system, but we will see in a later chapter that

they are very important for the cCPT-NR design being implemented in chapter 6.

For the first layer of deposition which ultimately only forms the superconducting

island we put down only 7-10 nm of Al. This is done in order to make sure that

any quasiparticles, which are detrimental to the efficient functioning of the cCPT

(as we will see in section 3.3.2), are not long-lived on the CPT island. This is done

by engineering the superconducting gap of the island to be much higher than that

of the connecting leads which are deposited in layer 2. Refs. [92, 93, 94] study the

variation of the superconducting gap with thickness and for a thickness of 7nm, the

superconducting gap of Al is 300 µeV compared to about 200 µeV in the bulk. The

dependence of the island quasiparticle lifetime on the superconducting energies is

studied in [66], and will be elaborated in section 3.3.2.
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3.1 The cCPT sample

Depositing a thin layer of Al comes with its own challenges in terms of grain size

dependence on thickness of deposition [95]. We overcome this by cooling the stage

using liquid nitrogen during deposition. This reduces the kinetic energy of the Al

hitting the substrate and yields more uniform films.

The formation of the oxide between the superconducting electrodes forming the

JJs is done by a controlled introduction of 5% O2 and 95% Ar. Typical pressures we

use are about 54 mTorr for 5 mins to obtain normal state resistances of RN ≈ 10 kΩ

for each JJ when the size of the junction is nominally 50 nm x 50 nm. As mentioned

earlier, both CJ (and hence EC) as well as RN (and hence Ic and EJ) depend on the

size of the junctions and the thickness of the oxide layer. However, we typically use

the size of the junctions to tune EC , and the oxidation pressure and time to tune the

thickness to tune EJ , since CJ only depends weakly on the oxide thickness (which

itself depends rather weakly on the the pressure and time of oxidation), but RN ,

being a tunneling resistance depends exponentially on the thickness. The oxidation

also depends to a small extent on the rate of introduction of the gas and the rate at

which it is pumped out. So we tend to develop a procedure which is reproducible in

terms of slowly building up the pressure to the required value over a constant interval

of time and similarly for the pumping out, and don’t vary these aspects of the process

too much.

The second layer is then deposited and for the cCPT sample was 65-70 nm of Al.

This was sufficient to make contact with the Au on top of the 100 nm Nb because of

the sloped CPW sidewalls design described in [65]. We then let the stage which had

been cooled with liquid nitrogen warm up for a half hour in vacuum or with some dry

N2 introduced to hasten thermalization, in order to avoid contaminants settling on

the cold surface of the substrate. We then liftoff the metal in an acetone bath at 50◦

c for 10-15 mins, gently squirting acetone from a syringe on to the surface of the chip
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3.1 The cCPT sample

to aid liftoff. We then get rid of organic residue again by performing a low power O2

ash. The sample is now ready to be mounted on the PCB in the sample box.

3.1.2. PCB and sample box

The chip is then mounted in a receptacle on a printed circuit board (PCB) with some

paper cement (Fig.(3.3)). The PCB helps launch the microwaves to and from the

fridge cabling. The PCB is essentially also a set of CPWs, one for each of the control

lines indicated in Fig.(3.1) - the input/output line, the gate, and the flux bias. The

fourth transmission line visible in the Fig.(3.3) is for the NR described in chapter 6

and is not used for the cCPT device.

Figure 3.3: Image of the sample box showing the chip seated in a receptacle on the
PCB, which is screwed down to the sample box with SMA connectors to hook up to
fridge wiring. On the right is the inside of the lid of the sample box, designed to be
mode-filling.

The PCB is patterned on an Arlon AD1000 sheet, with vias (the holes in Fig.(3.3))

shunting top and bottom faces regularly along the face of the board. This is done to

prevent any parasitic modes between the two ground planes [96]. After being printed,
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3.1 The cCPT sample

the PCB is plated with Au, being careful to avoid the Ni based process that is the

industry standard and using a soft plating technique instead. This is to avoid any

magnetic effects from the Ni. The CPW traces on the PCB line up pretty closely

with those on the chip, and only short wire bonds are required to connect the center

line of the PCB CPW to that of the chip’s. We also fit in 2-3 wire bonds on the PCB

of each transmission line on the chip in an effort to lower the effective inductance

using the parallel combination of the bonds. To provide an effective uniform ground

on the chip, we make as many bonds as possible between the ground plane of the chip

and the ground plane of the PCB, all along the edge of the chip. We also connect

different sections of the ground plane on chip to equalize potential across its face to

suppress parasitic modes. These numerous wire bonds, though thin, also provide a

good thermal link between the chip and PCB.

The PCB is screwed down on to a sample box with SMA connectors soldered to

the CPWs on the board. The box is made of OFHC (oxygen-free-high-conductivity)

copper, which is plated in gold. In order to suppress cross-talk between different

transmission lines because of TE/TM modes propagating through the rectangular

waveguide like box itself, we use a mode-filling design for the lid of the box [97, 98].

This essentially places the cutoff frequency for the propagation of TE/TM modes

in the waveguide well above frequencies we are dealing with. This is especially a

concern in transmission mode measurements where you could have spurious signal

leakage from the input to output port, bypassing the sample, but could also affect

the cCPT which operates in reflection mode by coupling parametric or modulation

signals between the gate and flux port. The space in the lid above the sample is

filled with an absorptive material (black in Fig.(3.3)) made of silica, silicon carbide

and Stycast 1266 [99], to prevent both Cooper pair-breaking IR radiation as well as

stray microwave radiation from getting to the sample. The entire sample box is also
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3.2 Fridge RF and DC wiring

enclosed in a magnetic shield made of Cryoperm 10 when mounted on the mixing

chamber of the dilution fridge.

Section 3.2

Fridge RF and DC wiring

In this section, we discuss the setup of both the microwave and DC wiring in the

dilution fridge that we use to study the cCPT sample. We will go through some of

the considerations in the setup illustrated in Fig.(3.4).

3.2.1. RF wiring

Two important considerations in any kind of cryogenic circuitry are i) how much heat

is being transferred by any piece of wire between two stages at different temperatures

ii) how much electrical noise is being carried by it.

The electrical noise we are largely concerned about is the Johnson noise [100],

quantified by Nyquist [101, 102] which says that the noise power spectral density in

a resistor at temperature T is

S(ω) =
ℏω

e(ℏω)/(kBT ) − 1
, (3.4)

which is a one-dimensional form of the Planck blackbody law. At high temperatures,

this takes the familiar frequency independent form of the Johnson noise P = kBBT

over a bandwidth B. As we saw in section 2.4, the cCPT needs to work at low

temperatures where the thermal noise is quite minimal. The way this is typically

achieved in cryogenic circuitry is by attenuating the input wires to the fridge to

thermalize the noise at each temperature stage. This is the job of the 20dB attenuators

at various stages in Fig.(3.4). To equate the noise at two different temperatures T1

and T2, the amount of attenuation needed is the ratio of their power spectral densities.
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Figure 3.4: Wiring schematic of different temperature stages of the Oxford Kelvinox
400 dilution fridge used to measure the cCPT sample. Nb represents superconducting
niogium cabling, while SS represents stainless steel.
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A(f) = −10 log

(
e(ℏω)/(kBT1) − 1

e(ℏω)/(kBT2) − 1

)
, (3.5)

which for a temperature gradient from 300 K to 30 mK requires an attenuation of

about 70 dB. Too much attenuation also dissipates lots of heat, and should be avoided.

The stainless steel (SS) semi-rigid coaxial cables themselves also have some additional

loss, which all aid in the reduction of input noise. We will see in section 3.3.3 that the

total input attenuation on the input line is measured to be about 83dB. This ensures

that the power spectral density of the noise at the mixing chamber is less than 0.5

photons/Hz around the tunable frequency range of the cCPT.

The SS coax cables are a little more lossy than other materials such as copper,

but are poorer conductors of heat, which is also an important consideration for wires

between different temperature stages. The RF gate and flux lines combine with the

corresponding DC bias at a bias tee, before the combined RF+DC signal is fed to

the appropriate port of the sample. This allows us to easily tune the gate and flux

working point of the cCPT using DC voltages and currents, while also leaving open

the possibility to modulate the gate/flux as is done in [1] or to introduce parametric

tones at 2ω0 as we will see in chapter 5.

Since the cCPT works in reflection mode, the circulator at the mixing chamber

separates the input and the output signal. The reflected output signal is then carried

by superconducting zero-loss Nb cables to the first stage traveling wave parametric

amplifier (TWPA) [52] made at the MIT Lincoln lab. The TWPA acts close to the

quantum-limit of added noise, and we shall see the characterization of the added

noise of the amplifier chain in section 3.3.4. The output of the TWPA is connected

to a Low Noise Factory LNF LNC4 8C high electron mobility transistor (HEMT) by

another Nb cable through two isolators to minimize any back-action of the HEMT

on the TWPA.
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3.2 Fridge RF and DC wiring

It is important to note that any attenuation also adds noise at the physical tem-

perature of the attenuator[96]. This arises from the commutation relations, similar to

the added noise from a phase insensitive amplifier [103, 76]. While this means that no

noise is added by a lossy line at the same physical temperature as the noise temper-

ature of the signal passing through it, the signal will undergo attenuation, reducing

the signal-to-noise-ration (SNR). This is why we use Nb even between the sample

and the TWPA which is at the same temperature stage. Nb is also a poor conductor

of heat, which means we don’t have to worry about it conducting heat down to the

mixing chamber when used between the HEMT and the TWPA.

The TWPA works on the principle of four-wave mixing and requires a pump tone

around 6.7 GHz. After undergoing appropriate attenuation, this pump tone is coupled

into the input port of the TWPA along with the sample signal using a directional

coupler.

All RF lines are thermally anchored at each stage of the dilution fridge by wrapping

solder wick between the body of the coax and anchor posts on the fridge, all held in

place by Lakeshore GE varnish which is a good thermal conductor, but poor electrical

conductor.

3.2.2. DC wiring

The DC wires running the length of the dilution fridge are either 2-pair or 4-pair

twisted looms, 100 µm dia. The wiring down to the 1K pot stage of the cryostat

is made of Manganin, to minimize the heat transfer from room temperature to 4K,

which is the largest thermal gradient. Manganin has a poor thermal conductivity

(and also low thermal coeffiecient) compared to other commonly used materials like

copper. All of the DC wiring goes through a copper powder filter to filter out RF

signals [104]. It also passes through RC low pass filters. The gate line draws no current

and the filtering is straightforward, using an R = 10 kΩ and a C = 440 µF at room
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temperature (which drops by a factor of ≈ 10 upon cooling to base temperature),

which gives an LPF with a cutoff around 2.5 Hz. The flux line is typically biased

with currents of ≈ 50µA which corresponds to the Φ0 periodicity of our SQUID loop,

and a 10 kΩ resistor at the mixing chamber would produce 250 µW of power at the

mixing chamber, while the cooling power of the Kelvinox 400 is (unsurprisingly) 400

µW at 95mK. To avoid undue heat stress on the dilution fridge, the flux line is thus

filtered by an R = 1 kΩ at the 1K pot stage which can tolerate this heat load, and

superconducting cables run from that resistor to the mixing chamber (see Fig.(3.4)).

This yields a cutoff frequency of about 25 Hz for that line.

Similar to the RF cables, the DC looms are also thermally anchored using GE

varnish at all temperature stages of the dilution fridge.

In addition to the in-fridge wiring, we use an RC low pass filter with a cutoff

frequency of 200Hz at each of the gate and flux DC bias inputs at room temperature.

The resistor of the LPF on the flux line along with the 1k Ω resistor at the 1K pot

stage on the DC flux line serve to current bias the flux port of the cCPT.

Section 3.3

Experimental methods

In this section, we look at some common setups used in the experiments described

in the following chapters, and some of the analysis tools we use to extract useful

parameters and information from these measurements. In section 3.3.1 we describe

what is usually the first step in any experiment - to characterize the linear resonance

at a given cCPT bias point. This includes extracting the resonant frequency (ω0),

and the internal and external damping rates (κint and κext) based on the reflection

coefficient S11 derived in section 2.1.5. We will see how this quantity is changed by

the presence of noise in the tunable parameters - gate and flux as described in [73, 33].
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We will then see how we can use the Kerr induced photon number dependent resonant

frequency shift described in section 2.5.2 to quantify the attenuation of the input line

of the dilution fridge in section 3.3.3. In section 3.3.4, we then use this to determine

the added noise at the input to the amplifier chain as a function of the pump frequency

and pump power of the TWPA, and find the optimal parameters which minimize the

added noise at the input, thereby maximizing the signal-to-noise-ratio (SNR) of our

measurement. Finally, in section 3.3.5 we describe our setup to generate shaped pulses

followed by subsequent heterodyne measurement of the reflected signal to learn about

the dynamics of the system.

3.3.1. S11 measurement and analysis

We use a vector network anaylzer (VNA), the Agilent E5071C, to obtain the reflection

coefficient S11 of our tunable cCPT. We work here in the low input drive limit, where

the Kerr and higher order effects can be neglected, so the Hamiltonian of the system

looks like that of Eqn.(2.125) with all terms with k ≥ 3 set to 0. In addition to the

S11 of the cavity, the measurement includes the attenuation of the input line (η(ω))

and the gain of the amplifier chain (G(ω)) which are both also complex coefficients.

So the VNA measures

SVNA
21 (ω) =

√
|G(ω)|
|η(ω)|

eiθ(ω)S11(ω), (3.6)

where we have absorbed the phases of G(ω) and η(ω) into one phase θ(ω). The VNA

measures this reflection coeffiecnt across two different ports because of the separation

of the input and output signals by the circulator in Fig. (3.4). We use the method

described in [67] where we average the reflected SVNA
21 (ω) across a range of cCPT flux

biases to quantify the pre-factor to S21(ω) in Eqn.(3.6) which we call the ‘background

gain profile’ and use this to extract the S11(ω) at the sample. We can then fit this to
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our model Eqn.(2.31) to extract the parameters of the cavity at a given bias point.

We also include the effect of Gaussian resonant frequency fluctuations [73, 33].

These occur because of changes to the charge environment caused by TLSs on the

substrate of the CPT [105, 106] and by flux noise from unpaired surface spins [106,

107]. These fluctuations get averaged into the measured S11(ω), and we will see later

that the standard deviation of these resonant frequency fluctuations sets an error

bar on the precision with which we can drive the cCPT at a desired detuning. The

modified S11(ω, σω0) then becomes [73]

S11(∆) = 1−
√
π

2

κext
σω0

w

(
(iκtot − 2∆)

2
√
2σω0

)
, (3.7)

where w(z) = e−z2erfc(−iz) is the Faddeeva function, σω0 is the standard deviation
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Figure 3.5: Reflection coefficient S11(ω) for a cCPT bias point (ng,Φext) =
(0.65, 0.11). The x’s represent data, the blue solid line is a fit to Eqn.(2.31), the
red to Eqn.(3.7), and the black is with the rotation correction described in [108]. (a)
is the polar plot of S11(∆), (b) is the magnitude of (S11(∆)) as a function of detuning
and (c) is the phase of the reflection coefficient.
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of the resonant frequency fluctuations, and ∆ = ω − ω0 is the detuning as before.

In addition to this correction to the measured reflection coefficient, we also see a

rotation of the measured S11 about the off-resonant point. This often arises as a

result of impedance mismatches between the sample and the biasing circuitry [108].

We account for this by fitting a model that shifts the entire polar plot of the measured

S11(∆) such that the off-resonant detuning falls at (0, 0). We then perform an SO(2)

rotation followed by shifting the off-resonant detuning back to (1, 0). Fig. (3.5)

shows the obtained data and the fits corresponding to the model with no resonant

frequency fluctuations, with frequency fluctuations but no impedance mismatch, and

the model with impedance mismatch respectively. It can be seen that the fit without

frequency fluctuations cannot account for the squashing of the S11 in Fig.(3.5a) which

is taken care of by the fluctuations model. The rotation of about 4.15◦ is necessary

to correctly extract all other parameters, yielding ω0/2π = 5.7967GHz, κint/2π =

1.01MHz, κext/2π = 0.99MHz and σω0/2π = 0.75MHz respectively.

3.3.2. Quasiparticle Poisoning (QP) and effect on S11.

Figure 3.6: Gate variation of resonant frequency for (a) cCPT sample with EJ =
14.8 GHz and EC = 54.1 GHz (b) cCPT - NR sample described in chapter 6 with
EJ = 9 GHz and EC = 27 GHz. Each sample shows different levels of quasiparticle
poisoning. The crosses and circles are the simulated values for the odd and even
bands respectively for corresponding parameters.

We saw in Fig.(2.12b) that we expect to see a clean periodic variation in the linear
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resonant frequency of the cCPT with a period of 2 gate electrons. In real systems,

this picture is often distorted by the fact that quasiparticles can tunnel to and from

the CPT island. Each time a quasiparticle tunnels on to the island, the effective

gate charge goes to n′
g → 1 − ng, where ng is the desired gate bias of the cCPT

corresponding to an applied voltage at room temperature. The resonant frequency

shifts accordingly, shifting back when the quasiparticle tunnels off the island. These

‘poisoning’ and ‘ejection’ rates are typically of the order of 1-100 kHz [66, 109]. So

during an acquisition of S11 using a VNA as described above, the instrument averages

over both resonant frequencies (when biased away from ng = 0.5), and the result looks

as shown in Fig.(3.6) where the smaller values of the colour plot (bluer hues), represent

a dip in the S11 and a corresponding resonance at that frequency. We sometimes see

resonances corresponding to ng values in the even band (explained below), sometimes

resonances corresponding to n′
g in the odd band, and sometimes both, when the

switching times are much less than the measurement times.

We see that the scans from the cCPT sample, Fig.(3.6a) shows two resonances only

for a small range of ng values around ng = 0.7. As in [66], we refer to the ‘odd band’

as the manifold where a quasiparticle exists on the island and the ‘even band’ as the

manifold where there isn’t one. If the system is perfectly shielded from Cooper pair-

breaking radiation, no quasiparticles are generated, and this section becomes moot,

but assuming a quasiparticle is created, we can have two possible configurations - (i)

the quasiparticle lives on the island (odd parity) and (ii) the quasiparticle lives on

the lead (even parity). Following [66], the energies of the system in each of these

configurations is

ECPT
even (ng,Φext) = ECPT

0 (ng,Φext) + ∆l, (3.8a)

ECPT
odd (ng,Φext) = ECPT

0 (ng + 1,Φext) + ∆i, (3.8b)
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where ∆l(i) is the superconducting energy gap in the leads and island of the CPT

respectively, and so Eqn.(3.8a) represents the energy of the system when a quasipar-

ticle is created on one of the leads of the CPT, which doesn’t change the parity and

the CPT remains in the even band. Eqn.(3.8b) represents the energy of the system

when a quasiparticle is created on the island and this does change the parity. As

long as the energy difference ∆E(ng,Φext) = ECPT
even (ng,Φext)− ECPT

odd (ng,Φext) > 0, it

is energetically favourable for the quasiparticle to reside on the island, and we are

more likely to be in the odd band. The ejection out of the island is then an activated

thermal process with an energy barrier ∆E. Similarly, if ∆E < 0, a quasiparticle on

the leads is more likely. This keeps the CPT in an even parity, and the poisoning

of the island which would drive us into the odd band is an activated event with a

barrier ∆E [66]. ∆E is, of course, a function of the CPT band structure and varies

with ng. We see in Fig.(3.6a) that the crossover from ∆E < 0 close to ng = 0 to

∆E > 0 happens around ng = 0.73. Close to that gate bias, the activation energy

∆E is small enough that we see hopping back and forth between the two states within

the measurement timescales of the VNA. Far away from this region, one or the other

parity state is more probable and we live completely in the even band for ng < 0.7

and completely in the odd band for ng > 0.81. Note that this means that the cCPT

cannot be operated effectively at gate points close to charge degeneracy (ng = 1)

where the slope of the ω0 vs ng curve is largest and the system is most sensitive to

charge.

Eqns.(3.8a) and (3.8b) explain why we chose to decrease the thickness of the island

(and hence increase ∆i) - this will help reduce ∆E and ensure that we stay in the

even parity across a larger range of ng. Simulating the energy bands for the CPT

parameters for both figures in Fig.(3.6), we plot Fig.(3.7). In Fig.(3.7a), we mark

the lines corresponding to ng = ±0.71 where we empirically begin seeing QP. This
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Figure 3.7: Gate variation of ∆E(ng,Φext) simulated for (a) cCPT sample with EJ =
14.8 GHz and EC = 54.1 GHz(b) cCPT - NR sample described in chapter 6 with
EJ = 9 GHz and EC = 27 GHz. The spread of each curve is for different Φext, and
we see that there isn’t much variation with the flux, which we ignore here.

corresponds to the δ∆ = ∆i −∆l =80 - 90µeV (we’ll probably start seeing switching

when ∆E is a little less than 0).

Based on the model in [66] which assumes that quasiparticles are created only on

the leads with a creation (destruction) rate Γc(d), using detailed balance we have

R(ng,Φext) ≡
peven
podd

=

(
1 +

Γd

Γc

)
e−∆E(ng ,Φext)/(kBTeff), (3.9)

where peven(odd) is the probability of being in the even(odd) band respectively and Teff

is the effective electron temperature that provides the energy kick to transition across

the activation barrier.

