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Abstract 

Human-caused climate change and deep disparities in human development imperil a 

prosperous and just future for our planet and the people who live on it. Transforming our 

society to mitigate global warming offers an opportunity to rebuild energy systems to the 

benefit of those who are harmed by global inequality today. I examine this opportunity 

through the lens of two sustainable energy technologies: bioenergy and miniature 

electricity grids (minigrids).  

Bioenergy requires land to produce biomass and is inextricably connected to the 

surrounding environment, agricultural livelihoods, and food system. I apply data science 

tools to study aspects of land use and food security that may intersect with increasing 

bioenergy production. I assess the potential to use over one billion hectares of grazing 

land more intensively with an empirical yield gap analysis technique called climate 

binning. To clarify how agricultural and socioeconomic characteristics relate to national 

food security, I study the relative importance of several drivers using simple linear 

regressions with cross validation and random sampling techniques. 

Minigrids can supply clean, reliable electricity to un- and under-served communities, but 

small and hard-to-predict customer loads hamper their financial viability. To improve 

predictions of daily electricity demand of prospective customers, I test a data-driven 

approach using customer demographic surveys and machine learning models. I also 

investigate opportunities to grow loads by stimulating income-generating uses of minigrid 

electricity in twelve Nigerian agricultural value chains.  

I conclude by emphasizing the fundamental complementarity of energy and agriculture 

as change levers for human development, especially in rural communities with low 

energy access and high poverty. I also provide recommendations to support the effective 



iii 
 

use of energy to solve pressing agricultural problems and drive multiplicative human 

development benefits. 
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1 Introduction 

Climate change and inveterate poverty are two pressing and interconnected challenges 

facing society. The earth is warming because of increasing radiative forcing by 

greenhouse gasses (GHGs) in the atmosphere, and significant reductions in GHG 

emissions are required to stabilize the climate. The global economy will transform in the 

coming decades — either preemptively or coerced by the physics of the greenhouse gas 

effect. At the same time, rampant inequality across geographies, genders, races, and 

social classes divides the lucky from the unlucky as billions are projected to fall short of 

the UN Sustainable Development goals for 2030.  

The climate challenge is often framed as the imperative to prevent anthropomorphic 

emissions from changing the biosphere and jeopardizing human prosperity. Developing 

nations today have the lowest per-capita greenhouse gas emissions (Aldy et al., 2016), 

but in some development scenarios population growth and increasing energy 

consumption are poised to rapidly increase their contributions to warming (KC & Lutz, 

2017; van Vuuren et al., 2017). In this view of the challenge, developing nations are 

often considered ticking carbon time bombs that need defusing — and fast (Diffenbaugh, 

2013).  

However, the climate challenge can be reframed as an opportunity to harness global 

economic change to the benefit of people who have been excluded from global 

prosperity during previous industrial revolutions. It is possible to imagine human 

development pathways that reduce inequality while embracing carbon budget 

constraints. Developing nations can lead the clean energy transition and in many ways 

are already doing so (Cortez, Leal, et al., 2018; IEA, 2019a). Sustainable energy 

development paths can outdo fossil-fueled development paths, evading the “natural 
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resource curse” (Badeeb et al., 2017) and equitably distributing the benefits of clean 

energy and climate resilience (Roy et al., 2018).  

This dissertation studies this opportunity through the lens of two sustainable energy 

technologies: bioenergy and miniature electricity grids (i.e., “minigrids”). Section 1 

presents the goals of this thesis and contextualizes the goals by reviewing the recent 

literature on the climate and human development challenges. Sections 2 and 3 present 

research contributions that apply engineering and data science tools to fill key 

knowledge gaps inhibiting deployment of bioenergy and solar-hybrid minigrids, 

respectively. Section 4 draws from this work and the human development literature to 

highlight the potential of coordinated investments in energy and agriculture to drive 

multiplicative sustainable development benefits.  
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1.1 Thesis Goals 

1. Apply engineering and data science tools to fill key knowledge gaps inhibiting 

deployment of carbon-neutral bioenergy and solar-hybrid minigrids for human 

development 

a. Bioenergy 

i. Assess the intensification potential of global pasture land stocks, 

which may be used to raise biomass production without clearing 

new land 

ii. Identify key drivers of cross-national food security, and analyze 

the relative contributions of agricultural and socioeconomic factors 

b. Minigrids 

i. Improve rural minigrid economics through more accurate 

predictions of prospective customer electricity use 

ii. Evaluate opportunities to use minigrid electricity for income-

generating activities in agriculture  

2. Synthesize learnings from bioenergy and minigrid work to guide agriculture and 

energy investments towards multiplicative human development benefits 
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1.2 Background: dual challenges of climate change and unequal human 

development 

1.2.1 The climate challenge 

Anthropogenic greenhouse gasses (GHGs) are increasing the energy absorbed by the 

earth, warming the planet, raising sea levels, shrinking the cryosphere, acidifying the 

oceans, intensifying storms, and otherwise altering the climate system to which life has 

adapted over millennia (IPCC, 2014). 2010–2019 was the warmest decade on record as 

mole fractions of CO2, CH4, and N2O reached 147%, 159% and 123% of pre-industrial 

levels (WMO, 2020). The economic costs of business-as-usual warming are staggering, 

though estimates range widely according to the underlying methodology. One study 

estimates that the >2.0°C warming implied by the 2018 UN national-level mitigation 

commitments would reduce per capita economic output 15–25% relative to a world that 

did not warm beyond 2000–2010 levels (Burke et al., 2018).  The IPCC’s Special Report 

on Global Warming of 1.5°C projects clear benefits to limiting warming to 1.5°C versus 

the 2.0°C target set by the Paris Climate Accord (IPCC, 2018). The Report also finds 

that limiting global temperature increase to just another 0.5°C is physically possible but 

would require historic transformation of human society: in modelling pathways with 

limited or no overshoot of 1.5°C warming, net anthropogenic CO2 emissions decline by 

~45% from 2010 levels by 2030, reaching net zero by 2050. Net emissions (55.3 

GtCO2e in 2018 [UNEP, 2019]) are the product of activity (lighting, driving, flying, 

building, deforesting, farming) and intensity (GHG emitted per mile, kilowatt-hour, acre, 

building, meal). Thus, the product of GHG activity and intensity must be reduced across 

sectors.  

In the past half-century, increased affluence and consumption raised resource use and 

pollutant emissions quicker than technological improvements could reduce them 
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(Wiedmann et al., 2020). Historically, gross domestic product and useful exergy have 

been tightly coupled, and the resource intensity of economic activity has only decreased 

to the extent that the conversion of primary energy to exergy has improved (Haberl et al., 

2020). This reality may pose a fundamental limit on the ability for technological 

improvement of GHG intensity alone to achieve sustainability.   

However, directly controlling macroeconomic activity remains a dubious lever for 

mitigating climate change. The COVID-19 pandemic provides a bleak case study of the 

effect of eliminating emissions through unconsented slowing of economic activity. In 

early 2020, governments around the world enacted confinement policies to slow the 

spread of contagion, and by April daily global CO2 emissions decreased by 17% 

compared with the mean 2019 levels (Le Quéré et al., 2020). The associated annual 

decrease in emissions (estimated at -4.2 to -7.5%) is roughly comparable to the rates of 

decrease required each year to meet the 1.5°C target (UNEP, 2019). The “degrowth” 

theory posits that intentional reductions in production should be central to climate 

change mitigation (Kallis, 2018), although the depression wrought by the COVID-19 

pandemic highlighted the unpopularity and inequality of rapid deceleration of the 

economy. Others propose that gross domestic product growth will naturally taper as 

labor forces stabilize and the returns on innovation and reallocation of resources 

diminish (Banerjee & Duflo, 2019; Vollrath, 2020). Whether GDP growth is exogenous or 

endogenous is a decades-old debate among economists (e.g., Bernanke et al., 2002), 

making the activity part of the emissions equation difficult — if not impossible — to 

control at a macroeconomic scale.  

Individual people can play a role by reducing emissions from their consumption of 

energy, food, transportation, and other goods and services. For North Americans and 

Europeans who emit 13.4 and 7.5 metrics tons of CO2 equivalent per year, respectively, 



6 
 

there is significant room to reduce emissions through changes in consumption of 

transportation, food, and housing (Ivanova et al., 2020). In contrast, Africans and Middle 

Easterners average only 1.7 tCO2 per capita per year, and many lack basic services 

such as electricity and clean cooking (id). For both groups, the aim is to achieve climate 

stabilization not through deprivation, but rather by meeting essential needs with less 

climate impact. The “avoid–shift–improve” framework articulated by Creutzig et al. 

(2018) provides an approach to reducing the environmental impacts of consumption. For 

example, in the case of the transport sector, policies may intervene by first avoiding the 

need to travel (e.g., telecommuting or better urban planning), then shifting travel to a 

less emissions-intensive mode (e.g., walking, public transport), and finally improving the 

technology utilized (e.g., replacing fossil-fueled cars with electric vehicles). Policies and 

changing social norms driven by this principle can reduce the resource intensity of a 

fulfilled life by consuming better, but less (D. W. O’Neill et al., 2018).   

In addition to aligning consumption with planetary resource constraints, achieving carbon 

neutrality in energy systems is indispensable to climate stabilization. Combustion of 

fossil fuels for heat, power and transport accounts for about half of the radiative forcing 

contributing to global warming (Lovins et al., 2019). Thus, reducing the GHG intensity of 

energy use is paramount.  

Mitigation pathways that limit warming to 1.5 °C broadly agree that the energy transition 

must curtail energy demand growth, reduce the emissions intensity of energy supply by 

phasing out fossil fuels, and scale carbon dioxide removal to create negative emissions 

(IPCC, 2018; Kriegler et al., 2018; Luderer et al., 2016). The extent to which each of 

these mitigation modalities contributes to meeting our carbon budget varies across 

modelled energy transition scenarios, which present multiple “technologically salient 

options” for limiting warming (Rogelj et al., 2018, p. 311). For example, the global Low 
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Energy Demand (LED) scenario holds global 2050 energy demand to 245 EJ, allowing a 

downsized energy system to supply services and meet 1.5 °C climate targets without 

relying on negative emissions technologies (Grubler et al., 2018). The LED mitigation 

pathway assumes significant improvements in end-use energy efficiency, which increase 

energy productivity (i.e., GDP per unit of primary energy) by 4.8% per year. Energy 

efficiency is an extremely large energy “resource” in its own right, delivering three fourths 

of the total decarbonization observed from 2010 to 2016, and productivity gains of up to 

7% per year are possible using only mature technology (Lovins, 1979, 2018; RMI, 

2019a).  In the LED scenario, increasing energy efficiency and changing end-use 

technologies drive pervasive electrification and adoption of distributed energy resources. 

This in turn drives low-carbon resources and non-biomass renewables to 80% and 55% 

of primary energy market share, respectively. In 2017, only 19% of primary energy was 

from low-carbon resources, with non-biomass renewables (mostly nuclear and hydro) 

comprising 9% of total primary energy supply (IEA, 2019c). 

The path we ultimately take towards climate stabilization will depend on uncertain trends 

in economic growth, public sentiment, technology cost reductions, consumer behavior, 

population growth, policy design, and myriad other factors (L. Clarke et al., 2014; KC & 

Lutz, 2017; Leimbach et al., 2017; Mundaca et al., 2019; B. C. O’Neill et al., 2017; Riahi 

et al., 2017; van Vuuren et al., 2018; Weindl et al., 2017). All mitigation pathways will 

require massive reallocation of public and private capital investment (Mann et al., 2020; 

Mitchell et al., 2020). Six integrated assessment models (IAMs) meeting 1.5°C targets 

predict annual investments between 1.6–3.8 trillion 2010 US dollars on the supply-side 

alone, accompanied by divestment from fossil fuel extraction and fossil electricity 

production (McCollum et al., 2018).  The International Renewable Energy Agency’s 

REmap scenario calculates a required cumulative investment of 110 trillion 2015 US 
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dollars between 2016–2050 to increase renewable energy deployment, raise energy 

efficiency, and electrify energy services such as transportation and heat (IRENA, 2019). 

REmap also estimates that for every dollar invested in transforming the global energy 

system, there would be a $3–7 savings from reduced subsidies and avoided 

externalities.  

Some of these shifts are already underway. Thanks to increasingly favorable economics 

for renewable energy and battery storage, the power sector is rapidly installing low-

carbon electricity capacity — 200 GW in 2019 (REN21, 2020). Also in 2019, $282 billion 

of investment in renewable energy capacity drove wind, solar, biomass and waste, 

geothermal and small hydro to 78% of the net gigawatts of generating capacity added 

around the globe (McCrone et al., 2020). Another analysis shows that an optimized 

combination of wind, solar, battery storage, efficiency, and demand flexibility could cost-

competitively match the grid services of every proposed gas-fired generation project in 

the United States (Teplin et al., 2019).  This imperils investments in natural gas 

pipelines, which could face an 85% reduction of expected fuel use from new gas-fired 

generation by 2035 (Dyson et al., 2019).  

Energy use in buildings, industry and transport is changing less quickly than for the 

power sector.  Buildings use more than 75% of total final energy demand for heating and 

cooling, which remain heavily dependent on fossil-fuels despite the opportunity to 

profitably cut building energy use in half by investments in electrification, integrative 

design, and energy efficiency (Lovins & Rocky Mountain Institute, 2013; Petersen et al., 

2019; RMI, 2019b). Industry, which accounts for 40% of annual global GHGe, produces 

a complex mixture of embedded emissions in materials extraction, processing, and 

transportation (Koch Blank et al., 2019). Achieving climate neutrality in industry will 

require technical and policy innovations that suit the varied needs of sub-sectors: 
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improved energy efficiency through heat recovery, longevity in steel and concrete to 

reduce future demand, and use of alternative energy carriers for high-temperature heat 

(Rissman et al., 2020). Globally, transport accounts for approximately one third of total 

final energy consumption, but only 3.3% was met by renewable energy in 2019 (REN21, 

2020). Section 2.1.1 describes the role of bioenergy in decarbonizing transport in further 

detail. 

In summary, meeting human needs while maintaining carbon neutrality will require 

transformation of our society, economy, infrastructure, and institutions (UNEP, 2019). 

Such transitions are “unprecedented in terms of scale, but not necessarily in terms of 

speed, and imply deep emissions reductions in all sectors, a wide portfolio of mitigation 

options and a significant upscaling of investments in those options” (IPCC, 2018, p. 15).  

1.2.2 The human development challenge 

Alongside the climate challenge, rampant inequality across geographies, genders, races, 

and social classes divides the lucky from the unlucky as billions are projected to fall 

short of the UN Sustainable Development goals for 2030 (UN, 2019). These inequalities 

exist between countries: Somalian children are 60 times more likely to die before age 

five than Icelandic children (UN IGME, 2019). These inequalities exist within countries: in 

Nigeria, people in the least educated local government area average seven fewer years 

of education than those in the most educated district (BMGF, 2019). Recent data 

indicate that more than two billion people lack regular access to safe, nutritious, and 

sufficient food (FAO, 2019c), and in 2018 an estimated 821 million people were not able 

to acquire enough food to meet minimum dietary energy requirements (FAO, 2018b). 

Globally, the top 5% of energy consumers use more Joules than the bottom 50%, as 

wealthier people utilize luxury services with high energy intensities (e.g., air travel) while 

poorer people lack the minimum level of energy consumption required for modern life 
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(Oswald et al., 2020). 789 million do not have access to electricity (IEA et al., 2020) and 

one in two people lack access modern energy cooking services (ESMAP, 2020b).   

Although inequalities exist everywhere, extreme poverty is disproportionately Sub-

Saharan African and rural. The global extreme poverty rate in rural areas is more than 3 

times that of urban areas (UN, 2019), and 83% of multidimensionally poor people live in 

South Asia and sub-Saharan Africa (MPI 2019). Forecasts for 2030 predict that 7–8% of 

the global population will live on less than $1.90 or less per day (in 2011 dollars) if 

economic growth continues according to World Bank forecasts and is distributed per the 

status quo (Lakner et al., 2020). 85% of these will be Sub-Saharan Africans, where 

roughly one in three people will still have annual incomes below ~$700 (id).  In 2018, 

nearly half of Africans had no access to electricity, while 80% of Sub-Saharan African 

companies experienced frequent electricity disruptions (IEA, 2019a). 

These regions are precisely the ones most exposed to climate risk, and with the least 

margin to adapt. Despite contributing <3% of historic emissions (Ritchie, 2019), sub-

Saharan Africa is already experiencing more frequent and intense climate extremes from 

1°C of warming (Taylor et al., 2017) along with climate-driven crop losses (Sultan et al., 

2019). Burke and Tanutama (2019) find that warming since 2000 has already reduced 

aggregate economic output by 5% in tropical countries.  Studies further anticipate higher 

temperature increases in Africa than the global mean (Weber et al., 2018), which would 

contribute to erratic precipitation patterns (Diedhiou et al., 2018), uncertain crop yields 

(Palazzo et al., 2017; Sultan et al., 2019), and an increasing chance of infectious 

disease outbreaks (Serdeczny et al., 2017) among other risks (IPCC, 2018, Chapter 3). 

In addition to the climate risks being severe, poor communities and families are more 

vulnerable because they have less capacity and resources to adapt (Acevedo & IMF, 
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2019; UNDP, 2019). Thus climate change is expected to act as a “poverty multiplier”, 

making poor people poorer (Hallegatte & Rozenberg, 2017).   

Disparities in capability (health, food security, education, energy) are at the heart of 

human development because they fundamentally limit a person’s freedom to choose 

what to be and do (A. Sen, 1992). These capabilities cannot be reduced purely to 

income poverty, although progress in human development fundamentally “involves the 

capacity to generate income and translate it into capabilities” (UNDP, 2019, p. 68).  

In the past few decades, economic growth and human development efforts have 

reduced gaps in many basic capabilities necessary for survival. For example, the global 

extreme poverty rate dropped from 36 percent in 1990 to 9 percent in 2018 (World Bank, 

2018b). Primary school enrollment is now nearly ubiquitous, with secondary school 

enrollment also making progress, despite wide inequalities in school quality and access 

to higher education (UNESCO, 2020). The global maternal and infant mortality rates 

have been cut in half since 1990 (UNICEF, 2014). But disparities continue, and are even 

growing, among the enhanced capabilities that are necessary for people to have 

freedom and agency over their lives in the coming decades (e.g. access to quality 

healthcare, higher education, internet) (UNDP, 2019). Further, growth in GDP — and the 

development spillovers that come with it — already appears to be slowing in many 

places. As economies reduce inefficiencies and misallocation of capital (Banerjee et al., 

2003), much of the lowest hanging fruit will eventually be “picked”, and the marginal 

returns from shifting investment to more profitable or competitive firms diminished. Even 

in October 2018, the International Monetary Fund’s World Economic Outlook signaled a 

tapering of the post-recession expansion (IMF, 2018). These trends were exacerbated 

by the COVID-19 pandemic, which has pushed millions back under the extreme poverty 
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line, where some are projected to stay for more than another decade (World Bank, 

2020).  

As Nobel laureates and development economists Esther Duflo and Abhijit Banerjee 

write, aggregate economic growth cannot be the target or solution to human 

development challenges (Banerjee & Duflo, 2020). In their view, without “a magic potion 

for development, the best way to profoundly transform millions of lives is not to try in vain 

to boost growth. It is to focus squarely on the thing that growth is supposed to improve: 

the well-being of the poor.” 

The United Nations Development Program proposes a two-pronged approach to link 

expansion and distribution of both capabilities and income (UNDP, 2019, Chapter 7). 

The integrated approach has two complementary aims: 1) increase income by improving 

equity and efficiency in markets and increasing productivity; and 2) directly expanding 

the capabilities that allow people to realize their potential, such as access to energy, 

lifelong learning, healthcare, and social inclusion. This approach acknowledges that no 

one policy or social enterprise can accomplish all aims at once, but also encourages a 

multidimensional mindset that seeks to increase incomes by eliminating inequalities in 

capabilities, rather than exacerbating inequalities in the name of economic growth. In 

fact, modelling by the World Bank’s Poverty and Equity Global Practice Group has 

shown that reducing each country’s income inequality (i.e., Gini index) by 1% per year 

has a larger impact on global poverty than increasing each country’s annual growth by 

1% (Lakner et al., 2020). 

Some successful interventions target a specific capability that is lacking or unevenly 

distributed. For example, a cash transfer program in Malawi incentivizing school 

enrollment for young girls significantly reduced HIV prevalence, pregnancy, and early 

marriage while improving language test scores (Baird et al., 2019). This program 
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produced sustained improvements in education and fertility outcomes, which can also 

translate to higher earning potential later in life. In the public health sector, research-

proven interventions that distributed insecticide-treated bed nets free of charge (Cohen 

& Dupas, 2010) played a prominent role in reducing malaria incidence in sub-Saharan 

Africa by 40% between 2000 and 2015 (Bhatt et al., 2015). Reducing the malaria burden 

then contributed to progress in other Sustainable Development Goals, as healthier 

workforces are more productive, healthier students are better learners and free from 

caring for sickened family members, and so on (WHO, 2019).  

Other development programs directly target incomes. A person’s market income mostly 

comes from work, in which earnings are a function of A) the assets and capabilities 

possessed, B) the intensity of the use of these assets, C) the market’s valuation of the 

work, and D) the prices of the goods and services they consume (López-Calva & 

Rodríguez-Castelán, 2016). Evidence from Latin America suggests that increased labor 

income was the most important contributor among sixteen countries that substantially 

reduced moderate poverty from 2000 to 2010 (J. P. Azevedo et al., 2013; Lustig et al., 

2013). Meanwhile, income transfers played a large role in reducing rates of extreme 

poverty (id).  

Work that is stable, dignified, fairly compensated, and that enhances workers’ 

capabilities is thus indispensable to holistic human development (UNDP, 2015). Today, 

not all people can access these jobs. Globally, 61% of workers are informally employed, 

making them less likely than formally employed people to receive reliable incomes, and 

be covered by workers’ rights and social protection policies (ILO, 2018a). Approximately 

85% of African workers are informally employed, and 58% work in low-productivity jobs 

such as smallholder agriculture (ILO, 2018b). On average, formal workers are wealthier, 

more educated, more productive, and more resilient to financial shocks (UNDP, 2019). 
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Gender gaps contribute to further inequity in access to paid employment jobs. Globally, 

70% of women report that they would prefer to work at paid jobs, yet women are 15 

times more likely than men to be unpaid care workers (ILO & Gallup, 2017). 

The 2015 UNDP Human Development Report advocates for an employment-led growth 

strategy that prioritizes the creation of jobs by strengthening small and medium-sized 

businesses by linking them to larger firms with available capital, upgrading workers’ skills 

over their careers, focusing on sectors where the poor live and work, directing 

investments to sectors that will create jobs, and improving access to finance through 

credit guarantees and low interest rates (UNDP, 2015).  

The 17 UN SDGs span the breadth of human development ambition, seeking progress 

in everything from poverty, food security, and education to healthy ecosystems and a 

stable climate. Achieving these goals will require an estimated $5–7 trillion of investment 

per year, requiring a step change in public and private investments (UNCTAD, 2014). As 

of 2019, there was still a $2.5 trillion gap in SDG sector investments in developing 

countries alone, (UNCTAD, 2019). But once these development dollars are ready to 

spend, what should they do? 

The literature reviewed here is supportive of human development interventions that 

support sustainable work that provides higher incomes, preferably through a mechanism 

that simultaneously enhances the capabilities of workers and communities. Investments 

in renewable energy, including bioenergy and distributed energy resources such as 

minigrids, have the potential to provide these both benefits while also reducing GHG 

emissions. Sections 2 and 3 of this dissertation fill knowledge gaps hampering 

deployment of these technologies. Section 4 concludes by presenting the opportunity to 

synchronize these technologies with agriculture for still more human development gains.   
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2 Bioenergy  

 

2.1 Bioenergy literature review and background 

2.1.1 The role of bioenergy in a stable climate future 

Bioenergy is energy generated from organic material, including liquid transportation fuel, 

electricity and heat from combusting solid biomass, biogas, or gasification products; and 

traditional biomass uses such as low-efficiency burning of wood, agricultural residues, or 

animal waste for cooking, lighting, or space heating (Chum et al., 2011). In 2018, 

bioenergy was the largest source of renewable energy in use, accounting for nearly 10% 

of global total primary energy supply (roughly half of which was traditional biomass use) 

(IRENA, 2020b).  

Biomass-derived liquid fuels can be divided into two tiers based on technological 

maturity. “First generation” (1G) biofuels — including bioethanol made from sugar or 

starch, and biodiesel from organic fats and oils — are mature technologies operating at 
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billion-gallon-per-year scales and are often price competitive with petroleum products 

even without a cost on carbon (IEA, 2019b). The “second generation” (2G) of biofuels 

technology converts inedible cellulosic biomass (e.g., switchgrass, agricultural waste) or 

municipal waste into biofuels (R. A. Lee & Lavoie, 2013). Despite the promise of 

converting these low-cost feedstocks into fuels, 2G technology is not currently cost 

competitive with petroleum, and further cost reductions are required to enable 

commercial deployment at scale (Lynd, 2017).  

New processing paradigms that reduce the cost of converting cellulosic biomass to fuel 

can dramatically improve the business case for 2G ethanol. One such innovative 

paradigm is consolidated bioprocessing using thermophilic bacteria combined with 

cotreatment (CBP-CT) (Balch et al., 2020; Lynd, Guss, et al., 2017). In technoeconomic 

models of 2G biofuel facilities that incorporated the anticipated benefits of CBP-CT 

designs alongside general process design improvements, the payback period for an 

advanced facility was estimated to be 8x lower than a base case design using prevalent 

industry practices (Lynd, Liang, et al., 2017). Once 2G ethanol is produced, it can be 

“upgraded” to fungible hydrocarbon fuels (e.g., sustainable aviation fuel) that can 

displace fossil fuels in existing airplanes, trucks, and ships. Hannon et al. (2020) present 

a single-step catalytic process that can perform this upgrading on “wet” ethanol (40% 

water by weight) at costs comparable to those of producing anhydrous ethanol. They 

calculate that with existing production incentives, the projected minimum blendstock 

selling price is competitive with oil at $60 per barrel. The combination of cheap 2G 

ethanol and efficient upgrading processes offers a viable path to carbon-neutral or 

carbon-negative heavy transport but will require further investment in technological 

research and development as well as deployment in niche markets where learning by 

doing can occur. For example, CBP-CT may offer early value in processing cellulosic 
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side streams in existing biofuel production facilities, such as corn fiber (Beri et al., 2020) 

from US corn ethanol plants, or sugarcane bagasse from Brazilian sugar mills or 

biorefineries, among others (Liang, 2018, Chapters 6–7).   

Most scenarios that limit global temperature rise to 2°C or below rely on bioenergy to 

help reduce net GHG emissions from hard-to-abate sectors such as shipping, aviation, 

and heavy industry (B. E. Dale et al., 2014). For example, IRENA’s Transforming Energy 

Scenario keeps expected temperature rise well below 2°C,  relying on modern bioenergy 

for 23% of total primary energy supply in 2050, and including 652 billion liters of liquid 

biofuel production per year (roughly five times 2017 production) (IRENA, 2020a). In a 

comparison of six IAMs under assumptions from five SSPs that limit warming to 1.5°C, 

bioenergy is used in large amounts across all simulations, with total primary bioenergy 

ranging from 38–112 EJ per year (Rogelj et al., 2018). All of these simulations also relied 

to some degree on negative emissions by BECCS to reach their target concentrations of 

atmospheric CO2: BECCS contributed to a total of 150–1,200 GtCO2 removal in the 

twenty-first century in the sustainability pathway (SSP1) (id). Even in the Low Energy 

Demand (LED) scenario — which assumes elimination of traditional biomass use and no 

BECCS — biomass still contributes to nearly 20% of total final energy, with biofuels 

playing an especially prominent role as a liquid energy carrier (Grubler et al., 2018). 

The transportation sector, which used roughly one third of global final energy in 2017, 

relies heavily on petroleum products: nearly 97% of all transportation energy came from 

non-renewable sources in 2019 (REN21, 2020). Fulton et al. (2015) estimate that 80% of 

2050 transportation fuel demand will be for dense liquid fuels, even with aggressive 

action to reduce travel, shift to mass transport, improve efficiency, and increase adoption 

of electric and hydrogen light duty vehicles. Biofuels are the only renewable liquid 

energy carrier that can ‘drop in’ to existing cars, trucks, airplanes, and ships. 
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Additionally, capture and storage of biogenic CO2 from fermentations at existing 

biorefineries is a rare example of near-term low-cost opportunity for negative emissions. 

At 216 existing US biorefineries, an estimated 27 million tons of CO2 per year can be 

captured, compressed, and dehydrated for pipeline transport at a cost less than $0.05 

per 1 gallon of ethanol (Sanchez et al., 2018). 

The greenhouse gas emission balance of a bioenergy project depends upon complex 

carbon fluxes between the landscape, the bioenergy feedstock, feedstock transportation, 

processing, and end product use (Larson, 2006). Further, the choice of life cycle 

analysis methodology used to assess the climate impact can significantly influence 

climate impact assessments (Mayer et al., 2020). For example, results range widely with 

assumptions regarding the time horizon used to assess global warming potential of 

emissions, or the assumed “carbon debt” accrued by clearing land prior to bioenergy 

crop cultivation (Brandão et al., 2019). Field et al. (2020) recently analyzed ecosystem 

and supply chain carbon balances for cellulosic ethanol production with carbon capture 

and storage. They found that transitioning existing crop land or pasture land to 

switchgrass used for biofuel production resulted in per-hectare mitigation potential 

comparable to reforestation. Design decisions to use pasture land instead of forest, 

improved biofuel production technology, and carbon capture and sequestration each 

increased total mitigation by roughly 10–15 Mg CO2e per hectare per year, 

outperforming reforestation in terms of climate mitigation potential. Although net 

greenhouse gas emission mitigation cannot be assumed for every bioenergy application, 

these results show that bioenergy systems can be designed to contribute significantly to 

climate change mitigation.  

In summary, bioenergy is required for rapid decarbonization of the energy system, and 

its intrinsic connections to surrounding land, ecosystems, and human society make it 
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promising (yet complex) to manage for positive social and climate impacts. Reid, Ali, and 

Field (2020) suggest that bioenergy will serve as an important bridge fuel in the “decisive 

decades” from the 2020s to 2050s, but that land use constraints and progress in 

alternative technologies should consign bioenergy to a diminishing role in the longer 

term. Regardless, biofuels have a universally acknowledged role to play in achieving 

1.5°C or 2°C climate goals in the near term, which prompts further study of how growing 

production might affect land, food, and human development. 

2.1.2 Bioenergy and sustainable development 

Bioenergy production requires biomass, and biomass production requires land. Society 

also depends on land to produce food, feed, and fiber, and biomass also provides 

heating and cooking fuel in some contexts. In communities with agricultural economies, 

land use and biomass production are also deeply connected with employment and 

economic development. These facts create a series of complex interactions between 

bioenergy systems, society, and the environment (Chum et al., 2011; Creutzig et al., 

2015; V. H. Dale et al., 2015). Bioenergy advocates see these linkages as opportunities 

to create beneficial outcomes through well-governed projects, while critics see potential 

pitfalls and risks that are less evident for other renewable energy sources (Rosillo-Calle, 

2018). The impacts of deploying bioenergy depend on the specifics of the bioenergy 

system, the surrounding context, and on the scale of the intervention (P. Smith et al., 

2014), which makes it difficult for researchers and policymakers to study and create 

policies that apply across projects . A systematic literature review by Robledo-Abad et al. 

(2017) found that the scientific evidence base for policymaking on bioenergy and 

sustainable development was hard to apply because, although studies were spread out 

across very different contexts, most studies did not report the context conditions or 

baselines required to attribute impact to bioenergy interventions. Yet, the planet’s carbon 
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debt continues to accrue, and bioenergy must expand in the face of these uncertainties if 

climate goals are to be met (IEA, 2017). 

The Brazilian experience with sugarcane ethanol gives evidence of the human 

development benefits that can accompany bioenergy expansion. In 1975, the federal 

government of Brazil established the National Alcohol Program (Proálcool), which 

leveraged an established sugar industry to boost bioethanol production (Cortez, 

Nogueira, et al., 2018). In the first 30 years of the program, Brazilian farmers and 

refineries progressed rapidly along the ethanol learning curve, increasing per-hectare 

sugarcane yields by 85% and raising national sugar and ethanol production by roughly 

3.5x and 22x, respectively (Goldemberg et al., 2004). These technological improvements 

came alongside supportive policies that guaranteed a market for ethanol, provided low-

cost loans to ethanol distilleries, regulated ethanol prices to maintain consumer appeal, 

and established sugar production quotas with export controls (Hira & de Oliveira, 2009).  

The socioeconomic benefits of the Brazilian sugarcane industry have been documented 

by numerous studies. Regardless of the conversion technology in use, the economic 

development impacts are concentrated in the cultivation of sugarcane feedstock itself 

(Cardoso et al., 2018; A. Souza et al., 2018). Moraes et al. (2015) found that, compared 

to other Brazilian agricultural sector workers, sugarcane sector workers were more than 

twice as likely to be formally employed and earned 45% more in wages. Further, the 

children of these sugarcane workers were more likely to attain education levels that 

allowed them to work outside of the agricultural sector. Martinelli et al. (2011) studied the 

state of São Paulo, the leading sugar producing state in the country, and concluded that 

municipalities with a strong sugar and ethanol industry had a statistically significant 

advantage in social metrics such as the Human Development Index compared to 

municipalities without a sugar mill or with more focus on cattle than sugar production. 
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Building and operating sugar mills and ethanol plants increases local value addition, 

which boosts gross domestic capita and tax revenues in the host municipality as well as 

in neighboring municipalities (Moraes et al., 2016). Input-output modeling has calculated 

that for each US dollar increase in ethanol demand, Brazilian economic activity 

increases by $1.50–3.00 (Watanabe et al., 2016).  

Over the same time period, the industry has been criticized for consolidating power over 

land and processing capacity (Lehtonen, 2011), air pollution by cane burning prior to 

harvest (França et al., 2012), and notoriously difficult labor for field workers who 

manually harvest the cane (Luz et al., 2012). It is important to note that the government 

and industry are learning from some past mistakes. New practices to reduce pre-harvest 

residue burning, lower synthetic fertilizer input, and limit expansion to sensitive land via 

Agroecological Zoning are being adopted to limit negative environmental impacts 

(Bordonal et al., 2018). Although the Brazilian sugarcane ethanol industry is a prominent 

example, many of these same development benefits and risks apply to other agri-

business sectors with a strong value-add component (Martinelli et al., 2010).  

Three recent studies forecast the climate and socio-environmental benefits of expanding 

the Brazilian ethanol industry in the future. Brinkman et al. (2018) modeled the effect of 

doubling sugarcane ethanol production by 2030, projecting a 2.6 billion USD growth in 

national GDP over a reference scenario, adding roughly 50,000 addition full time 

equivalents of employment, with most jobs generated in lower income classes. Jaiswal 

et al. (2017) find that expanding sugarcane only to agroecologically-suitable, privately-

held pastures could supply production of an average of 3.91 million barrels of oil 

equivalents per day, which corresponds to roughly 5% of global 2014 crude oil 

consumption. A separate land use change study on Brazilian pastures suggests that this 

conversion to sugarcane improves performance per a sustainability index by 78% in 
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south-central Brazil (Oliveira et al., 2019). Finally, Moreira et al. (2020) estimate that 

adding a maize rotation on land in west central Brazil that previously grew only soybean 

could produce 1.2 million tons of dry maize per year, supplying a 500 million liter per 

year facility that produces maize ethanol at roughly 90% GHGe savings compared to 

gasoline. An input-output model based on this scenario estimates that roughly 340 jobs 

would be created at the new ethanol plant, and the expansion of maize cultivation would 

create an additional 2,000 full time equivalents of employment in the agriculture sector.  

South-south transfer of Brazil’s sugarcane industry to other tropical developing nations 

has been suggested as a means for promoting sustainable development (Cortez, Leal, 

et al., 2018). Sugarcane ethanol advocates see opportunity in many African nations due 

to their significant quantities of good or prime sugarcane land, and, in some cases, 

preestablished sugar industries (M. M. R. Moreira et al., 2018). Rural communities may 

benefit from these programs via farmer education, inclusion in a stable supply chain, and 

access to clean power and cooking fuel from the bioethanol plant  (IRENA, 2016a; J. G. 

D. B. Leite et al., 2016). 

Sugar outgrowing schemes that recruit local farmers to cultivate sugarcane for sale to 

the mill have shown promising impacts on income poverty and gender equality (Adams 

et al., 2019; Herrmann et al., 2018; Herrmann & Grote, 2015). Institutional arrangements 

between the sugarcane buyers (usually the mill) and sugarcane growers (from plantation 

workers to independent outgrowers) weigh heavily on the socio-environmental impacts 

of sugarcane investments. These arrangements with local farmers involve tradeoffs 

between the share of ownership (and thus risk) that local farmers take in cultivating the 

crop, the amount of autonomy that local farmers have to make management decisions, 

the collective bargaining power that outgrowers have, and the way that preexisting social 

inequalities are lessened or exacerbated by the sugarcane industry players who are 
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choosing who to enroll in their programs (Maltitz et al., 2019). The socio-environmental 

impacts of sugarcane developments in sub-Saharan Africa to date have included 

positive and negative outcomes, depending on the design and enforcement of policy by 

local government, the quality of the project site and farm management, and design of 

outgrower programs (Hess et al., 2016). The architecture of institutional arrangements 

between offtakers and outgrowers also affects who ultimately controls land and water 

resources (German et al., 2020; Manda et al., 2018). The dynamic between powerful 

sugar companies and poor farmers has led some to raise the specter of neo-colonialism, 

although empirical evidence of negative impacts is not always provided (Martiniello, 

2020; Mwanika et al., 2020; Sonneveld, 2012). A crucial component of functioning 

relationships between offtakers and outgrowers is a clear understanding and negotiation 

of terms of the arrangement (e.g., transparency on sugarcane pricing, land use rights, 

the roles and responsibilities of each actor in production, et cetera) (J. G. Leite et al., 

2020).  

The rise and fall of oilseed plant Jatropha curcas is perhaps the most prominent 

example of a biofuel development project over-promising and under-delivering. The plant 

was hailed in the early 00’s as a miracle biodiesel feedstock suitable for production on 

marginal lands with limited agricultural inputs, but nearly all Jatropha investments failed 

in spectacular fashion as actual oilseed yields fell far below anticipated production, 

among other issues (Ahmed et al., 2017; Maltitz et al., 2014). The aftermath of the 

Jatropha hype is rife with poor outcomes in environmental sustainability, rural 

livelihoods, food security, and return on investment (Antwi-Bediako et al., 2019).  

There are numerous other forms and uses of bioenergy around the globe, each with 

their own unique opportunities, barriers, and shortcomings. Thailand, for instance, 

produces 1G ethanol from molasses and cassava to reduce fuel imports (Leal et al., 



24 
 

2015). The extant production of corn ethanol in the United States is the world’s largest 

biofuel market, though greenhouse gas benefits vary widely across production facilities 

(Wang et al., 2007). In the European Union, biogas and woody biomass fire many 

combined heat and power plants, sometimes as part of district heating schemes (IEA 

Bioenergy, 2020; Karlsson et al., 2016). Palm oil biodiesel, which is predominately 

produced in Southeast Asia, has expanded despite questionable impacts on local 

livelihoods, deforestation, and net greenhouse gas emissions (Carlson et al., 2012; 

Margono et al., 2014; Meijide et al., 2020; Obidzinski et al., 2012). Cogeneration, in 

which biomass sidestreams in food or biofuel processing facilities are combusted for 

heat and power, is a common practice in many contexts, including sugar mills in Brazil 

(7% of national electricity supply), Mauritius (13% of national supply), and Uganda (5% 

of national capacity) (Leal et al., 2015; Lynd et al., 2020). There are further examples of 

small-scale bioenergy in developing contexts — including gasification-fired minigrids 

(Chambon et al., 2020), small biogas (Kinyua et al., 2016), ethanol micro-distilleries 

(Muniz Kubota et al., 2017), and the like  — which have not demonstrated potential to 

scale beyond niche applications. A more detailed description of these other bioenergy 

processes is beyond the scope of this literature review.  

2.1.3 Bioenergy and land use 

Ice-free land supplies food, feed, fiber, timber, energy, and ecosystem services in 

addition to playing an important role in the climate system. Land is simultaneously a 

source and sink of CO2: Agriculture, Forestry and Other Land Use (AFOLU) activities 

accounted for roughly 23% of total net anthropogenic emissions of GHGs from 2007–

2016, while land-related interventions such as regenerative farming or afforestation have 

large carbon sequestration potential (Canadell & Schulze, 2014; IPCC, 2019). As 

population and global temperature rise, increasing demands for land-based products 
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must be satisfied within climate boundary conditions while preserving the ecosystem 

services upon which we depend (Costanza et al., 2014; Godfray et al., 2010).  

As discussed above, there is a strong consensus that bioenergy production must grow to 

meet any 1.5°C or 2°C warming target. The quantity of land required depends on the 

plants used as the bioenergy crop, their production per unit of land area, and the 

efficiency with which the feedstocks can be converted into energy (V. H. Dale et al., 

2011). Estimates of the amount of land required for bioenergy crop expansion thus vary 

greatly. The first 50 EJ of biofuel demand — which could fulfill roughly half of global 

transport demand that is hard to decarbonize by other means (Fulton et al., 2015) — 

could be supplied by low-productivity feedstock (5 odt/ha) grown on 550 million hectares, 

or by highly productive energy cane (65 odt/ha) on only 45 million hectares (Lynd, 2018). 

The IPCC Special Report on Global Warming of 1.5°C (2018) reviews many pathways 

limiting warming to 1.5°C with no or limited overshoot and presents a wide range of land 

conversion to energy crop cultivation (0–600 million hectares). 

If expansion of the agricultural land base is required, integrative management 

approaches can guide extensification to mitigate impacts and find whole systems 

solutions. For example, expansion of sugarcane onto Brazilian landscapes without 

regulation of land use change can result in significant clearing of natural vegetation and 

poor emissions outcomes (51% savings over gasoline), but a combination of measures 

to limit land use change can prevent almost all loss of natural vegetation (van der Hilst et 

al., 2018). The data also show that, since 1994, land used for animal products drove 11 

times more land use change than did bioenergy (Alexander et al., 2015). This implies 

that changes in human diets and in agricultural systems are also important levers in land 

use change, to be considered in parallel with bioenergy growth. Bajželj et al. (2014) 

show that “Healthy Diets” scenarios that replace some livestock products with protein 
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from pulses and staples reduce the land area necessary for pasture by ~25% while 

meeting dietary and cultural preferences.   

It is also possible to increase total production without using more land. Sustainable 

intensification of agricultural systems can raise the yield per unit of land area, thus 

creating the opportunity to hold production constant while diverting cleared land for other 

uses such as bioenergy feedstock production or conservation (Woods et al., 2015). Land 

use can be intensified by adopting best practices in fertilization, irrigation, seed 

selection, crop rotation, soil management, and others, while honoring environmental, 

social, and economic goals (Tilman et al., 2011). For example, Waha et al. (2020) find 

that introducing multiple cropping on areas currently growing only one crop per year 

could sustainably increase global harvested areas by 87–395 million hectares.  

One metric for assessing the potential for sustainable intensification is the yield gap: the 

difference between the current yield achieved on a parcel of land (e.g., tons per hectare) 

and its maximally attainable yield (Mueller et al., 2012). Yield gap assessment has been 

used to estimate the potential to sustainably intensify production on global arable crop 

systems (e.g., maize, rice, wheat, etc.) (Foley et al., 2011; Pradhan et al., 2015; van 

Ittersum et al., 2013). 

Pasture land occupies 3.9 billion hectares and accounts for over 80% of agricultural 

land, yet grazed pasture only provides an estimated 1% of global dietary energy 

consumption and 3% of global dietary protein (Herrero et al., 2015; Woods et al., 2015). 