Fig. (3.8) shows the range of gates over which we see QP at a flux bias of Φext = 0.

We see that as we move across from lower to higher gate values, the even band

resonance (larger spread of resonances at higher frequencies), becomes smaller (less

probable) and the opposite effect is observed for the odd band resonances at lower

frequencies. The larger spread of the even band compared to the odd is because of

the fact that it is more sensitive to charge at these gate values. From the empirical

fact that we see both even and odd band resonances between ng = 0.71 and ng = 0.81

(Fig.(3.8)) and from Fig.(3.7a) we have δ∆E = ∆E(0.81, 0)−∆E(0.71, 0) = 35µeV,
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Figure 3.8: S11 of the even and odd resonances for the cCPT sample for flux = 0 at
a range of gate biases where the lifetime in both bands is comparable.

between these two gate points, and estimating that peven(odd) = 0.9(0.1) → 0.1(0.9) in

that range (this is a little hand-wavy, but we will describe a technique which could

potentially be used to quantify this in the next section), we can extract an estimate

for the effective temperature that the quasiparticle is seeing to be

R(0.71, 0)

R(0.8, 0)
= eδ∆E/(kBTeff), (3.10)

=⇒ Teff =
δ∆E

kB ln 81
= 92 mK. (3.11)

Like we said above, this is only a rough upper limit given the fact that the values

of 0.9 and 0.1 we used are not exact, but this is a reasonable estimate since the less

probable resonance is essentially invisible on a VNA measurement at these points.

We now estimate δ∆ = 90 µeV based on chapter 6 of [92] for the fabricated

thicknesses of 7 nm and 65 nm for the island and leads respectively. Using this and

from Fig.(3.7a), we have ∆E(0.71, 0) ≈ 0. Plugging this back into Eqn.(3.9), using

the Teff we estimated, we have Γd/Γc = 8 for this cCPT device. The origin of the
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quasiparticles is not well understood. For this device, the destruction rate outweighs

the creation rate by an order of magnitude.

In the cCPT-NR device in Fig.(3.6b), we see QP across all ng values. In fact

we see this sort of behaviour across all devices fabricated with the cCPT-NR design

that we will discuss in 6. To begin, the variation between the extreme values of ∆E

(Fig.(3.7)) is much smaller for these devices, for which the charging energy EC is

smaller. This is because the self-capacitance of the CPT when the NR is included is

much higher than the cCPT device. This automatically means that the trap height

for escape from odd to even or even to odd parity (depending on the sign of ∆E) is

much smaller across all ng. Both the cCPT and the cCPT-NR device were fabricated

with an island thickness of 7 nm and leads 60-65 nm. We can assume that they had

similar δ∆ = 90 µeV.

We do not attempt to quantify the effective temperature for this device since we

don’t have a good sense of the ratio R(ng,Φext), but we expect a higher effective

temperature and/or a smaller ratio for Γd/Γc given the fact that we see both bands

across all ng values.

Reflection coefficient in the presence of QP

Similar to section 3.7 where we saw that the S11 changes as a function of Gaussian

noise on the gate and flux, we can now see how the S11 changes due to QP. In this

case, we have a Poisson process, and expect to see an S11 that is a weighted average

of the S11’s corresponding to the even and the odd bands at a given ng, where the

weight is set by peven. So we expect for the Poisson weighted S qp
11 (∆)

S qp
11 (∆) = pevenS even

11 (∆) + poddS odd
11 (∆), (3.12)

where S even
11 (∆) is the reflection coefficient defined in Eqn.(3.7) for a particular gate

value ng, and S odd
11 (∆) is that which corresponds to the value 1− ng.
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Figure 3.9: Simulated S11 for ω
(even)
0 = 5.55 GHz, ω

(odd)
0 = 5.6GHz, κ

(even)
int = κ

(odd)
int =

0.4 MHz, κ
(even)
ext = κ

(odd)
ext = 1.5 MHz , σ

(even)
ω0 = σ

(odd)
ω0 = 0.5 MHz with (a) peven = 0.5

and (b) peven = 0.85.
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We simulate this reflection coefficient for some nominal values of cavity parameters

in Fig.(3.9). We see that if we fit to each of the even and odd band resonances without

taking into account the weighted effective S11, we wind up with values for the damping

rates such that both κtot and the coupling ratio κint/κext [73] go up. The S11
(odd)

(∆)

gets rotated one way and the S11
(even)

(∆) in the other direction.

We observe this effect in data around the bias points where both bands are visible

during a VNA S11 measurement. Two such plots and fits are presented in Fig.(3.10).

The data at such high ng values makes it hard to distinguish between internal damping

and frequency fluctuations (which have the a similar effect [73] on the q-cirlces), but

notwithstanding this deviation, we can still see good fits, and that the two effects

described above are clearly visible.

We also see a frequency dependent variation in damping rates [33] in this cCPT

sample. To distinguish that effect from the QP induced apparent change in damping

parameters, we perform these measurements at ng which results in a finite probability

in both bands, and then move to two different bias point where the resonant frequency

matches up with either the even or odd band resonance of our first test. We ensure

that we stay entirely in the even band at these latter two bias points, by ensuring

that |1− ng| > 0.3. This is shown in Fig.(3.11) where we see different damping rates

and rotation angles for similar resonant frequencies.

In addition to this weighting effect which arises because of the switching statistics

of the CPT, quasiparticles also have a detrimental effect on the κtot of any microwave

cavity [99]. Where possible, every shielding precaution should be taken to keep out

Cooper-pair breaking radiation [99, 110]. This was one major setback that needs to

be resolved in the fabrication of the cCPT-NR devices discussed in chapter 6.

We were unable to reliably fit the Poissonian weight model to QP data to extract

meaningful values for the actual damping rates along with appropriate probabilities.
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Figure 3.10: Data and fits agnostic to the effects of QP weighting. Fitting separately
to the even (red) and odd (blue) band resonances for two different bias points of the
cCPT device. In (a) (ng,Φext) = (0.775, 0) and (b) (ng,Φext) = (0.790, 0).
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and odd band resonances are at ω
even(odd)
0 = 5.7082 GHz and 5.7402 GHz respectively.

(b) Two different bias points as indicated, with similar resonance frequncies to the
dips in (a). We see considerably different damping rates between the two plots which
is the effect of the Poissonian weighting between the even and odd states in (a).83
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Such a model consists of 9 free parameters even if we fix the resonant frequencies to

be the minima of S11, and this becomes an overfitted model.

3.3.3. Estimating the attenuation on the input line

We use the idea described in [33] to characterise the attenuation of the input line of

the fridge (see Fig.(3.4)). As we drive the cCPT at different input drive strengths,

we use the intracavity photon number dependent Kerr mediated resonant frequency

shift to estimate the number of intracavity photons and hence the photon flux in the

input transmission line. This should depend linearly on the power output by the

signal source with the slope linearly related to the attenuation of the input line of the

dilution fridge along with other parameters such as the linear damping rates.

First, we relate the intracavity photon number to the power in the transmission

line. In order to do this, we assume that the Hamiltonian of the system is that of a

linear cavity, which is a good approximation at the low powers we work at for this

measurement (the Kerr shift is less than the cavity linewidth, typically corresponding

to < 3 intracavity photons). So, we have for the cCPT Hamiltonian HcCPT = ℏω0a
†a

where we have assumed that we are working at a fixed flux and gate bias point with

corresponding resonant frequency ω0. The quantum Langevin equation Eqn.(2.66)

then gives us

ȧ =

(
− iω0 −

κtot
2

)
a+

√
κextain(t) +

√
κintbin(t). (3.13)

Since the input tone is a pure sine wave at frequency ωd of the form ain = αine
−iωdt.

We expect the steady state response of the cavity to be at this drive frequency. We

thus make the ansatz a = αe−iωdt, ȧ = −iωdαe
−iωdt and the average cavity occupation
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n = |α|2 = a†a. Plugging this ansatz into Eqn. (3.13) we obtain

[
− i∆+

κtot
2

]
α =

√
κextαin,[

i∆+
κtot
2

]
α∗ =

√
κextα

∗
in. (3.14)

where ∆ = ωd−ω0 again. Multiplying the above two equations together, we have for

the intracavity photon number n

n = |α|2 = κext|αin|2

∆2 + κ2tot/4
(3.15)

For an on-resonant drive, and defining Pin = ℏω0α
2
in, we have

n =
κextPin/ℏω0

∆2 + κ2tot/4
(3.16)

This Pin is the input power in the transmission line at the coupling capacitor

of the cCPT. This is related to the power put out by the signal generator Psg by

Pin = η(ω)Psg. Using this in the cCPT Hamiltonian above, but including the Kerr

term in Eqn.(2.128), we have for the resonant frequency

ω Kerr
0 = ω0 +Kn = ω0 +

Kκextη(ω0)Psg/ℏω0

κ2tot/4
, (3.17)

where ω Kerr
0 is the shifted resonant frequency in the presence of n intracavity photons.

Fig.(3.12) shows this measurement for two different bias points. We obtain the

input attenuation of the input line of the fridge to be 82.9 dB with less than 1 dB

variation between 5.7 and 5.85 GHz, the tunable range of the cCPT. This is an

important calibration which will help us estimate the intracavity photon number in

all our experiments. In addition, this will help us calculate the gain and added noise of

our amplifier chain as we will see in the next section. These are important quantities
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Figure 3.12: Intracavity photon number dependent shift of the resonant frequency
for two different cCPT bias points. (a) (ng,Φext) = (0, 0.53Φ0) (b) (ng,Φext) =
(0, 0.03Φ0) with corresponding K = 492 kHz and −462.7 kHz respectively.

because they determine the signal-to-noise-ratio (SNR) of our measurements, and

require some optimization over the pump parameters of the TWPA.

3.3.4. Amplifier chain calibration

Knowing the attenuation of the input line of the dilution fridge, we now use the

technique described in [67] to obtain the gain G(ω) and added noise nadd of the

amplifier chain both of which will be referred to the input of the first stage amplifier -

the TWPA.We will then use this technique to findG(ω) and nadd for a range of TWPA

pump parameters (pump power and pump frequency), and obtain the parameters for

optimum SNR.

The first step in this process is to measure the gain G(ω). Knowing η(ω), this

is done directly using a VNA measurement with all the system amplifiers in their

desired state and Eqn.(3.6) by ensuring that S11(ω) is 1. This is the case for any off-

resonant point a few linewidths away from the tunable cCPT resonance. In principle,

by biasing the cCPT at two flux points on either end of the resonant frequency vs

flux sinusoid, we can measure the G(ω) at all frequency ranges of interest. We then

directly have

G(ω) =
√
η(ω)SVNA

21 (ω), (3.18)

where the square root is because the VNA measures the voltage ratio. We will drop
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the frequency dependent notation going forward.

Once we have G, with all the amplifiers still in their desired state, we measure the

power spectral density from the amplifier chain on a spectrum analyzer (SA) when

there is no input drive. The input to the amplifier chain (input to the TWPA) is then

the thermalized noise at the mixing chamber, which is essentially the 0.5 photons of

quantum noise nqu. At the output of our first stage amplifier which has gain G1 and

adds a noise n1 referred to its input, we have

n
(1)
out = G1

(
nqu + n1

)
(3.19)

Assuming no attenuation between the first stage TWPA and the second stage HEMT

at the 1k pot stage (see Fig.(3.4)), which is a reasonable assumption since the cables

are superconducting Nb, and the only loss is in the insertion loss of the two isolators

which is typically < 0.5 dB each, we have for the noise at the output of the HEMT

n
(2)
out

n
(2)
out = G2(n

(1)
out + n2)

= G2G1

(
nqu + n1

)
+G2n2, (3.20)

where n2 is the added noise of the second stage amplifier (HEMT). The noise at the

output of the second stage referred back to the input of the entire amplifier chain

n
(2)
chain,in is then (we divide by G1G2)

n2
chain,in = nqu + n1 +

n2

G1

≈ nqu + n1 (3.21)
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where we have made the assumption that n2/G1 ≪ 1, which is justified for our

system, where the HEMT has a noise temperature of ≈ 4 K≡ 14.5 photons at 5.8

GHz. The TWPA typically has a gain of 18-20 dB [52] which corresponds to a factor

of between 63-100. Eqn.(3.21) is saying that the added noise to the amplifier chain

is dominated by the added noise of the first stage amplifier, which is the hallmark of

any good amplifier chain design. Using this result, the total output noise at the end

of k amplifier stages will be nk
out = G1G2...Gk

(
nqu + n1

)
, which is the power spectral

density (PSD) the SA measures, P SA
no input. The k amplifier stages may include any of

the discrete attenuation stages in the output line of the setup too, and the net gain

of the amplifier chain we measured earlier is G = G1G2....Gk. So we then have

nqu + n1 = nadd =
P SA
no input

G
. (3.22)

We typically measure the power spectrum over a small span with resolution band-

width on the SA set to 1 Hz and a 1 Hz frequency spacing, so that the power spectrum

is the same as the PSD. We can then directly convert this PSD which is in dBm/Hz

to photons/Hz and also to an equivalent noise temperature.

We perform these gain and noise measurements for a range of pump powers and

pump frequency close to the edge of the dispersive feature that marks the resonance

of the resonance phase matching circuitry in the TWPA [52]. The surface plots of the

average gain and average added noise of our amplifier chain at two discrete frequencies

5.7 and 5.8 GHz which lie in our cCPT tunable range are shown in Fig.(3.13). We

perform a coarser scan of pump parameters before narrowing down to the range of

pump parameters shown here, and finally settle upon a pump frequency of 6.767 GHz

and a power setting of -2.25 dBm of a dedicated signal generator. The average gain

G at this setting is 86 dB, and the mean added noise is nadd = 4.67 photons which is

close to the quantum limit of phase-insensitive amplification of 1 photon [103]. This
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Figure 3.13: Gain and added noise of the amplifier as a function of the pump power
and pump frequency to the first stage TWPA.

corresponds to a noise temperature of 1.2 K.

We note that as long as the TWPA gain is sufficient to justify the approximation

in Eqn.(3.21), minimising the added noise nadd by the process described above is the

primary indicator of high SNR as opposed to large gain as is some times mistakenly

the goal.

3.3.5. Heterodyne measurement

Most modern digital instruments that are measuring an analog sinusoidal signal are

doing some variation of the same thing. They have an analog-to-digital-converter

(ADC) that samples the incoming sine wave several times during its period, creating

a digital output value for each of those time points. They can then do all kinds of

processing on this signal to obtain the required information. In the microwave band

(5.8 GHz corresponds to a time period of 170 ps) that we are working in, however,

modern electronics isn’t fast enough to sample the waveform multiple times in a single

period, and attempting to read out a 5.8 GHz waveform with a 1 GS/s device will
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lead to severe aliasing. Most devices use an intermediate step where the sine wave of

interest is mixed to a lower ‘intermediate frequency (IF)’ which can then be sampled

multiple times per waveform. This is done with the use of a mixer, which in its essence

is a diode with a nonlinear I-V relationship which gives rise to sum and difference

frequencies of the frequencies input to it while working in the analog world. It uses a

‘local oscillator’ (LO) tone which is multiplied to the signal of interest, the RF. The

difference is typically the IF, and the higher (sum) frequencies are filtered out before

being sampled by the ADC. Such a process of mixing down to lower frequency and

digitizing is known as a super-heterodyne measurement, homodyne when the mixing

is down to the baseband.

Figure 3.14: Schematic for a pulsed heterodyne measurement. The input stage con-
sists of a mixer whose output can be shaped by the AWG. The output stage consists
of a heterodyne measurement operating at an ωIF/2π = 21 MHz.

The VNA and the SA mentioned previously at some level both work by mixing

down the RF while ramping an LO across the desired span of the measurement. While

the VNA is also capable of performing a heterodyne measurement at a given frequency
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as a function of time, we are interested in performing these measurements using pulses

whose amplitude envelope as well as frequency are shaped. We also need to perform

measurements precisely triggered in time in order to match the phases across different

pulse trains. For these reasons, we use the circuitry shown in Fig.(3.14).

Since the bandpass filters we use, as illustrated in Fig.(3.14) have a pass band

between 19.6 and 23.4 MHz, we choose to work with an IF at 21 MHz on the output

(ω
(out)
IF ). Though people do work the AWG at baseband with just a modulation

envelope which drives the input mixer in Fig.(3.14), this is susceptible to 1/f and

other low frequency noise such as 60 cycle electrical line noise and so we choose to

work with a carrier at ω
(in)
IF = 84 MHz instead (we explain this particular choice

below, though this exact value drive frequency is not necessary when not performing

waveform averaging). We do some times use frequency chirped waveforms to initiate

the cCPT in a preferential oscillation state as we shall see in chapter 4, but our

steady state drive at the end of the chirp ramp, which is when we actually perform

any readout, corresponds to ω
(in)
IF = 84MHz on the AWG. We then set our input

LO (ω
(in)
LO ) 84 MHz red detuned to the desired driving frequency, ω

(in)
RF , and the right

sideband of the mixing output falls at ω
(in)
RF . That is to say

ω
(in)
RF = ω

(in)
LO + ω

(in)
IF . (3.23)

Similarly the output LO at ω
(out)
LO is blue detuned from the drive frequency by

ω
(out)
(IF) = 21 MHz. We then have

ω
(out)
IF = ω

(out)
LO − ω

(out)
RF (3.24)

where we note that ω
(out)
RF = ω

(in)
RF since the cavity is driven and responds at the same

frequency.
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By placing the input and output LOs on opposite sides of the drive frequency

(ω
(in/out)
RF ) as in Fig.(3.15), we minimize the chance of a stray mixing product winding

up in our output measurement bandwidth, and don’t worry about suppressing or

filtering the unwanted sideband of the input tone. Some setups also use the same LO

for the input and the output side. Though this makes phase-locking easier, we would

then have to ensure careful image rejection (or filter out the image, LO and the input

IF). This is a valid concern for our cCPT sample since it operates in reflection mode,

and any unwanted signals (such as the red sideband of the input mixing product) will

be present in the output signal and contribute to ω
(out)
IF , but will carry no information

about the cCPT dynamics. The sampling rate of the AWG is set at 840 MS/s, and

that of the ADC at 168 MS/s which are multiples of 21 and 84, and ensure that we

can perform waveform averaging since the ADC would then sample the same phase

points on a continuous sinusoidal signal. This ensures that all relevant waveforms in

our system will have the same relative phase (and will be sampled at least once, and

often more) every 1/21×106 = 47.62ns which could be useful if performing waveform

averaging. Whole number (in MHz) frequencies ensure that for an experiment repeat

time that is a multiple of 1 µs every individual pulse will have the same phase at the

start of each iteration of an experiment.

It is of paramount importance that both LOs are phase locked using a 10 MHz

reference from a single signal generator that is distributed by an RF distribution

amplifier. Another important idiosyncrasy of our setup is that the AlazarTech ATS

9462 ADC we use has a not-so-good phase locked loop. Feeding it a 10 MHz reference

to lock to the other instruments caused discrete jumps in phase over time. The

workaround to this was to feed it a fast 800 mVpp clock signal at the desired sampling

frequency (168 MS/s) from a separate signal generator that was in turn phase locked

using a 10 MHz reference to the LOs of the main setup.
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w

Figure 3.15: Illustration of the involved frequencies in our setup. The local oscillator
tones are denote in black. The mixing products of the input tone are shown in red
and blue.

The bottom line in a heterodyne measurement is to measure a time-varying signal

which has been mixed down to a carrier frequency ωIF so the signal is of the form

V (t) = A(t) sin
(
ωIFt+ ϕ(t)

)
(3.25)

= I(t) sin
(
ωIFt

)
+Q(t) cos

(
ωIFt

)
, (3.26)

where A(t) =
√
I(t)2 +Q(t)2 and ϕ(t) = tan−1

( I(t)
Q(t)

)
.

The most common way to measure I(t) and Q(t) is to achieve the mixing down

using an IQ mixer, which splits the incoming RF into two branches, each of which

is mixed down using two branches of the same LO, one of which goes through a

quadrature hybrid. The mixed output of each of these branches is then 90◦ out of

phase with each other, and the two channels of the ADC together (or at some times in
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the IF period just one of them while the other is 0) contain all the information about

I(t) and Q(t) at any sampled time instant. So the bandwidth of the measurement

is only constrained by the sampling rate (which is 168 MS/s for us). However, we

choose not to use this technique because this requires good calibration to account for

imbalances in the two arms of the mixer output. Instead we use what is described in

[90] as ‘digital heterodyning’, which we now describe here.

As we saw earlier, after mixing down with a double-balanced mixer, we have

Eqn.(3.25). In order to extract A(t) and ϕ(t) or equivalently I(t) and Q(t), we

digitally multiply V (t) by cosωIFt and separately by sinωIFt, and average each over

a full IF period. We then have for the averaged quantities I(t) and Q(t),

I(t) =
ωIF

2π

∫ t+2π/ωIF

t

dτA(τ) sin
(
ωIFτ + ϕ(τ)

)
cosωIFτ

= A(t) sinϕ(t), (3.27a)

Q(t) =
ωIF

2π

∫ t+2π/ωIF

t

dτA(τ) sin
(
ωIFτ + ϕ(τ)

)
sinωIFτ

= A(t) cosϕ(t), (3.27b)

(3.27c)

where the over bar represents the average value over a single IF period. To obtain the

amplitude and phase of the original signal V (t), we then have A(t) =
√
I(t)2 +Q(t)2

and ϕ(t) = tan−1
(
I(t)/Q(t)

)
.