Given the massive extent of global pastures and the low intensity with which they appear 

to be used, the potential to improve food production, support economic development, or 

‘spare land’ for other uses is of keen interest. Recent studies support the hypothesis that 

global pasture output could be sustainably increased by improved herd management, 

nutrient management, pasture restoration, and integrated crop-livestock approaches 
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(Henderson et al., 2016; Tarawali et al., 2011; Thornton, 2010). In addition, many 

pastures occupy grasslands that could be managed for perennial bioenergy crop 

production (e.g., switchgrass) with direct benefits in soil carbon and biodiversity, among 

other ecosystem services (Albanito et al., 2016; Werling et al., 2014; Whitaker et al., 

2018). Yet, the sustainable intensification potential of global pasture lands has not yet 

been evaluated.   

Answering two questions can clarify the potential contribution of global pasture land to a 

sustainable future: 1) what is the potential for sustainable intensification of livestock 

production on pasture, and 2) how suitable are these lands for bioenergy (or other) crop 

expansion (Campbell et al., 2018)?  

2.1.4 Bioenergy and food security 

Increasing food security is universally recognized as essential to improving human well-

being and is among the most important challenges facing humankind (Godfray et al., 

2010; UN, 2015). An average of 11% of the global population was undernourished from 

2017–2019, including 23% of sub-Saharan Africans, while 26% of the globe experienced 

moderate or severe food insecurity (FAO, 2019c). Food security is much more than 

avoiding severe food deprivation or starvation, as indicated by the 1996 World Food 

Summit definition: “food security exists when all people, at all times, have physical and 

economic access to sufficient, safe and nutritious food to meet their dietary needs and 

food preferences for an active and healthy life” (FAO, 1996). Four dimensions of food 

security were identified at the same meeting: physical availability of food; economic and 

physical access to food; food utilization; and stability of the other three dimensions over 

time. 

Because bioenergy feedstock and food production both require land, it is natural to 

consider how these two land uses may interact and influence the food security pillars 
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(Pete Smith et al., 2010). The “food versus fuel” debate pits the two land uses against 

one another (Rosillo-Calle & Johnson, 2010). In the late ‘00’s, concern about pro-

biofuels policies in the US, Brazil and Europe coincided with grain price spikes that 

alarmed many (Thompson, 2012) and led to a spate of critical cartoons and pithily-titled 

anti-biofuels articles (e.g., “How biofuels could starve the poor”, Runge & Senauer, 

2007). These arguments and images have reinforced negative public perception of 

biofuels (Sleenhoff et al., 2015) despite a lack of evidence that biofuels are consistently 

raising food prices or harming food security (Persson, 2015; Rosillo-Calle, 2018). The 

Brazilian experience again demonstrates that biofuel expansion is not inevitably 

accompanied by a rise in food insecurity at the national level. From 1990 to 2015 

sugarcane bioethanol increased more than two-fold and population increased by a third, 

yet the prevalence of undernourishment fell, average supplies of dietary energy and 

protein rose, and Brazil became a net cereal exporter (Leite et al., 2018).  Case studies 

have shown that previous biofuel projects have both at times improved food security 

(e.g., Herrmann et al., 2018), and at times worsened it (e.g., Hervas & Isakson, 2020; 

Mwavu et al., 2018). Dogmatic pro-biofuels or anti-biofuels viewpoints can impede 

collaborative development of ethics-driven approaches to biofuel deployment, in which 

stakeholders design and apply best practices that reduce risks to food security (Kline et 

al., 2017). One hypothesis is that bioenergy projects can improve food security of local 

actors by introducing a steady crop offtake market and increasing rural incomes 

(Osseweijer et al., 2015). 

Interventions — including biofuels projects — seeking to improve food security outcomes 

in their operating context require 1) a general understanding of which factors are 

important, and 2) a specific understanding of local circumstances, which may differ from 
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the general case. This poses the research questions, what drives food security, and how 

might bioenergy production affect these drivers? 

Numerous factors have been found to contribute to food insecurity at the local level, 

including low household income, lack of access to credit, land grabbing, weak 

agricultural markets, low crop yields, disempowerment of women, lack of off-farm 

income, climate and environmental stressors, and political unrest, among others (Annim 

& Frempong, 2018; Frelat et al., 2016; Garrett & Ruel, 1999; Geary, 2012; Hesselberg & 

Yaro, 2006; Lemke et al., 2003; McArthur & McCord, 2017; Misselhorn, 2005; Thurow & 

Kilman, 2010). Several global scale studies have addressed the agricultural and policy 

advances required to feed growing populations in changing climates (Cassman & 

Harwood, 1995; Fischer et al., 2014; Lobell et al., 2008; Rumpel et al., 2018; Tilman et 

al., 2011; West et al., 2014). Without clear consensus on the factors that are most 

important to food security, the focus of many rural development programs has defaulted 

to increasing food availability and on-farm income through incremental agricultural 

intensification (Schreinemachers, 2006; Vanlauwe et al., 2014).    

The most effective solutions to complex problems like food insecurity use leverage to 

change the few things that change everything else (Ingram, 2011; Stroh, 2015). The 

breadth of the research cited above is evidence that it is difficult to identify which 

combination of levers to pull. An empirical analysis of national-level drivers could be 

used to weigh the relative importance of several factors on long-run food security. 

However, the above-cited body of literature contains few high-level analyses of the 

relative contribution of agricultural and socioeconomic drivers, and no analyses that  

explicitly consider the robustness of results to changes in the food security metric, the 

data used as model input, and modelling decisions affecting variable selection and data 

preprocessing.  
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2.2 Assessment of yield gaps on global grazed‐only permanent pasture 

using climate binning               
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Abstract 

To meet rising demands for agricultural products, existing agricultural lands must either 

produce more or expand in area. Yield gaps (YGs) – the difference between current and 

potential yield of agricultural systems –  indicate the ability to increase output while 

holding land area constant. Here, we assess YGs in global grazed-only permanent 

pasture lands using a climate binning approach. We create a snapshot of circa 2000 

empirical yields for meat and milk production from cattle, sheep and goats by sorting 

pastures into climate bins defined by total annual precipitation and growing degree days. 

We then estimate YGs from intra-bin yield comparisons. We evaluate YG patterns 

across three FAO definitions of grazed livestock agroecosystems (arid, humid, and 

temperate), and groups of animal production systems that vary in animal types and 

animal products. For all subcategories of grazed-only permanent pasture assessed, we 

find potential to increase productivity several-fold over current levels. However, because 

productivity of grazed pasture systems is generally low, even large relative increases in 

yield translated to small absolute gains in global protein production. In our dataset, milk-

focused production systems were found to be seven times as productive as meat-

focused production systems regardless of animal type, while cattle were four times as 

productive as sheep and goats regardless of animal output type. Sustainable 

intensification of pasture is most promising for local development, where large relative 

increases in production can substantially increase incomes or ‘spare’ large amounts of 

land for other uses. Our results motivate the need for further studies to target 

agroecological and economic limitations on productivity to improve YG estimates and 

identify sustainable pathways towards intensification. 
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Introduction 

Land use is inextricably tied to the production of food, fiber, and bioenergy. As the earth 

becomes more populous, wealthy, and warm, the demand for each of these products 

continues to increase (Godfray et al., 2010; International Energy Agency, 2017). 

Sustainable intensification — producing more goods per unit land while respecting 

environmental, economic, and social constraints — is thus instrumental to meeting rising 

demands (Garnett et al., 2013).  

Livestock is estimated to utilize 3.9 billion hectares, or 80% of global agricultural land 

(Herrero et al., 2015). Though grazing-based livestock systems occupy 2.2 billion 

hectares of this land area, they contribute to just 1% of global dietary energy and 3% of 

global dietary protein (Herrero et al., 2015; Woods et al., 2015). To the extent that 

existing pastures can be used more intensively, such changes could improve food 

production, support economic development, or ‘spare land’ to diversify land use and 

cover in existing agricultural landscapes (e.g. for food, bioenergy, conservation). Use of 

grassland ecosystems for pasturing animals is globally ubiquitous and often a critical 

resource to already-vulnerable populations (Sloat et al., 2018). Grazing is also an 

important driver in global patterns of desertification, woody encroachment, deforestation, 

and land degradation (Asner et al., 2004; Godde et al., 2017; Suttie et al., 2005). 

However, the sustainable intensification potential of these extensive lands has not yet 

been evaluated globally. 

A metric for evaluating the potential for sustainable intensification is the difference 

between actual and potential yield, also called the “yield gap” (van Ittersum et al., 2013). 

One way to assess yield gaps is using a climate binning method to analyze empirical 

yield data (Licker et al., 2010). In this approach, the range of measured yields are 

assumed to represent the range of what is realistically (and currently) achievable under 
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a given set of climate conditions and production practices. Lands that may be 

geographically disparate are grouped with their climatic peers using bins defined by two 

fundamental drivers of plant growth: temperature and precipitation (Knapp & Smith, 

2001; Prentice et al., 1992).  This “levelling [of] the climatic playing field” (Licker et al., 

2010, p. 772) enables meaningful comparisons of empirical yields after controlling for 

basic climate differences. Intra-bin differences in production per unit area and time are 

thus due to factors other than the climate binning variables, notably including 

management.  

Yield gap assessment has been used to estimate sustainable intensification potential of 

global arable crop systems  (Anderson et al., 2016; Foley et al., 2011; Mueller et al., 

2012). The technique has not yet been applied to global pasture systems. 

Recent studies support the hypothesis that global pasture output could be sustainably 

increased (i.e. yield gaps could be mitigated) via improved herd management, nutrient 

management, pasture restoration and integrated crop-livestock approaches (Henderson 

et al., 2016; Landers, 2007; Landers et al., 2005; Rota & Sperandini, 2010; Tarawali et 

al., 2011; The World Bank, 2012; Thornton, 2010). Closing yield gaps requires 

understanding the scale of intensification potential, and how it varies across climate 

regimes and production systems.  

We use climate binning to produce global-scale estimates of yield gaps on pasture. We 

develop our analytical framework for permanent pasture in grazed-only livestock 

systems as identified by the United Nations Food and Agriculture Organization (FAO) 

(Robinson et al., 2011). We evaluate global land areas grouped by livestock grazing 

agroecosystem types defined by the FAO, as an added measure to control for variation 

in climate factors beyond precipitation and growing degree days. We focus on the 

widespread and globally-relevant animal production system types of milk and meat from 
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cattle, sheep and goats. We quantify the potential for increased production in terms of 

meat and milk protein at varying levels of yield gap closure. We perform these 

calculations globally, and analyze the differences in production potential among 

agroecosystems. Yield gaps and production potentials are also compared among 

pastures with different combinations of meat, milk, cattle, sheep, and goat production. 

Materials and methods 

Global meat and milk productivity on grazed-only permanent pasture land 

We analyze grazed-only permanent pasture systems, drawing on geospatial data for 

permanent pasture from Ramankutty et al. (2008) and geospatial data for grazed-only 

livestock production from Herrero et al. (2013). In alignment with both studies, their 

sources, and other studies using the same geospatial datasets (e.g., Fetzel, Havlik, 

Herrero & Erb, 2017), we focus on pasture within the grazed livestock agroecosystems 

defined by the FAO (Robinson et al., 2011).  

Permanent pasture is defined as “land used permanently (5 years or more) for 

herbaceous forage crops, either cultivated or naturally growing” (Ramankutty et al. 2008, 

p. 5). Though supplemented-feed and mixed crop-livestock systems account for a large 

fraction of animal production worldwide (Herrero et al., 2013), we focus on grazed-only 

permanent pasture because heterogeneity in management and definition of these other 

livestock systems complicates accounting of production. Techniques such as stochastic 

frontier analysis have been used to calculate mixed system yield gaps (Henderson et al., 

2016), but datasets are not yet sufficiently detailed to support such approaches at the 

global scale. Focusing on grazed-only livestock production in permanent pasture allows 

us to consider the yield gap of an extensive agricultural land use within the scope of 

available data. Appendix S1 in Supporting Information describes our analytical process 
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combining datasets from Ramankutty et al. (2008) and Herrero et al. (2013) to generate 

global maps of meat and milk protein productivity from cattle, sheep, and goats in land 

grid cells containing ‘significant’ amounts of permanent grazed pasture land on which 

animal productivity was observed circa 2000 (Figure 2.2.1). Use of the term ‘significant’ 

here is explained in Appendix S1. For the remainder of the text we will refer to the land 

areas analyzed as ‘grazed-only permanent pasture’.  

Applying FAO definitions for grazed-only livestock agroecosystem types 

The FAO’s grazed livestock agroecosystems are subdivided into arid, humid and 

temperate climate zones (Figure S1.3). Table 2.2.1 defines each agroecosystem type 

and lists their respective total grazed-only permanent pasture area and protein 

production. We present yield gap results by individual livestock grazing (LG) 

agroecosystem type (LGH–humid, LGT–temperate, LGA–Arid), and also across all 

grazed only livestock production systems (LG all). This enables exploration of patterns, 

ranges, and variability in yield gap estimates grouped by these agroecosystem types.  
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Figure 2.2.1. Snapshot (5’ x 5’ spatial resolution) of livestock distribution and productivity on grazed-only 
permanent pasture circa 2000. (a) land areas designated permanent pasture by Ramankutty et al. (2008), 
with observed animal occupancy by Wint & Robinson (2007), colored by FAO agroecosystem type as in 
Robinson et al. (2011)  and (b) meat and milk protein productivity in kg km-2 y-1 on these lands. Names for 
livestock grazing (LG) agroecosystems are subdivided by climate zone (LGH–humid, LGT–temperate, LGA–
Arid). Appendix S1 describes in detail how these rasters were created. 
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Table 2.2.1. Grazed-only livestock production system types considered in yield gap assessment, with 
associated total global land areas in grazed-only permanent pasture, and total protein production of meat 
and milk from cows, sheep and goats. For a logic tree describing FAO’s method to define these types, see 
Figure S1.3. 

Name FAO grazed livestock production system 

class 

Total pasture 

area (106 km2) 

Total protein 
production 
(106 kg y-1) 

LG all All livestock grazing in permanent pasture 

lands 

10.95 2,475 

LGA Arid and semi-arid livestock grazing where 

length of growing period<180 days 

6.76 1,008 

LGH Humid and semi-humid livestock grazing 

where length of growing period >180 days 

0.744 539 

LGT Temperate and highland tropical livestock 

grazing where 5<average temperature<20 

°C, or 1 month or more where average 

temperature is <5 °C at sea level 

3.46 927 

 

Defining climate bins 

Climate binning groups agricultural lands by climate characteristics, theoretically 

removing or greatly reducing climate as a factor for intra-bin variability in productivity. A 

detailed description of the methodology can be found in Mueller et al. (2012).  

Growing degree-days (GDD, base temperature 0°C) and total annual precipitation (TAP) 

were used to define “climate space” as a 10 x 10 matrix of unique climate bins (Figure 

2.2.2, inset). Climate data layers were generated from 5’ x 5’ datasets of monthly mean 

temperature and total annual precipitation from WorldClim (Hijmans et al., 2005). 

Pasture land was sorted into 100 climate bins of equal pasture area. While the equal-
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pasture-area stipulation creates bins with unequal ranges of climate parameters, it 

ensures an even distribution of pasture lands across climate space and facilitates direct 

comparison between bins. 

Figure 2.2.2 presents the geospatial distribution of these 100 bins among all pasture-

containing grid cells included in this study (LG all).  

 

Figure 2.2.2. 5’ x 5’ geospatial distribution of grazed-only permanent pasture lands in climate bins defined by 
annual cumulative growing degree-days (GDD) and total annual precipitation (TAP) (inset), with each 
climate bin containing equal pasture land area. 

 

Calculating yield gap and intensification potential 

Within climate bins, the yield gap is the difference between current (circa 2000) 

productivity and best-in-class observed productivity (Y95b, defined below). Summed over 

a group of grid cells, the yield gap can then be interpreted as the increase in production 

that could occur if pastures within each climate bin were managed to match the 

productivity of high-performing climate peers, either through more intensive grazing, 

changes in the fodder or ruminant species mix, or changing the allocation between meat 

and milk production, among other strategies.  
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Yield gap analyses are sensitive to the value selected as the maximum attainable 

productivity. Pasture yield gap assessment must consider maximum attainable 

productivity resulting from the combined influence of grass productivity and the types 

and outputs of the grazed animals, with extreme ranges reported in literature. For 

example, one field trial of intensive grazing for bovine dairy without supplemental feed 

reported productivities of 388–494 kg protein ha-1 y-1, which equates to 38,000–49,400 

kg protein km-2 y-1 (Macdonald et al., 2008). Another study reported the land needed per 

kg of protein from extensive pasture as 1430–2100 m2, equating to ~476-699 kg protein 

km-2 y-1, or ~100 times lower than the Macdonald et al. (2008) field trial (Flachowsky et 

al., 2017). Even lower yields are possible in arid or degraded land areas with low grass 

productivity.  

Within climate bins, some top producers may represent what is achievable given optimal 

and sustainable management conditions. Conversely, the highest producers may not be 

representative of what is possible or sustainable within grazed-only systems and can 

skew the yield gap by setting the bar higher than is realistically attainable. Given 

uncertainties in our underlying datasets (discussed in detail Appendix S1) it is not 

possible to identify which producers are representative of best practices and which are 

not. Thus, we chose to be conservative in our analyses and reduce the effect of the 

highest producers on yield gap calculations by setting a maximum attainable (best-in-

class) productivity (Y95b) to the 95th percentile yield in each climate bin. A similar 

approach was used in Mueller et al. (2012). In our study, this approach resulted in Y95b 

values ranging from 9.9 to 2044.2 kg protein km-2 y-1. The upper end of this range is 

commensurate with the range of dairy protein productivity levels reported on intensively-

managed grazed pasture in field trials, but below that of systems using substantial 
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amounts of supplemented feed (Baudracco et al., 2011; Flachowsky et al., 2017; Patton 

et al., 2016).  

The yield gap per grid cell (GMi, kgprotein km-2 y-1) and the aggregate yield gap (GMr, 

kgprotein y-1) are calculated per Equations 1-2. 

(1)  𝐺𝑀𝑖
= {

𝑀𝑌95𝑏
− 𝑌𝑖 , 𝑀𝑌95𝑏

>  𝑌𝑖

0,  𝑀𝑌95𝑏
<  𝑌𝑖

   

(2)  𝐺𝑀𝑟
=  ∑ 𝐴𝑝𝑖

 𝐺𝑀𝑖𝑖 ∈ 𝑟                                          

where 𝑌𝑖 is kilograms of protein generated per square kilometer of grazed-only 

permanent pasture per year (calculated in Appendix S1, eq S2, in kgprotein kmpasture
-2 y-1), 

M is the fraction of maximum observed yield used to define a minimum yield in each 

bin, r is the category of aggregation (e.g. agroecosystem), and 𝐴𝑝𝑖
 is the pasture area 

per grid cell i (calculated in Appendix S1, eq S1, in kmpasture
-2). We evaluate yield gaps at 

levels of M representing a range of gap closure scenarios to explore theoretical 

performance improvements, recognizing that the highest levels of intensification often 

cannot be achieved without grassland degradation or economically irrational investment 

(Godde et al., 2017). Intensification potential is the ratio of current to maximum 

attainable productivity (Y95b). Calculations for intensification potential at the grid cell (IMi) 

and aggregate (IMr) levels are shown in Equations 3–4. 

(3)  𝐼𝑀𝑖
=  

𝑀 𝑌95𝑏

𝑌𝑖
       

(4)   𝐼𝑀𝑟
=  

∑ 𝑀 𝑌95𝑏
 𝐴𝑝𝑖

  
𝑖 ∈ 𝑟  

∑  𝑌𝑖 𝐴𝑝𝑖
 
𝑖 ∈ 𝑟

                             

Grouping livestock production systems by milk versus meat and cattle 

versus shoats 



41 
 

We conducted yield gap and intensification potential analyses for subsets of the 

productivity data representing different within-cell ranges of 1) the proportion of  milk 

(versus meat) in total protein output, and 2) the proportion of cattle (versus shoats) in 

total protein output. The aim was to partially control for the effect of these varying 

livestock production systems within each grid cell by subsetting these systems into 

ranges corresponding to roughly equal populations of grid cells and area. By reducing 

the range of variation for meat versus milk, as well as for cattle versus shoats, we can 

examine patterns of changes in protein productivity and intensification potential across 

underlying types of livestock production systems (See Appendix S2). 

For convenience, the list of variable names and definitions can be found in Appendix S3. 

Results 

Overall global yield gaps for livestock grazed-only systems 

Pasture productivity profiles tend to be convex, with most grazed-only production within 

a climate bin at low levels relative to the highest performers (Figure 2.2.3a). The same is 

true when looking cumulatively across climate bins (Figure 2.2.3b). Pasture productivity 

also varies across climate space, with consistently low productivity in the hottest regions 

across ranked area percentiles (thin bands of red, maroon, Figure 2.2.3b) compared to 

middle and low temperature ranges (widening bands in yellow, purple, Figure 2.2.3b). 
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Figure 2.2.3. Productivity across climate space for ‘LG all’, using climate bins defined by total annual 
precipitation (TAP) and annual growing degree days (GDD) as shown in Figure 2.2.2 inset. (a) 10x10 matrix 
of relative productivity profiles for each climate bin, with each pasture grid cell normalized according to the 
95th percentile observed performance in each bin (Y95b) (y-axes) and ranked on a percentile basis within 
each climate bin (x-axes). (b) Cumulative productivity across climate bins showing performance of each 
climate bin at each ranked area percentile. As in 3a, observed yields are normalized such that the top 
percentile corresponds to Y95b. 

The geospatial distribution of yield gaps for all livestock grazed-only systems is 

presented in Figure 2.2.4a. The yield gap is reported as the percent of achieved protein 

productivity (kg km-2 y-1) relative to the climate-adjusted maximum attainable (best-in-

class) protein yield (Y95b). Protein productivity is based on total reported output of protein 

by milk and meat. Median and mean performance levels are only 12.1% and 19.7% of 

the maximum attainable yield, respectively.  

Figure 2.2.4b shows the absolute level of productivity improvement achievable when 

performance of all livestock grazed-only systems are raised to best-in-class yields 

(namely, 100% closure of the gap between reported yield and the estimated maximum 

attainable (best-in-class) yield). On average, total protein output would increase by 300 

kg km-2 y-1 (or only 3 kg ha-1) if full gap closure were to occur. A comparison of Figure 

2.2.4a and Figure 2.2.4b shows that the large potentials for relative improvement implied 
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by lower yield gap percentages often do not translate into large absolute gains in food 

protein output. 

 

Figure 2.2.4. Yield gaps for all pasture lands considered in this study (LG all, 5’x 5’ spatial resolution), 
considering total protein from meat and milk produced by cattle, sheep or goats. (a) Yield gap expressed as 
the percent of achieved yield relative to the climate-adjusted maximum (Y95b). (b) Absolute protein 
productivity gain (in kg km-2 y-1) at the grid cell level when pasture lands are raised to 100% of their climate-
adjusted maximum observed productivity (M=1). 
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The effects of agroecosystem on intensification potential 

If performance across the entire grazed-only livestock system dataset were adjusted to 

achieve 90% closure of the gap between reported and maximum attainable yield in each 

grid cell, global output would increase by a factor of 4.57 (LG all, Figure 2.2.5a). These 

results suggest that, overall, livestock grazed-only systems are performing well below 

their potential. LGA pastures had a very high intensification potential of 6.16 for 90% 

yield gap closure (Figure 2.2.5a). In contrast, LGH and LGT were more similar in their 

intensification potentials (3.41 and 3.34 for 90% yield gap closure, Figure 2.2.5a). Milk 

contributions to protein showed more bimodal distributions in LGH and LGT, while in LG 

all and LGA these distributions were more randomly spread (Figure 2.2.5b). A 

comparison of the ranked area productivity profiles for the current (0% gap closure) 

scenario in Figure 2.2.5c shows that absolute productivity in arid ecosystems (LGA) is 

substantially lower than the productivities observed for the temperate ecosystems (LGT). 

Likewise, the humid agroecosystems (LGH), characterized by a warmer climate 

(compared to LGT) and longer growing periods (compared to LGA), have the highest 

productivity.  
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Figure 2.2.5. The effect of agroecosystem class on intensification potential and productivity. a) intensification 
potential for different scenarios of yield gap closure, b) contribution of milk to overall protein production 
within each grid cell c) current (circa 2000) productivity values as a function of ranked area percentile. 

 

Effects of variation in animal production systems 

Global distributions for relative contributions of milk versus meat (Figure 2.2.6a) and 

cattle versus shoat (Figure 2.2.6b) show large areas of similar coloration, suggesting 

strong regionalization of animal production systems. Grouping within-grid cell variations 

in the fraction of milk (vs meat) in total output and the fraction of cattle (vs shoats) 

products in total output into roughly equal populations of pasture land area resulted in 
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cutoffs of 0–30%, 30–50%, 50–70%, and 70%–100% contributions to protein output from 

milk, and 0–21%, 21–73%, 73–96%, and 96%–100% contributions to protein output from 

cattle. Pasture systems were relatively evenly distributed between meat-focused and 

milk-focused systems. In contrast, all-cattle systems (96–100% bovines) are much more 

common than systems focused only on sheep or goats.   

 

Figure 2.2.6. Global distribution of grazed-only permanent pasture land by within grid-cell variation in 
percent milk (a) and percent cattle (b) contributions to total protein productivity circa 2000. 
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We observed positive linear relationships between protein productivity and increasing 

percentages of milk and cattle (Figure 2.2.7). The extrapolated linear regression values 

at 0 and 100% protein output from milk suggest that 100% meat systems are seven-fold 

less than the productivity of 100% milk systems (Figure 2.2.7a). The extrapolated linear 

regression values at 0 and 100% protein output from cattle suggest that 100% shoat 

systems are four times less productive than 100% cattle systems (Figure 2.2.7b). Higher 

levels of milk output (i.e. 50–70%, and 70–100%) and cattle stocking correspond to 

steeper and more convex productivity profiles (Fig S2.1c, S2.2c). Intensification 

potentials varied among all groupings of meat vs milk and cattle vs shoats, at 90% yield 

gap closure ranging between 3.45 and 4.36 (Fig S2.1a, S2.2a).  

Appendix S2 presents the full summary of current production, yield gaps, intensification 

potential, and total land area by each agroecosystem and within-cell ranges of milk 

versus meat output and cattle versus shoats discussed above. 
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Figure 2.2.7. Linear relationship of mean protein productivity in grazed-only permanent pastures grouped by 
roughly equal populations of grid cells and area for percent of protein output from milk (a), and for percent of 
protein output from cattle (b). The mean and standard error (red bars) of each group are plotted, as is a line 
of best fit with 95% confidence intervals and R2. Percent milk groupings are: 0–30%, 30–50%, 50–70%, and 
70–100%, while percent cattle groupings are: 0–21%, 21–73%, 73–96%, and 96–100%). Error bars 
represent two times the weighted standard error of the means. 
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Discussion 

Our results show that the relative potential for sustainable intensification of global 

grazed-only permanent pasture lands is high, while the absolute potential to increase 

protein production in these land areas remains low compared to estimates of production 

increases with yield gap closure in cropped systems. On all global grazed-only 

permanent pasture lands, closing yield gaps to 90% of maximum attainable (best-in-

class) yields would increase productivity by nearly five times. Within agroecosystem 

types and groupings of milk vs meat and cattle vs shoat proportions, intensification 

potentials remain high, with all closures of yield gaps to 90% of maximum attainable 

(best-in-class) yields increasing productivity by a range of two to four times. However, 

the absolute increases in food production with even high levels of yield gap closure 

remain low relative to crop yield gaps, which in contrast tend to have lower intensification 

potentials but much higher potential to increase absolute food production.  

For instance, we estimate that intensification of all global grazed-only permanent pasture 

lands to an unlikely yield gap closure of 100% would increase total protein output by 3 kg 

ha-1 y-1, on average. This is slightly less than 2 months of protein requirement for a 65 kg 

healthy adult, per a recommended 0.83 g protein day-1 per kg weight for a healthy adult 

(World Health Organization et al., 2007). We estimate that 90% yield gap closure on LG 

all lands would increase global protein production by 8.8 x 106 metric tons. In contrast, in 

rainfed crop agriculture just 34% yield gap closure using expansion of ‘sustainable 

irrigation’ in 4.53 × 106 km2 of cultivated lands was estimated to yield 82 × 106 metric 

tons of protein per year (Rosa et al., 2018). This translates to 180 kg protein ha-1 yr-1, 

which would meet over 9 years of protein requirements for a 65 kg adult.  

However, based on our results, sustainable intensification of global grazed-only 

permanent pasture lands is a strong candidate for benefiting regional and local 
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economic development and food security. Livestock are economically and socially 

significant, contributing to the livelihoods of more than one billion people, 550 million of 

which live on less than $1.25 per day (Robinson et al., 2011). Large relative increases in 

pasture output could significantly improve incomes (Godber & Wall, 2014; O’Mara, 

2012). We estimate that the output of grazed pastures in already-more-productive 

temperate and humid grazed agroecosystems can be increased by two to three times 

over production levels observed circa 2000. In our analysis, evidence for seven-fold 

higher productivity in milk- versus meat-dominant animal production, and four-fold higher 

productivity in cattle- versus shoat-dominant animal production supports the potential for 

multiplicative increases in productivity, if barriers to transformative change can be 

overcome. Evidence for strong regionalization of animal production systems further 

suggests that such initiatives should target barriers to change most applicable to region-

specific drivers of animal production, which may emerge from local socio-economic and 

cultural factors, or larger scale policies and governance, among others. 

Within grazed agroecosystems, our highest estimates for intensification potential were in 

arid and semi-arid permanent pasture, with results suggesting a six-fold difference 

between current production and the production that would be observed if 90% yield gap 

closure was achieved. However, sustainably achieving such dramatic increases is likely 

unrealistic in most areas. Arid pasture lands are sensitive ecosystems where resource 

scarcity requires more specialized adaptation to achieve yields above a very low 

baseline (e.g. practices described in Bösing et al., 2014; Jakoby et al., 2015; Murillo et 

al., 2016). Our results could suggest that, though some grazed-only permanent pastures 

in arid agroecosystems achieve higher yields through successful climate-specialized 

management strategies, most yields fall well below those of the high performers. Higher 

variability in the distribution of milk to meat in arid and semi-arid areas may further 
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indicate climate-related specialization, as well as likely contribute to an amplification in 

estimates of intensification potential. We hypothesize that lower relative intensification 

potentials in humid and temperate grazed agroecosystems indicate more forgiving 

environments to sub-optimal management strategies, as compared to arid and semi-

arid, where the difference between low and high productivity was more extreme.  

Because of agroecosystem sensitivities and low productivity, arid and semi-arid pasture 

lands are not generally suggested as primary targets for sustainable intensification. 

Many arid and semi-arid rangelands are already grazing a large percentage of available 

NPP, making them particularly susceptible to degradation by overgrazing (Fetzel et al., 

2017). They are also sensitive to interannual precipitation variability, which will be 

worsened by climate change (Sloat et al., 2018). However, arid and semi-arid pasture 

lands remain an extensive component of global agricultural lands (54% of grazed-only 

permanent pasture in this study). Some management changes may improve livestock 

product yields without overstepping environmental limits: for example bridging dormant 

forage growth periods with supplemental feed (Murillo et al., 2016). As another example, 

drier pasture lands could be a target for sustainable intensification with the expansion of 

bioenergy crops (Campbell et al., 2018; Jaiswal et al., 2017, 2019), as our results show 

achieving even small increases in productivity could ‘spare’ large areas of land. In this 

context, one option for consideration is agave, which has emerged as a bioenergy 

feedstock candidate due to its high resilience to water shortages inherited from 

Crassulacean Acid Metabolism (CAM) (Garcia-Moya et al., 2011). Agave shows 

potential for integration in multi-animal grazing, which does not require monocropping or 

land use competition with grazing systems (Sánchez, 1995). While sustainable 

intensification of drier pasture lands is not easily achieved, nor will it make large 
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increases to global food production, it is a clear priority from the standpoint of improving 

livelihoods in large areas of easily degraded global lands. 

More generally, using grazing land more intensively can help meet growing market 

demands for livestock products while sparing land for other important uses, including 

conservation and reforestation (Havlík et al., 2014; Strassburg et al., 2014). For many 

pastures, mobilizing intensification potential may mean transitioning away from grazed-

only systems and into mixed crop-livestock (Weindl et al., 2015) or supplemented-feed 

operations (Murillo et al., 2016). Evidence supports the potential for realizing large 

increases in pasture productivity. In Brazil, the largest producer of pastured beef 

worldwide, animal output per hectare of pasture increased 3.5-fold between 1985 and 

2006, resulting in significant land-saving (Martha Jr. et al., 2012). Another analysis of six 

intensification initiatives in the Brazilian Amazon showed productivity gains of 30–490% 

while complying with Brazilian Forest Code (zu Ermgassen et al., 2018).  

Our analyses are a first step in understanding the application of yield gap assessment in 

global livestock systems but were constructed to accommodate the many uncertainties 

in and limitations of best-available data for global grazed-only permanent pasture (see 

Appendix S1). At the time of publication, the data provide a snapshot of livestock and 

livestock production 20 years in the past. The paucity of global livestock data is widely 

regarded as a bottleneck to understanding these complex production systems (Erb et al., 

2016; Fetzel et al., 2017; Kuemmerle et al., 2013; Phelps & Kaplan, 2017; Robinson et 

al., 2014; See et al., 2015). 

By using climate binning and subsetting yield gap results by FAO agroecosystem types, 

we controlled for some climate effects. We also subdivide these results into production 

system groups ranging from ‘mostly meat’ to ‘mostly milk’, and ‘mostly sheep/goats’ to 

‘mostly cattle’ to control for some variability in animal production systems.  But we make 
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no assessment of the sustainability of circa 2000 practices of high or low performers. 

Barring the publication of spatially and temporally detailed data on livestock 

management practices, a logical next step would be to incorporate ecological limits to 

the net primary productivity of grazing lands, e.g., Fetzel et al. (2017). If such modeling 

were done in a manner that reflected dynamic interactions between soils, plants, and the 

climate, pasture productivity estimates could also incorporate aspects of soil factors and 

climate variability that may be locally important in determining intensification potential. 

When it comes to intensification strategies, the details matter, and higher resolution 

global data are needed to target their deployment in grazed systems. Some pastures are 

best-used as intensified mixed systems, while other rangelands could serve as carbon 

sinks if managed and compensated for ecosystem services (Gerssen-Gondelach et al., 

2017; Herrero et al., 2009). For grazed pastures, actualization of yield gap potential will 

likely require pasture management changes such as new forage plant varieties, disease 

control, fertilizer and pH adjustment, higher stocking rates, or supplemented feeds. 

Fetzel et al. (2017) show that although 40% of global natural grasslands could be grazed 

more intensively, the availability of seasonality-limited NPP varies significantly across 

agroecosystems. Additionally, the implementation of intensification strategies will require 

context-specific support to smallholders (e.g. market access, extension services, 

insurance) (McDermott et al., 2010). Efforts to promote sustainable intensification in 

pasture lands, for example through policy or economic incentives, should consider more 

current and region-specific assessments of pasture-based livestock production. The 

precision provided by these focused analyses and local stakeholder engagement is 

needed to understand limits on underperforming pasture systems and successfully close 

yield gaps on the ground. 
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Abstract 

The second UN Sustainable Development Goal establishes food security as a priority for 

governments, multilateral organizations, and NGOs. These institutions track national-

level food security performance with an array of metrics and weigh intervention options 

considering the leverage of many possible drivers. We studied the relationships between 

several candidate drivers and two response variables based on prominent measures of 

national food security: the 2019 Global Food Security Index (GFSI) and the Food 

Insecurity Experience Scale’s (FIES) estimate of the percentage of a nation’s population 

experiencing food security or mild food insecurity (FI<mod). We compared the 

contributions of explanatory variables in regressions predicting both response variables, 

and we further tested the stability of our results to changes in explanatory variable 

selection and in the countries included in regression model training and testing. At the 

cross-national level, the quantity and quality of a nation’s agricultural land were not 

predictive of either food security metric. We found mixed evidence that per-capita cereal 

production, per-hectare cereal yield, an aggregate governance metric, logistics 

performance, and extent of paid employment work were predictive of national food 

security. Household spending as measured by per-capita final consumption expenditure 

(HFCE) was consistently the strongest driver among those studied, alone explaining a 

median of 92% and 70% of variation (based on out-of-sample R2) in GFSI and FI<mod, 

respectively. The relative strength of HFCE as a predictor was observed for both 

response variables and was independent of the countries used for model training, the 

transformations applied to the explanatory variables prior to model training, and the 

variable selection technique used to specify multivariate regressions. The results of this 

cross-national analysis reinforce previous research supportive of a causal mechanism 

where, in the absence of exceptional local factors, an increase in income drives increase 
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in food security. However, the strength of this effect varies depending on the countries 

included in regression model fitting. We demonstrate that using multiple response 

metrics, repeated random sampling of input data, and iterative variable selection 

facilitates a convergence of evidence approach to analyzing food security drivers. 

Introduction 

Recent data indicate that more than two billion people lack regular access to safe, 

nutritious, and sufficient food (FAO, 2019c), and an estimated 821 million people are not 

able to acquire enough food to meet minimum dietary energy requirements (FAO, 

2018b). The second United Nations Sustainable Development Goal (SDG 2) aims to 

eradicate hunger and all forms of malnutrition by 2030, yet hunger is slowly rising after 

decades of decline (UN, 2019). 

Food insecurity is a complex problem, manifesting as obesity and malnutrition in addition 

to extreme hunger and starvation (Candel, 2014). A widely used definition from the FAO 

states that “food security exists when all people, at all times, have physical and 

economic access to sufficient, safe and nutritious food to meet their dietary needs and 

food preferences for an active and healthy life” (FAO, 1996). This definition has been 

critiqued and refined (Barrett, 2010; Coates, 2013; Dilley & Boudreau, 2001; Pinstrup-

Andersen, 2009; Tendall et al., 2015), and many food security measurement 

methodologies have been developed (Cafiero, 2016; Carletto et al., 2013; EIU, 2019; 

IPC Global Partners, 2019; Jones et al., 2013; Leroy et al., 2015; Russell et al., 2018). 

The Food Insecurity Experience Scale (FIES) measures food insecurity through the lens 

of a survey respondent’s “lived experience” of food access (Cafiero, 2016). The scale 

builds on experience-based assessment tools, which revealed the managed process by 

which a person typically confronts food insecurity (Ballard et al., 2013; Radimer et al., 
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1990). The FIES is globally calibrated to ensure cross-country comparability and has 

emerged as a leading indicator of food insecurity (Saint Ville et al., 2019). The official 

SDG indicator framework designates the FIES-based estimate of the prevalence of 

moderate or severe food insecurity in a nation’s population as SDG Indicator 2.1.2 

(UNSD, 2020). 

The Global Food Security Index (GFSI) is a composite indicator that monitors national-

level food security and has been tabulated since 2012 (EIU, 2019). The GFSI is built 

upon 34 unique indicators spanning three conceptual pillars of food security: 1- 

affordability, 2- availability, and 3- quality and safety (Izraelov & Silber, 2019). National 

GFSI scores are calculated by weighting these indicators according to an expert panel 

weighting matrix. Unlike the FIES, which directly measures individuals’ experiences, the 

GFSI is country-centered and considers food security according to the national capacity 

to promote food affordability, availability and quality/safety (Thomas et al., 2017). The 

GFSI is a blend of indicators that may themselves be considered determinants of food 

security (e.g., gross domestic product per capita, funding of food safety net programs) or 

metrics of food security (e.g., dietary energy adequacy, micronutrient availability). The 

GFSI uses a variety of national-level data to address the question: how food secure is a 

given country relative to others?  

Robust definitions and measures also enable study of the drivers of food security. The 

FIES scores of individual survey respondents have served as the response variable for 

several analyses. Smith, Rabbitt, and Coleman-Jensen  (2017) used multilevel linear 

probability models across 134 countries to find that FIES assessments of household 

food insecurity were most strongly related to low education levels, weak social networks, 

low social capital, low household income, and unemployment. In a separate paper, 

Smith, Kassa, and Winters (2017) used similar models across Latin American and 
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Caribbean countries to find that low levels of education, limited social capital, and living 

in a country with low gross domestic product per capita were associated with the most 

severe food insecurity per FIES scores. Park et al. (2019) used the Gallup World Poll 

data to predict the FIES scores for elderly populations using explanatory variables 

naturally available in the survey responses, including economic and demographic factors 

in addition to several composite indices (e.g., Community Basics Index). Omidvar et al. 

(2019) used household-level FIES data to analyze socio-demographic correlates of food 

insecurity among Middle Eastern and North African countries. 

In addition to assessing GFSI’s composition and validity (Chen et al., 2019; Izraelov & 

Silber, 2019; Maricic et al., 2016; Thomas et al., 2017), researchers have employed the 

index for national and cross-country assessments (Cai et al., 2020, 2020; Chaudhary et 

al., 2018; EIU, 2016; Molotoks et al., 2017). Yunusa, Zerihun, and Gibberd (2018) used 

the GFSI as a response variable in a cross-country analysis that finds that population 

and water resource availability were poor predictors of national food security. 

Richterman et al. (2019) used the GFSI to identify an inverse relationship between the 

cholera incidence rate and national food security among 30 countries.  

Other cross-national analyses have used the Global Hunger Index, child stunting rates, 

and the prevalence of undernourishment as response variables. Laborde et al. (2016) 

examined trends between the Global Hunger Index and a set of long-term food security 

drivers by describing the food system as a system of equations. Their study concludes 

that income is a very strong driver, but also that the effect of a policy targeting a given 

driver can vary greatly depending on the context of the households, regions, or nations 

involved. The 2018 State of Food Security and Nutrition in the World report examined 

the influence of climate variability and extremes on the national prevalence of 

undernourishment using change point analysis, finding that climate shocks drove food 
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crises, especially in countries where a high proportion of the population depends on 

agricultural livelihoods (FAO, 2018b). The 2019 State of Food Security and Nutrition in 

the World report studied the cross-country effects of economic slowdowns, finding that 

an economic downturn was associated with a 5% increase in the national prevalence of 

undernourishment among 130 countries between 2011 and 2017 (FAO, 2019c). Other 

cross-country studies examined child stunting rates, which, though related to national 

food security, is specifically the result of poor nutrition and health early in life (Milman et 

al., 2005). Headey (2013) analyzed the effect of within-country changes in general 

developmental factors on child stunting rates, finding evidence that economic growth 

typically leads to reduction in stunting, but weaker evidence that agricultural growth 

plays a special role. Smith and Haddad (2015) studied determinants of cross-country 

reductions in stunting from 1970–2010, finding income growth and strong governance to 

be key basic determinants of improvements in child undernutrition, while safe water 

access, sanitation, women’s education, gender equality, and the quantity and quality of 

food available were underlying determinants. 

The above studies of food security drivers typically use only one measure of food 

security or nutrition as the response variable. However, it is well-recognized that no 

single metric can capture all dimensions of food security, and thus complete 

assessments of food security use a “convergence of evidence approach” across several 

metrics (Ballard et al., 2013; Coates, 2013; Jones et al., 2013; Pérez-Escamilla et al., 

2017). Following this logic, it is useful to examine the drivers of food security using more 

than one metric in order to make more robust conclusions about the relative 

contributions of different explanatory variables. How do the results of cross-country food 

security models vary when the variable used to define national food security is changed? 

Further, how do these models respond to changes in data availability (i.e., the countries 
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included in input data) and model formulation (i.e., the explanatory variables selected)? 

Here, we analyze the importance of several explanatory variables in regressions 

predicting food security at the national level based on both GFSI and FIES metrics. By 

conducting the analysis in parallel for each response variable, we compare results from 

two fundamentally different approaches to assessing food security. We further test the 

stability of our results to changes in explanatory variable selection and the countries 

included in regression model training and testing using stepwise forward variable 

selection and bootstrap sampling, respectively.  