We see now that at the expense of not having to worry about mismatches between

the two arms of an IQ setup, the digital homodyne technique is not sensitive to

changes of A(t) and ϕ(t) that happen faster than an IF period, i.e., in our case

ωIF/2π = 21 MHz sets the bandwidth of the measurement. In studying the cCPT

sample, the fastest that information about changes in the cCPT can leak out of the

microwave cavity is of the order of the cavity linewidth, which is bias point dependent
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to a small degree [33], but of the order of 1.5 MHz. So we see that this bandwidth

limiting property of the digital heterodyne technique is not really a constraint for us.

We perform this averaging as a convolution of the measured voltage signal with a sine

and a cosine wave respectively on Matlab.
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Figure 3.16: Standard deviation of the measured phase for the TWPA pump pa-
rameters in section 3.3.4 measured at an off-resonance point just outside the tunable
range of the cCPT vs (a) averaging time for different input powers, (b) input power
for different averaging times.

To see what kind of phases our setup can resolve, we now input an off-resonance

continuous tone at a steady frequency to the cCPT and measure the reflected phase

as a function of time. We expect to see a steady phase in the absence of noise, but

for this real noisy system (dominated by amplifier noise, see section 3.3.4), we plot

in Fig.(3.16) the standard deviation of the phase as a function of averaging time for

different input powers, and as a function of input power for different averaging times.

We see the expected 1/
√
t behaviour against averaging time. From the measured

noise temperature in section 3.3.4, we can calculate the noise power in a bandwidth

B = 10 MHz around the center of the bandpass filter in Fig.(3.14) using Pnoise =

kBBTN ≡ −127.8 dBm where TN = 1.2 K is the noise temperature. We simulate a
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pure sine signal at -128 dBm along with noise with a standard deviation of voltage

given by 125.87 nVp ≡ −128 dBm, and we see a standard deviation in phase of

21.5◦, which is for an averaging of ≈ 50ns corresponding to the IF period. We see in

Fig.(3.16) that for -128 dBm and an averaging time of 250 ns, the measured standard

deviation in the phase is 20◦, which is in pretty close agreement (within factor of 2 of

√
averaging time) which inspires confidence in our noise temperature/added photon

noise measurement.
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Chapter 4

Charge sensing using the cCPT as

a cavity Bifurcation Amplifier

In this chapter, we first derive the theory behind the classical dynamics of the cCPT

as a Kerr cavity (section 2.5.2) when driven close to its resonant frequency with a

drive strength that corresponds to several intracavity photons. In section 4.1, we will

see how the cCPT response bifurcates into a bistable regime over a certain frequency

range when driven at high enough drive powers and derive the conditions on the in-

put drive tone as a function of the Kerr coefficient and the damping rates neccessary

for bistability. We then introduce the idea behind using this bistability to perform

sensitive threshold charge detection, similar to the threshold amplifier known as the

Josephson bifurcation amplifier (JBA) [34, 35, 38, 39]. In section 4.1.1, we will then

see that in the presence of fluctuations which cause spontaneous transitions between

the two metstable states in the bistable region, the threshold for detection is broad-

ened because of a non-zero probability of being found in either of the bistable states

in a region around what would be the threshold for an ideal non-fluctuating system.

This effectively decreases the sensitivity of the detector. We look at experimental

data from the cCPT in section 4.2, where we see the first signs of bistability as hys-
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4.1 Kerr cavity theory

teresis in section 4.2.1. In section 4.2.2, we study the populations of the metastable

states as a function of a range of relevant parameters, and finally demonstrate resolv-

ing two charge states separated by 0.09e in a single-shot readout with an input drive

corresponding to < 25 intracavity photons with a fidelity of 94%.

Section 4.1

Kerr cavity theory

We begin by rewriting the Hamiltonian of the cCPT retaining non-linear terms to

the Duffing order as in section 2.5.2. Applying the RWA for drive tones close to the

linear cavity resonance as before, we have

H = ℏω0a
†a+

1

2
ℏKa†2a2 (4.1)

= ℏ(ω0 +
K

2
a†a)a†a− 1

2
ℏKa†a (4.2)

≈ ℏ(ω0 +
K

2
a†a)a†a, (4.3)

where ωo is the bias point-dependent resonant frequency, K is the strength of the

Kerr term at the bias point, and we neglect the last term in the Hamiltonian because

K < κtot and K ≪ ω0 for our cCPT system across all gate and flux biases.

Writing down the quantum Langevin equation for this Hamiltonian, we get

ȧ =
1

iℏ
[
a,H

]
−
[
a, a†

][κtot
2
a−

√
κextain(t)−

√
κintbin(t)

]
= −

[
i(ω0 +Ka†a

)
+
κtot
2

]
a+

√
κextain(t) +

√
κintbin(t), (4.4)

and

ȧ† =
1

iℏ
[
a†, H

]
+
[κtot

2
a† −

√
κexta

†
in(t)−

√
κintb

†
in(t)

][
a†, a

]
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=
[
i(ω0 +Ka†a

)
− κtot

2

]
a† +

√
κexta

†
in(t) +

√
κintb

†
in(t), (4.5)

where κext is the external damping rate because of the coupling to the probe trans-

mission line with the corresponding input bath operator ain(t), and κint is the internal

damping rate because of the coupling of the resonator to an internal loss channel (typ-

ically a thermal bath) with corresponding input operator bin(t). The total damping

rate of the cavity is κtot = κext + κint.

Since the input tone is a pure sine wave at frequency ωd of the form ain = αine
−iωdt

we expect the steady state response of the cavity to be at this drive frequency. We

thus make the ansatz a = αe−iωdt, ȧ = −iωdαe
−iωdt and the average cavity occupation

n = |α|2 = a†a. Plugging this ansatz into Eqn.(4.4) we obtain

[
− i(∆−K|α|2) + κtot

2

]
α =

√
κextαin,

and,

[
i(∆−K|α|2) + κtot

2

]
α∗ =

√
κextα

∗
in, (4.6)

where we have defined the detuning ∆ = ωd − ω0

We can now use Eqn.(4.6) and the input-output relation aout(t) = ain(t)−
√
κexta(t)

[74], [75] to find the reflection coefficient S11(∆) (as in section 2.3.1) to be

S11(∆) =
(αout

αin

)∗
=

(∆−K|α|2)− i(κint − κext)/2

(∆−K|α|2)− i(κint + κext)/2
. (4.7)

We see that this is the exact same form as the reflection coefficient for a linear

cavity as in Eqn. 2.72, with the detuning ∆ → ∆−Kn.
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Multiplying the two equations in (4.6), we get a cubic equation in n

K2n3 − 2K∆n2 +
(
∆2 +

κ2tot
4

)
n = κext

Pin

ℏωd

, (4.8)

where Pin = ninℏωd and nin = |αin|2.

Solving this cubic for n and plugging those solutions into Eqn. (4.6), we can write

the intracavity field in the form α = |α|eiϕα , where |α| =
√
n and ϕα = atan2(∆ −

Kn, κtot

2
), and plugging n into Eqn.(4.7), we obtain the output amplitude and phase

response of the cavity to a given drive.
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Figure 4.1: (a) Oscillation amplitude as a function of detuning for different input
drive powers. The green markers are for an essentially linear cavity with Pin ≪ Pinc

(see Eqn. (4.13)), blue markers are when driven with a Pin < Pinc , the black is when
Pin = Pinc and the red is when Pin > Pinc . (b) Oscillation amplitude as a function
of input power for different detunings. The green markers are for ∆ > 0, the blue
markers are when ∆c < ∆ < 0 (see Eqn. (4.12), the black markers are for ∆ = ∆c and
the red markers are for ∆ < ∆c. The dots represent monostable solutions, the crosses
- bistable solutions, and the unfilled circles represent unstable solutions in both plots.
These values are simulated for K = −0.46 MHz which occurs at (ng,Φext) = (0, 0).
κext = 1.23 MHz, κint = 0.23 MHz and ω0 = 5.7851 GHz at this bias point.
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In the presence of the Kerr non-linearity, the system can exhibit different types

of oscillation behaviours as the drive power Pin and the detuning ∆ are varied. At

small drive strengths, when the effect of the non-linearity is small, we see only a

monostable oscillation amplitude as for a linear oscillator. As the drive strength is

increased, for a certain range of detunings, we see this stable oscillation state bifurcate

into two stable higher and lower oscillation states along with an unstable state that is

not experimentally observed. The system has bifurcated into a bistable regime (Fig.

4.1). The onset of bistability is marked by the slope of the n vs ∆ curve becoming

vertical at some value of detuning (black curve in Fig. 4.1a). i.e, dn
d∆

= ∞ for some

∆.

Differentiating Eqn. (4.8) w.r.t n, and setting d∆
dn

∣∣
nc

= 0, we have

3K2n2
c − 4K∆nc−2Kn2

c

d∆

dn

∣∣∣∣
nc

+∆2 +
κ2tot
4

+ 2∆nc
d∆

dn

∣∣∣∣
nc

= 0 (4.9)

=⇒ 3K2n2
c − 4K∆nc +

(
∆2 +

κ2tot
4

)
= 0, (4.10)

where nc is the oscillation number at the onset of bifurcation. Solving this quadratic

equation, Eqn. (4.10), we solve for the critical oscillation number obtaining

nc =
2∆

3K

(
1± 1

2

√
1− 3κ2tot

4∆2

)
. (4.11)

This yields real, positive solutions when

∆ < −
√
3

2
κtot ∀ K < 0,

∆ >

√
3

2
κtot ∀ K > 0. (4.12)

To achieve bifurcation at exactly this critical detuning ∆c = sgn(K)
√
3
2
κtot, we

see from Eqn. (4.11) that we need a critical cavity occupation number nc =
1√
3
κtot

K
.
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Using these in (4.8), we obtain a critical drive power Pinc . When the cavity is driven

by a tone at ωdc = ω0+∆c with amplitude exactly Pinc , we see the onset of bistability,

where

Pinc =

√
3

9

κ3tot
|K|κext

ℏωdc . (4.13)
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Figure 4.2: Simulated S11 as a function of detuning for different input drive powers.
The green markers are for an essentially linear cavity with Pin ≪ Pinc (see Eqn.
(4.13)), blue markers are when driven with a Pin < Pinc , the black is when Pin =
Pinc and the red is when Pin > Pinc . The dots represent monostable solutions, the
crosses - bistable solutions, and the unfilled circles represent unstable solutions. These
values are simulated for K = −0.46 MHz which occurs at (ng,Φext) = (0, 0). κext =
1.23 MHz, κint = 0.23 MHz and ω0 = 5.7851 GHz at this bias point.

Figs.(4.2) and (4.3), simulated using Eqn.(4.7), show the variation of the reflection

coefficient (S11) with detuning and drive power respectively. We clearly see the jump

phenomenon in Fig.(4.2). As the detuning is ramped from a value far red-detuned

from the linear resonance, S11 follows the value corresponding to the monostable

solution. Even after the lower bifurcation detuning value at which we first expect

to see bistability, it stays on the same branch of the S11 corresponding to the low

amplitude oscillation state until it reaches the value of the detuning where the second

bifurcation occurs. As the detuning is increased past this value, S11 has to jump
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Figure 4.3: Simulated S11 as a function of input power for different detunings. The
green markers are for a detuning ∆ > 0, blue markers are when driven at a detuning
∆c < ∆ < 0, the black is when ∆ = ∆c and the red is when ∆ < ∆c. The
dots represent monostable solutions, the crosses - bistable solutions, and the unfilled
circles represent unstable solutions. The dashed lines represent the input powers
at the onset of bistability, calculated from Eqn. (4.15). These plots are simulated
for K = −0.46 MHz which occurs at (ng,Φext) = (0, 0). κext = 1.23 MHz, κint =
0.23 MHz and ω0 = 5.7851 GHz at this bias point.

abruptly to the monostable value on the other side of this upper bifurcation. When the

detuning is ramped in the other direction, the S11 stays on the branch corresponding

to the high amplitude oscillation state, past the upper bifurcation, until it reaches

the detuning value at the lower bifurcation. It must then jump abruptly and proceed

along the monostable branch of the S11 at lower values. This gives rise to a marked

hysteresis in the S11 curves depending on which way the detuning is ramped as seen

in Fig. (4.4). A similar jump phenomenon (Fig. 4.3) and hysteresis is observed as

Pin is ramped in each direction, as seen in Fig. (4.5).

This sudden jump at the input power bifurcation forms the basis for the operation

of the Josephson Bifurcation Amplifier (JBA) [34]. The sensitivity of an amplifier to

a change in the drive power is the slope of the phase-input power curve at any point.
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Figure 4.4: Simulated hysteresis in S11 as a function of detuning for different input
drive powers. Solid traces represent a ramp that sweeps towards increasing detunings,
and the dashed ramp toward decreasing detunings. The dashed and solid overlap
for Pin ≤ Pinc . These values are simulated for K = −0.46 MHz which occurs at
(ng,Φext) = (0, 0). κext = 1.23 MHz, κint = 0.23 MHz and ω0 = 5.7851 GHz at this
bias point.

When there is only monostable behaviour, we see that the phase is a linear function

of the input power for small variations about any input power bias point. However,

by carefully biasing the JBA right at a drive power bifurcation edge, a very small

change in the drive power leads to a large shift in the phase response of the amplifier.

Monitoring the output phase, we thus have a sensitive measure of very small variations

in the input power/current.

In order to find the extent of the bistability region as a function of the input

drive strength (for a given detuning ∆), we find the bifurcation points Pinb1
and Pinb2

where dn
dPin

∣∣∣
Pinb1

,Pinb2

= ∞. Between these points, we expect to see bistability. We

thus differentiate Eqn. (4.8) with respect to n and set dPin

dn

∣∣
Pinb1

,Pinb2

= 0 yielding

nPinb1
,Pinb2

=
2

3

∆

K

[
1± 1

2

√
(1− 3κ2tot

4∆2
)

]
, (4.14)
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Figure 4.5: Simulated hysteresis in S11 as a function of drive power for different
detunings. The solid traces represent an increase in drive power with time, and the
dashed traces represent a decrease in drive power with time. The dashed and solid
curves overlap for ∆ ≥ ∆c. These values are simulated for K = −0.46 MHz which
occurs at (ng,Φext) = (0, 0). κext = 1.23 MHz, κint = 0.23 MHz and ω0 = 5.7851 GHz
at this bias point.

which is the same as Eqn.(4.11). Using these solutions in Eqn. (4.8), we find the

bifurcation points to be

Pinb1
, Pinb2

=
2

27

∆3

K

[(
1 +

9κ2tot
4∆2

)
∓
(
1− 3κ2tot

4∆2

)3/2]ℏωd

κext
, (4.15)

which corresponds to Eqn. (2.13) in [51].

Fig.(4.6) shows the variation of the bifurcation powers with detuning for the cCPT

biased at (ng,Φext) = (0, 0). The point in the ∆− Pin space where the blue and red

curve come together is a singular point, the spinode point [111]. Between the two

solid lines, the system is in a bistable state, with transitions between the two states

becoming more likely close to the spinode point in analogy to the critical point of a

gas-liquid phase transition [111].

Charge sensing using the Kerr cCPT
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We envision a charge sensing scheme similar to the power/current readout of the

JBA. At a certain drive power, by biasing the cCPT at the edge of a bifurcation in

detuning, the output phase should be very sensitive to small changes in the detuning

and hence the resonant frequency of the cCPT. This resonant frequency of the cCPT

is itself a pretty sensitive function of the gate charge (ng) of the cCPT [33]. This is

illustrated in Fig. (4.7). The blue and red curves represent two different gate cCPT

gate points separated by δng. This corresponds to a resonant frequency shift δω0.

The dashed line represents the simulated linear reflection coefficient as in Eqn.(2.72),

while the solid lines correspond to the Kerr reflection coefficient in Eqn.(4.7). We

see that the difference in the phase of the S11 (δS
(kerr)
11 ) between the red and the blue

solid lines for a drive at a frequency denoted by the black dashed line is much larger

than that for the linear curves (δS
(lin)
11 ) for the same separation δω0. Conversely, by

reducing δng and bringing the red and blue curves closer together, we still expect to
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Figure 4.6: Variation of input power at the plane of the sample required for the
onset of bifurcation vs detuning. The red (blue) corresponds to the lower (upper)
bifurcation point for K = −0.46 MHz which occurs at (ng,Φext) = (0, 0). κext =
1.23 MHz, κint = 0.23 MHz and ω0 = 5.7851 GHz at this bias point.
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see a considerably large δS
(kerr)
11 while δS

(lin)
11 shrinks linearly. For a given δS11 we can

measure, set by the SNR of the system, we see that the Kerr cavity should be able

to resolve much smaller values of δng. Confounding factors for such a measurement

would be : i) the spontaneous hopping between the metastable high and low amplitude

states of the cCPT when in a bistable regime as modelled in [51, 112] (section 4.1.1).

This can be circumvented by instead measuring the ‘S-curves’ which are a plot of

the probability of being in the low amplitude state as a function of the detuning.

The metric for charge sensitivity then becomes the smallest gate charge that causes

a perceptible shift in the S-curves, yielding a high contrast between the S-curves for

two gate charges separated by δng driven at a particular drive frequency ωd. We note

here that a high contrast might still mean poor single-shot readout fidelity because of

the lack of separation between the phases of the metastable oscillation states, due to

poor SNR. ii) resonant frequency fluctuations as reported in [33]. These could cause

the resonant frequency to spontaneously shift due to fluctuations in the charge or flux

environment on the cCPT chip, or due to quantum fluctuations in photon number.

This can be imagined as causing each S-curve to have an additional finite, non-zero

width which is a function of σω0 (see Eqn.3.7), and the minimum perceptible change

between two S-curves has to be larger than the combined widths of the two. We will

see in section 4.2 that the widths of the S-curves we see in the cCPT is typically much

larger than the scale of reported frequency fluctuations for the same device, meaning

frequency fluctuations are probably not a huge problem. The width of the S-curve is

dictated by the energy landscape (in the classical picture) of the oscillator and the

effective temperature of the fluctuations (quantum or thermal) that drive them as we

shall see in section 4.1.1.
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4.1.1. Metastable oscillation states

Switching between metastable states of a nonlinear oscillator near a bifurcation has

been the study of much theoretical work since the last decades of the 20th century.

In the bistable regime (see Eqn. (4.8)), the two stable solutions form nodes in phase

space, and the unstable solution is a saddle-point. In the absence of any fluctuations

(or rather small fluctuations), the system spends most of its time around either of the

stable nodes. An infrequent large fluctuation drives the oscillator close to the saddle

point. Once in the vicinity of the saddle point, the oscillator then moves to the other

focus along a ‘downhill’ trajectory. This complete trajectory forms the ‘most probable

switching path’ [113], [114].

For a system at thermal equilibrium and weakly coupled to a bath, the switching

rate out of a stable state takes the form of an activation over an energy barrier and

Figure 4.7: Simulated plot of the Phase(S11) vs drive frequency for the case of a Kerr
cavity above (solid lines) and well below (dashed lines) the critical power Pinb1 . The
red and the blue curves represent two different gate biases of the cCPT separated by
δng which produces a resonant frequency difference of δω0.
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follows Arrhenius’ law [115] - the switching rate goes as the exponent of the ratio

of the barrier height to the noise (in this case the Boltzmann temperature of the

bath). The system we describe above is not in equilibrium because of the periodic

drive and cannot be described using a free energy barrier. However, using a variety

of methods, [113, 111, 116, 117, 112] show that close to a bifurcation in the presence

of Gaussian noise, the switching can still be treated as an activation over a barrier

in what is termed ‘quantum activation’ as opposed to tunneling through the barrier.

The escape rate W is given by (chapter 3 in [118])

W = W0e
−Ea/IintN , (4.16)

where Ea is the barrier height, I
int
N is the intrinsic noise intensity, andW0 is an attempt

frequency that also depends on the drive parameters.

Close to the bifurcation point, the motion can be split into fast and slow variables,

and under the adiabatic approximation this reduces the 2D system of equations (4.4)

and (4.5) to a Langevin equation for a particle in a cubic potential [111, 51]. The

minimum of this cubic potential corresponds to the metastable node out of which

the oscillator is escaping, and the maximum corresponds to the saddle node. It is

apparent that since the curvature of the potential at these points is opposite, as we

approach the bifurcation point, this node and the saddle point move towards each

other and the potential along the axis connecting these points becomes locally flat.

This slows the dynamics of the particle, yielding an overdamped mode. Even in the

region close to a bifurcation point, the effect of the ‘ghost’ of this saddle node leads

to slowed-down dynamics [119].

It is shown that at a parameter distance η from a bifurcation point (our parameter

can be either the detuning, ∆ or the drive strength, Pin), the height of the barrier goes

as Ea = k|η|3/2 for some constant k [111], [116], [118]. This scaling is independent of
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the system and only depends on the type of bifurcation that occurs. In our case, a

saddle-node bifurcation yields a critical exponent ψ = 3/2. It was then shown that

even further away from η = 0, though the motion becomes underdamped, the critical

exponent ψ = 3/2 persists around one of the bifurcation points, with ψ = 1 at the

other bifurcation point, resulting in a scaling crossover.