Data 

This section provides additional background on the data used in this study and our 

rationale for the selection of explanatory variables. The full dataset is available for 

download in Online Resource 1, which also includes metadata on the definitions, 

sources, data years, and units of all variables. 

Response variables: national food security metrics 

Food Insecurity Experience Scale 

The Food Insecurity Experience Scale (FIES) measures the access dimension of food 

insecurity through the lens of a person’s lived experience (Cafiero, 2016). Food 

insecurity is commonly experienced as a continuum, where mild food insecurity is first 

felt as a worry about how to procure food because of a lack of resources, progressing to 

compromise on the quality and variety of food, then reduction in the quantity of food, 

before skipping meals and experiencing hunger associated with severe food insecurity 

(Coates et al., 2006). The FIES Survey Module uses eight yes/no questions to assess 

the respondents’ place on this continuum in the past 12 months (Ballard et al., 2013). 

Table A2.1 presents the questions in the survey module (Online Resource 2). The 
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questions are ordered such that answering “yes” corresponds to increasing levels of 

food insecurity as the module progresses. From these ordered responses, the Rasch 

model is used to estimate the level of food insecurity experienced by the respondent 

(Nord, 2014). The FIES Survey Module is administered to nationally representative 

samples of the adult population, and national-level results are calibrated to a global 

reference scale to ensure cross-country comparability (Cafiero et al., 2018).  

FIES respondents can be classified as experiencing a) food security or mild food 

insecurity, b) moderate or severe food insecurity, and c) severe food insecurity (UNSD, 

2020). The moderate food security threshold is set by the 5th FIES Survey Module item, 

which asks if the respondent has eaten less than he/she thought he/she should because 

of a lack of money or other resources. The severe food insecurity threshold is set by the 

8th item, which asks if the respondent has gone an entire day without eating for lack of 

money or other resources. Once national FIES measures have been calibrated to the 

global scale, the prevalence of these levels of food insecurity in the national population 

is estimated by probabilistically assigning respondents to each class as described in the 

official SDG Indicator 2.1.2 metadata (UNSD, 2020).  

Response variable: FI<mod 

SDG Indicator 2.1.2, denoted by FImod+sev, is defined as the percentage of people who 

live in households classified by the FIES as moderately or severely food insecure (FAO, 

2018a). It follows that the percentage of the population who experience either food 

security or mild food insecurity, FI<mod, can be defined as 𝐹𝐼<𝑚𝑜𝑑 =  1 − 𝐹𝐼𝑚𝑜𝑑+𝑠𝑒𝑣. We 

used the percentage of the national population in the FI<mod class as a response variable 

in our analysis to facilitate comparison with the Global Food Security Index, which 

increases with increasing food security performance.  
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Global Food Security Index 

The Economist Intelligence Unit’s Global Food Security Index (GFSI) is a composite 

index that provides a common, cross-national basis for assessing food security (EIU, 

2016, 2019). The 2019 GFSI uses 34 unique indicators to cover broad aspects of food 

security, from average food supply, to diet diversification, to presence of a formal 

grocery sector, et cetera. The indicators are organized into three categories 

(Affordability, Availability, and Quality/Safety). Table A2.2 presents the GFSI 

components and their weights (Online Resource 2). To calculate the index, all GFSI 

input data are scaled to a value between zero and 100. After scaling, the three category 

scores are calculated as the weighted means of the indicators, and the overall GFSI 

score is calculated as the weighted mean of the category scores. We utilize the default 

indicator weighting matrix recommended by a peer panel of experts on food and 

agricultural policy. We do not adjust these default results with the optional Natural 

Resources and Resilience risk adjustment factor offered by the 2019 GFSI model. 

Although the expert indicator weights are subjective by nature, three independent recent 

studies have largely concluded that this index formulation is reasonable for use in 

assessing cross-national differences in food security (Chen et al., 2019; Izraelov & 

Silber, 2019; Thomas et al., 2017). 

Explanatory variables: country characteristics  

A complex causal chain determines each person’s food security, which may be defined 

according to the 1996 World Food Summit definition: physical and economic access to 

sufficient, safe, and nutritious food to meet dietary needs and food preferences (FAO, 

1996). The classic UNICEF framework for child undernutrition classified causes as 

“basic”, “underlying”, or “immediate” by their order in the causal chain (UNICEF, 1990). 

For example, disease or inadequate dietary intake may be the immediate cause of 
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undernutrition, but these may be the result of underlying household food insecurity, 

which is ultimately caused by broader inadequacies in resources (e.g., employment, 

technology) and other stressors (e.g., political unrest).  

These basic determinants in the causal chain are also components of a multipart food 

system, which is described by the conceptual framework posed by the Global Panel on 

Agriculture and Food Systems for Nutrition’s (GPAFSN) 2016 report (GPAFSN, 2016, p. 

27). In the GPAFSN framework, dietary quality is most proximally dependent on 

consumer purchasing power, but the way that income is spent depends on the broader 

“food environments” that determine which foods are physically accessible, as well as the 

price and nutritiousness of those foods. Food environments are also dependent on the 

food supply system, which includes an agricultural production subsystem, as well as 

subsystems that transform, store, transport and sell food products.  

For this cross-country analysis, we select explanatory variables at the most “basic” level 

of the UNICEF causative framework, and which map to components of the GPAFSN’s 

food systems framework. Conceptually, our explanatory variables describe key aspects 

of the food system, starting with basic agricultural resources (quality and quantity of 

agricultural land) utilized by the agricultural production subsystem to produce food, then 

including the governance and logistics performance which may affect the distribution of 

domestic and imported food within the food environment, and finally considering the 

income allowing the purchase of available food by consumers.  

Table 2.3.1 lists each of the selected explanatory variables with their units and provides 

some summary statistics. Figure A2.1 presents scatterplots between each response 

variable and each explanatory variable (Online Resource 2). 



64 
 

Table 2.3.1. The explanatory and response variables used in this cross-national analysis of food security. 

Category Variable Mean  Standard 

Deviation 

Minimum Maximum 

Agricultural 
Land 

Arable land  
(ha/capita)a 

0.29 0.35 0.03 1.90 

Mean Crop Suitability 
Indexb 

30.20 14.29 0.52 64.84 

Agricultural 
Production 

Cereals production  
(metric tons/capita)c 

0.48 0.48 0.02 1.97 

Cereal yield  
(kg/ha harvested land)d 

4,254 2,334 401 9,051 

Governanc
e and 
Logistics 

Mean Worldwide 
Governance Indicatore 

0.28 0.94 -1.14 1.84 

Logistics Performance 
Indexf 

(1=low to 5=high) 
3.16 0.60 2.05 4.20 

Household 
Income 

HFCE PPP  
(2011 intl. $/capita)g 

13,537 10,052 853 42,648 

Prevalence of paid 
employment (% of total 
employment)h 

63.04 26.94 5.65 93.78 

Response 
Variables 

FI<mod  
(% of national population)i 

72.20 25.35 9.20 97.20 

Global Food Security Indexj 66.46 13.13 39.00 84.00 

 

Note: The full dataset (n = 65 countries) is available for download in Online Resource 1, which 

also includes detailed metadata. References: a(FAO, 2020a), b(Velthuizen, 2007), c(FAO, 2020b), 

d(FAO, 2020c), e(Kaufmann et al., 2010), f(World Bank, 2018a), g(World Bank, 2019), h(ILO, 

2020), i(FAO, 2018a), j(EIU, 2019).   

We chose the mean Crop Suitability Index (CSI) and hectares of arable land per capita 

as measures of agricultural land quality and quantity, respectively. We use the version of 

the CSI that assesses the suitability of a nation’s land area for cultivating rain-fed cereals 

using low levels of agricultural inputs (Velthuizen, 2007). Arable land includes area 

classified by the FAO as under temporary crops, temporary meadows for mowing or for 

pasture, land under market or kitchen gardens, and land temporarily fallow (FAO, 

2020a). 
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We chose the per-capita cereal production and per-hectare cereal yield as indicators of 

in-country agricultural production. Cereal crops include wheat, rice, maize, barley, oats, 

rye, millet, sorghum, buckwheat, and mixed grains. Cereal production is measured as 

metric tons of cereal crops harvested for dry grain per capita per year (FAO, 2020b). 

Cereal yield is measured as kilograms of cereals harvested for dry grain per hectare of 

harvested land (FAO, 2020c).  

We chose the Worldwide Governance Indicators (WGI) and Logistics Performance Index 

as measures of governance and logistics performance, respectively. The WGI include 

composite indicators that measure perceptions of governance quality in six dimensions: 

Voice and Accountability, Political Stability and Absence of Violence/Terrorism, 

Government Effectiveness, Regulatory Quality, Rule of Law, and Control of Corruption 

(Kaufmann et al., 2010). The six WGI indicators are reported in units of a standard 

normal distribution (i.e., ranging from approximately -2.5 to 2.5), and we use the mean of 

these indicators for each country as the explanatory variable in our study. The Logistics 

Performance Index (LPI), is a qualitative evaluation of trade and transport-related 

infrastructure based on survey responses by on-the-ground freight and trade operators 

(Arvis, Jean-François et al., 2014). 

Per-capita household final consumption expenditure (HFCE) reflects the real market 

value of goods and services purchased by households or by nonprofit institutions serving 

households. To enable cross-national comparability, we use a measure of HFCE that 

has been adjusted for purchasing power parity and converted to constant 2017 

international dollars (World Bank, 2019). HFCE estimates the annual consumption of an 

average individual, and it relates to consumer income in our conceptual framework. 

HFCE values are based on household consumption surveys which include imputed 

expenditures for own-consumption and owner-occupier rents (Lequiller & Blades, 2014). 
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These “own-consumption” expenditures include the products of subsistence agriculture, 

which are assigned a market value based on the farm gate prices that smallholders 

would have received if they had sold their produce (McCarthy, 2013). Valuating the 

outputs of informal economies in a cross-country-comparable manner remains 

challenging for national accountants (Charmes, 2012). Despite these uncertainties, we 

consider HFCE an estimate of the total consumption of goods and services of an 

average consumer, including the procurement of food by buying or growing. 

The prevalence of formal employment indicates the percent of total employment made 

up of wage and salaried workers who hold “paid employment jobs” (ILO, 2020). Workers 

with paid employment jobs are generally considered less vulnerable than own-account 

and contributing family workers (Gammarano, 2018). 

We do not claim that these explanatory variables include all characteristics relevant to 

national food security. Nor does securing access to food guarantee a high-quality diet for 

all people: utilizing food for healthy diets also relies on consumer behavior and 

education, among other factors (HLPE, 2017). We do claim that the selected explanatory 

variables include several basic drivers that help determine the extent of food access 

within a national food system. We analyze how these characteristics can explain cross-

national differences in food security. 

Correlation between explanatory variables 

Multicollinearity between explanatory variables is common and can cause regression 

models’ coefficients and predictive capability to be highly sensitive to changes in model 

specification and input data sample (Farrar & Glauber, 1967). Figure A2.2 presents the 

correlation matrix for all explanatory variables. Many are correlated with one another. 

We use bootstrapping and variable subset selection techniques to present our results as 
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distributions of model performance and coefficients across many regression model fits. 

The sensitivity of the results is thus presented directly in the data for the reader’s own 

interpretation. 

Methods 

This section describes our approach to multivariable regression using the variables 

described above in Data, including data preprocessing, bootstrap sampling, and 

stepwise forward variable selection.  

Multivariable linear regression 

Data preprocessing 

To ensure comparability between regression results on both GFSI and FI<mod, we limited 

our analysis to 65 countries for which all response variable data are available. While 

utilizing all available countries for both metrics would increase sample size, it would also 

allow differences in the underlying samples to bias results. GFSI’s data coverage 

prioritizes large countries to capture the largest possible percentage of global population, 

while the FIES results can be reported by any country who undertakes the survey 

module.   

Prior to regression, we applied a Box-Cox transformation to rescale non-normal 

explanatory variables to make them more similar to a normal distribution (Box & Cox, 

1964). Supplementary Note 1 in Online Resource 2 provides further explanation of the 

Box-Cox transformation applied to the input data. Finally, to promote comparability of 

regression coefficients between the explanatory variables in each model, we 

transformed the explanatory variables so that they were centered and scaled to a 

standard deviation of one and a mean of zero. The response variables were not 

transformed in any way. 
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While preparing the analysis, we also tested the effect of changing these approaches to 

dataset selection (i.e., all available data versus only countries with both response 

variables available) and explanatory variable transformations (i.e., Box-Cox versus 

targeted logarithmic transforms of a few variables). Figure 2.3.5 shows that the 

performance of all univariate models was consistent for all four combinations of these 

modelling decisions. 

Linear regression on bootstrap samples 

We used ordinary least squares linear regression to quantitatively evaluate the 

relationships between combinations of explanatory variables and the response variables. 

As described above, data were available for 65 countries. Because of the small number 

of observations, it is useful to determine how sensitive our results are to the 

inclusion/exclusion of nations in the dataset used for model fitting (i.e., to test the 

generalizability of the models). Rather than performing just one regression for each 

combination of response and explanatory variables, we use bootstrapping (i.e., sampling 

with replacement) to train and test regression models on multiple subsets of the input 

dataset. 

Figure 2.3.1 illustrates the bootstrap sampling process used to fit and test each 

regression model.  Starting with the original input dataset, we created 100 bootstrap 

samples by performing random sampling with replacement (Hastie et al., 2009). Each 

sample was comprised of a training set, which was used for model fitting, and a test set, 

which was used to evaluate model performance (out-of-sample R2). The training set was 

created by drawing random samples with replacement until the training set was the 

same size as the original input dataset (65 countries). Because sampling was conducted 

with replacement, the resulting training set contained some replicates of the original 

countries. The countries that were left out of the training set served as the test set for 
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that bootstrap sample. This procedure ensures that training and test sets are disjoint. 

The mean test set size was 23.7±2.4. 

 

Figure 2.3.1. Flow diagram of bootstrap sampling process, starting with the full 65-country dataset, and 
ending with an estimate of the median out-of-sample R2 calculated over all sets of model results. To ensure 
a fair comparison across model formulations, the same set of 100 bootstrap samples was utilized to test all 
model formulations generated by stepwise forward variable selection 

As visualized in Figure 2.3.1, the out-of-sample R2 is calculated using only the actual and 

predicted response variable values in the test set. Thus, the out-of-sample R2 can be 

considered the proportion of variance in the response variable that is explained by the 

regression model for countries the model did not “see” during fitting. This approach 

applies equally to models using any number of explanatory variables (i.e., including the 

univariate models in Figure 2.3.4 and the multivariate models in Figure 2.3.6). The 

bootstrap sampling process is repeated 100 times, generating a set of 100 R2 values 

across all iterations of sampling and training-testing. 

Model formulation and stepwise forward variable selection 

The model formulations for the linear regressions that were fit to these bootstrap 

samples can be generically written for the ith response variable and jth set of explanatory 

variables as  
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𝒀𝒊 = 𝑿𝒋𝜷𝒊𝒋 + 𝜺𝒊𝒋 

where 𝒀 is the vector of food security scores for response variable 𝑖, 𝑿𝒋 is the matrix of 

input data for explanatory variable subset 𝑗, 𝜷𝒊𝒋 is a vector of coefficient estimates, and 

𝜺𝒊𝒋 is a vector of error terms corresponding to response variable 𝑖 and explanatory 

variable set 𝑗. The model is fit by minimizing the sum of squared residuals, as per the 

ordinary least squares regression approach.  

Our use of bootstrap sampling shows how results change with variation in the countries 

used to train regression models. It is similarly useful to analyze how regression models 

perform when using different subsets of explanatory variables.  Explanatory variable 

subset selection techniques can be used to identify the model formulations that achieve 

best out-of-sample model performance (for example, by avoiding overfitting to training 

data). Comparing results across the many regression models generated during subset 

selection also enhances interpretability.  

We tested two approaches to explanatory variable selection: exhaustive best subset 

selection, and stepwise forward selection (Hastie et al., 2009). The exhaustive best 

subset selection approach tested all possible combinations of explanatory variables, 

fitting 510 different model formulations between the two response and eight explanatory 

variables. The stepwise forward approach used a “greedy” algorithm that started with the 

best univariate model and iteratively added the explanatory variable that most improved 

the out-of-sample model performance at each step. Figure A2.3 shows that both 

approaches to variable selection produced nearly identical model performance for each 

number of explanatory variables, for each of the two response variables (Online 

Resource 2). We chose to present only the stepwise forward variable selection results 
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here because the incremental nature of the algorithm highlights the value of adding each 

new explanatory variable to the model. 

Statistical tools 

We used the R language in the RStudio environment (R Core Team, 2020). Data 

visualization and manipulation were conducted with the tidyverse ecosystem of 

packages (Wickham, Averick, et al., 2019). Regressions were performed with the 

tidymodels ecosystem of packages (Kuhn & Wickham, 2020).  

Results 

This study analyzed the relationships between two measures of national food security 

and a dataset of explanatory variables that characterizes 65 nations in terms of 

agricultural land quality and quantity, agricultural production, governance and 

infrastructure, and household income. We used linear regression models to quantify the 

contribution of each explanatory variable to the variation in both metrics. We further 

examine the stability of our results by repeating the regressions on varying input data 

sets to create a distribution of model fits and performance. This section compares the 

two response variables and presents the regression results. 

Comparing GFSI and FI<mod 

Figure 2.3.2 maps the countries used in this study and summarizes response variable 

scores by region. The 65 nations included in the analysis accounted for approximately 

56% of global population and 84% of global gross domestic product in 2019.  India and 

Brazil are among the largest countries without publicly-available data on FImod+sev which 

are excluded from this analysis (FAO, 2018a). The Middle East and North Africa region 

is exceptionally sparsely covered. Despite the gaps, these data span many food security 

contexts. 
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Figure 2.3.2. Regional summary of response metrics. (a) Map of countries for which both response variables 
are available. (b) Boxplots summarizing response variable scores by region, with y-axes in units of the 
respective response variables (i.e. GFSI scores and the percent of population experiencing food security or 
mild food insecurity [FI<mod]).  For all boxplots presented in this study, the middle line, box hinges, and 
whiskers of the boxplot show the median, interquartile range (IQR), and the range of values up to 1.5*IQR 
more extreme than the box hinges, respectively. Here, each boxplot is overlaid by the data points it 
summarizes. 

For both GFSI and FI<mod, North America, Europe and Central Asia, and East Asia and 

Pacific regions lead in food security performance. A second tier is comprised of Latin 

American and Caribbean countries, along with a Northern African nation (Egypt) and two 
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South Asian countries (Nepal and Bangladesh). Sub-Saharan African countries show the 

worst regional performance on both response metrics.  

Figure 2.3.3 shows a strong positive correlation between countries’ GFSI and FI<mod 

scores. For both metrics, the spread in national food security is tight for a cluster of high-

performing nations, and much wider in the middle and lower parts of the scale. Except 

for Nigeria and Burkina Faso, Sub-Saharan African nations lie on or below the trendline, 

indicating FI<mod performance that is lower than what the GFSI scores alone might 

indicate. That is, for most Sub-Saharan African countries in this study, the prevalence of 

people reporting an experience of moderate or severe food insecurity in the past 12 

months is higher than the rate that a model using GFSI’s macro-level indicators would 

suggest. This same deviation from the trendline is observed to a milder extent for most 

Latin American and Caribbean nations. 

Regression modelling 

We quantitatively evaluated the relationship between the response variables and the 

explanatory variables using multivariable linear regression as described above in 

Methods. The underlying methodological differences in the response metrics inform the 

interpretation of regression results. Regressions on FI<mod show how explanatory 

variables predict the prevalence of food security (or mild food insecurity) in a population. 

Regressions on GFSI show how explanatory variables relate to the Index’s framework 

for assessing national food security. 

Because we used bootstrap sampling to run each model on 100 random training and 

testing datasets, all model performance and coefficient results are presented as 

distributions of outcomes across the 100 model fits. 
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Figure 2.3.3. Correlation between GFSI and FI<mod response metrics. A linear trendline is plotted with a 95% 
confidence interval shown in grey. The Pearson product moment correlation coefficient is included at the 
bottom-right of the plot. The p-value is the result of a t-test on the coefficient with the null hypothesis that 
there is zero correlation between the two variables. Each point is colored by region and labeled with the ISO 
3166 three letter country code (ISO, 1999). 

Figure 2.3.4 presents the out-of-sample R2 results for univariate regression models. 

Each boxplot summarizes model performance across 100 iterations in which a one-

predictor model is fit on a training set of 65 countries (including replicates) and then 

tested on a testing set comprised of all countries not used in training. For instance, when 

a model with only HFCE as an explanatory variable was used to predict FI<mod for 100 

different sets of out-of-sample countries, the coefficient of determination ranged from 

0.42 to 0.89, with a median of 0.70. Models predicting FI<mod are generally less accurate 

than models predicting GFSI. 
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Figure 2.3.4. Boxplots summarizing the out-of-sample model performance of all possible univariate linear 
regression models. Each model was trained and tested over 100 bootstrap samples. The boxplot series are 
ordered ascendingly by the median out-of-sample R2 for each response variable. 

The univariate model results align roughly with the thematic categories we used to select 

explanatory variables. Considering these categories one at a time, variables related to 

the quality and quantity of agricultural land were not predictive of either food security 

metric. Variables related to agricultural production — per-capita cereal production and 

cereal yield — were the second-lowest performing category. However, cereal yield was 

a significantly better predictor than gross production for both response variables, 

attributing more importance to land use efficiency than tonnage grown per capita. WGI 

and LPI, which comprise the governance and logistics category, show mixed results. 

When predicting FI<mod, the median R2 for the WGI-only model is 0.46, which is below 

that of cereal yield (0.58). For GFSI, however, the WGI-only model performs about as 

well as LPI and the percentage of workers in paid employment jobs (median R2 ~ 0.8).  
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Predictions by a univariate model using household final consumption expenditure per 

capita (HFCE) outperformed all other univariate models for both response variables, 

capturing a median of 92% of the variation in 2019 GFSI scores and 70% of the variation 

in FI<mod. We note that some of HFCE’s predictive power for GFSI comes from the 

inclusion of GDP per capita as one of the indicators in the index (about 9% of the total 

score, per Table A2.2). HFCE represents the market value of all goods and services 

purchased by households, which corresponds to a portion of gross domestic product. 

Rather than to attempt to disentangle the effect of HFCE on both sides of the equation, 

we acknowledge this complication here and avoid relying solely on GFSI when making 

conclusions. We do note that R2 results were negligibly changed even when GDP per 

capita was eliminated from the GFSI formulation. FI<mod is independent and is not based 

on macro-level indicators, making it an important complement to GFSI in this study.  
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Figure 2.3.5. Median out-of-sample R2 for univariate regression models using four sets of modelling 
assumptions. The first letter of the method tag corresponds to the input data utilized for regression: “O” 
indicates that all available data were used when fitting each regression model (i.e., 91 countries for FI<mod 
and 112 countries for GFSI), “I” indicates that only countries with both response variables available were 
used (i.e., the same 65 countries for both response variables). The second letter corresponds to the 
transform applied to non-linear explanatory variables. “B” indicates that a Box-Cox transformation was 
applied as described in Supplementary Note 1. “L” indicates a targeted approach where a natural logarithm 
was applied to HFCE and cereal production per capita to linearize these variables with respect to the 
response.   

Figure 2.3.5 shows that these univariate model results are resilient to changes in 1) the 

countries that are included in the dataset, and 2) the transformation used to scale 

explanatory variables prior to model fitting. Across all explanatory and response variable 

combinations, the median out-of-sample R2 varies by less than 0.09 as these two 

modelling assumptions are changed.  
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Figure 2.3.6. Out-of-sample R2 results at each stage of stepwise forward explanatory variable selection. The 
x-axis denotes the explanatory variables included in the regression, where A is arable land per capita, C is 
the mean Crop Suitability Index, P is cereals production per capita, Y is cereal yield, S is HFCE per capita, E 
is the percentage of workers in paid employment jobs, L is the Logistics Performance Index, and W is the 
mean Worldwide Governance Indicator score. 

Figure 2.3.6 summarizes the model performance of each stage of stepwise forward 

explanatory variable selection. For each response variable, the leftmost boxplot shows 

the R2 performance for the best one-variable model. From left-to-right, the proceeding 

boxplots show how performance changes when a new variable is added to the model. 

Both stepwise forward selections begin with HFCE as the first variable. HFCE captures 

nearly all the information required to predict GFSI: a model with only HFCE (median R2 = 

0.92) is negligibly improved by adding variables. HFCE also predicts FI<mod well (median 

R2 = 0.70 for the leftmost model), but the out-of-sample performance of the regression 

model improves with inclusion of cereal yield, cereal production and the quantity of 

arable land per capita (median R2 = 0.77). Addition of further variables — including 

logistics index, mean CSI score, mean WGI score, and percentage of workers in paid 
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employment jobs — decreased the ability of the model to predict the FI<mod for countries 

outside of the training sample. This is evidence of overfitting, as increasing model 

complexity worsened predictions on test set countries. 

Figure A2.3 shows that these results hold even if exhaustive best subsets variable 

selection is used to specify the multivariate regressions instead of the stepwise forward 

variable selection approach presented in the main text. 

Figure 2.3.7 shows the distribution of regression coefficient estimates generated over 

100 bootstrap samples. For each response variable, we include the coefficient estimate 

results for models using all explanatory variables, and for the 4-variable model selected 

by stepwise forward variable selection. Each ridge shows how regression coefficients 

vary as the countries used for model training change across bootstrap samples. In the 

full model including all explanatory variables, coefficient estimates range widely, 

sometimes changing in sign from fit to fit. Many of the widest-ranging coefficients have a 

median p-value above 0.2, indicating very low statistical significance of the estimate. 

Across both response metrics and all regression formulae, HFCE is the only explanatory 

variable with a consistently positive and statistically significant coefficient. However, the 

expected boost in national food security from an increase in HFCE varies across 

bootstrap samples. Some model fits suggest that a one standard deviation increase in 

Box-Cox transformed HFCE translates to a 30% increase in FI<mod. For others, the same 

increase in HFCE is estimated to have a much smaller effect. This suggests that the 

magnitude of influence of per-capita consumer spending on national food security 

depends in part on the countries being considered, and the causal models of food 

insecurity at work within them. 
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Figure 2.3.7. Ridge plots summarizing multivariable regression coefficient estimates across 100 bootstrap 
samples for four model formulations. Results from regression models using all eight explanatory variables 
are included, as are results from using the combination of explanatory variables in the 4-variable model 
selected by stepwise forward variable selection. Each ridge is a smoothed histogram (kernel density 
estimate) of the 100 regression coefficients generated for an explanatory variable over 100 model fits, and 
the vertical line within each distribution indicates the median coefficient estimate. Thus, the y-axes of each 
distribution are in units of probability density. The distributions are colored based on the median p-value 
observed over the bootstrap runs. The annotations in the bottom-right of the plots state the explanatory 
variables used in the regression, and the median out-of-sample R2 for the model runs. The explanatory 
variables are coded such that A is arable land per capita, C is the mean Crop Suitability Index, P is cereals 
production per capita, Y is cereal yield, S is HFCE per capita, E is the percentage of workers in paid 
employment jobs, L is the Logistics Performance Index, and W is the mean Worldwide Governance Indicator 
score. 
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For both response metrics, the 4-variable model using forward variable selection tended 

to conserve at least one explanatory variable related to cereal yield or production. 

However, the four models in Figure 2.3.7 do not agree on which of these two factors is 

more useful to the model, nor on the sign, magnitude, or significance of their coefficient 

estimates.  

Both 4-variable models retained one measure of agricultural land quantity or quality, but 

with consistently negative coefficients. This indicates that, when comparing two 

countries, if all else is held equal, countries with more or better-quality agricultural land 

are on average the less food secure of the pair. The four models in Figure 2.3.7 disagree 

on the sign, magnitude, and significance of coefficients for LPI, WGI and the percent of 

workers in paid employment jobs. 

As a supplementary analysis, we also calculated SHapley Additive explanation (SHAP) 

values, which indicate the additive contribution of each explanatory variable to each 

model prediction. Table A2.3 presents absolute SHAP values for all explanatory 

variables, showing that HFCE has the highest average absolute contribution to each 

model prediction for both response variables. Figure A2.4 visualizes the raw SHAP 

values for every model prediction, showing regional patterns: low HFCE by Sub-Saharan 

African countries have a strongly negative contribution to the expected value of both 

GFSI and FI<mod.  

Discussion 

This study analyzes cross-national food security performance using two prominent 

metrics: the Food Insecurity Experience Scale (FIES), and the Global Food Security 

Index (GFSI). The FIES is a “bottom-up” survey-based method that measures 

respondents’ lived experience of food insecurity, and it is used to produce globally-
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calibrated estimates of the prevalence of moderate and severe food insecurity (Cafiero, 

2016; Cafiero et al., 2018). Our FIES-based response variable, FI<mod, estimates the 

percentage of a nation’s population who have not eaten less than they should for lack of 

money or other resources in the past 12 months. The GFSI is a “top-down” index that 

relies on a suite of macro-level indicators combined with an expert-suggested weighting 

matrix to score countries based on the affordability, availability, and quality and safety of 

their food systems (EIU, 2019). We caution that favorable national FIES and GFSI 

scores do not guarantee that the average citizen has a holistically healthy diet 

(GPAFSN, 2016; Pérez-Escamilla et al., 2017). The FIES primarily assesses the 

“access” dimension of food security (Cafiero, 2016), and the GFSI is not sensitive to all 

aspects of a healthy individual diet (e.g., specific nutrient deficiencies) (Izraelov & Silber, 

2019; Thomas et al., 2017).  

Precisely because of their methodological differences, the GFSI and FIES can serve as 

complementary metrics in a two-pronged approach to considering national-level food 

security. On its own, the GFSI is a subjective measure of national capacity for food 

security. However, its correlation with the FIES-based measure (Figure 2.3.3) gives 

some assurance that these macro-level indicators are not completely out of touch with 

the lived experiences of citizens. Likewise, the FIES is well-equipped to measure food 

insecurity, but ill-equipped to explain it. Countries with identical prevalence of mild, 

moderate, or severe food insecurity may face very different challenges. The GFSI offers 

34 indicators that can be used in parallel to diagnose and alleviate barriers to food 

affordability, availability, and quality/safety.  For example, FIES results indicate that 

roughly 50% of people living in both Honduras and Ghana are experiencing moderate or 

severe food insecurity. GFSI results for these countries reveal that many Ghanaians lack 

food safety for want of potable water and electricity. Honduras, meanwhile, performs 
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better on food safety but significantly worse on measures of governance affecting 

national food availability.  

We also used multivariable linear regression to assess the response variables’ 

relationships to explanatory variables characterizing nations’ agricultural land, 

agricultural production, governance and infrastructure, and household incomes. Model 

performance and coefficient estimates varied over a range of training datasets produced 

by bootstrap sampling, showing the sensitivity of these cross-country regressions to the 

subset of nations used for model fitting. For example, the FI<mod model with highest 

median out-of-sample R2 (0.77), explained a minimum of 55% of variance in the out-of-

sample predictions for one set of countries, but a maximum of 92% for another.  

Compared to FI<mod, GFSI was much easier to predict with the small set of macro-level 

explanatory variables used in this study, showing higher and more consistent out-of-

sample R2 performance across bootstrap samples. In one sense, this is unsurprising: our 

explanatory variables are similar in scope to macro-level GFSI indicators. However, this 

behavior is not necessarily obvious given the strong correlation between the two 

response metrics themselves. Despite this correlation, the prediction error is much 

higher and more variable for the FIES-based metric. 

Across all model runs and bootstrap samples, HFCE was a strong predictor of both 

national food security metrics. HFCE estimates average consumer spending on durable 

goods (e.g., vehicles), non-durable goods (e.g., food), housing, and services. 

Importantly, HFCE estimates account for the value of farmers’ consumption of their own 

produce based on farm gate prices (McCarthy, 2013).  Among univariate models, HFCE 

was the best single predictor of GFSI and FI<mod (Figure 2.3.4). This result proved 

resilient to changes in the countries included in the input dataset and in the 

transformations applied to explanatory variables before model fitting (Figure 2.3.5).  
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Adding more explanatory variables to the model in iterations of stepwise forward 

selection only modestly improved the model’s out-of-sample R2 (Figure 2.3.6). HFCE’s 

regression coefficient was the only one with consistent positive sign and statistical 

significance across many combinations of response metrics, model specifications, and 

bootstrap samples (Figure 2.3.7).   

The quantity and quality of nation’s agricultural land were not alone predictive of either 

food security metric. The best-performing models during stepwise forward variable 

selection did retain either arable land per capita or mean CSI as a predictor. However, 

the coefficient estimates for these variables were consistently negative across model 

runs, indicating that when all else is held equal, countries with more or better agricultural 

land resources tended to also have lower national food security.  

We find mixed evidence that the per-capita cereal production and per-hectare cereal 

yield were predictive of national food security. In stepwise forward variable selection, 

these were the first two variables added to HFCE to improve FI<mod predictions (Figure 

2.3.6), though coefficient estimates were smaller in magnitude and less consistently 

significant than for HFCE (Figure 2.3.7). 

The results of this cross-national analysis reinforce previous research supportive of a 

causal mechanism where an increase in income drives increase in food security. At the 

household level, lower incomes are consistently related to worse FIES food insecurity 

scores (Park et al., 2019; M. D. Smith, Kassa, et al., 2017; M. D. Smith, Rabbitt, et al., 

2017). At the national level, economic growth has been identified as a key driver of 

reductions in child stunting (Headey, 2013; Ruel & Alderman, 2013; L. C. Smith & 

Haddad, 2015). However, as our variation in results across bootstraps shows, the 

strength of the relationship between HFCE and the two national food security metrics 

varies based on the countries included in the training data. Aggregate economic growth 
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does not always lead to reduction in poverty, nor do increased incomes eliminate all 

malnutrition (FAO, 2019c). Persistent income inequalities also cut off segments of the 

population from the benefits of aggregate economic growth and the infrastructure and 

services that come with it (e.g., quality health care, sanitation, and reliable power). 

The strong relationship between national food security and HFCE shown here together 

with the universally low HFCE of subsistence farmers underscores the vulnerability of 

subsistence farmers to food insecurity. Subsistence farming is intrinsically variable both 

seasonally and interannually, and excess production from years with high yields is often 

unable to compensate for lean years because of storage losses, market failures, or lack 

of access to banking (Chambers et al., 1981; Thurow & Kilman, 2010). Environmental 

variability, exacerbated by climate change, poses a heightened risk for these farmers, 

whose food consumption and local agricultural production are tightly coupled (Davis et 

al., 2020). Further, many smallholders simply do not own enough land to meet their food 

availability needs (Frelat et al., 2016) or to raise their consumption above the HCFE 

threshold for achieving higher food security performance. For instance, in our dataset, 

no country with HFCE below $5,000 per capita per year had a prevalence of food 

security or mild food insecurity above 80% per FIES surveys.    

The literature has identified on- and off-farm options for improving earnings, raising 

HFCE, and boosting food security. Agricultural development can increase on-farm 

income and food security when productivity increases are paired with functional crop 

markets, storage options (Tahirou Abdoulaye et al., 2018; Burney et al., 2010; McArthur 

& McCord, 2017; Webb & Block, 2012). However, without these supporting factors, 

some research finds that marginal increases in smallholder agricultural production or 

subsidies on agricultural inputs do not always improve food security or income (Harris & 

Orr, 2014; Schreinemachers, 2006; Walls et al., 2018). Beyond the farm gate, one study 
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of over 13,000 sub-Saharan African farm households finds that off-farm income is an 

important income “stabilizer” that improves food availability (Frelat et al., 2016). Bezu, 

Barrett, and Holden (2012) specifically find that Ethiopian households’ consumption 

expenditures grow alongside off-farm income, and a wide body of literature has shown 

that off-farm jobs are key enablers of poverty reduction in rural areas (Djurfeldt & 

Djurfeldt, 2013; Haggblade et al., 2010; Otsuka & Yamano, 2006).  

These observations from the literature, combined with our finding that HFCE is a primary 

driver of cross-national food security, support the proposition that the most effective 

strategies to improve food security will include measures to increase citizens’ capacity 

for consumption, whether via agricultural earnings or off-farm income.  

We examined the patterns in our small dataset using simple linear regression and data 

science techniques. Our cross-sectional data can only be used to indicate “long run” 

differences in food security, which are the result of complex relationships between 

social, economic, and agricultural factors, among others (Headey, 2013). Future studies 

may leverage larger datasets including more countries and explanatory variables, along 

with econometric techniques that regress on panel data, employ instrumental variables, 

control for country fixed effects, et cetera, that may allow the analysis to make stronger 

causal claims (e.g., Headey, 2013; L. C. Smith & Haddad, 2015, 2000). Finally, we show 

that model performance was significantly affected by aspects of the study that are 

typically left to the modeler’s judgement:  the choice of the response variable, the input 

dataset, and the model formulation (i.e., the explanatory variables selected). Rather than 

making just one justifiable selection of these parameters, we explicitly showed the 

sensitivity of our results to different combinations of decisions. Future studies may also 

consider employing our techniques to show this variation, including the use of multiple 

response variables, and the use of random sampling to portray regression results as 
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distributions rather than single numbers which may in reality be subject to wide 

fluctuation with changes to the input data. 

Conclusion 

Despite substantial differences in methodologies and theoretical bases, the Global Food 

Security Index and the Food Insecurity Experience Scale metric (FI<mod) were strongly 

correlated in our 65-country dataset. In regression models using explanatory variables to 

predict nations’ food security scores, per-capita household final consumption 

expenditure consistently explained more variance in food security scores than other 

drivers. The quantity and quality of nation’s agricultural land were not predictive of either 

food security metric. These findings were independent of modelling assumptions 

regarding the countries included in the input dataset, the subset of countries used for 

model training, the transformations applied to the explanatory variables prior to model 

training, and the variable selection technique used to specify multivariate regressions. 

We found mixed evidence that per-capita cereal production, per-hectare cereal yield, an 

aggregate governance metric, logistics performance, and the prevalence of paid 

employment work were predictive of national food security. The results of this cross-

national analysis reinforce previous research supportive of a causal mechanism where, 

in the absence of exceptional local factors, an increase in income drives increase in food 

security. Initiatives that seek to improve national food security by focusing on other 

drivers without a clear path to improving incomes are less likely to achieve the desired 

effect. We conclude that the GFSI and FIES are complementary metrics, best used in 

tandem to monitor and explain national food security performance. Future studies may 

expand on these findings and techniques using more countries and a wider array of 

explanatory variables.  
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3 Minigrids in sub-Saharan Africa 

 

Mokoloki Minigrid, Ogun State, Nigeria. Photo by Nayo Tropical Technologies. 

3.1 Minigrid literature review and background 

Electricity access is a development priority because it supports both key human 

development capabilities and potential to power “productive uses” that generate income 

and employment.  Energy services such as clean cooking, electric lighting, and 

refrigeration are necessary ingredients for modern life, and steep development gains are 

observed for the first few megawatt hours of annual consumption as power is directed 

towards basic needs (Goldemberg et al., 1985).  

Despite significant gains in access in previous decades, 789 million people lacked any 

access to electricity in 2018 and at current progress rates 620 million people will remain 

without access by 2030 (IEA et al., 2020). Today, 70% of people without access live in 

sub-Saharan Africa, and 85% live in a rural area (id). A further 1.5 billion people are 

connected to “broken” electricity grids that deliver sporadic power amidst thousands of 
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hours of blackouts per year (Lam et al., 2019). Many of these underserved consumers 

rely on diesel and gasoline backup generators, which together comprise a fleet of 350–

500 GW of heavily polluting capacity running at an average of $0.30/kWh for fuel alone 

(id). 

Electricity demand from customers living in countries with limited or inconsistent 

electricity service is expected to increase substantially in the future. The International 

Energy Agency’s Africa Energy Outlook’s (2019a) base case scenario forecasts more 

than a doubling in electricity demand (from 700 TWh/yr to 1,600 TWh/yr) in sub-Saharan 

Africa by 2040, driven especially by residential demand growth. The report’s Africa Case 

scenario — in which economic expansion is accompanied by full achievement of SDGs 

by 2030 — forecasts a quadrupling in electricity demand (to 2,300 TWh/yr).  

A cascade of power sector reforms in developing countries has shifted the burden of 

electrification from centralized, state-owned utilities to privatized power sectors with 

competitive electricity markets (Byrne & Mun, 2003). Privatized, centralized power grids, 

however, do not naturally pursue rural or underserved customers that are perceived as 

economically unattractive, and public and philanthropic dollars have not been sufficient 

to drive the electricity access required to meet human development goals (Monroy & 

Hernández, 2005). Achieving electricity access goals will thus require private sector 

participation, motivated by returns in a mostly-rural market segment, using innovative 

business models and ever-cheaper renewables to cost effectively serve customers 

(Williams, 2017). 

Meeting rising electricity demand from new, existing, and underserved customers will 

require a blend of centralized on-grid electricity, autonomous community minigrids, and 

distributed household-level generation supply options (Tenenbaum et al., 2014). 

Centralized power generation does not reach many rural communities, which may be 



90 
 

located far from existing power lines in areas with little supporting infrastructure, and 

whose residents are often economically and politically disempowered. But rapidly falling 

costs of photovoltaic and energy storage assets, combined with high-efficiency 

appliances (e.g., LED lighting), and digital control systems have enabled the creation of 

distributed energy resources (DERs) that can meet customers’ electricity needs at a 

fraction of the per-project capital investment required for centralized generation and 

distribution, and at a competitive levelized cost of electricity (LCOE) (Alstone et al., 

2015). These DER electricity access solutions include standalone pico-power (0.1–10 

W) and solar home systems (SHSs, 10–103 W) as well as minigrids (103–106 W) (id). 

Connecting customers to these clean and resilient systems can “leapfrog” 

predominately-fossil-fueled generation systems and reduce GHG emissions significantly 

compared to an alternative where these loads are instead served by diesel generators 

(Moner-Girona et al., 2018). Hundreds of peer-reviewed papers have studied the mix of 

grid extension, minigrids and standalone solar systems that achieves universal access at 

lowest cost (reviewed by Trotter et al., 2017). Governments and other stakeholders can 

use planning tools such as the Global Electrification Platform to select the appropriate 

DERs for each community in their area.i  

A household’s quality of electricity access can be described on a continuum, as 

articulated by the World Bank’s Energy Sector Management Assistance Program’s 

(ESMAP) Multi-Tier Framework (ESMAP, 2015). Watt-scale systems can provide 

important low-energy services like lighting and phone charging (ESMAP Tiers  1–2).  

Electric task lighting extends the useful hours of nighttime with no negative health 

impacts, and at costs hundreds to thousands of times cheaper than kerosene or other 

alternatives (ESMAP, 2015; Lam et al., 2012). Roughly one in two Africans also need 

 
i The Global Electrification Platform tool can be accessed at https://electrifynow.energydata.info/  

https://electrifynow.energydata.info/
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regular charging access for at least one mobile phone (Calderon et al., 2019), which 

have become indispensable gateways to information, communication, and banking 

services (Pew Research Center, 2019). Small standalone systems can affordably power 

these use cases. The global association for the off-grid solar energy industry (GOGLA) 

projects that as of June 2020, 59 million and 12 million people were accessing Tier 1 

and Tier 2 levels of energy services, respectively, thanks to small standalone systems 

sold by their members (GOGLA, 2020).  But many appliances require more power than 

most standalone systems supply, such as refrigerators, and televisions, and the electric 

motors used for many income-generating activities (Booth et al., 2018). In the absence 

of sufficient electricity supply, those who can afford them still use fossil fueled generators 

and prime movers to meet these needs (ESMAP, 2015).  