In the absence of any additional noise sources, for thermal activation, I intN = kBT

when kBT > ℏω0 (classical, thermal limit) and I intN = ℏω0 when kBT < ℏω0 (quantum

limit). Even at T → 0, the predominant switching mechanism is quantum activation

[112] which is a diffusion over a quasienergy barrier which is more probable than

quantum tunneling. The critical exponent remains ψ = 3/2 for this mechanism.

This semiclassical quantum activation theory works well for the weak nonlinear

regime, where K ≪ κtot which is where most JBAs operate [34, 38]. At K > κtot,

the system enters the transmon regime [37] a single intracavity photon shifts the

resonant frequency of the cavity to the point where another incoming photon at the

same frequency sees the cavity well detuned and cannot enter it until the previous

photon has decayed out - the photon blockade effect. This is now effectively a two-level

system. In this regime, the oscillator shows no bistability or hysteresis. More recently,

[36] showed that for the intermediate ‘mesoscopic’ regime between these two extreme

values for the Kerr is poorly understood, and that the above semiclassical description

might not be sufficient to model the switching rates for Kerr nonlinearities in this

regime, requiring full quantum master-equation calculations to model the switching

which might now be dominated by processes such as quantum tunneling. Ref. [53]

recently reported on a device in which the Kerr strength could be tuned from the

classical Duffing regime to the Kerr parametric oscillator.

The cCPT lies in a regime where K/κtot ∼ 0.07- 0.5, and if the relevant damping

rate is just that of the internal channel as in [36], K/κint ∼ 0.25 - 2. Quantum effects
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might well be important to understand the switching behaviour of the system. We

did not perform any quantum analysis of the system here, but point out discrepancies

we see in the behaviour of the cCPT as possibly arising from requiring a quantum

model.

Section 4.2

Experiments

Our experimental procedure remains similar to our studies for a linear cavity [33].

We send in a probe tone to the sample and collect the reflected, amplified output.

The most straightforward experiment is to use a vector network analyzer (VNA) to

probe the S11(ω) of the cCPT as a function of input power. Such a scan for the cCPT

biased at (ng,Φext) = (0, 0) is shown in Fig. (4.8). The minimum of the reflection

coefficient S11 follows a logarithmic curve as a function of the logarithmic power scale.

This is the linear dependence of resonant frequency on input power (plotted here in

dBm) described in section 3.3.3.

In order to observe hysteresis, we set up the VNA to scan forward in frequency and

then in the reverse direction and plot the result in Fig. (4.9). At low powers (bluer

curves), we are close to the bifurcation edge, and the hysteresis is not very remarkable.

At higher powers this becomes more apparent, but is in general a weighted averaged

value of the S11 corresponding to the two metastable oscillation states due to switching

events during the measurement.

To carefully understand and account for the switching between the two metastable

states, we use a heterodyne measurement setup to monitor the phase of the output

signal at a rate higher than typical switching rates in these systems. As depicted in

Fig. (3.14), the generation of the probe tone is slightly modified to facilitate some

of the experiments detailed below. We want to be able to probe the sample with
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Figure 4.8: S11(ω) of cCPT measured by a VNA for different input powers at
the sample. cCPT biased at (ng,Φext) = (0, 0) for which the linear resonance
ω0(ng,Φext) = 5.7851 GHz. The dip in the |S11| (bluer hues) and the correspond-
ing transition of the phase as a function of the drive frequency represent the resonant
frequency of the oscillator.
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Figure 4.9: S11(ω) of cCPT measured by a VNA while scanning forward (solid line),
and backward (dashed line) in frequency. Input powers of -134, -128, -122, -116, -110
dBm from blue to red curves.

shaped pulses - shaped in terms of both the amplitude of the pulse as a function

of time as well as its frequency. Using the AWG, we can design frequency ramps
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with both increasing and decreasing frequencies (and powers), but we always use a

frequency of 84 MHz for the readout section of the pulse. We then mix this with a

local oscillator tone which is 84MHz red detuned from the desired readout detuning,

ωd. The desired pulse is then put into the cCPT, and the reflected signal is mixed

down to an IF frequency, ωIF = 21 MHz. This signal is filtered by a low pass filter,

a band pass filter, digitized at a sample rate of 168 MHz using an AlazarTech ATS

9462 and the amplitude and phase of the signal are extracted based on the ‘digital

homodyne technique’ described in section 3.3.5. An AWG marker is used to trigger

the digitizer at the start of the readout phase of the pulse.

The shaped pulses let us initiate the experiment in the low or high amplitude

oscillation state as desired. Looking at Fig. (4.1a), we see that when we begin at

a positive detuning and use a negative ramp to shift the drive frequency into the

negative detuning bifrucation regime (as in the red curve when Pin > Pinc), the cCPT

remains in the high amplitude state until the lower bifurcation point. Similarly, if

we started at a large negative detuning and ramped the detuning upwards, it would

stay in the low amplitude state until the upper bifurcation point (this is assuming

no fluctuations that drive a transition from one metastable state to another). A

similar deterministic control on the oscillator state can be achieved using a positive

or negative power ramp as is clear from Fig. (4.1b).

4.2.1. Hysteresis

In order to observe the hysteresis in the reflection coefficient as we ramp the input

power one way or the other, we design a pulse as pictured in Fig. (4.10). The input

tone at the cCPT is a sine wave at the desired detuning whose voltage is linearly

ramped from 0 to the desired max value in a time tr and then ramped back down to

0 in the same time. This pulse repeats every tdown = 10µs. The digitizer samples the

output over the 2tr period when the input drive is non-zero and extracts |S11| and
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Figure 4.10: IF pulse output by channel 1 on the AWG in Fig.(3.14). The black
curve is the actual power chirped sine wave at 84 MHz. The indicated voltage is
at the output of the AWG. This then undergoes considerable conversion loss at the
input mixing stage along with several orders of cryo attenuation in the dilution fridge
insert. The orange curve on the right is the power output by the AWG as a function
of time. The voltage is linearly ramped over time. For this illustrated pulse, tr = 8µs,
tdown = 10 µs.

Phase(S11) as described in section 3.3.5. Like points for several 1000 acquisitions are

then averaged together.

Fig. (4.11) shows the observed hysteresis in the cCPT at the bias point (ng,Φext) =

(0, 0) for a drive red detuned from the linear resonant frequency ω0 by 10 MHz. This

data was averaged over 5000 pulse sequences. We observe two distinct phases between

input powers of -130.5 dBm and -109.5 dBm. The lower and upper bifurcation points

from Eqn. (4.15) are calculated to be -131.7 dBm and -118.2 dBm respectively.

We put this discrepancy down to the resonant frequency fluctuations in [73], which

effectively cause us to work at a a different detuning between different iterations of

the pulse sequence, leading to a smearing effect. Another possibility is the ramp rate

of the pulse itself causing an error in the estimation of the bifurcation power, because

of the slowing down of the dynamics close to the ‘ghost’ of the saddle-node mentioned
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Figure 4.11: Observed hysteresis in Phase(S11) as the power is ramped up and back
down in a pulse sequence as shown in Fig.(4.10). The cCPT was biased at (ng,Φext) =
(0, 0) where the resonance was at ω0 = 5.7851 GHz. The detuning of the input drive
tone, ∆ = −10 MHz. The blue curve represents the forward ramp and the red, the
reverse ramp. tr = 4 µs and tdown = 10 µs for this run, which is more than a factor of
10 of the cavity decay time.

before. [120, 121] estimate the error in the measurement of the bifurcation point for

a frequency ramp, but we expect such an effect to carry over for a power ramp as

well. Slow adiabatic ramp rates are generally ideal, but as we see in Fig.(4.12), we

run into issues of switching between the metastable states even for ramp rates on the

order of 2-3 dBm/µs.

As we see in section 4.2.2, we expect to see an increasing separation in the

Phase(S11) between the two oscillation amplitude states as we move to lower powers.

During the reverse ramp, we expect an abrupt jump from the low to the high oscil-

lation amplitude state at the high power bifurcation point, but instead see a gradual

tapering off, which is probably a sign of switching between the metastable states close

to the bifurcation edge even for the tr employed in these pulse sequences.

Fig. (4.12) shows the variation of the hysteresis curves as the ramp time on the
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Figure 4.12: Variation of hysteresis curves as as in Fig.(4.11) as the ramp time tr is
varied. For increasingly blue hues, tr = (2, 4, 8, 16, 24, 28) µs. The dashed lines are
the forward ramp and the solid lines are the reverse ramp. The experiment is carried
out for (ng,Φext) = (0, 0) and ∆ = −9.5 MHz.

input pulse of the AWG is varied. As we increase the ramp time (bluer curves), we

see that the curves converge to a weighted average value of the phase corresponding

to the high and low amplitude state obtained in the shortest ramp tr = 2 µs (red

curve). For a given ramp time, the obtained phase value is the weighted mean of the

two phases where the weight is given by the probability of being in either oscillation

state at each sampled input power (see sec. 4.1.1). This is because the longer the

ramp time with respect to the average lifetime of both states, the more likely it is

that we see an equilibrium (long time limit) distribution of switching probabilities.

The obtained curves appear to reach a saturated mean value at each sampled power

for a ramp time of ∼ 24 µs, indicating that the average lifetimes of the metastable

states are of that order for this cCPT bias point at that detuning. A similar result

was recently observed for a non-linear semiconductor microcavity [122].

Fig. (4.13) displays a surface plot where each vertical slice is a scan similar

to Fig.(4.11), with each slice at a different detuning ∆. The solid lines indicate the
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Figure 4.13: Surface plot of phase difference at different sampled powers during a
ramp such as in Fig.(4.10) for different detunings with the cCPT biased at (ng,Φext) =
(0, 0). The red and black lines are a guide to the eye, and denote the points where
the phase difference between the forward and reverse ramps changes from less than
50 to more than 50. They represent the extent of the bistable region. The input pulse
had tr = 24 µs, and each phase point is averaged over 5000 repetitions of the pulse.

beginning and end of the bistable region. We expect them to trace out an area similar

to that in Fig. (4.6). Though the bifurcation powers do follow an increasing trend

at detunings further from resonance as predicted by Eqn. (4.15), we do not see the

expected broadening in the bifurcation region at increasing detunings (or conversely

narrowing close to the critical detuning as in Eqn. (4.12) with K < 0). This could

be attributed to the fluctuations in resonant frequency as in [73], [33], but this is at a

cCPT bias (ng,Φext) = (0, 0), where the standard deviation of the resonant frequency

fluctuations due to charge and flux noise are ≈ 30 kHz. If frequency fluctuations are

the source of these variations, they must be attributed to quantum fluctuations in

photon number causing a shift in cavity resonant frequency through the Kerr effect

[73]. We continue to see the bistable region at higher than expected input powers at

most detunings similar to Fig.(4.11), which is probably due to the systematic error in
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estimating the bifurcation points caused by the ramp rate as mentioned in [120, 121].

4.2.2. Charge sensing in the bistable region

In this section, we study the probability of finding the oscillator in either the high

or low amplitude as a function of detuning and as a function of the input power. In

order to do so, we use pulses as illustrated in Fig. (4.14).
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Figure 4.14: Pulses used to obtain the S-curves described in the text as a function
of the pulse parameter - (a) Power (b) Detuning respectively. The black sin wave is
the actual tone IF tone output by the AWG. The red denotes the acquisition trigger
that begins data acquisition for each pulse, and the orange is the value of the pulse
parameter at any instant in time. tr is the time over which the pulse parameter is
ramped to it’s peak value. The input pulse is then held at this value for tstab to
allow the oscillator to settle into one of the two possible oscillation states. The pulse
parameter is then ramped down to a latch value Platch (flatch), and the phase of the
output signal is acquired for tacq. The entire pulse then repeats after a time tdown.

The idea behind ramping up the pulse to its peak value (frequency can be ramped

down as well), is to initiate the system preferentially in one oscillation state over

the other. The input parameter - input power in Fig. (4.14a) and detuning in Fig.

(4.14b), starts out at a value in the monostable regime. As it is ramped into the

bistable regime, the oscillator stays in the same oscillation state as in the monostable

regime. The system is then subject to a period where the pulse parameter is held

constant (tstab). It could potentially switch to the other metastable state in this

time, depending on it’s transition dynamics at this power and detuning. The pulse

parameter is then ramped back down to a value further from the bifurcation point,
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where the activation energy barrier to switch from one metastable state to the other

is typically much higher. The system is thus ‘latched’ to the state it was in during

the stabilization region of the pulse. This technique allows longer averaging times

to improve SNR and has been demonstrated in several non-linear oscillator systems

[34], [123], [63]. The pulse then repeats after a reset time tdown. The phases during

the acquisition section of several 1000 such repetitions are then histogrammed, and

the ratio of the counts in the low amplitude oscillation state to the total number of

counts gives the probability of being in that state.
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Figure 4.15: Obtained double Gaussian distribution for the cCPT biased at
(ng,Φext) = (0, 0). ∆ = −8 MHz, input drive Pin = −119 dBm, using a pulse
sequence as in Fig. (4.14a), with tr = 200 ns, tstab = 40 ns, tacq = 250 ns and
Platch = 0W. Data is acquired for 20000 repetitions of the sequence. The yellow curve
is a best fit to a double Gaussian with mean values -1.07o and -25.78o and a system
amplifier noise broadening and a standard deviation σfit = 8.06o for each Gaussian.
The green and purple curves represent the constituent single Gaussians in the double
Gaussian fit.

In our experiments, typical values are tr = 530ns, tstab = 4.9µs, tacq = 250ns - 2µs

(depending on the drive power and the related SNR) and tdown of the order of ∼ 5µs

for our cavity decay rates of ∼ 2MHz. These parameters for tr and tstab were settled

upon after performing QuTip [124] simulations using a master equation solver for the
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exact input tone (with frequency and power ramp), and seeing the system through a

transient to the steady state. This value of tr is also close to the nominal value of 5κtot

over which transients of oscillating systems are expected to decay, even in the region

where switching is observed, where the oscillator dynamics are considerably slowed

[36]. Studying the widths and centers of the S-curves (detailed below) as a function

of tr and tstab also showed agreement with the simulations in that they attained a

stabilized value for these pulse parameters. In practice, we do not use the latching

technique and begin acquisition immediately after the stabilization time. Though

we average the acquired phase for a typical time of 0.25 − 3µs depending on the

drive power, the separation in phase between the high and low oscillation amplitude

states could be small enough that the tails of the noise-broadened Gaussian distribu-

tions overlap and distinguishing between the two states by a single-shot measurement

becomes murky.
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Figure 4.16: Representative s-curves for the cCPT biased at (ng,Φext) = (0, 0). a)
Using pulse sequence in Fig. (4.14a), b) pulse sequence in Fig. (4.14b). Both se-
quences had tstab = 40 ns, tacq = 250 ns, tdown = 10µs and Platch = 0 W and flatch = 0
Hz respectively. tr = 250 ns in a) and tr = 0 in b). Each data point is calculated
from 20000 repetitions of the pulse sequence.

To find the probability of finding the oscillator in the low amplitude state, we

calculate the ratio of the area of the Gaussian best fit curve corresponding to the

low amplitude state to the total area of the double Gaussian fit. For the data in

Fig. (4.15), this is 0.47. We then repeat this procedure with input pulses in Fig.
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(4.14a) and (4.14b) respectively and obtain corresponding s-curves in Fig. (4.16a)

and (4.16b).

Looking at these s-curves, it is clear that the picture painted in Fig.(4.7) does not

hold in the presence of fluctuations. Even with the appropriate ramp to initiate the

oscillator in the desired oscillation amplitude state, we do not see a sharp transition

from one state to the other right at the bifurcation point. Instead, we see a gradual

transition of the likelihood of the oscillator in the high amplitude state go from

0 → 1 over several cavity linewidths. The ratio of the probability of being in the low

amplitude state (ρlow) to being in the high amplitude state (ρhigh) can be related to

the switching rates Wlow→high and Whigh→low in Eqn.(4.16) to be [117]

ρlow
ρhigh

=
Whigh→low

Wlow→high

= exp

[
E

(low)
a − E

(high)
a

I intN

]
, (4.17)

where E
(low)
a and E

(high)
a are the activation energy barriers out of the low and high

oscillation amplitude states respectively which depend, along with the effective noise

intensity I intN on the set of drive parameters, particularly ∆ and Pin. The exponential

dependence of the population ratio on the activation energies shows that we expect

to find the oscillator either in the high or the low oscillation amplitude state across

most of the bistable region, and only in a region where the difference between the two

energies becomes comparable to the effective noise intensity, do we expect to see signs

of both states co-existing. This is reminiscent again of a kinetic phase tranisition [118],

and though these systems are driven and not in equilibrium, supernarrow spectral

peaks are predicted because of these fluctuation-induced transitions and have been

observed in an analog circuit [125], and in a micromechanical torsional oscillator [126].

Our objective in performing a single-shot charge readout now becomes two-fold.

(i) Maximize the contrast denoted by the double-headed arrow in Fig. (4.17) while

minimizing δng. This will allow us to resolve the two gate charges by performing
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Figure 4.17: Schematic of s-curves for two different charge points (blue and red curves)
separated by δng.The black double-headed arrow represents the maximum contrast
between the two states, and the coloured dashed lines mark the width of the respective
s-curve.

an ensemble measurement and calculating the probability, and (ii) maximize the

separation between the Gaussian peaks as in Fig.(4.15) at the maximum contrast

point in order to enable single-shot readout.
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Figure 4.18: (a) S-curves for 11 different gate values with the cCPT flux biased
at Φext = 0.06Φ0. These are obtained with the pulse sequence in Fig.(4.14b) with
tr = 530 ns, tstab = 4.5 µs, framp = 41 MHz, flatch = 0, tacq = 2 µs and tdown = 5 µs.
The crosses are the data points, with error bars representing the extent of frequency
fluctuations [33] at that cCPT bias point. The solid line is a sigmoid fit. (b) Maximum
contrast for each pair of measured gate points in (a).

Fig.(4.18a) shows the experimentally obtained s-curves for a range of gate values
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at cCPT flux bias of Φext = 0.06Φ0 while driven with an input tone of Pin = −128

dBm and Fig.(4.18b) shows the corresponding maximum contrast value for each pair

of gate points. The solid lines are sigmoid fits of the form

P (∆) =
1

1 + exp

[
− 4.3944(∆−∆0)

γ

] , (4.18)

where ∆0 is the center of the sigmoid, and γ is the width between P (∆) = 0.1 and

P (∆) = 0.9.

We see that we should be able to resolve a shift from ng = 0.71 to ng = 0.62 with a

contrast of close to 92% for this input power, with a drive tone at 5.7973 GHz. Though

the number of intracavity photons depends on the detuning of the drive, we set an

upper bound (at the detuning corresponding to the low amplitude bifurcation point)

of∼ 50 intracavity photons in the high amplitude oscillation state by solving Eqn.(4.8)

with the theoretical value of the Kerr obtained from Eqn.(2.129) for our EJ = 14.8

GHz and EC = 54.1 GHz, and using the damping rates obtained from the fits to

the linear reflection coefficient Eqn.(3.7) performed with a sub-photon drive VNA

measurement. We do not observe much variation of the damping rates with input

powers before the onset of bistability [67], and cannot accurately extract the damping

rates from a VNA measurement in the bistable regime because of the distortion of

S11 brought about by the Poissonian switching between the metastable states. In

reality, we are working at detunings much closer to the linear resonance than the low

amplitude bifurcation point, and expect to have between 8 and 27 intracavity photons

in the high amplitude state at the detunings plotted for ng = 0.71 in Fig.(4.18).

In order to optimize the contrast, we need the centers ∆0 for these gate points

to be spaced well apart, and the widths γ to be minimized. Fig.(4.19a) shows the

variation of these centers as a function of the gate for various flux values. We see
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Figure 4.19: Sigmoid center ∆0 fit vs ng for (a) range of cCPT flux biases with an
input drive strength Pin = −122dBm, (b) range of input drives for a cCPT bias
Φext = 0. The 95% confidence intervals of the Sigmoid center fits are smaller than
the markers.

that these mostly track the resonant frequency of the cavity at the corresponding

cCPT bias (including a Kerr shift for this power). As seen here and as expected from

Fig.(2.12), flux values closer to Φext = 0 provide larger shifts in resonant frequency

and are ideal for charge sensing. This tracking of ∆0 with the resonant frequency (and

hence the Kerr (K), since the two have the same sinusoidal functional form, but differ

by a factor Φ2
zp ∼ 0.031, see section 2.5.2) is clearly demonstrated in Fig.(4.20) for

different input powers. We note the variation of the slope of these curves as a function

of the input power. Looking at Eqn.(4.17), we see that the center of the sigmoid is

expected to fall at the point where E
(low)
a = E

(high)
a . While these energies themselves

are expected to scale with the drive amplitude [112], the activation energy of the high-

amplitude oscillation state undergoes a scaling crossover as the input drive strength

is varied [117]. This change in slope might be indicative of such a crossover. We do,

however, also perform longer averaging to extract each phase point for the smaller

Pin (2 µs as opposed to 250 ns). This might also be giving rise to data points which

are averaged over the phases of both low and high oscillation amplitude states as a

result of a switch during the averaging time. This is especially more likely at larger

K values where the average lifetimes are often down to a few µs at some detunings

as we will see in section 4.2.3, though the lifetime values in that section are reported
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only for experiments with Pin = −119 dBm.
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Figure 4.20: Variation of fitted ∆0 as a function of K for different input powers. The
95% confidence intervals to the sigmoid fits are smaller than the markers.