Minigrids are small (usually < 1 MW) electricity networks that can provide grid-equivalent 

service (up to ESMAP Tier 5) to off-grid or underserved grid-connected communities 

(Carlin et al., 2017). The solar-diesel hybrid design model is the most prevalent system 

configuration being installed today (SEforALL, 2020b), generating most kilowatt hours 

from solar photovoltaics, storing the energy in batteries (typically lead-acid) and utilizing 

a diesel generator as a peaking resource to reduce the solar and battery assets required 

to serve customer loads at 100% reliability (Al-Hammad et al., 2015; Lambert et al., 

2006). These minigrid designs can be built today using only mature technologies, 

although innovation in generation, controls, energy storage, and demand response may 

improve future systems (IRENA, 2016b).  

Autonomous minigrids can be located within communities for which connection to the 

centralized grid would require costly transmission and distribution infrastructure to 

transmit power (Szabó et al., 2011). Minigrids are also well-suited for serving customers 

living “under the grid” (i.e., connected to the central grid yet receiving unreliable service) 
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by bypassing overburdened utility infrastructure, potentially reducing utilities’ losses 

while profitably serving clusters of homes and businesses (Graber et al., 2018). ESMAP 

estimates that $28 billion of cumulative global investment has connected 47 million 

people to 19,000 minigrids to date, but also projects that minigrids will need to serve ten 

times that number in order to achieve universal access by 2030 (ESMAP, 2019). This 

market has an estimated $3.3 billion annual profit potential for minigrid investors, yet 

private investment is hard for developers to access, and the World Bank alone still 

accounts for an average of 25% of total minigrid investment in its client countries (id).  

Despite the promise of minigrids as an electrification solution and business opportunity, 

the sector has not yet reached the point where it can scale without subsidized support 

(SEforALL, 2020b). Investors see the minigrid market as risky, making capital 

investments rare and debt prohibitively expensive (Carlin et al., 2017). Specifically, 

potential investors worry that poor residential customers will not buy enough power to 

pay back the cost to connect them, or that theft or unwillingness to pay will prevent 

collection of payment (Williams et al., 2015). In absence of clear policies governing 

service territories, there is also a risk that the heavily-subsidized central grid will 

encroach on the minigrid service territory and undercut tariffs before the end of the 

project life (Marandu & Luteganya, 2005; Yakubu et al., 2018a). Additionally, minigrid 

companies spend an average of more than one year per site complying with regulatory 

processes, according to one survey of 28 developers in 12 African countries (AMDA, 

2020). Projects also face risks related to fuel prices, foreign exchange rates, and the 

magnitude and price elasticity of customer demand for electricity (Williams et al., 2018). 

Alongside efforts that familiarize investors with minigrid risks and introduce supportive 

policies, minigrid lifecycle costs must fall significantly to improve the business case and 

unlock private financing. 
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Minigrids are relatively expensive on an LCOE basis, around $0.50–0.60/kWh today, but 

with projected potential to fall to ~$0.20/kWh through improvements in minigrid hardware 

costs, customer demand stimulation, system planning, regulatory efficiency, and 

financing costs  (Agenbroad et al., 2018; ESMAP, 2019). Several of these cost reduction 

avenues fall outside of the control of any one project. The costs of key components such 

as solar panels, batteries, inverters, and smart meters are falling thanks to innovation 

and economies of scale, decreasing capital costs from $8,000/kWfirm
ii in 2010 to 

$3,900/kWfirm in 2018 (ESMAP 2019). Industry advocates such as the African Minigrid 

Developers Association are working for supportive policies and regulations alongside 

nonprofits and rural electrification agencies.  

On the ground, minigrid projects live or die on customer electricity consumption, which is 

often their sole source of revenue. For every hybrid minigrid that is designed and built, 

the sizing of solar, battery and back-up generator resources has been optimized to serve 

an expected customer load curve, which describes the magnitude of system electricity 

demand and how it fluctuates over time. For example, for a system with a sizeable PV 

array, this load curve would ideally show high utilization of cheap daytime solar that is 

being generated at low operational expense, and would rely on the diesel backup 

generator to meet only occasional peak loads at higher operational expense (Agenbroad 

et al., 2018). When actual load curves deviate from the volume and timing of sales that 

are expected by the minigrid design, profitability suffers (Hazelton et al., 2014). In 

addition, although some communities may have potential to grow in their electricity 

consumption after connection, minigrid customer loads tend to be low in practice, and 

productive uses of electricity are not growing organically (AMDA, 2020).  

 
ii Firm power output refers to the peak load that can be served at any time throughout the minigrid 
system life. 
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The minigrid sector is grappling with two key questions related to uncertain and 

suboptimal loads. First, how can minigrid developers calibrate their designs to realistic 

expectations of customer load? Second, how can end users’ demand be stimulated such 

to generate income for customers and ensure loads are large and stable enough to 

justify the 24/7 high-capacity power that minigrids can provide? 
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3.2 Predicting initial electricity demand in off-grid Tanzanian communities 

using customer survey data and machine learning models 
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Abstract: 

Minigrids are the lowest-cost solutions for electrifying many homes and businesses in 

rural communities with low energy access. Estimates of the electricity demand of 

unelectrified customers are a crucial input to selecting minigrid sites, projecting revenue, 

and sizing system components to provide adequate capacity while minimizing capital 

costs. Typical customer survey-based demand estimates for these communities — 

where there are no historical data — are not reliable, typically overpredicting demand.  

Here, we test a data-driven approach to demand prediction using survey and smart 

meter data from 1,378 Tanzanian minigrid customers. We found that models 

incorporating customer survey data into their predictions consistently out-performed a 

baseline model that did not. Our best-performing model, the LASSO, predicted daily 

electricity demand with a median absolute error of 66% and 37% for individual 

connections and minigrid sites, respectively. Quantitative measures of variable 

importance show that most survey data are not useful for estimating demand. These 

results suggest that surveys should prioritize thorough inventories of prospective 

customers’ currently-owned appliances instead of detailed demographic information or 

self-reported habits and plans. Pairing shortened questionnaires with smart meter data 

from preexisting minigrids can improve estimates of initial customer electricity demand 

significantly compared to standard field practices. 
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Introduction 

Efforts to achieve universal electricity access by 2030 are projected to fall short by 650 

million people (IEA et al., 2020). An estimated 90% of those without power would be 

Africans, with many living in rural communities that are difficult to electrify via 

conventional grid extension (IRENA, 2018). Minigrids are self-contained community-

scale electricity systems that generate and distribute power to connected customers, 

typically without interconnection to larger regional or national grids. They offer the 

benefits of decentralized energy resources — off-grid suitability and a relatively small 

initial investment for energy infrastructure projects — alongside the capacity to dispatch 

power to larger commercial users (Williams et al., 2015). The World Bank’s Energy 

Sector Management Assistance Program estimates that $28 billion of cumulative global 

investment had connected 47 million people to 19,000 minigrids by 2019 (ESMAP, 

2019). However, they also project that minigrids will need to serve ten times that many 

people to achieve universal access by 2030. 

While minigrids are often the least-cost solution for electrifying off-grid communities, the 

Levelized-Cost-of-Electricity (LCOE) for a best-in-class project is approximately $0.60–

0.80 per kWh, and some sites approach $2.00 per kWh (Reber et al., 2018). Analysis by 

RMI finds that improvements in system design, capacity utilization, financing, and the 

regulatory environment could reduce LCOE to $0.25 per kWh (Agenbroad et al., 2018). 

Today’s high costs are in part due to inaccurate expectations of the load the minigrid will 

serve, which often must be forecast for populations that have never had access to 

electricity. 

Uncertain and inaccurate electricity demand predictions ripple through the minigrid 

lifecycle, increasing costs all the way through. In a typical minigrid design process, the 

developer selects a viable minigrid site, then estimates a representative load profile, and 
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then sizes system components (e.g., solar panels, batteries, diesel generators) to 

minimize the total cost of serving the expected load. A successful minigrid must be built 

in a location where alternative electrification modalities (e.g., grid extension) are unlikely 

to displace customers, and where potential electricity sales are high enough to justify a 

minigrid’s substantial fixed costs (Carlin et al., 2017). Accurate electricity consumption 

estimates are thus a critical input when choosing the most promising minigrid sites. 

Once a site is selected, demand uncertainty also drives up the costs of financing the 

project. Minigrid operators and investors who are unsure about the electricity demand of 

a prospective minigrid site are by extension uncertain about their project’s revenue 

(Williams et al., 2016). This revenue uncertainty raises investors’ perception of the 

minigrid’s financial risk, which in turn raises the cost of capital and the LCOE (Schmidt, 

2019). Quantitative estimates of load and revenue risk for new projects can decrease 

investor uncertainty and bring down these high finance costs. Finally, initial demand 

estimates affect system design and operation. Underestimating demand risks power 

shortages and poor service quality. But projects that overestimate customer demand will 

overspend on solar panels, batteries, and generators to serve loads that never 

materialize, oftentimes resulting in a fatally low capacity utilization (AMDA, 2020; 

Posner, 2020). Using data from seven Malawian minigrids, Louie and Dauenhauer 

estimated that photovoltaic panel and battery array capital expenses increased $2.00 – 

6.00 for every Wh of over-prediction of the expected daily load (Louie & Dauenhauer, 

2016).  

In summary, more accurate demand estimates for unelectrified customers can improve 

minigrid economics by guiding minigrid site selection, lowering the cost of finance, and 

sizing system components to provide adequate capacity while minimizing capital 

investment. 
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Recent research has modeled myriad aspects of minigrid design, control, and operation, 

including optimal battery storage and renewable generation capacity,  autonomous 

control systems, day-ahead scheduling schemes, and life-cycle impact optimization 

(Aberilla et al., 2020; Avilés A. et al., 2019; Dunham et al., 2020; Kobayakawa & 

Kandpal, 2016; Moretti et al., 2019; Peña Balderrama et al., 2020). However, the models 

in these studies bypass the electricity demand uncertainty experienced by minigrid 

developers in the field by relying on exogenous assumptions of customers’ loads. 

Researchers have proposed methods for improving load estimates which can be broadly 

categorized as either top-down or bottom-up (Swan & Ugursal, 2009). Top-down 

methods use aggregate customer data to inform prediction models. For example, Llanos 

et al. (2017) used clustering algorithms to predict demand in unelectrified communities 

from data describing similar electrified communities in Chile. Louw et al. (2008) used 

data on electricity consumption in rural South Africa to correlate customer characteristics 

and electricity consumption. However, Louw et al.’s data were for households with 

preexisting electricity connections and stopped short of creating predictive models. Since 

suitable aggregate customer data are often unavailable in off-grid contexts, many 

practitioners use a bottom-up approach to load forecasting. Bottom-up load predictions 

start by modeling the energy consumption of a customer archetype and then extrapolate 

this modeled load profile to estimate the electricity demand of a community or region 

(Bhattacharyya & Timilsina, 2010; Fabini et al., 2014). In the field, the baseline 

consumption for each archetype is based on an inventory of appliances that customers 

intend to use, their power ratings, and the duration for which customers predict they will 

use these appliances (Blechinger et al., 2016). Several techniques for improved bottom-

up estimates have been proposed (Boait et al., 2015; Mandelli et al., 2016). For 

instance, Mandelli et al.’s (2016)  LoadProGen tool stochastically models load profiles 
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using input data on prospective users and appliances. When no preexisting customer 

data are available, bottom-up methods are the only way to provide some estimate of 

customer demand. But when tested, bottom-up approaches often prove inaccurate. In a 

case study, Hartvigsson and Ahlgren (2018) compared appliance survey estimates to 

measured loads at a Tanzanian minigrid that had been operating for more than a 

decade, finding that the surveys predicted 33% less systemwide energy demand than 

was measured for a typical weekday. Blodgett et al. (2017) estimated daily customer 

load for new electricity customers using an appliance inventory survey approach and 

found a mean absolute error of 310%.  

In this study, we test a data-driven approach to electricity demand prediction using 

survey and smart meter data from 1,378 customers serviced by 14 minigrids in rural 

Tanzania. We evaluate the accuracy of our predictions of daily electricity consumption 

during the first year of minigrid electricity access for both individual customers and for 

entire minigrid sites. We use cross-validation to test these techniques as would occur in 

practice: using data from existing minigrids to make predictions about a prospective site. 

This approach also allows us to quantify the uncertainty of our demand forecasts. We 

employ quantitative variable importance metrics to identify which customer 

characteristics are most useful for predicting electricity demand.  Finally, we consider the 

implications of our study for practitioners who would apply these methods in the field.  

Data and modelling approach 

In this paper, we show how minigrid customer data and machine learning models can be 

used to estimate daily electricity demand for new customers. We present the results of 

applying the method to real minigrid customer data and discuss the implications of these 

results for those working in the minigrid sector today.  
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We used customer survey and smart meter data for 1,378 customers at 14 minigrid sites 

in rural Tanzania built and operated by PowerGen Renewable Energy. The PowerGen 

team collected customer demographics data through an application survey deployed 

after the communities were shortlisted for minigrid development but before building the 

minigrids. Once the minigrids were built, load data were collected by smart meters 

installed at each connection point to enable remote monitoring and prepaid billing. 

Williams et al. (2017) used a subset of these data and includes more detailed 

information about site selection, the customer application process, metering and billing, 

and minigrid commissioning.  

Figure 3.2.1 shows our modelling process, which simulates the uncertainty encountered 

by minigrid developers as they assess a new site (which has customer survey data but 

no smart meter data) using customer data from all preexisting sites (which have both 

customer survey and smart meter data). To predict each customer’s expected daily 

electricity consumption at a new site, we first used data from all other minigrid sites to 

train machine learning models to relate customers’ pre-connection survey responses to 

their post-connection daily electricity demand. Second, we used these trained models to 

predict new customers’ electricity demand from their pre-connection survey data. Third, 

we estimated the daily electricity demand for the entire community by summing up the 

predicted daily demands of individual customers. We evaluated the accuracy of this 

process by repeating it for each minigrid site using leave-one-group-out cross-validation 

(LGOCV). Further detail on these data and methods is provided below.  
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Figure 3.2.1. Overview of the modelling process used to predict the daily electricity demand of new 
customers using preexisting minigrid customer data. This process was repeated 14 times to generate 
predictions for all customers using only data from outside their community. 

Smart meter and customer survey data 

The dependent variable in the prediction models was the typical daily electricity 

consumption for each customer during their first 365 days after connection to the 

minigrid. A “customer” is a unique metered connection, and multiple household members 

or employees may use each “customer” connection. Supplementary Note 1 (in the online 

supplementary materials) provides further detail on the preprocessing used to prepare 

the data for analysis. 

Figure 3.2.2 summarizes the distribution of customers’ mean daily electricity 

consumption, grouped by connection type. Observed consumption ranged widely, from 

less than 10 Wh/day to nearly 5,000 Wh/day. 59% of customers averaged less than 100 

Wh/day: a load commensurate with using a few compact fluorescent lights, phone 

charging, and a small fan for just a few hours.  
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Figure 3.2.2. Mean daily electricity use for all customers, grouped by connection type. The inset plot shows 
the histogram in more detail for customers using <500 Wh/day on average. Both histograms use a bin width 
of 25 Wh/day. 

Customer survey data were collected for each of the 1,378 unique meter numbers 

across 14 communities before minigrid installation. Table 3.2.1 lists the categorical 

variables collected during customer application surveys and used in this study. 

Supplementary Note 1 describes our categorical data preprocessing in further detail. 

Numeric variables included the number of years the respondent has lived in the 

community, total monthly energy expenditure, average hours studied per night by school 

children, as well as counts of the number of people, children, schoolchildren, infants, 

rooms, sleeping rooms, and employed persons per household. Customers were 

classified as a home, business, a home with an adjoining business, or a public building 

(e.g., school, clinic). The most common types of businesses were shops, restaurants, 

bars, and guest houses. 
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Customers prepay for Watt-hours of power according to two different tariff structures. 

The actual price points for these tariff structures are commercially sensitive and cannot 

be published, but the average price paid per Watt-hour was nearly identical across both 

tariff groups. Three sites (350 connections) employ a time-of-use (TOU) tariff structure in 

which customers receive a lower off-peak rate for electricity consumed between 10 am 

and 4 pm. The price for consumption during the peak period (the peak tariff) is double 

the off-peak price.  Within sites, the minigrid operator places customers on different TOU 

prices according to the developer’s expectation of their level of electricity consumption 

based on survey data. Higher-consuming customers are placed on lower tariffs, and 

lower-consuming customers are placed on higher tariffs to help recover the cost of their 

connection to the minigrid. After connection, some customers are shifted to different 

price levels based on observed consumption. Due to the endogeneity of the price level 

(which is determined in part by other model predictors), estimating a price effect for TOU 

customers is not possible and we did not explicitly control for it. The other sites (1,028 

connections) use a block tariff in which increased electricity use is incentivized by a 

discount of 37.5% applied to electricity purchased in excess of three kWh/month. Tariff 

structures were controlled for in the models with a dummy variable, which was not 

selected as important by LASSO or random forest importance metrics. 
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Table 3.2.1. A summary of categorical variables and levels included in model input data. Data were collected 
with surveys before minigrid construction. The subscript h denotes data collected primarily from households 
and b indicates data collected primarily from businesses and public buildings. Residences with businesses 
were asked all survey questions. 

Categorical Predictors 
Single Response Questions 

Categorical Predictors 
Multiple Response Questions 

Connection Type Energy Sources 

 
Home, Business, Residence with Business, 
Public Premises/Other 

 Firewood, Solar Home System, Other 

Respondent Family Role Firewood Uses 

 Father, Mother, Other  Cooking, Other 

Respondent Genderh Kerosene Uses 

 Male, Female  Lighting, Other 

Respondent Age Grouph Gasoline Uses 

 18-30, 30-45, 45-60, 60+  Lighting, Electricity Supply, Other 

Respondent Marital Statush Diesel Uses 

 Married, Single, Other  Lighting, Electricity Supply, Other 

Respondent Education Levelh LPG Uses 

 
Some Primary, Finished Primary, Secondary, 
Finished Secondary, Finished University, Other 

 Cooking, Other 

Respondent Employment Statush Battery Uses 

 
Employed, Self-Employed Agriculture, Self-
Employed Non-Agriculture, Other 

 Lighting, Electricity Supply, Cell 
Phone Charging, Radio, Television, 
Other 

Respondent Occupationh Solar Home System Uses 

 
Businessperson, Commercial Farmer, Non-
Farm Laborer, Subsistence Farmer, Teacher, 
Other 

 Lighting, Electricity Supply, Cell 
Phone Charging, Radio, Television, 
Other 

Household Income Grouph Other Energy Source Uses 

 
Low, Lower Middle, Upper Middle, High  Cooking, Lighting, Cell Phone 

Charging, Radio, Television, Other 

Seasonal Income Fluctuationh Cooking Fuels 

 Yes, No  Firewood, Other 

Bedtimeh Transportation Modes 

 9pm, 10pm, 11pm, Other  Bicycle, Car, Motorcycle, Boat, Other 

Wake timeh Appliance Owned Pre-Minigrid 

 

5 am, 6 am, Other  None, Light Bulb, Phone Charger, 
Radio, Low-Watt TV, High-Watt TV, 
Satellite TV Decoder, CD/DVD Player, 
Refrigerator, Speakers/Stereo, Other 

Building Construction Material Planned Appliance Acquisitions 

 

Brick, Old/Crumbling Concrete, Well-Built 
Concrete, Wood, Other 

 Light Bulbs, Phone Charger, Radio, 
Low-Watt TV, CD/DVD Player, 
Refrigerator, Speakers/Stereo, 
Electric Iron, Other 

Building Ownership Business Typeb 

 
Own, Rent, Other  Bar, Restaurant, Guesthouse/Hotel, 

Shop, Other 
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Model training and testing by leave-one-group-out cross-validation 

Our modelling process simulates the uncertainty encountered by minigrid developers as 

they assess a new site, using the relationship between customers’ survey responses 

and electricity consumption observed at preexisting sites to inform expectations of new 

customers’ loads based on their pre-connection survey responses (Figure 3.2.1). We 

formally assessed the accuracy of this approach across all of our sites using leave-one-

group-out cross-validation (LGOCV) (Hastie et al., 2009). Per LGOCV, we split the 

customer data into ‘folds’ by minigrid sites, with each training fold containing the data for 

all but one of the sites. The site reserved from the training data is the test fold. In each 

iteration of cross-validation, the regression model was trained on the data contained in 

the training fold and then tested on the reserved (i.e., “out-of-sample”) minigrid customer 

data. We repeated this process to generate a load prediction for each customer using 

models trained on data from outside their community. The root mean square error 

(RMSE) and mean absolute error (MAE) summarize the error of these out-of-sample 

predictions according to the formulae below, 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑦𝑖 )2𝑁

𝑖=1  

𝑁
 ,  𝑀𝐴𝐸 =  

∑ |�̂�𝑖−𝑦𝑖|𝑁
𝑖=1

𝑁
 

where 𝑁 is the total number of customers in the sample, and �̂�𝑖 and 𝑦𝑖 are the predicted 

and observed mean daily loads for customer 𝑖, respectively.   

Intercept-Only model 

The Intercept-Only model calculates the average daily consumption over all preexisting 

minigrid customers and assumes that all customers at the new minigrid site will have the 

same average daily consumption. This approach does not incorporate customer survey 

data into the prediction. We call this method the “Intercept-Only” model because it is 
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equivalent to an ordinary least squares regression model with an intercept and no 

predictors. To simulate the performance of this method, we performed leave-one-group-

out cross-validation as described above and assigned the mean electricity consumption 

of training fold customers as the daily electricity consumption of all test fold customers. 

Though this method serves as a “baseline” against which to compare model 

performance, it should be noted that many minigrid developers, especially those moving 

into new regions, lack even this amount of data on previous customer use. This method 

is representative of results that could be achieved by an organization with many minigrid 

sites in an area, without incorporating additional customer information from surveys. 