With regards to our goal of charge sensing, we see from Fig.(4.20) that we ob-

tain a larger separation in the centers while working at smaller drive powers (larger

slope). We next consider the widths of the S-curves and plot them directly with K in

Fig.(4.21). We see that the width tracks the K again, which is similar to what is pre-

dicted in Eqn.(5) of [127], though we do not see sublinear behaviour. We also observe

a downturn in the widths of the s-curves at larger magnitudes of K at intermediate

drive strengths.

Fig.(4.22) shows the variation of the sigmoid width as a function of the drive

strength for three distinct values of the Kerr. We expect to see the width of the

s-curve increase with power [47] since the barrier height is decreased with increasing

drive amplitude [36, 112] and for the same noise intensity across all powers (for a

given Kerr), we expect a substantial escape rate across a larger range of the bistable

region for larger drive strengths. This is based on the assumption that the noise

intensity only depends on the K and the damping rates [117, 36]. Though we did
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Figure 4.21: Variation of fitted γ as a function of K for different input powers. Error
bars are 95% confidence intervals to the sigmoid fits.
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Figure 4.22: Variation of the fitted sigmoid width with input power for three distinct
Kerr values in the middle of our tunable Kerr range.

not observe any substantial variation in κint as the drive strength was increased [67]

before bifurcation, other loss mechanisms such as two-photon losses might be playing

a role at these substantially higher drive powers [128]. The interplay between this
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increased drive dependent loss and the barrier height might be causing this changed

behaviour.

Coming back to our goal of charge sensing, Fig.(4.21) suggests that we should

work at low powers, or at low Kerr magnitudes to minimize the width of the s-curve

and increase sensitivity. Low Kerrs are not ideal since we saw in Figs.(4.19) and

(4.20) that that causes the centers of the sigmoids to group together. This indicates

that we should be working at high Kerrs (Φext = 0), with low powers. Working at

lower powers, with fewer intracavity photons, would also mean less backaction on the

system being measured. We will see what this means in terms of SNR below.
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Figure 4.23: Plot of contrast between two gate values separated by δng for 6 different
flux biases and at the two lowest input powers we consider. The crosses are for
Pin = −130.5 dBm and the circles for Pin = −128 dBm, with the colourbar indicating
the value of the flux bias.

Fig. (4.23) shows the obtained contrast at the optimum drive frequency for several

pairs of gates separated by δng for the smallest powers. We see what we expected -

the best contrast for the smallest δng occurs close to Φext = 0 reaching a predicted

value of 96% in distinguishing between charge states ng1 = 0.62 and ng2 = 0.71.

However, since we have fit double Gaussians to extract the probability of being in the
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high amplitude state at each detuning, this value is agnostic to the overlap between

the two Gaussians, which is important in order to perform single-shot measurements.

There are two factors that go into deciding how well resolved the two oscillation

states will be. The first is the separation between the means of the two Gaussian

peaks, and the second is the standard deviation of these peaks, which is related to

the amplifier noise and the averaging time (see section 3.3.5).
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Figure 4.24: (a) Experimental and (b) theory plot of maximum phase difference
between the low and high oscillation amplitude states vs Kerr in the detuning region
where both states are visible. Each colour represents a different drive power Pin.

Fig.(4.24) shows the observed and the expected maximum difference in the Phase(S11)

for the high and the low oscillation amplitude states. The theory curves are simulated

with a nominal value of κext = 1.2 MHz and κint = 0.4 MHz in Eqn.(4.7). We see

that the trend of higher phase differences arising at lower Kerr magnitudes and lower

powers observed in experiments is reproduced by the theoretical model Eqn.(4.7). We

understand this as follows.

As we saw in Fig.(4.1a) and reproduce here in Fig.(4.25), the strength of the

Kerr nonlinearity of the oscillator causes the hardening/softening of the oscillation

amplitude response. The degree of hardening/softening (the bending over of the

response curve) is decided by the strength of the non-linearity K. The low oscillation

amplitude always stays close to 0 for all drive strengths, and at higher drive strengths,

where the region of bistability is much larger, the total oscillation number in the high

oscillation amplitude state increases with increasing magnitude of ∆, while the slope

128



4.2 Experiments

-40 -30 -20 -10 0 10

0

20

40

60

80

-40 -30 -20 -10 0

100

200

300

Figure 4.25: Plot of (a) intracavity photon number n and (b) Phase(S11) vs ∆ simu-
lated for three different Pin for a cCPT bias (ng,Φext) = (0, 0) with a K = −460 kHz.
The upward triangles indicate the high oscillation amplitude state, the downward
triangles the low oscillation amplitude state, the circles the unstable state, and the
dots the monostable states, respectively, as before.

of the dn/d∆ line remains practically unchanged across drive strengths. So, as the

drive strength increases and the range of ∆ over which bistability exists increases, the

difference in n between the high and the low oscillation amplitude states increases

with ∆. This is what we see in Fig.(4.25a) for the different drive powers.

The Phase(S11) on the other hand is constrained to go from 0 to 2π across the

width of the bistable region. So as the width of the bistable region increases, the

slope of the S11 decreases. At the detunings we work at, where we actually see both

oscillation amplitude states co-exist, which is typically < 15− 20κtot, at higher drive

powers (compare black and blue curves in Fig.(4.25b), the separation between the up-

ward and the downward triangles in the bistable region are much smaller ( mod 2π)

for the higher power curve. The explanation for the reduction in phase difference

with an increase in Kerr in Fig.(4.24) is similarly straight-forward as the slope of the

Phase(S11) with detuning ∆ reduces with the amount of hardening/softening and the

corresponding bending of the response curve.

Armed with all this information to perform optimal charge sensing, we choose

to work at (ng1,Φext) = (0.62, 0) and (ng2,Φext) = (0.71, 0), with an input power

Pin = −128 or −130.5 dBm. Since the requirement of low Kerr for large phase

129



4.2 Experiments

separation and high Kerr for larger sensitivity in gate are conflicting, we choose to

work at the most sensitive point, at the expense of having to average for a tacq = 3µs.

Figure 4.26: Measurement of the phase for 20000 trials each at (ng,Φext) = (0.62, 0)
in blue, and at (ng,Φext) = (0.71, 0) in red for an input drive Pin = −128 dBm. The
black dashed line indicates the threshold value.

Fig.(4.26) shows the result of such a measurement with drive frequency 5.8003

GHz, close to the predicted maximum contrast at 5.8013 GHz in a plot similar to

Fig.(4.18) at Φext = 0. We define the threshold value between the two charge states

to be the midpoint between the two Gaussian peaks, denoted by the black dashed

line in the figure. We notice a slight asymmetry in each of the Gaussians - the blue

curve is slightly broader to the right of its maximum and the red is broader to its left.

These are signs of a small possibility of finding the blue in the low and the red in the

high oscillation states respectively, showing that we are indeed right at the maximum

edge of the contrast window we obtained from the earlier plot. As expected, the phase

separation between the two peaks for what are effectively the largest attainable Kerr

magnitudes for our cCPT sample, even at these low drive powers is only 36◦. The

noise broadening at these powers, for the chosen averaging time of 3 µs is in good

agreement with Fig.(3.16). This causes an overlap of the tails of the Gaussians.
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Figure 4.27: Measurement fidelity vs the averaging time to distinguish between
(ng,Φext) = (0.62, 0) and (ng,Φext) = (0.71, 0) with an input drive Pin = −128 dBm.
Each gate point underwent 20000 trials. The dashed line indicates the measured con-
trast using the S-curves for these bias points.

The fidelity of a single-shot readout is the measure of accuracy in the process of

taking a single obtained phase point in the above plot and sorting it based on the

threshold line. We quantify the fidelity of a single-shot readout using a simple fidelity

measure

fidelity = 100×
(
1− false positives

total count

)
, (4.19)

which we apply to each of the measured charge states. We obtain a fidelity of 94.21%

and 94.97% respectively, and we report a fidelity of at least 94.21% for this measure-

ment. This value is only slightly different from the obtained contrast of 96.61% from

our measurement agnostic to the phase separation and amplifier noise. This indicates

that for our averaging time, the major limitation is not the measurement setup, but

the broadening of the s-curves caused by fluctuation-induced switching between the

metastable oscillation states. Using the parameters above in Eqn.(4.8), we find that

these drive parameters correspond to 8.1 intracavity photons at ng = 0.62 and 20.94
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photons at ng = 0.71, both corresponding to the high amplitude oscillation state. At

ng = 0.71, the cCPT resides mostly in the low oscillation amplitude state where the

intracavity occupation is of the order of 0.2 photons.

Fig.(4.27) plots the variation of the measured fidelity vs averaging time for the

drive parameters in Fig.(4.26). We see that the fidelity saturates at around 94% close

to an averaging time of 3µs. At larger averaging times, the fidelity actually exceeds

the value predicted by the contrast measurement. We put this down to being because

of the fact that at these large averaging times, the less probable states for the two

measured gate values almost certainly undergo a switching event out of that state

during the averaging time, which in fact increases the contrast for these averaging

times.

4.2.3. Average lifetimes of metastable states

In this section, we present some measurements of the average lifetimes in the high

and the low oscillation amplitude states of the cCPT in the bistable regime. As men-

tioned before, the cCPT parameter values lie on the boundary where the semiclassical

activation energy model cannot completely describe the switching lifetimes in these

mesoscopic systems, and a full quantum approach might be necessary [36]. Though

we do not obtain a complete picture of the involved dynamics, we produce some re-

sults here which might lead to a better understanding of the cCPT operating in this

regime.

The lifetime of switching between metastable states of a Duffing oscillator has

been studied theoretically for a while now, as we saw above, but also experimentally,

starting with nonlinear mechanical systems [129, 123, 130]. Similar switching has also

been observed in parametrically driven systems which also undergo a (supercritical)

bifurcation [131] which has been observed in an oscillator system composed of an

electron in a Penning trap [132]. In nonlinear systems with JJs or arrays of JJs, these
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lifetimes are quantified for systems well in the classical regime [34, 51] and more

recently for systems with a slightly stronger non-linearity [47].

In the previous section, we described how we clearly see signs of the existence of

two phase states by repeatedly probing the system with a short pulse and studying

the probabilities of existence in each of these states at the end of that short pulse.

Here, we perform an experiment where we drive the oscillator with a drive tone for

a long time (50 ms), and monitor the reflected phase over that time to see signs of

switching between the two metastable oscillation states. Fig.(4.28) shows an example

of a small section of such a measurement, where we clearly observe (orange curve) a

random telegraph signal (RTS) switching between two states. We analyse this noisy

time trace by first doing a window averaging for 2 µs for this input power, and then

following the iterative algorithm described in [133]. The noise is the amplifier noise

as described before. As opposed to setting a simple threshold to determine which

state the RTS is in, this algorithm uses an approach where it varies the threshold as

a function of time since the last switch, based on an iterative estimate of the average

lifetimes, which converges to the appropriate average switching lifetimes in a few

iterations of the algorithm. This approach works much better in cleaning up noisy

RTS signals such as ours, given the fact that it accounts for the probability that any

given time point might mistakenly fall on the wrong side of a fixed threshold, leading

to a false switching event or to a missed switching event.

Once we have the clean switching data for a length of time that is long compared

to the average switching time, we can obtain the average lifetimes in each of these

states by two methods - (i) the average lifetime in a given state is the total length

of the acquisition divided by the number of switching events out of the desired state.

(ii) since the switching events form a Poisson distribution, we can fit an exponential

to the histogram of the switching times, or alternatively a linear plot to the log of
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Figure 4.28: Example of the measured phase as a function of time for the cCPT
biased at (ng,Φext) = (0.45, 0.11) driven at a ∆ = −24 MHz for an input drive
strength Pin = −116 dBm. The orange plot is the noisy phase measured in real
time, the blue curve (offset vertically for clarity) is the same trace after performing a
window averaging for 2 µs, and the yellow is the cleaned RTS signal, where we used
the algorithm described in the text.

the histogram, which is shown in Fig.(4.29).

Figure 4.29: Poisson fit to the log of the histogrammed switching data in Fig.(4.28).
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We immediately observe that the average lifetimes we obtain for the cCPT is

surprisingly short compared to other (both dissimilar and similar systems). [129,

123] see switching events on the order of a few seconds in their micromechanical

systems, when injected with additional noise. Once switched from the high to the low

oscillation amplitude state, they have to reinitiate the system to the high amplitude

state since the low amplitude state is long-lived on experimental time scales. In the

JJ array system [47] with K/κint ≈ 1, they observe switching lifetimes of the order of

seconds too, though their drive tone is of the order of 9 intracavity photons (data in

figures above is for several 100 photons in our case) and we have seen that the energy

barrier of activation goes down with the drive strength, making switching more likely

[36, 112].
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Figure 4.30: Average lifetimes of the high and low oscillation amplitude states as a
function of drive frequency plotted for several different Kerr values for a drive strength
Pin = −119 dBm.

Fig.(4.30) shows the average lifetimes as a function of drive frequency for a range

of Kerr values. The high oscillation amplitude state is the one that is long-lived at

the bifurcation close to the linear resonant frequency (which is to the right for each

curve given our negative Kerr) which is how we identify the recorded phases with

their respective oscillation amplitudes since we do not record the amplitude data

because of memory constraints while obtaining such large time traces (50ms) of data

sampled at 168MS/s. These plots concur with what we observed in the previous
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section - larger Kerr values lead to finite lifetimes across a larger region of bistability,

while for smaller Kerrs, the co-existence of both states is restricted to a small space

in detunings before one or the other becomes long-lived and we barely observe any

switching. This ties into Dykman’s [112] picture of the Kerr controlling the noise

intensity in the semiclassical quantum activated escape model of Eqn.(4.16).

Performing more thorough tests by performing this measurement for different

drive strengths in addition to the range of Kerr values on the cCPT might shed some

light on the anomalous variation of S-curve width with power in Fig.(4.22).
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Figure 4.31: Average lifetimes of the high and low oscillation amplitude states as a
function of detuning ∆ for a range of mixing chamber temperatures for (a) Pin = −116
dBm, (b) Pin = −119 dBm with the cCPT biased at (ng,Φext) = (0, 0).

To get a sense of the barrier height, we perform a temperature dependent measure-

ment of the average lifetimes for two different input powers, shown in Fig.(4.31). For

the drive strength of Pin = −116 dBm, we see a marked decrease in average lifetimes

as the fridge temperature is increased above 400 mK, setting that to be the approx-

imate effective noise temperature driving the fluctuations. Above this temperature,

the additional thermal contributions kick the oscillator out of the stable fixed point

more often, leading to lower lifetimes. For ω0 = 5.785 GHz, we expect the switch from

the temperature independent quantum limit to where the fluctuations are thermally

driven to be at T = 277 mK[34], which indicates that there is some additional noise

like the quantum activation at work here in addition to simple thermal activation.

We do not see any variation with temperature in the lifetimes for Pin = −119 dBm,
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though we only go up to a temperature of 435 mK at this drive strength.

In order to try to extract the activation energy of escape E
(low)
a and E

(high)
a , as in

[123, 129], we try to introduce some additional white noise to the drive tone. When

the additional noise dominates over the intrinsic noise temperature, the log of the

switching rate will vary linearly with the inverse of the noise intensity, with the slope

given by the activation energy (see Eqn.(4.16))

logW = logW0 −
Ea

IN
, (4.20)

where the total noise intensity IN = I intN + IaddN ≈ IaddN when the added noise intensity

IaddN ≫ I intN .
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Figure 4.32: Plot of the log of the switching rate vs the inverse added noise intensity
for 3 different detunings for Pin = −119 dBm with the cCPT biased at (ng,Φext) =
(0.45, 0.18). The o’s are runs with the noise source turned off, and the x’s and the
corresponding fit lines are with the noise source on.

Fig.(4.31) shows such a measurement for three different detunings alternating be-

tween a measurement with the noise source on (x’s) and off (◦’s). We see that at the

higher noise intensities, the added noise does dominate over the system noise, and we
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fit a straight line to that section. We get nominal values for the activation energy, of

the order of 1 - 1.5K for these detunings, which is reasonable considering the temper-

ature of the noise we approximated in the temperature dependence measurement in

Fig.(4.31).

Since the activation energy itself goes as Ea = k(δν)3/2 where δν = ν − νc is

the detuning from the critical detuning for that Pin and 3/2 is the critical exponent

with which the activation energy is expected to scale regardless of the driven oscillator

system of consideration, as long as it undergoes a saddle node bifurcation as referenced

in section 4.1.1. But the range of detunings over which we see appreciable switching is

too small to allow a reasonable logarithmic fit to the data. But this behaviour of the

activation energy has been studied in other nonlinear systems in [129, 123, 134], and

in parametrically driven systems, this exponent changes to ψ = 2 for the supercritical

and subcritical bifurcations that such a system undergoes, as we will see in chapter

5.

Section 4.3

Discussion

In this chapter, we have seen that the inherent self-Kerr nonlinearity in the cCPT can

be exploited to perform sensitive charge measurements. We demonstrate a resolution

of 0.09e charge with a fidelity of 94%, in a single-shot readout time of 3 µs. This

corresponds to a charge sensitivity of δq
√
tacq = 150µe/

√
Hz, comparable to state-of-

the art rf-SETs. But this readout is performed with far fewer intracavity photons, <

25 while typical rf-SETs operate with drives that correspond to a few 100,000 photons

[26]. The measurement bandwidth of the nonlinear cCPT detector is set by the cavity

lifetime, and is of the order of 1MHz. Working in a dispersive readout scheme as

opposed to the dissipative technique employed by rf-SETs, we expect minimal back-
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action on the system being measured [62]. Based on the application and the system

being measured, we could also operate the cCPT at a slightly less sensitive point, but

perform a faster readout of the charge state.

We find that the major limitation of this mode of operation of the cCPT is the

switching between the metastable oscillation states of the oscillator in the bistable re-

gion. The strength of the tunable Kerr nonlinearity in the cCPT lies in an interesting

regime where the semiclassical quantum activation description starts breaking down

[36], requiring a full quantum mechanical understanding of the system dynamics. We

have studied how the switching dynamics between these metastable states depends

on some of the parameters of operation of the system, including the strength of the

Kerr, the detuning from the linear resonance and the input drive strength. While the

semiclassical approach [111, 117, 64]is sufficient to understand some of these trends,

behaviour such as the anomalous variation in the width of the s-curve with drive

power at a range of Kerr biases might demand a full quantum treatment. This is

an important regime as systems are being designed in which the Kerr nonlinearity

exceeds the damping rate (but still well outside the transmon regime) [47].

In addition to the switching between the metastable states, other limitations to

the operation of the current cCPT device include the quasiparticle poisoning [66] dis-

cussed in section 3.3.2, which prevents us from operating the cCPT at more sensitive

gate points which would lead to much enhanced charge detection. As we’ll see in

chapter 6, employing methods such as shielding which are designed to minimize the

generation of these quasiparticles might greatly improve the scheme described in this

chapter.

Finally, the first stage amplifier in our setup, the TWPA is found to operate with

an added noise of about 4 photons/Hz at the pump parameters we are using. The

nominal noise temperature of the nearly quantum-limited TWPA is reported to be
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closer to 2 photons/Hz [52] and even this particular amplifier has been reported to

perform slightly better than the 4 photons/Hz we are seeing [33]. Though we glossed

over this in estimating the gain and added noise of the TWPA in section 3.3.4, the

added noise and gain of the amplifier chain have a frequency profile. It turns out that

the gain is close to a minimum and the noise close to a maximum (as a function of

frequency, still quite low as a function of pump parameters, as seen in section 3.22)at

around the frequencies we have been working at. An easy solution to this is to just

move to flux values between Φext = 0.25Φ0 and 0.5Φ0. The resonant frequencies for

these fluxes are on the other side of the ω
λ/4
0 frequency (where the TWPA gain is

higher and the added noise lower). Most other system parameters - the damping

rates and frequency fluctuations scale the same way as in the flux range 0 to 0.25Φ0.

We would see a Duffing hardening as opposed to the softening we have been observing

above, but the magnitudes of the Kerr and the behaviour of the system should be

comparable.
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Chapter 5

Charge sensing driving the cCPT

into parametric oscillations

In section 5.1, we will first go through the theory of inducing parametric oscillations

by modulating the flux through the cCPT at close to twice its resonant frequency. We

will closely follow the work of [135] in deriving the semiclassical dynamics of such a

system. In section 5.2, we show some experimental results that conform to the model

predicted by theory, validating our three-wave mixing model for the flux-pumped

cCPT. Finally, in section 5.2.1, we will then see a proof-of-principle charge detection

technique similar to the dispersive qubit state readout scheme described in [61].

Section 5.1

Theory

We begin with the Hamiltonian in Eqn. (2.125). We do not have an input drive to the

cavity, but the flux through the SQUID loop is modulated with an amplitude δΦ and

at a frequency ωp such that ωp/2 ≈ ω0(ng,Φext) where ω0 is the resonant frequency of

the linear tunable cCPT system. The external flux through the SQUID loop is then
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described by

Φext → Φext + δΦcos (ωpt+ ϕp). (5.1)

As described in Eqn. A.13 in Appendix A, this gives rise to a Hamiltonian

Hrot
cCPT = ℏ∆a†a+

ℏK
2
a†2a2 +

ℏ
2

(
ϵa2 + ϵ∗a†2

)
(5.2)

in a frame rotating at ωp/2, and we define ∆ = ω0 − ωp

2
and ϵ = 1

2
∂ω0

∂Φext
δΦeiΦp is a

measure of the strength of the drive. Note that here we define ∆ to be the negative

of the convention used in previous chapters of this thesis.

Similar to Eqns.(A.14) and (A.15), the quantum Langevin equations for this

Hamiltonian is

ȧ = −i(∆ +Ka†a)a− iϵ∗a† − κtot
2
a+

√
κintbin +

√
κextain, (5.3)

ȧ† = i(∆ +Ka†a)a† + iϵa− κtot
2
a† +

√
κintb

†
in +

√
κexta

†
in. (5.4)

Taking the steady state expectation values of Eqns. (5.3) and (5.4), we have

α
(
−i(∆ +Ka†a)− κtot

2

)
= iϵ∗α∗, (5.5)

α∗
(
i(∆ +Ka†a)− κtot

2

)
= −iϵα, (5.6)

where we have defined the steady state intracavity amplitude to be α and this is

independent of time in the rotating frame. Now multiplying Eqns. (5.5) and (5.6),

we get

|α|2
(
κ2tot
4

+ (∆ +Ka†a)2 − |ϵ|2
)

= 0. (5.7)

For non-zero roots to this equation, the term in the parentheses in Eqn. (5.7)
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should be 0, and we have

n = a†a = |α|2 = 1

K

(
−∆±

√
|ϵ|2 − κ2tot

4

)
. (5.8)

We see that there is a parametric threshold defined by |ϵ|2 > κ2
tot

4
above which we

have a non-zero steady state amplitude in the cavity in addition to the trivial n = 0

solution. Above this threshold, there are a three different regimes for steady state

solutions. Assuming K > 0,

n =


0, for ∆ >

√
|ϵ|2 − κ2

tot

4

0, 1
K

(
−∆+

√
|ϵ|2 − κ2

tot

4

)
, for −

√
|ϵ|2 − κ2

tot

4
< ∆ <

√
|ϵ|2 − κ2

tot

4

0, 1
K

(
−∆±

√
|ϵ|2 − κ2

tot

4

)
, for ∆ < −

√
|ϵ|2 − κ2

tot

4
.

(5.9)

As detailed in [135] and looking at Eqn. (5.9) , as we move towards blue detuning

(∆ < 0) starting from a highly red detuning, initially, the zero-amplitude state is the

only stable steady state. As |∆| ≤
√

|ϵ|2 − κ2
tot

4
, the zero-amplitude state undergoes

a supercritical bifurcation and becomes unstable, and a bistable state emerges with

an amplitude as in Eqn. (5.9), with the two states separated in phase by π (Eqn.

(5.12)). As ∆ is further reduced, in addition to the existing bistable same amplitude

states above, the zero-amplitude state undergoes another (subcritical) bifurcation,

and becomes stable again. It also gives rise to two unstable (and hence experimentally

inaccessible) nontrivial states with an amplitude which is the negative solution of the

third case in Eqn. (5.9). Thus we have tristability in that region.
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Similarly, for K < 0, we have

n =


0, for ∆ < −

√
|ϵ|2 − κ2

tot

4

0, 1
K

(
−∆−

√
|ϵ|2 − κ2

tot

4

)
, for −

√
|ϵ|2 − κ2

tot

4
< ∆ <

√
|ϵ|2 − κ2

tot

4

0, 1
K

(
−∆±

√
|ϵ|2 − κ2

tot

4

)
, for ∆ >

√
|ϵ|2 − κ2

tot

4

(5.10)

with similar patterns for the stability of the solutions which is plotted in Fig.(5.1.
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Figure 5.1: Bifurcation diagram of the oscillation response n vs ∆ for K < 0 at a flux
pump strength ϵ = 1.5κtot. Dashed lines correspond to stable states, and solid lines
are unstable states. Negative values of n correspond to states with a phase shifted
by π.

To find the phase of the non-zero steady state solution for the bistable (and tristable)

case, we plug in the stable steady state cavity occupation number (positive solution

to quadratic for K > 0 and negative solution for K < 0) from (5.8) into Eqn. (5.5),

and we get

|α|eiθα
(
∓i
√
|ϵ|2 − κ2tot

4
− κtot

2

)
= iϵ∗|α|e−iθα , (5.11)

where α = |α|eiθα , the minus is for K > 0 and the plus for K < 0. Simplifying this,
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we get

θα =
1

2
arcsin

(
−κtot
2|ϵ|

)
− Φp

2
, π − 1

2
arcsin

(
−κtot
2|ϵ|

)
− Φp

2
, (5.12)

where 2θα+Φp lies in the third (and first) quadrant for K > 0 and in the fourth (and

second) quadrant for K < 0. Irrespective of the sign of K, we see that we have two

states with the same amplitude, separated by a phase of π.

5.1.1. Pump induced detuning

Because of the large flux pumps required to induce these parametric oscillations,

higher order terms in the expansion of the flux drive about its DC value might become

important. We will now show that this gives rise to a ‘pump induced detuning’ as in

[58] and [135]. Going back to Eqn. A.3 and expanding to second order in Φext, we

have an additional term in the Hamiltonian

H(2)
pump =

δΦ2

2
cos2 (ωpt+ Φp)

∂2

∂Φ2
ext

[
∞∑
k=0

1

k!
ϕk
zp∂

k
ϕECPT(ng,Φext)(a+ a†)k

]

=
δΦ2

8

(
e2iωpte2iΦp + e−2iωpte−2iΦp + 1

) ∂2

∂Φ2
ext

[
∞∑
k=0

1

k!
ϕk
zp∂

k
ϕECPT(ng,Φext)(a+ a†)k

]

=
δΦ2

8

∂2

∂Φ2
ext

[
Φ2

zp∂
2
ϕECPT(ng,Φext)

]
a†a

=
ℏδΦ2

8

∂2ω0

∂Φ2
ext

a†a, (5.13)

where we applied an RWA to obtain the third equality, and the fourth equality comes

from 2.127. This additional term in the Hamiltonian thus causes a shift in the resonant

frequency of the cCPT given by

∆(2)
pump =

δΦ2

8

(
2π

Φ0

)2

ϕ2
zp∂

4
ϕECPT(ng,Φext)

=
δΦ2

2ℏZ
K(ng,Φext) (5.14)
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=
δΦ2

dimlessπ
2

ϕ2
zp

K(ng,Φext), (5.15)

where we have used the definition of the Kerr non-linearity from Eqn. 2.129. We

have also used the definitions of Z and ϕzp from chapter 2. δΦdimless is a dimensionless

quantity (δΦ in units of Φ0) between 0 and 1 and is typically ≪ 1 (see Eqn. A.3).

Looking at the 2nd case in Eqn. (5.9), we see that the boundary of the parametric

instability region is defined by the n = 0 curve. This gives us a region in ∆-δΦ space

defined by ϵ2 = ∆2 + κ2tot/4 which is symmetric about ∆ = 0. In [58] (their Γ =

our κtot/4), they show in Eqn. (10) how the flux induced detuning (∆
(2)
pump) of their

sample causes ∆ → ∆+∆
(2)
pump = ∆− 2βϵ2

κtot
where β is appropriately defined from Eqn.

(5.13) and the definition of ϵ. This creates a deformed parametric instability region

defined by ϵ = κtot

2
√
2β

(√
1− 4β∆

κtot
±
√
1− 4β

(
2∆
κtot

+ β
))

.

Section 5.2

Experimental data

As seen in Fig. (5.2), we do experimentally see an asymmetry about the ∆ = 0 axis.

However, in estimating the theoretical flux pump induced detuning using Eqn. (5.15),

we note that the co-ax line in the dilution fridge used to send RF drives to the flux

port of the sample sample box has an attenuation of ≈ 80 dB at room temperature

(60 dB intentional attenuation, 20 dB of loss in the coax cables). Since these are

stainless steel co-ax lines, we expect little change in the loss even when the fridge

is at base temperature. Based on this, we can rescale the flux drive in Fig.(5.2) to

range between -88 and -68 dBm at the plane of the sample. This corresponds to a

peak voltage of between 12.58 µV and 125.87 µV across the 50 Ω resistance of the

on-chip shorted flux transmission line, yielding peak currents of between 251.6 nA
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Figure 5.2: Plot of amplitude measured at spectrum analyzer at ω0−∆ as a function
of ∆ and strength of flux drive at ωp at the signal generator. Plots are at ng = 0 and a)
Φext = 3Φ0

8
and b) Φext =

Φ0

8
. (c) Histogram of in-phase and quadrature components

measured using a heterodyne measurement for the flux pump parameters at the green
circle in (b), (d) at the red circle, (e) at the pink circle. The strength of the drive is
10dBm at the source in c, d and e.

and 2.52 µA, which from the empirical DC flux period of ≈ 51µA corresponds to

a δΦ = 0.0049Φ0 and 0.049Φ0 (see Eqn.(A.3)). The flux induced detuning (∆
(2)
pump)

expected for a δΦ =0.1 is ≈ 1.07 MHz < κtot,∆ for the (ng,Φext) = (0, 0.125Φ0)

with a Kerr values of K =-0.33 MHz for our sample and does not account for this

assymmetry about the ∆ = 0 axis. Using these numbers, the threshold flux wiggle for

κtot = 1.5MHz is δΦc = .0108Φ0 where we used the definition of ϵ and set that equal

to κtot/2. This corresponds to a drive ≈-1 dBm at the signal generator for the cCPT

bias point (ng,Φext) = (0, 0.125Φ0). This matches up with Fig. (5.2a) to within a

few dBm, which could easily be attributed to variations in the attenuation of the flux

line and to resonant frequency fluctuations [73].

A similar asymmetry is observed in the experiments detailed in [57]. They at-

tribute the asymmetry as arising due to the nature of the bifurcation points described

in Eqn. (5.9). For the K > 0 case ((ng,Φext) = (0, 0.375Φ0), see Fig. (5.2b)), as we

go from ∆ = 0 towards the bifurcation at positive detuning, the bistable state disap-
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pears and is replaced abruptly by the zero-amplitude state. On the other hand, as

we go towards the bifurcation at negative detuning starting at ∆ = 0, the oscillations

don’t die out immediately beyond the bifurcation. There is some shared probability

between the zero-amplitude state and the non-zero amplitude states, but the oscil-

lations only die out when the zero-amplitude state probability becomes significant

at more negative detunings. Studying the escape probabilities as in [64, 131] might

yield a better understanding of what is happening. A similar asymmetry is observed

in [84] albeit for a non-degenerate Josephson parametric oscillator system where two

modes of a resonator are parametrically driven. As seen in Fig. (3a-d) of this work,

the asymmetry between red and blue detuning exists, but is much less pronounced in

experiments as compared to the theory.

However, this cannot explain the asymmetry we are seeing either. This explana-

tion requires a non-zero oscillation amplitude on both sides of ∆ = 0, with the slope

of the n = 0 boundary being flatter for ∆ < 0 as compared to that for ∆ > 0.

We also use our heterodyne detection scheme to try to recreate the 3D histograms

as in [57]. With no input drive, Fig. (5.2c, d and e) show the expected zero amplitude

state, the bistable non-zero amplitude states and the tri-stable state respectively, as

a function of increasing ∆.

Fig.(5.3) shows the observed intracavity photons as a function of detuning, ∆, a

range of flux strengths. These are horizontal slices of the surface plot in Fig.(5.2b).

From Eqn.(5.10), the slope of the parametric oscillation boundary should correspond

to the inverse of the Kerr at the cCPT bias point, and we obtain a value of K = −286

kHz close to the theoretically predicted value of -333 kHz. We also notice that the

onset of parametric oscillations occurs at the same detuning close to ∆ = 0 for all

flux pump strengths, which cannot be accounted for by flux pump induced detuning

as touched upon above.

148



5.2 Experimental data

0 5 10 15 20
0

10

20

30

40

-8   

-5.78

-3.56

-1.33

0.89 

3.11 

5.33 

7.56 

9.78 

12   

Figure 5.3: Intracavity photon number number vs detuning for a range of flux pump
strengths as in Fig.(5.2b) at the same cCPT DC bias of (ng,Φext) = (0, Φ0

8
). The x’s

are data points, and the lines are guides to the eye.

5.2.1. Charge sensing

We now visualise a charge sensing scheme similar to the superconducting qubit state

detection scheme in [61]. This is illustrated in Fig.(5.4), where by flux pumping

the cCPT at the δΦ,∆ point denoted in orange, we expect a non-zero amplitude of

oscillations for the red gate bias ng1 and zero amplitude oscillations for the green gate

bias ng2. For a non-zero oscillation amplitude much larger than the amplifier noise

broadening, we should be able to resolve these two gate states with high fidelity.

A few considerations have to be taken into account in performing such a measure-

ment, the first being the cCPT bias point. We saw in section 4.2.2 that the cCPT is

most sensitive to gate shifts at a flux of Φext = 0. The definition of ϵ in Eqn. (5.2)

shows that we need ∂ω0

∂Φext
̸= 0, which is not the case at Φext = 0. So it’s always going

to be a tradeoff between sensitivity and parametric oscillation amplitude at a given

δΦ. Another factor to take into consideration in picking the cCPT bias are the gate

and flux induced fluctuations described in [33]. These will smear out the boundary
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Figure 5.4: Schematic describing the idea behind using parametric oscillations to
distinguish charge states. For 2 cCPT bias points (ng1,Φext) and (ng2,Φext) with the
corresponding parametric oscillation regions denoted in red and green respectively in
δΦ−∆ space.

between the zero amplitude and the non-zero amplitude states and also depend on the

sensitivity to gate and flux, both desirable features for this measurement. Fig.(5.5)

shows such a readout for a set of parameters that have not been optimized, but yields

a proof of principle measurement to show that two states 0.08e apart can be resolved

with a fidelity of 83% in a readout time of 1 µs.

Another important consideration that turns out to be the limiting factor for our

measurement is the switching between the two π separated non-zero oscillation am-

plitude states. A switch that occurs during the averaging period of 1 µs will give

an averaged value that lies squarely in the non-zero amplitude subspace, and affects

the fidelity of our readout. We see that there is a non-zero overlap between the red

and the blue plots, partly because the amplitude of the non-zero amplitude state is

not large enough to cause sufficient separation from the zero amplitude state in the

presence of additional amplifier noise. Larger averaging times is not an option at this
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Figure 5.5: Count of I-Q histograms for two cCPT biases (ng1,Φext) = (0.65, 0.05Φ0)
in red and (ng2,Φext) = (0.73, 0.05Φ0) in blue. The flux pump was set to δΦ = 15
dBm on the signal generator, and ωp = 11.5937 GHz. Each data point was averaged
for 1 µs.

pump parameter point because of the above mentioned switching, which happens

more frequently during a single-shot measurement for longer averaging times.

Fig.(5.6) shows the switching between the two π-separated non-zero amplitude

states over a time interval of 50µs. Though we don’t perform any analysis on this,

we see that the lifetime appears to be < 10µs. Performing a careful characterization

of the switching life times and the probabilities as a function of the pump parameters

would give us a better idea of optimal drive conditions for charge sensing.

Doing so would also give us a better physical understanding of the energy land-

scape around this bifurcation point and of the noise driving these transitions. Ref.

[131] shows that this switching is a quantum activation process across all temperatures

and parameter values.
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Figure 5.6: Phase measured while flux pumping the cavity with ∆ = −19 MHz
with a flux pump δΦ = 15 dBm on the signal generator, with the cCPT biased at
(ng,Φext) = (0.73, 0.05Φ0). This is one of the bias points in the charge sensitivity
measurement in Fig.(5.5). The red line is the real time phase, and the blue is the
phase averaged over 2 µs. We clearly see two distinct phase states separated by ∼ 2π.

Section 5.3

Conclusion

In this chapter, we have shown that pumping the flux line of the cCPT gives rise

to a three-wave-mixing Hamiltonian. As predicted in [135], we observe parametric

oscillations in the cCPT across a range of detunings and flux pump amplitudes above

a certain parametric threshold. Operating at a mildly flux sensitive point Φext =

0.05Φ0, we provide an unoptimized demonstration of a charge sensing scheme where

a small change in the electrostatic environment of the cCPT causes it to switch from

a non-zero oscillation amplitude to a finite amplitude oscillation state which can be

detected in 1 µs with a fidelity of 83%. We see switching between the metastable

finite amplitude oscillation states and recognise this as being the limiting factor in
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this charge measurement. A careful characterization of these switching properties

across the parametric oscillation regime and over cCPT bias points as we did for the

Kerr bifurcation in chapter 4, would help us better locate the optimum bias and drive

conditions to perform a potentially faster, more precise charge readout.
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Chapter 6

Summary and future directions

The cCPT has been demonstrated to be an ultrasensitive charge detector working in

the single-photon regime [1]. In this thesis, we exploit the inherent nonlinearities in

the cCPT to implement novel charge sensing schemes. In the first scheme, by driving

the cCPT close to a bifurcation edge and monitoring the oscillation amplitude of the

device, we are able to detect changes in the electrostatic environment of the cCPT

which cause a shift of 0.09e on the effective gate of the cCPT island. We are able to

perform single-shot readout with 92% fidelity in 3 µs, much faster than the coherence

times of spin qubits [13]. We also predict and observe parametric oscillations by flux

pumping the cCPT and use this to demonstrate a charge sensing scheme which can

distinguish a charge of 0.08e in a readout time of 1 µs with 83% fidelity.

Our cCPT system has a tunable K/κtot which is in the mesoscopic regime between

the JBA regime where a purely semiclassical theory describes the switching between

metastable states observed in the system, and the transmon regime where a fully

quantum mechanical description is required. We study the variation of the switching

lifetimes and populations of the metastable states as a function of the cCPT bias and

drive parameters, and draw qualitative conclusions based on the semiclassical theory.

These observations drawn from the cCPT could be important in guiding understand-
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ing of the mesoscopic regime of these devices which is critical in understanding the

classical to quantum transition in these Kerr systems.

In the future, one of the most interesting prospects for this device is in using the

CPT to enhance the optomechanical (electromechanical) coupling between the mi-

crowave cavity described in this thesis and a nanomechanical resonator(NR), as pro-

posed in [136]. This cCPT-NR system should be able to operate in the single-photon-

phonon strong coupling regime [137] which has not been experimentally achieved.

Achieving this goal would mean we can generate non-classical states of the mechanical

resonator [138] by addressing specific transitions in the anharmonic dressed Hamilto-

nian of a strongly coupled optomechanical system. Doing so in a mesoscopic object

with dimensions of the order of 60 nm x 100 nm x 10 µm which corresponds to

≈ 108 atoms of Si3N4 would aid in a better understanding of the classical-quantum

transition [139].

Section 6.1

Future directions

6.1.1. Strong single-photon-phonon coupling of the cCPT-NR

Optomechanics traces its roots back to the radiation pressure of light experiment

of Nichols and Hull [137] (those experiments were performed in the same building

as the current work). Modern cavity optomechanics experiments have been demon-

strated in a variety of systems (see [137, 79] for a review), but in particular, also in

microwave frequency superconducting resonators. The typical optomechanical (OM)

Hamiltonian for these systems is written as [79]

HOM = ℏω0a
†a+ ℏωmb

†b+ ℏg0a†a
(
b+ b†), (6.1)
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where the photonic cavity and the NR have resonant frequencies ω0(ωm) with asso-

ciated creation/annihilation operators a(b), a†(b†) respectively, and g0 is the single

photon-phonon coupling strength, which is the shift in the resonant frequency of the

cavity by a movement of the NR of the order of its zero point motion, xzp.

To achieve strong coupling, systems typically drive the cavity with a large number

of photons (ncav) (thus not in the single-photon-phonon strong coupling), where they

have the effective linearized Hamiltonian

H lin
OM = ℏω0a

†a+ ℏωmb
†b+ ℏg

(
δa† + δa

)(
b+ b†), (6.2)

where g = g0
√
ncav and δa(δa

†) are the fluctuations about the steady state large ampli-

tude drive. These systems typically rely on a capacitive coupling of the NR to a plate

of a lumped element capacitor [140] or to capacitively change the resonant frequency

of a distributed cavity [141], which is typically a small effect (g0 = xzp
ω0

2C1

∂CNR

∂x
) and

gives rise to g0 of the order of few 100 Hz[142], where C1 is the capacitance of the cav-

ity mode with resonant frequency ω0 (lumped or distributed), CNR is the capacitance

of the NR to the cavity, and x is the displacement of the NR with x = xzp
(
b + b†).

The enhancement for the proposed cCPT-NR device comes from the fact that the

OM coupling (shift in cavity resonance due to NR motion) is not just capacitive, but

arises from the variation of the CPT inductance LJ (see Fig.(2.10)) as the capaci-

tance on the CPT island due to the NR ‘gate’ varies because of the motion of the

NR. Heuristically, this gives us

g0 = xzp
∂ω0

∂x
= xzp

∂ω0

∂LJ

∂LJ

∂ng

∂ng

∂x
≈ −xzp

ω0

2

L1

L2
J

∂ng

∂x
, (6.3)

where as before, we assume LJ ≫ L1. For nominal values of the cavity we have L1 = 2

nH (section 2.1), LJ =50 nH, ∂LJ

∂ng
=150 nH/electron close to ng = 1 and ω0 = 5 GHz.
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For the NR which is a doubly clamped beam made of a thin film of SiN of thickness

60-70 nm, with a 100 nm layer of Al deposited to apply bias, the mass of the beam is

≈ 0.2 pg. Since the wave velocity for a ‘string’ made of SiN is 10 m/s, this corresponds

to a resonant frequency ωm = 10MHz (textbook on Nanomechanics, M. P. Blencowe,

forthcoming). This yields xzp = 60 fm. Using these numbers in Eqn.(6.3), we have

g0 ≈ 4 MHz. We want to maximize xzp (which goes inversely with mass and resonant

frequency of the NR) to the extent possible, while still working with a large resonant

frequency (which scales inversely with length and hence mass) to avoid large thermal

occupation of the NR. The above numbers are a suitable tradeoff where we expect a

few hundred phonons thermal occupation at dilution fridge temperatures, while still

preserving a relatively large xzp compared to larger resonators [140].

This would then put us in a regime where g0/κtot > 1 where κtot ≈ 1.5 MHz is the

total cavity linewidth as before. This would mean that motion of the NR of the order

of its zero point motion would cause a cavity frequency shift larger than its linewidth,

making it detectable. We would also have 2g0/ωm ≈ 1, which means a single photon

would cause motion of the order of xzp on the NR. Together these requirements come

down to 2g20/κtotωm > 1.

Going through a more formal derivation as in [30], but including the dynamics of

the NR, we have the Hamiltonian

HcCPT−NR =a†a

{
ℏωλ/4

0 + ϕ2
zp∂

(2,0)
ϕ,x ECPT

0 (ng,Φext) +
1

4
ϕ4
zp∂

(4,0)
ϕ,x ECPT

0 (ng,Φext)
(
a†a+ 1

)
+

1

6
∂
(2,2)
ϕ,x ECPT

0 (ng,Φext)ϕ
2
zpx

2
zp

(
b+ b†

)2}
+ b†b

{
ℏωm + x2zp∂

(0,2)
ϕ,x ECPT

0 (ng,Φext) +
1

4
x4zp∂

(0,4)
ϕ,x ECPT

0 (ng,Φext)
(
b†b+ 1)

}
+
(
b+ b†

)
a†a

{
xzpϕ

2
zp∂

(2,1)
ϕ,x ECPT

0 (ng,Φext) +
1

4
ϕ4
zpxzp∂

(4,1)
ϕ,x ECPT

0 (ng,Φext)

+
3

10
x3zpϕ

2
zp∂

(2,3)
ϕ,x ECPT

0 (ng,Φext)
(
1 + b†b

)}
(6.4)
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where we defined

∂
(a,b)
ϕ,x ECPT

0 (ng,Φext) =
∂(a+b)ECPT

0 (ng,Φext)

∂ϕa∂xb

∣∣∣∣
ϕeq,xeq

(6.5)

where ϕeq and xeq are the equilibrium co-ordinates for the effective potential which

might be non-zero unlike in section 2.5.2. The first term in curly braces is the cavity

frequency renormalization term which as in section 2.5.2 contains the linear frequency

shift and the self-Kerr term for the cavity but also has an NR position dependent

renormalization which behaves as a cross-Kerr term in the RWA (this could also

be written as a cavity dependent NR frequency shift in the 2nd curly brace) which

also gets up to a few 100 kHz around charge degeneracy. The second curly braces

contain the renormalized NR frequency which also includes the self-Kerr NR term.

We identify the 3rd term as the OM coupling term in Eqn.(6.1), and hence have

g0(ng,Φext) =
1

ℏ

[
xzpϕ

2
zp∂

(2,1)
ϕ,x ECPT

0 (ng,Φext) +
1

4
ϕ4
zpxzp∂

(4,1)
ϕ,x ECPT

0 (ng,Φext)

+
3

10
x3zpϕ

2
zp∂

(2,3)
ϕ,x ECPT

0 (ng,Φext)
(
1 + b†b

)]
, (6.6)

where we have defined ECPT
0 (ng,Φext) as the ground state energy of the CPT as in

section 2.5.2. We have also redefined

EC =
e2CΣ

2CJ

(
CJ + CNR(x)

) , (6.7)

ng =
CJ

2eCΣ

(
CgVg + CNR(x)VNR

)
, (6.8)

where we still neglect the standing gate capacitance Cg ≈ 7 aF in CΣ = 2CJ+Cg+CNR

as before since Cg ≪ CJ , but we cannot do the same for CNR ≈ 100 aF for the NR

dimensions above. VNR is a DC bias applied to the NR. Note that CNR is a function

of its position x.
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Figure 6.1: Simulated g0 vs flux and gate for a cCPT-NR device with EJ = 14.8 GHz,
CJ = 206.67 aF, CNR = 100 aF, VNR = 10 V and xzp = 60 fm.

Fig. (6.1) shows the simulated g0 as a function of a gate and flux for nominal

values of the CPT and NR parameters. Close to charge degeneracy, we do see values

close to the g0 = 4 MHz we predicted from the heuristic method above.

6.1.2. Progress in fabrication

Here, we discuss some of the progress we made in fabricating a cCPT-NR device, the

challenges we are currently facing and some potential solutions.

The cCPT-NR device consists of the same two parts as the cCPT described earlier,

but in addition has a doubly-clamped beam SiN nanoresonator. The CPW is designed

as before [65], but has one additional transmission line on chip to bias the NR. The

main difference involves the fact that we begin with a wafer that has high stress

(1100 MPa) SiN of 60 nm thickness grown on it by the Parpia group at Cornell on

the same high resisitivity Si wafers as in section 3.1.1. These will eventually form

the doubly-clamped beam NR. However, microwave resonators fabricated on Si3N4

substrates have not yielded very high Q’s (Keith Schwab, personal communication).
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So we need to remove the Si3N4 everywhere but for a small region between the center

line and the ground plane of the microwave resonator, where the NR will be formed.

This makes the CPW manufacturing process more complicated than for the cCPT

device. Most of the fab of the CPW but for the final etch-stop removal was done by

Billy Braasch at the NNIN in Harvard, but we briefly step through the entire process.

The thesis by Ndukum [143] is an excellent resource for these processes.

First, a single photo mask with the different designs for various photolithography

stages ((i) SiN island/Al etch-stop definition, (ii) Nb mask CPW pattern, (iii) Au

contact pads definition) of the fabrication was designed and written with the mask

writer tool, each with it’s own fiduciary alignment marks. Using a positive photoresist,

the section on each die about 2 µm high x 15 µm wide is defined using a stepper tool

and 100 nm of Al is deposited in this region. This is the etch-stop to define the SiN

island. After liftoff of the Al, the exposed SiN is etched in two seprate steps. The

first is a dry etch in an RIE with a plasma of CHF3 and O2. This is a relatively fast,

coarse etch, etching about 65 nm/min, and is performed until roughly 20 nm of SiN

remains. The remaining SiN is then etched using a buffer-oxide-etch which etches

about 0.5-1 nm/min and can be controlled much better. This is used to etch through

the last of the SiN, periodically checking the thickness of the leftover Nitride using

an ellipsometer. A coarse test is that water wets SiN since it is hydrophyllic, but Si

is hydrophobic. Optical inspection of the color of the wafer will also give an idea as

to the remaining thickness of SiN.

The next step is to put down the Au contact pads that make (superconducting)

contact between the Nb and the Al as described in section 3.1.1. The difference here

compared to the cCPT sample is that the Au goes under the Nb. It is still < 10 nm

thick. We use a positive resist again, and photolitographically define and thermal

evaporate the two gold pad structures on the center line and the ground plane of the
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CPW.

Nb is then sputtered on the entire wafer by the McDermott group in Wisconsin.

The CPW mask is then exposed lithographically again and the defined dielectric

gaps between the center line and ground plane are etched free of Nb using an O2,

CF4 etch. The 100 nm Al etch stop is finally removed using Transene A which etches

Al at the rate of about 3 nm/s. This completes the preparation of the Nb CPW while

preserving a patch of SiN for the NR to be defined.

As can be seen in Fig.(6.2), this design uses the shadow of the first layer that

forms the island of the CPT to form the NR. As we saw above, we need the NR to be

about 10 µm long, which means we will have a chunk of metal that long defining the

CPT island as well. Before defining the CPT across the voltage anti-node, we test the

DC transport properties of such a long island CPT to ensure that we continue seeing

coherent transport even for such devices. Fig. (6.3) shows source-drain measurements

for such a device with RN = 66.2kΩ across both junctions. Measured with a setup as

in chapter 2 of [144], we obtain the expected I-V characteristics offset by a thermally

induced voltage (≈ 7mV). In addition to the supercurrent branch in the middle,

we see signs such as the double Josephson quasiparticle tunneling (DJQP) around

Vds = 6.6 and 7.7 mV, and the Josephson quasiparticle tunneling (JQP) and normal

transport above 4∆, where ∆ is the superconducting gap. From the onset of normal

transport, we obtain ∆ = 206 µeV which in this case would be a value between that

of the thin island and the thicker leads. The distance between the small lobes in the

middle would be 4EC , from which we obtain EC = 60 GHz, which is a factor of 2

larger than we expect. From the periods of the gate variation in Figs.(6.3a and b),

we calculate the Cg = 180 aF and CNR = 230 aF, though there is no way to see if this

is 2e or a 1e periodicity (in which case the capacitances might be halved) due to QP.

In any case, this seems to show that the device should work as expected even with a
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Figure 6.2: (a) false coloured micrograph of the cCPT-NR sample chip showing 4
transmission lines and the λ/4 CPW. (b) Close up of the voltage anti-node of the
CPW showing the island of SiN in purple in the dielectric between the center line and
ground plane of the CPW. (c) Scanning electron micrograph of the CPT-NR section
of the device at the voltage anti-node. The purple hue indicates the SiN patch and the
yellow, the Au. In (d) the false green represents the 10 µm NR, and the brown, the
CPT island. In the inset, the sub 50 nm JJs are visible, and the contrast difference
of the space above the CPT island to the space between the CPT and the NR shows
that the NR is released from the substrate.

long island CPT on a SiN substrate.

We then fabricate the CPT and NR at the voltage anti-node of the CPW using

ebeam lithography, as described in section 3.1. We use the geometry derivation in

section 3.1 to achieve our desired 100nm width for the CPT island and the NR,

and we then play with the positioning of the vertical fingers which overlap the CPT
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Figure 6.3: DC characterization of a CPT with island length similar to Fig.(6.2d).
(a) shows I-V transport properties were measured with the NR line shorted to ground
at the mixing chamber of the dilution fridge, with several different gate biases cor-
responding to several periods. (b) variation of drain-source current as the standing
gate voltage Vg is varied while biased at the JQP feature denoted in (a). (c) Varying
the NR gate voltage at the same bias point.

island to form the JJs to create an appropriately sized junction. As we saw in the

DC characterization, the 100 nm spacing between the island and NR yields a rather

high value for the capacitive coupling, but we are somewhat constrained in how large

a separation we can reproducibly generate using this shadow technique, and we live

with the reduced EC due to this large capacitive coupling as we saw in the cCPT-NR

device in section 3.3.2.

The final step of the fabrication process is to release the NR. This is done using

a reactive ion plasma (RIE) etch. The first step is to open up an etch window so we

can etch the substrate just around the NR while leaving all other structures tethered

to it. We use a hardier (in terms of resistance to the etch) ebeam resist, which can

still produce sub 100 nm resolution - GL2000 from GluonLab. The release window is

a rectangle the length of the desired NR - 10 µm, whose top lies in the gap between

the CPT island and the Al defining the NR subsequent to the CPT fabrication step.

We then use a two step etch process - the first being an anisotropic (etches straight

into the substrated) CHF3(50 sccm), CF4(2 sccm), H2(15 sccm) in Ar(2 sccm) etch
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Figure 6.4: Schematic of the steps involved in releasing the NR (top view and cross
section at each stage. The purple is the SiN on the gray Si substrate, the release
window is the rectangle defined by ebeam lithography and lies between the bottom
of the CPT island (brown as before) and the NR (green).

with a total pressure of 10 mTorr etched with a forward power of 800 W for 290 s

which etches away the SiN (Fig. (6.4)). This is followed by an isotropic Si etch using

SF6(80 sccm) at a pressure of 20 mTorr and a forward power of 700 W for 35 s. This

isotropic etch etches down into the substrate and under the NR to leave it untethered

in the middle of the release window as shown in the above figure.

The device described in section 3.3.2 could have been used for some preliminary

studies had it had a well-released NR. Even though the QP means that we will be

driving the cavity well off-resonance for a good fraction of any input tone, it still had

good gate and flux variation.

On subsequent devices, we had to deposit more aluminium (120 nm)to climb the

step at the edge of the SiN island, and we started seeing degradation in the cCPT

Q for these samples, even accounting for the Poissonian switching detailed in section
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3.3.2. We were seeing degradation of the Q akin to what has been observed for

microwave cavities and to the degradation of qubit T1’s in such microwave cavities

[99] [110] presumably because of the generation of non-equilibrium quasiparticles by

Cooper-pair-breaking IR radiation. The degradation was so bad in some samples that

the resonance dip was usually of the order of 2 dB, though still tunable with DC bias.

However, this degradation was never observed across several 10s of samples on any

cavity that did not as yet have the CPT designed already. This seems to point to the

origin of the quasiparticles being on the Al leads (or island) which form the CPT and

not the Nb which forms the bulk of the cCPT-NR device. This is also borne out by

the fact that this problem was exacerbated when we had to deposit more Al to climb

the SiN island step. This might also indicate that the frequency of the pair-breaking

radiation is between the superconducting bandgap of Al (Tc = 1.2 K) and that of Nb

(Tc = 9 K)

A multi-pronged approach might be required to overcome what appears to pri-

marily be a QP issue. (i) Try to reduce or eliminate the pair breaking radiation by

coating the inside of the dilution fridge radiation can with Eccosorb as in [99]. It

might be worth considering a setup where the sample is enclosed in a vacuum tight

space in the mixing chamber too. (ii) Revisit the design of the sample to minimize

the amount of Al. This can be done by patterning the NR in a separate step from the

CPT, thereby making the CPT island smaller again, pushing EC back up, making

us less susceptible to QP on the island (section 3.3.2). We could also sputter a small

piece of metal (doesn’t matter what kind) at every point where a lead has to climb

up the SiN island. This way, the Al forming the CPT leads can use the curvature of

the sputtered step to climb the SiN island and we can get away with much less Al

which is where the quasiparticles appear to be created.

Along the way, it might be worth considering going back to the Au on top of the
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Nb technique adopted in the cCPT device. While this is more cumbersome in that

ion milling before the Au deposition is required, a close look at Fig.(6.2c) shows that

there are what appears to be discontinuities in the Au film. These might be caused

by the CF4 etching through the Nb [145].

In addition to novel applications of the single photon-phonon regime and the in-

teresting quantum physics of mesoscopic objects, the resulting Hamiltonian 6.4 shows

that a lot of non-linear terms arise out of this CPT mediated cavity-mechanics in-

teraction, some of which can be tuned into and out of resonance in the RWA by

introducing an appropriate drive as we have seen in this thesis, in addition to inter-

esting CPT DC bias points where specific contributions are 0. It has been shown

that by simultaneously driving a mechanical oscillator with a Duffing term such as

ours with a blue and a red-detuned pump, the NR can be driven to the n = 2 Fock

state [146]. The cross-Kerr term can be used to directly read out phonon number,

performing a quantum non-demolition measurement since this term commutes with

the NR Hamiltonian [147].

6.1.3. Non-linear charge sensing before bifurcation

We have used the cCPT as a threshold detector of charge operating in the bistable

regime. But looking at the black curve in Fig.(4.2), we see that just before bifurcation,

the cCPT still behaves as a continuous charge (and the cCPT-NR correspondingly

a position) detector, whose dispersive phase shift with detuning has a much larger

slope on the red (blue) detuning side for negative (positive) Kerr coefficients. If we

drive the cCPT at a detuning on that sharp edge, we should be a lot more sensitive

to charge than was measured in the linear regime in [1]. This has been suggested

for a Cooper pair box in [148]. As also mentioned in that paper and observed in

[33], resonant frequency fluctuations act as a deterrent in operating the cCPT in

this regime. But using the technique described in [149], we might be able to lock
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the resonant frequency of the cavity so the input drive is at the targeted detuning

throughout the relevant measurement times. Note that an optomechanical system

operating in a similar regime - with a Kerr cavity coupled to a mechanical resonator

[150, 151] was proposed and has been demonstrated to achieve an order of magnitude

better cooling compared to a linear cavity. A similar device has also been proposed

in [148].

6.1.4. On-chip parametric amplification while performing linear charge

sensing

We saw in appendix A that the cCPT acts as a Josephson Parametric amplifier

(JPA), a phase sensitive amplifier when biased at a point that is not insensitive to

flux and pumping the flux line at ωp ≈ 2ω0 [55]. We could couple this with the linear

charge detection scheme in [1] in order to achieve larger SNR at the sidebands at the

output of the chip. So far, when operating below the parametric threshold, we only

observe parametric gain at half the pump frequency (ωp/2), and not at the modulated

sideband frequencies whose measurement is what constitutes a charge sensor, but we

envision performing a charge sensing experiment as in [1] with a single photon level

input tone at ω0±ωg, while modulating the gate line with a frequency ωg of the order

of a few hundred kHz, and then flux pumping the cavity at 2ω0, such that one of the

sidebands from the gate modulation gets amplified by the phase-coherent degenerate

operation, as observed in section A.2.
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Appendix A

Parametric amplification in the

cCPT operating below the

parametric threshold

In section A.1, we derive the Hamiltonian for the flux pumped cCPT and then an ex-

pression for the expected gain. We will then show in section A.2 some data that

demonstrates the expected behaviour for a phase-coherent degenerate parametric

amplifier [152, 55]. We try to demonstrate enhancement in linear charge sensing

performed similar to [1] by using the parametric gain to enhance the SNR of the

sidebands, and present that data. Then, on a different note, we show some exam-

ples of data while pumping the flux line at a frequency 3ω0 generating sub-harmonic

oscillations at the fundamental mode of the cavity. Such period tripling has been

demonstrated in a SQUID terminated cavity [153]where a 3ω0 drive tone at the input

to the cavity drove the fundamental mode using a two-mode subharmonic resonance

between the fundamental and the first harmonic mode of the system, opening the

path to entanglement between the two modes. Flux pumping the same system at 3ω0

also generated period-tripling [154], similar to what we see in the cCPT, which could
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be a path to realising a phase space crystal described in [155].

Section A.1

Theory

Beginning from Eqns. 2.118 and 2.125, the effective cCPT Hamiltonian is given by

HcCPT =
Q2

2C
+

Φ2

2L
+

∞∑
k=0

1

k!
∂kϕECPT(ng,Φext)

(
2πΦ

Φ0

)k

(A.1)

=
Q2

2C
+

Φ2

2L
+

∞∑
k=0

ϕk
zp

k!
∂kϕECPT(ng,Φext)

(
a+ a†

)k
. (A.2)

Modulating the flux through the squid loop such that at a frequency ωp ≈ 2ω0,

where ω0 is the resonant frequency of the cCPT for the DC bias point (ng,Φext)

Φext → Φext + δΦcos (ωpt+ ϕp) (A.3)

with a period of Φ0 and since δΦ ≪ Φext, we can Taylor expand the Hamiltonian to

first order in δΦ about the equilibrium DC flux Φext. By doing so, in addition to the

usual tunable linear oscillator and Kerr terms (see eqn. (18) in [33]), we have the

term

Hpump = δΦcos (ωpt+ ϕp)
∂

∂Φext

[
∞∑
k=0

1

k!
ϕk
zp∂

k
ϕECPT(ng,Φext)(a+ a†)k

]
(A.4)

=
δΦ

2
(eiωpteiΦp + e−iωpte−iΦp)

∞∑
k=0

(a+ a†)k
∂

∂Φext

[
1

k!
ϕk
zp∂

k
ϕECPT(ng,Φext)

]
.

(A.5)

Since a and a† oscillate as a(0)e−iω0t and a†(0)eiω0t respectively, we can apply a

rotating wave approximation and drop all terms that oscillate fast in a frame rotating
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at ωp/2, giving the modified pump Hamiltonian

HRWA
pump =

δΦ

2
(eiωpteiΦpa2 + e−iωpte−iΦpa†2)

∂

∂Φext

[
1

2
ϕ2
zp∂

2
ΦECPT(ng,Φext)

]
(A.6)

=
ℏ
4

∂ω0

∂Φext

δΦ(eiωpteiΦpa2 + e−iωpte−iΦpa†2), (A.7)

where ℏω0 = ϕ2
zp∂

2
ϕECPT(ng,Φext)

Taking the RWA of our original cCPT Hamiltonian (A.2) before application of a

flux pump as in eqn.(C1) of [33] and adding the above pump Hamiltonian (A.7), we

can now write the total Hamiltonian of the cCPT with a parametric flux drive at ωp

as

H = ℏω0a
†a+

ℏK
2
a†2a2 +

ℏ
2
(ϵeiωpta2 + ϵ∗e−iωpta†2), (A.8)

where ϵ = 1
2

∂ω0

∂Φext
δΦeiΦp

We can now transform to the frame rotating at ωp/2 using the relations

H ′ → U †HU − iℏU∂tU † (A.9)

=⇒ H ′ → U †HU − ℏωp

2
a†a (A.10)

a→ U †aU = ae
−iωpt

2 (A.11)

a† → U †a†U = a†e
iωpt

2 , (A.12)

where U = e
−iωpt

2
a†a. Using these in (A.8) yields the rotating frame Hamiltonian

Hrot
cCPT = ℏ∆a†a+

ℏK
2
a†2a2 +

ℏ
2
(ϵa2 + ϵ∗a†2), (A.13)

where we define the detuning, ∆ = ω0 − ωp

2
.
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Writing down the quantum Langevin equations for Hamiltonian (A.13) yields

ȧ =
−i
ℏ
[
a,Hrot

cCPT

]
−
[
a, a†

] [κtot
2
a−

√
κintbin −

√
κextain

]
,

= −i(∆ +Ka†a)a− iϵ∗a† − κtot
2
a+

√
κintbin +

√
κextain (A.14)

ȧ† =
−i
ℏ
[
a†, Hrot

cCPT

]
+
[κtot

2
a† −

√
κintb

†
in −

√
κexta

†
in

] [
a†, a

]
= i(∆ +Ka†a)a† + iϵa− κtot

2
a† +

√
κintb

†
in +

√
κexta

†
in, (A.15)

where κext is the decay constant associated with the capacitive coupling of the cavity

to the probe transmission line, κint accounts for internal cavity losses and κtot =

κext + κint. We have neglected a term −Ka†a in eqn. (A.15) since the single photon

Kerr shift in our system is typically of the order ofK = 0.5MHz < κtot/2 and produces

negligible effect on the detuning.

Taking the Fourier transform of Eqns. (A.14) and (A.15), we obtain

−iωa(ω) = −i(∆ +Ka†a)a(ω)− iϵ∗a†(−ω)− κtot
2
a(ω) +

√
κintbin(ω) +

√
κextain(ω)

⇒ a(ω) =
1

κtot

2
− i(ω − (∆ +Ka†a))

[
−iϵ∗a†(−ω) + (

√
κintbin(ω) +

√
κextain(ω)

]
,

(A.16)

and

−iωa†(−ω) = i(∆ +Ka†a)a†(−ω) + iϵa(ω)− κtot
2
a†(−ω) +

√
κintb

†
in(−ω) +

√
κexta

†
in(−ω)

⇒ a†(−ω) = 1
κtot

2
− i(ω + (∆ +Ka†a))

[
iϵa(ω) + (

√
κintb

†
in(−ω) +

√
κexta

†
in(−ω))

]
.

(A.17)

Simultaneously solving Eqns. (A.16) and (A.17), we obtain,
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a(ω) =
1(

(κtot

2
− iω)2 + (∆ +Ka†a)2 − |ϵ|2

)
×
[
−iϵ∗(

√
κintb

†
in(−ω) +

√
κexta

†
in(−ω)) +

(κtot
2

− i(ω +∆+Ka†a)
)
(
√
κintbin(ω) +

√
κextain(ω))

]
,

(A.18)

a†(−ω) = 1(
(κtot

2
− iω)2 + (∆ +Ka†a)2 − |ϵ|2

)
×
[
iϵ(

√
κintbin(ω) +

√
κextain(ω)) +

(κtot
2

− i(ω − (∆ +Ka†a))
)(√

κintb
†
in(−ω) +

√
κexta

†
in(−ω)

)]
.

(A.19)

To extract the output field operators, we use the input-output relation [74], [75],

aout(ω) = ain(ω)−
√
κexta(ω). (A.20)

Using Eqns. (A.18) and (A.19) in eqn. (A.20) and its complex conjugate, we have

aout(ω) =
1(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

×

[(
κ2tot
4

− ω2 − iωκtot +
(
∆+Ka†a

)2 − |ϵ|2 − κextκtot
2

+ iκext(ω +∆+Ka†a)ain(ω)

)

−
(κtot

2
− i(ω +∆+Ka†a)

)√
κintκextbin(ω) + iϵ∗

(
κexta

†
in(−ω) +

√
κintκextb

†
in(−ω)

)]
,

(A.21)
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a†out(−ω) =
1(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

×

[(
κ2tot
4

− ω2 − iωκtot +
(
∆+Ka†a

)2 − |ϵ|2 − κextκtot
2

+ iκext(ω − (∆ +Ka†a))a†in(−ω)
)

−
(κtot

2
− i(ω − (∆ +Ka†a))

)√
κintκextb

†
in(−ω)− iϵ (κextain(ω) +

√
κintκextbin(ω))

]
.

(A.22)

When we set ∆ = 0 for the above case of a phase-coherent degenerate parametric

amplifier, and when K = 0, Eqn. (A.21) reduces to Eqn. (10.2.21) in [75] up to signs

arising from a slightly different definition of constants in the Hamiltonian.

To connect with [54], Eqns. (A.21) and (A.22) can be rewritten as



aout(ω)

a†out(−ω)

bout(ω)

b†out(−ω)


=



Gext(ω) Mext(ω) Gint(ω) Mint(ω)

M∗
ext(−ω) G∗

ext(−ω) M∗
int(−ω) G∗

int(−ω)

Xext(ω) Yext(ω) Xint(ω) Yint(ω)

Y ∗
ext(−ω) X∗

ext(−ω) Y ∗
int(ω) X∗

int(−ω)





ain(ω)

a†in(−ω)

bin(ω)

b†in(−ω)


(A.23)

where

Gext(ω) =
κ2
tot

4
− ω2 + (∆ +Ka†a)2 − |ϵ|2 − κextκtot

2
− iωκtot + iκext(ω +∆+Ka†a)(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

,

(A.24)

Mext(ω) =
iϵ∗κext(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

, (A.25)
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Mint(ω) =
iϵ∗

√
κextκint(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

, (A.26)

Gint(ω) =
−
(
κtot

2
− i(ω +∆+Ka†a)

)√
κintκext(

κtot

2
− iω

)2
+ (∆ +Ka†a)2 − |ϵ|2

. (A.27)

We can verify that

∣∣G2
ext

∣∣− ∣∣M2
ext

∣∣+ |Gint|2 − |Mint|2 = 1,

Gext(ω)Mext(−ω)−Mext(ω)Gext(−ω) +Gint(ω)Mint(−ω)−Mint(ω)Gint(−ω) = 0,

(A.28)

which preserve the commutation relations of the output operators. Since the bout

and b†out fields are experimentally inaccessible, we don’t concern ourselves with the

expressions for Xext, Xint, Yint and Yext. When the input is a signal of power |αin|2 at

ωs =
ωp

2
+ ω = ω0 + ω, where ω is comparable to κtot, Gext(ω) is the amplitude gain

at the signal frequency, and Mext(−ω) is the amplitude conversion gain (idler gain)

at ωI = ωp

2
− ω = ω0 − ω. This describes the process of three-wave mixing, where

one photon at the pump frequency ωp gives rise to one photon each at ωs and ωI . To

simplify notation in what follows, we have set ∆ = 0. All of the following equations

hold for ∆ ̸= 0 with the substitution ω0 → ω0 −∆ (or ω → ω +∆ since ω ≪ ω0).

Using the definitions of the transmission line current in appendix C of [76] and

section II of [30], as we did in section 2.2.1), we identify the output current at the RF

port of the subsequent mixer Iout(x, t) as the left travelling component of the current

in the transmission line and write it in terms of the output operators as

Iout(x, t) = i

√
ℏ

4πZ0

∫ ∞

−∞
dω′√ω′ + ω0

×
[
e
−i(ω′+ω0)(

x
vp

+t)
aout(ω

′ + ω0) + e
i(ω′+ω0)(

x
vp

+t)
a†out(ω

′ + ω0)
]
,

(A.29)
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I†out(x, t) = −i
√

ℏ
4πZ0

∫ ∞

−∞
dω′√ω′ + ω0

×
[
e
−i(ω′+ω0)(

x
vp

+t)
aout(ω

′ + ω0) + e
i(ω′+ω0)(

x
vp

+t)
a†out(ω

′ + ω0)
]
,

(A.30)

where vp is the microwave propagation velocity in the transmission line, and the mixer

is located at x→ ∞ - the furthest extreme from the coupling capacitor on the sample

chip. Z0 = 50Ω is the characteristic impedance of the transmission line.

We now perform a homodyne measurement of the output field, by mixing the

output signal with a strong local oscillator (LO) at frequency ω0 = ωp

2
and a phase

ΦLO. Both the signal and idler tones mix with this LO to produce a signal at +ω.

For an LO of the form

ILO(t) = 2|αLO| cos (ω0t+ ΦLO) = |αLO|[ei(ω0t+ΦLO + e−i(ω0t+ΦLO)], (A.31)

the current output at the IF port of the mixer IIF(x, t) is given by the product of

Eqns. (A.29) and (A.31)

IIF(x, t) = 2i

√
ℏ

4πZ0

|αLO|
√
ω0

∫ ∞

0

dω′′

[
e
−i(ω′′+ω0)

x
vp e−iω′′teiΦLOaout(ω

′′ + ω0)

+ e
−i(ω0−ω′′) x

vp eiω
′′teiΦLOaout(ω0 − ω′′)

+ e
i(ω0+ω′′) x

vp eiω
′′te−iΦLOa†out(ω0 + ω′′)

+ e
i(ω0−ω′′) x

vp e−iω′′te−iΦLOa†out(ω0 − ω′′)

]
, (A.32)

I†IF(x, t) = −2i

√
ℏ

4πZ0

|αLO|
√
ω0

∫ ∞

0

dω′

[
e
i(ω′+ω0)

x
vp eiω

′te−iΦLOaout(ω
′ + ω0)

+ e
i(ω0−ω′) x

vp e−iω′te−iΦLOaout(ω0 − ω′)
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+ e
−i(ω0+ω′) x

vp e−iω′teiΦLOa†out(ω0 + ω′)

+ e
−i(ω0−ω′) x

vp eiω
′′teiΦLOa†out(ω0 − ω′)

]
, (A.33)

where we have made the approximations ω′, ω′′ ≪ ω0 and neglected the terms oscillat-

ing at 2ω0±ω since these are low pass filtered. We have also explicitly indicated that

the output operators oscillate at frequencies around ω0 unlike in the rotating frame

version of (A.23).The lower limits of the integral have changed to 0 because we have

explicitly written out the negative frequency output operators to make connection

with the idler gain.

As in [128], [54] and [30], the power spectrum P (ω) of the homodyne detector

output detected by a spectrum analyzer measuring with a resolution bandwidth ∆ω

about the center frequency ω = ωs − ω0 averaged over a measurement time TM is

PSA(ω,∆ω) = ⟨I†IF(x, t|ω,∆ω)IIF(x, t|ω,∆ω)⟩Z0 (A.34)

=
1

TM

∫ TM
2

−TM
2

dt⟨IIF†(x, t|ω,∆ω)IIF(x, t|ω,∆ω)⟩Z0, (A.35)

where IIF(x, t|ω,∆ω)(I†IF(x, t|ω,∆ω)) refers to Eqns.(A.32) and (A.33) but with the

limits of the frequency integral running from ωs − ∆ω
2

to ωs +
∆ω
2
.

We then have for the output power

PSA(ω) =
ℏω0

π
|αLO|2

∫ ωs+
∆ω
2

ωs−∆ω
2

∫ ωs+
∆ω
2

ωs−∆ω
2

dω′dω′′

×

{
2 sin [(ω′ − ω′′)TM/2]

(ω′ − ω′′)TM

[
⟨ei(ω

′−ω′′) x
vp a†out(ω

′)aout(ω
′′)⟩

+ ⟨ei(2ω0+ω′−ω′′) x
vp e−2iΦLOa†out(ω

′)a†out(−ω′′)⟩

+ ⟨ei(ω
′′−ω′) x

vp a†out(−ω′)aout(−ω′′)⟩

+ ⟨ei(2ω0+ω′′−ω′) x
vp e−2iΦLOa†out(−ω′)a†out(ω

′′)⟩
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+ ⟨e−i(2ω0+ω′−ω′′) x
vp e2iΦLOaout(ω

′)aout(−ω′′)⟩

+ ⟨e−i(ω′−ω′′) x
vp aout(ω

′)a†out(ω
′′)⟩

+ ⟨e−i(2ω0+ω′′−ω′) x
vp e2iΦLOaout(−ω′)aout(ω

′′)⟩

+ ⟨e−i(ω′′−ω′) x
vp aout(−ω′)a†out(−ω′′)⟩

]
+

2 sin [(ω′ + ω′′)TM/2]

(ω′ + ω′′)TM

[
⟨ei(ω

′+ω′′) x
vp a†out(ω

′)aout(−ω′′)⟩

+ ⟨ei(2ω0+ω′+ω′′) x
vp e−2iΦLOa†out(ω

′)a†out(ω
′′)⟩

+ ⟨e−i(ω′+ω′′) x
vp a†out(−ω′)aout(ω

′′)⟩

+ ⟨ei(2ω0−ω′−ω′′) x
vp e−2iΦLOa†out(−ω′)a†out(−ω′′)⟩

+ ⟨e−i(2ω0+ω′+ω′′) x
vp e2iΦLOaout(ω

′)aout(ω
′′)⟩

+ ⟨e−i(ω′+ω′′) x
vp aout(ω

′)a†out(−ω′′)⟩

+ ⟨e−i(2ω0−ω′−ω′′) x
vp e2iΦLOaout(−ω′)aout(−ω′′)⟩

+ ⟨ei(ω
′+ω′′) x

vp aout(−ω′)a†out(ω
′′)⟩
]}

, (A.36)

The input for the external probe line is a single coherent tone at frequency ωs and

the internal loss channel has a noisy thermal input. The input correlations are

⟨b†in(ω′′)bin(ω
′)⟩ = 1

eβℏ(ω0+ω′) − 1
δ(ω′′ − ω′) =

1

eβℏω0 − 1
δ(ω′′ − ω′) (A.37)

⟨ain(ω′)ain(ω
′′)⟩ = ⟨a†in(ω′)a†in(ω

′′)⟩ = ⟨b†in(ω′)b†in(ω
′′)⟩ = ⟨bin(ω′)bin(ω

′′)⟩ = 0 (A.38)

⟨ain(ω′)bin(ω
′′)⟩ = ⟨a†in(ω′)bin(ω

′′)⟩ = ⟨ain(ω′)b†in(ω
′′)⟩ = ⟨a†in(ω′)b†in(ω

′′)⟩ = 0 (A.39)

⟨a†in(ω′′)ain(ω
′)⟩ = |α(ω′)|2δ(ω′ − ω′′), (A.40)
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where for a single input coherent tone at ωs = ω0 + ω, |α(ω)|2 = |αin|2δ(ω0 + ω − ωs)

⟨ain(ω′)a†in(ω
′′)⟩ = ⟨a†in(ω′′)ain(ω

′) + δ(ω′ − ω′′)⟩ = (|α(ω′)|2 + 1)δ(ω′ − ω′′) (A.41)

and similarly,

⟨bin(ω′)b†in(ω
′′)⟩ = eβℏω0

eβℏω0 − 1
δ(ω′ − ω′′) (A.42)

Using the above expressions, eqn.(A.36) and since our input tone is a coherent

single frequency signal at ωs, using eqn.(A.40), and the fact that at the base tem-

perature of our dilution fridge of 30mK, for ω0 ≈ 2π × 5.5GHz, 1
eβℏω0−1

≈ 0 and

eβℏω0

eβℏω0−1
≈ 1, we have

PSA(ω,∆ω) =
4ℏω0

π
|αLO|2|αin|2

[
|Gext(ω)|2 + e

2iω0
x
vp e−2iΦLOG∗

ext(ω)M
∗
ext(−ω)

+ |Mext(−ω)|2 + e
−2iω0

x
vp e2iΦLOGext(ω)Mext(−ω)

]
,

(A.43)

where we have neglected the coupling to the internal thermal bath because
∫
dω′ eβℏω0

eβℏω0−1

and
∫
dω′ 1

eβℏω0−1
≪ |αin|2 when ∆ω, the resolution bandwidth of the spectrum ana-

lyzer is of the order of Hz, or even kHz. Meanwhile, the coherent drive contains a

photon flux of ∼ 106 photons/s for our typical cavity occupations of a few photons

(see eqn.(B5) in [33]). For the same reasons, we neglect the +1 terms in the corre-

lations arising from the commutation relations of the input operator. We also draw

the position dependant phase factor, which is a constant for a given pump frequency

and experimental setup, into the definition of the pump amplitude, ϵ, and we finally
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have eqn.(2.12) in [54]

PSA(ω,∆ω) =
4ℏω0

π
|αLO|2|αin|2

[
|Gext(ω)|2 + e−2iΦLOG∗

ext(ω)M
∗
ext(−ω)

+ |Mext(−ω)|2 + e2iΦLOGext(ω)Mext(−ω)
]
. (A.44)

We can then define P 0
SA(ω,∆ω) to be the output power in the absence of a flux

pump which is given by

P 0
SA(ω,∆ω) =

4ℏω0

π
|αLO|2|αin|2

∣∣∣G(ϵ=0)
ext (ω)

∣∣∣2, (A.45)

since the idler gains go to zero in the absence of the flux pump.

The gain in the output spectrum due to the pump is then given by

G(ω) =
PSA(ω,∆ω)

P 0
SA(ω,∆ω)

, (A.46)

which depends on the pump detuning ∆, the pump phase Φp relative to the phase of

the input tone, the phase of the local oscillator ΦLO with respect to the phase of the

input tone, the pumping power |ϵ| and the input detuning ω (ω +∆ in reality).

Section A.2

Experiments

We first operate the parametric amplifier in the phase-coherent degenerate mode [152]

by pumping the the flux line at exactly 2ω0 for a cCPT bias (ng,Φext) = (0, 0.125Φ0),

and look at the reflected signal from a single intracavity photon level input tone at

ω0. Fig. (A.1) shows the variation of the gain as a function of the phase of the pump

tone and the input tone, each showing the expected period of 2π and π respectively.
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This phase dependence of the gain with attenuation for some phases is a clear sign

of a phase sensitive amplifier operating in a three-wave mixing mode [55, 135].

0 100 200 300 400 500 600
-10

-5

0

5

10

(a)

0 100 200 300 400 500 600

-5

0

5

Figure A.1: Gain of an input tone on resonance with the cavity for a flux pump at
ωp/2π = 2ω0/2π = 11.554 GHz for a cCPT bias of (ng,Φext) = (0, 0.125Φ0), with
a flux pump tone strength of -10 dBm at the signal generator, and an input tone
Pin = −60 dBm.

However, we see very little to no gain for an input detuned from ωp/2, which is

what we hoped to exploit to perform an on-chip enhanced charge sensing scheme.

We do observe the typical signs when performing this phase-incoherent degenerate

parametric amplification. We see an idler tone (and hence idler gain) at ωI = ωp/2−ωs

where ωI(s) are the idler (signal) frequencies. Though we cannot explain this, we

envision performing the charge sensing experiment as in [1] with a single photon level

input tone at ω0±ωg, while modulating the gate line with a frequency ωg of the order

of a few hundred kHz, and then flux pumping the cavity at 2(ω0), such that one of the

sidebands from the gate modulation gets amplified by the phase-coherent degenerate

operation.

A.2.1. Subharmonic oscillations, multi-photon resonances and phase space

crystals

Looking at the cCPT Hamiltonian eqn.(2.125), we see that by pumping the flux line

at close to 3ω0, we drive the a3 + a†3 term into resonance, and can follow the same

procedure in section A.1 to find a region in flux pump parameters where we expect
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to generate oscillations close to ω0. Fig. A.2 shows a plot of the output spectrum in

flux pump parameter space (δΦ−∆), and the corresponding phase space histograms

for three pump parameters. We see the expected three equi-amplitude stable states

separated by a phase of 2π/3 and sometimes with a stable zero amplitude state.

The subharmonic oscillation region doesn’t agree with the theoretical expectation for

reasons we don’t understand.

By flux pumping the cCPT close to nω0, we can study multi-photon resonances

[156] and the n-fold discrete symmetry in phase space that emerges as pictured for n

= 3 in fig.(A.2) [153], can be used in the study of phase space crystals [155, 157].

Figure A.2: Output spectrum with no input tone, pumping the flux line of the cCPT
at 3(ω0 − ∆) with (ng,Φext) = (a) (0, 3Φ0

8
), (b) (0, Φ0

8
). (c), (d), (e) are heterodyne

measurement histograms at different regions in (b).
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