LASSO regression 

We used the glmnet R package to perform LASSO regressions (Friedman et al., 2010; 

Tibshirani, 1996). As shown in Figure 3.2.2, data describing customers’ mean daily 

electricity use are strongly right-skewed, non-zero, and positive. We assumed that our 

response variable follows a lognormal distribution and concluded that a log-transform of 

the response variable is well-suited to glmnet’s Gaussian model. Supplementary Note 2 

(in the online supplementary materials) includes a detailed explanation and justification 

of this method and assumption. The predictions generated by this model were the 

expectation of the mean of the response variable on the logarithmic scale (i.e., 

log(Wh/day)). We used the expectation of the median as our estimator of typical 

customer electricity use (in Wh/day) for the LASSO model, obtained by reversing the 

logarithmic transform on the predictions. The LASSO hyperparameter, 𝜆, was utilized to 

tune the model as described below. As Figure S2 shows, incrementing λ drives 

explanatory variable coefficients towards zero.   
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Random forest 

We used the random forest algorithm as implemented in the randomForest package 

(Liaw & Wiener, 2002). Random forests make predictions by taking the mean of 

estimates across a “forest” of regression trees (Breiman, 2001). Random forests use two 

hyperparameters to tune the model fit. One hyperparameter is the number of candidate 

predictors for each node split, commonly abbreviated as mtry. We set mtry according to 

the hyperparameter selection process discussed below and visualized in Figure S4. We 

fixed the other hyperparameter, the number of trees in the random forest (ntree), to 500, 

where the error reduction achieved by a marginal increase in the number of trees was 

asymptotically low (Figure S5).  

Hyperparameter selection 

Both LASSO and random forest regressions utilize hyperparameters to tune the fit of the 

model to the data. We tuned the LASSO λ and random forest mtry parameters to the 

training data in each iteration of LGOCV. This procedure simulated the process of using 

these models in the field: data from existing sites are used to train and tune the model, 

and then to make a prediction given survey data for a prospective site. In each LGOCV 

fold, the cv.glmnet function selected the value of λ that minimized MSE within the 

training set. Similarly, for random forests, the tuneRF function selected the value of mtry 

from a set of candidate values that minimized the MSE within each LGOCV fold. Once 

selected, models using these hyperparameter values made the out-of-sample 

predictions in the current iteration of cross-validation before being recalculated in the 

next iteration. Figure S3 and Figure S4 show the effect of hyperparameter selection by 

plotting hyperparameter values versus MSE for fits of the LASSO and random forest to 

the full dataset, respectively. 
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Variable importance 

In addition to predicting new customer loads, LASSO and random forest models can be 

used to assess the importance of each explanatory variable in making these predictions. 

In parametric linear models, the estimated coefficients indicate variable importance: all 

else equal, variables with larger coefficient values have a larger marginal effect on the 

response variable. The LASSO, a regularized regression model, performs inherent 

feature selection as some regression coefficients are driven to zero. We generated the 

LASSO coefficients presented in our variable importance results by training a descriptive 

model with all available customer data using the log-scale response variable, and we 

report the coefficients in this logarithmic scale. 

In ensemble learning methods such as random forests, variable importance metrics are 

often used to make models more interpretable and to determine which explanatory 

variables are useful (Breiman, 2001). One measure is permutation importance, which 

describes the increase in error caused by the removal of a given predictor from the 

regression trees in the random forest. We employed the Boruta algorithm, a wrapper 

method for feature selection on random forest models, to determine which features carry 

information relevant for prediction (Kursa & Rudnicki, 2010). The Boruta method uses 

randomly generated variables as controls against which to compare the permutation 

importance of explanatory variables. In each iteration of the algorithm, a random forest 

model is fit to the data and variables which are deemed by a two-sided equality test to 

have lower permutation importance score than the control are removed (importance 

rejected). We used a significance level of 0.01 in the equality test. After 10,000 

repetitions, the variables that remain have either been judged significantly more 

important than the control (importance confirmed) or have yet to produce a statistically 

significant decision (importance tentative). 
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Statistical analysis in R 

We conducted this analysis in the R language within the RStudio environment (R Core 

Team, 2020). We used the ggplot2 and dplyr packages for graphics and data 

manipulation, respectively (Wickham, 2016; Wickham, François, et al., 2019). glmnet 

was used for LASSO regression, and random forests were fit with the randomForest 

package (Friedman et al., 2010; Liaw & Wiener, 2002). The Boruta package was used to 

assess random forest variable importance (Kursa & Rudnicki, 2010). 

Results & discussion 

Predicting customer electricity use 

We estimated daily electricity use (average Wh/day) for 1,378 customers using machine 

learning models and a database of metered consumption and survey responses 

describing customers’ historical energy sources and spending, daily habits, existing 

appliances, planned purchases, and other attributes. We employed LASSO regression 

and random forests to estimate customer loads. We also compare the results from these 

models to an Intercept-Only model that assumes that the average consumption of new 

customers will be the same as the average electricity consumption observed for current 

customers. The LASSO and random forest methods make use of demographic survey 

data describing each customer, which the Intercept-Only model ignores. We used leave-

one-group-out cross-validation (LGOCV) to test the predictive performance of these 

techniques as would occur in practice — using data on existing minigrids to make 

predictions about a prospective site (Figure 3.2.1). All predictions and prediction errors 

described in this paper are the out-of-sample LGOCV results.  
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Figure 3.2.3. Model performance summary. a) violin plots showing the distribution of observed customer 
loads across each minigrid site in logarithmic scale, ordered on the x-axis from lowest to highest overall site 
load, with the color scale indicating the total number of connected customers served by each site b) boxplots 
of out-of-sample prediction error for customers at each site. Leave-one-group-out cross-validation was used 
for model training and predictions as shown in Figure 3.2.1.The prediction error is defined as the difference 
between predicted and observed electricity consumption. 

Figure 3.2.3a presents violin plots of the observed mean customer loads for each 

minigrid site in the dataset. Sites ranged in size from 17 to 191 customers, and the 
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average daily loads of connected customers varied considerably across communities (60 

to 430 mean Wh/customer/day). Figure 3.2.3b summarizes the out-of-sample prediction 

error for individual customers across each regression method and minigrid site. The 

models overpredicted the loads of most customers, but underpredicted the loads of each 

site’s highest users. Because the highest users can consume an order of magnitude 

more power than the lowest users (Figure 3.2.3a), these underpredictions were the most 

extreme customer-level errors in our analysis. 

Predicting minigrid site load  

We estimated site-level loads by aggregating the predicted loads of individual customers 

within each community in our dataset. Figure 3.2.4 quantifies the prediction error by 

each regression method for each site, with sites ordered by average daily load for the 

community. Similar to the prediction errors for individual-level predictions (Figure 3.2.3b), 

community-level estimates tended to overpredict loads for communities where aggregate 

loads were ultimately low and underpredict loads for communities where aggregate 

loads were ultimately high. The LASSO, which used the conditional median as the 

estimator of daily electricity use, was especially likely to underpredict the aggregate site 

loads. 

Table 3.2.2 summarizes model performance by each method at both the customer and 

site level. Although the customer-level predictions have a high RMSE and MAE relative 

to the central tendency of the observations (mean: 163 Wh/day; median: 76 Wh/day), 

the aggregation of these predictions reduced the absolute percent error observed at the 

community scale. The LASSO produced high RMSE but the lowest MAE at the customer 

level. These error statistics reflect the fact that the LASSO tends to achieve low error for 

most connections (small MAE), but it also produces some very large errors that are 

especially influential when squared (high RMSE). 
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Figure 3.2.4. Percent error for site-level load estimates. Site-level load predictions were generated by 
aggregating out-of-sample customer-level predictions made by models during leave-one-group-out cross-
validation. Each group of horizontal bars corresponds to one minigrid site and is sorted by the mean 
observed minigrid load (kWh/day). The number of connected customers (n) is also reported for each 
community.  

Despite access to a customer database that is exceptionally large and detailed for the 

sector (n = 1,378, 137 survey fields), it was challenging to predict the electricity 

consumption of a specific business or household. Compared to an Intercept-Only model 

that made no use of customer survey data, LASSO and random forest models achieved 

a lower median absolute percent prediction error at the customer level. However, no 

model effectively predicted high-outlying users (Figure 3.2.3b). Aggregating customer 

predictions into site-level load estimates improved model accuracy by leveraging the law 

of large numbers to reduce overall model error across the community. The random 
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forest and LASSO approaches achieved 45% and 37% median absolute error at the site 

level, respectively. These errors are a significant improvement over the Intercept-Only 

model, which demonstrates the value of collecting survey data prior to minigrid 

implementation to improve load predictions. 

Table 3.2.2. Summary of model prediction error at the customer and minigrid site level. We used leave-one-
group-out cross-validation to generate out-of-sample predictions for individual customers, which we then 
aggregated to predict site-level loads. The Intercept-Only model relies only on the average consumption of 
customers at training data sites to make predictions and does not use customer survey data as an input. 

 
Data Used by Model 

(Y/N) 
Customer Level Site Level 

Prediction 

Model 

Customer 

Survey 

Data 

(predictors) 

Smart 

Meter Data 

(dependent 

variable) 

RMSE 

(Wh/day) 

MAE 

(Wh/day) 

Median 

Absolute 

% Error 

RMSE 

(kWh/day) 

MAE 

(kWh/day) 

Median 

Absolute 

% Error 

Intercept-

Only 
N Y 285 153 111% 11.2 6.2 62% 

LASSO Y Y 284 123 66% 13.5 3.5 37% 

Random 

Forest 
Y Y 273 144 84% 9.9 5.0 45% 

 

Modelling 24-hour load profiles  

While kilowatt-hour-per-day demand estimates are useful for anticipating the magnitude 

of customer loads, minigrid designers must also consider how this aggregate load is 

temporally distributed when choosing and sizing assets that will generate and store 

energy. Therefore, an hourly expectation of electricity demand throughout the day (i.e., a 

load profile) is an important design input — especially for minigrids incorporating variable 

renewable generation resources. In this section, we show how our aggregate daily 

demand estimates can be combined with load profiles from preexisting minigrid 

customers to estimate an average load profile for a new minigrid site. 
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A common way to describe the average shape of a load profile is a “unitized” daily load 

profile, which depicts the percentage of total daily load that occurs at each hour of the 

day. Figure 3.2.5 shows the unitized load curves for all minigrid sites in our dataset. 

Unitizing all customers’ hourly loads (i.e., the blue line in Figure 3.2.5) shows that, on 

average, the customers in our sample consume 45% of total daily electricity demand 

between the hours of 5pm and 11pm. 

 

Figure 3.2.5. Unitized load profiles showing, on average, the percentage of total daily load that occurs during 
each hour of the day. To simulate the process of utilizing this technique in practice, we used a leave-one-
group-out approach similar to our regression cross validation. The grey lines in this plot show the observed 
unitized load profiles for each individual minigrid site, and the blue line shows the profile observed when 
aggregating across all 1,378 customers in our dataset.  

Here, we demonstrate how our community-level demand predictions can be combined 

with unitized load profiles from existing sites to estimate the average load profile of a 

new minigrid site. Following the leave-one-group-out approach used for model fitting 

(Figure 3.2.1), we calculated unitized load profiles from the sites in the training data (i.e., 
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the consumption patterns of all customers except those in the yet-to-be-built site). We 

then used our daily demand estimate for the new site to scale this unitized load profile 

into an estimate of the kWh of electricity demand expected at each hour of the day. 

Figure 3.2.6 shows the results of applying this approach to estimate load profiles for 

each of the sites in our dataset alongside the observed load profile for the site. The 

shape of the predicted curves is often a reasonable approximation of the shape of the 

observed load curve. The difference between the area under the observed load curves 

and the area under the model-predicted load curves is equivalent to the site-level 

demand prediction error summarized in Figure 3.2.4 and Table 3.2.2. Summary of model 

prediction error at the customer and minigrid site level. We used leave-one-group-out 

cross-validation to generate out-of-sample predictions for individual customers, which we 

then aggregated to predict site-level loads. The Intercept-Only model relies only on the 

average consumption of customers at training data sites to make predictions and does 

not use customer survey data as an input.. These modeled load profiles could be used 

directly with minigrid design tools such as HOMER. 

An aggregate load profile summarizes the electricity use patterns present in a 

population. A key assumption of our approach to load profile estimation is that these 

electricity use habits and patterns persist across the minigrid communities in our sample. 

As Figure 3.2.5 and Figure 3.2.6 show, the shape of the aggregate load profiles is fairly 

well conserved across our sites: nearly all have minimal loads in morning hours, some 

daytime load, and a dominant evening peak. However, our highest-consuming site does 

show significantly more daytime load than the others, which may be indicative of more 

daytime productive uses of power than observed at other sites. Importantly, this would 

affect the proportion of total load that can be served directly by daytime solar production. 

As data availability improves, it may be possible to quantitatively or qualitatively group 
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sites according to their load profile shapes, presenting different templates which may be 

chosen based on known characteristics of a new site (e.g., presence of a large daytime 

anchor tenant).  

 

Figure 3.2.6. Site load profile estimates obtained by combining our community-level demand predictions with 
unitized load profiles from existing sites. The unitized load profiles were created with the same LGOCV 
approach used for demand predictions: we generated a unitized load profile from training set data and 
scaled this profile by our test site’s predicted daily electricity demand. 

Importance of Survey Fields 

Minigrid practitioners who are evaluating sites have an interest in which survey data 

fields help improve load predictions, and which survey questions might be cut to reduce 

costs. Table 3.2.3 presents variables selected as important by either LASSO 

regularization or Boruta testing of random forest models, as described in Variable 
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Importance above. Although sets of variables deemed important by each method did not 

perfectly overlap, some consensus emerges when variables are grouped by theme. 

Both models emphasized the importance of an inventory of customers’ currently-owned 

appliances, especially for devices capable of generating higher loads. Most possible 

responses to the question regarding appliance ownership (“Which of the following 

appliances are currently owned by the customer?”) were deemed important by at least 

one of the two models. The magnitudes of these LASSO coefficients are roughly related 

to the Wattage of the appliance: ownership of a high-Watt television is weighted much 

higher than ownership of a phone charger. Both models also selected customers’ most 

basic classification attributes (e.g., residence versus business, type of business), but did 

not agree on the value of additional customer traits (e.g., income, occupation, building 

construction material) for load prediction purposes.  

Both methods mostly rejected attributes that assess customers’ plans for future 

appliance purchases. This may suggest that customers’ aspirations are not predictive of 

future electricity use, which is one of the challenges of bottom-up approaches to demand 

prediction. Without data to calibrate assumptions about how prospective customers will 

procure and utilize appliances, it is hard to anticipate how these customers’ plans will 

translate into loads.  

The use of batteries or liquid fuels to meet energy needs would also seem to be 

predictive of customers’ future electricity demand. The Boruta method confirmed the 

importance of solar home system or solar lantern use (reported by 45% of customers) 

and petrol generator use (reported by <1% of customers) in random forest predictions of 

electricity demand. The LASSO, however, did not retain these predictors during model 

fitting. 
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While these results give a first approximation of variable importance in the assessment 

of customer electricity use, there are limitations to this approach. To the extent that there 

are non-random factors affecting customer loads that our dataset or models do not 

capture (e.g., family’s access to credit for appliance purchases) there is uncertainty 

about the significance of the variable importance metrics we present. Additionally, both 

variable importance methods consider each variable’s contribution to the model 

accuracy, holding “all else equal”. In the case of highly correlated variables, it is difficult 

to distinguish between the effect of one explanatory feature over the other. Likewise, for 

categorical factors, the presence or absence of one attribute can imply the status of 

another. 
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Table 3.2.3. A summary of variables selected as important by LASSO regularization or Boruta testing of 
random forests. LASSO coefficients were extracted from a descriptive model trained on the full dataset in 
log(Wh/day) scale for the response variable. Non-zero LASSO coefficients indicate that the method’s 
inherent feature selection retained the variable. Random forest variables confirmed by the Boruta method 
had a permutation importance that was deemed higher than that of a control attribute by a two-sided 
hypothesis test. Note that the difference between “Other” and “Other Responses” is that “Other” is a 
response that respondents provided to a survey question and “Other Responses” contains responses to 
categorical questions that represented less than 5% of responses and were grouped as described in 
Supplementary Note 1. 

 Variable LASSO 
Coefficient 

Random  
Forest Boruta 

Importance 

Existing 
Appliances 

EXIST APPLIANCES: Phone Charging 0.099 Confirmed 

EXIST APPLIANCES: Radio 0 Confirmed 

EXIST APPLIANCES: TV Low Watt 0.156 Confirmed 

EXIST APPLIANCES: TV High Watt 0.360 Confirmed 

EXIST APPLIANCES: CD/DVD Player System 0.184 Rejected 

EXIST APPLIANCES: Lightbulb 0 Confirmed 

EXIST APPLIANCES: Other 0.080 Rejected 

EXIST APPLIANCES: Other Responses 0.350 Rejected 

Energy Use 
and Spending 

TOTAL ENERGY EXPENDITURE 0 Confirmed 

ENERGY SOURCES: Firewood 0 Confirmed 

ENERGY SOURCES: Solar Home System 0 Confirmed 

ENERGY SOURCES: Other Responses 0.219 Confirmed 

FIREWOOD USE: Cooking 0 Confirmed 

SOLAR HOME SYSTEM USE: Lighting 0 Confirmed 

SOLAR HOME SYSTEM USE: Cell Phone 
Charging 

0 Confirmed 

PETROL GENERATOR USE: Electricity Supply 0 Confirmed 

Respondent 
Type 

CUSTOMER TYPE: Home -0.103 Confirmed 

CUSTOMER TYPE: Business 0.161 Confirmed 

BUSINESS TYPE: Bar 0.356 Confirmed 

BUSINESS TYPE: Phone Charging 0.326 Confirmed 

Respondent 
Building 

BUILDING MATERIAL: Wood 0.248 Rejected 

BUILDING MATERIAL: Brick -0.083 Rejected 

BUILDING OWNERSHIP: Renting 0.067 Rejected 

Respondent 
Traits 

HOUSEHOLD INCOME: < 500,000 TSH (bottom 
category) 

-0.111 Rejected 

HOUSEHOLD INCOME: >3 million TSH (top 
category) 

0 Confirmed 

EDUCATION LEVEL: Did Not Finish Primary 
School 

-0.015 Rejected 

EMPLOYMENT STATUS: Self Employed - 
Agriculture 

-0.203 Rejected 

OCCUPATION: Subsistence Farmer -0.116 Rejected 

SEASONALLY FLUCTUATING INCOME: Yes 0 Confirmed 

TRANSPORTATION MODE: Boat 0.213 Rejected 

TRANSPORTATION MODE:  Bicycle -0.197 Confirmed 

GENDER: Male 0 Confirmed 

HOUSEHOLD ROLE: Father 0 Confirmed 

HOUSEHOLD ROLE: Mother -0.113 Rejected 

MARITAL STATUS: Unmarried -0.044 Rejected 

Planned 
Appliance 
Purchases 

PLANNED APPLIANCE: Electric Iron -0.049 Confirmed 

PLANNED APPLIANCE: Radio 0 Confirmed 

PLANNED APPLIANCE: TV Low Watt 0 Confirmed 
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Implications for minigrid practitioners 

Predicting electricity demand 

This study suggests that data-driven approaches to predicting daily electricity demand 

for prospective minigrid customers can reduce error compared to the heuristic and 

bottom-up approaches that predominate field practice today. At the individual customer 

level, the LASSO model predicted daily consumption of individual customers with a 

median absolute error of 66%. This is an improvement over, for example, the 

approximately 300% error documented by Blodgett et al. (2017) and Louie and 

Dauenhauer (2016) for individual demand predictions made by the bottom-up approach 

for other customer populations. Customer-level predictions can help developers choose 

which zones to prioritize for minigrid connection, and to roughly determine customers’ 

metering capacity needs ahead of system commissioning.  

The site-level load predictions are a critical input to minigrid system site selection, 

component sizing, and financial planning. Using only load data from previous minigrid 

sites, the Intercept-Only model achieved a median absolute percent error of 62% at the 

site level. LASSO and random forest models integrated survey data into their predictions 

and reduced this error to 37% and 45%, respectively. In contrast, Blodgett et al. 2017 

reported a site-level median absolute error of 375% when applying a survey-based 

appliance inventory approach across eight Kenyan communities. We also show that 

daily demand estimates can be used to create load profiles suitable for use with HOMER 

or other minigrid design tools (Figure 3.2.6). 

In addition to improving the accuracy of load predictions for the specific sites in our 

dataset, our results quantify the degree of uncertainty that minigrid developers and 

investors should expect under best practices. Uncertainty in minigrid revenues, which 
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are closely tied to electricity consumption, are an important driver of investment risk in 

the sector (Williams et al., 2019). Our cross-validation results suggest that data-driven 

methods may approach +/- 30% accuracy in predicting demand, with a wide range of 

possible error depending on data availability and inter-site comparability (the LASSO 

error ranged -80% to +20% across our sites). As actors weigh risk during investment and 

system design, they should expect significant uncertainty in customer demand even if 

utilizing their best-available data and methods.  

Our variable importance results suggest that surveys should focus on collecting basic 

information to categorize the connection as a home or business (including the type of 

business) and tailor detailed questions to assess the type and number of owned 

appliances, as well as the energy sources currently used by the prospective customer. 

General demographic information about the customer (e.g., gender, age, number of 

children, et cetera) may be of other relevance to developers but are not likely to be 

predictive of electricity consumption. The LASSO and Boruta importance methods both 

rejected the importance of approximately 80% of explanatory variables. These results 

suggest significant room to streamline demand assessment surveys.  

The financial value of reducing system over-sizing 

Louie and Dauenhauer (2016) estimated that each Wh of over-prediction of expected 

daily load translated to a $2.00 – 6.00 USD increase in purchase costs for photovoltaic 

panels and battery arrays in seven Malawian minigrids. Consider a portfolio of five 

comparable minigrid sites, each with 100 connections that receive an average site load 

of 10 kWh/day but were designed for 20 kWh/day (100% error) — a large error but lower 

than Blodgett et al.’s (2017) 375% site-level error for the bottom-up method. According 

to the low end of Louie and Dauenhauer’s estimated cost penalty for oversizing the 

system, the expected capital cost increase for solar and battery assets alone is 
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$100,000 across the portfolio. If this error rate can be reduced to an average of 50% — 

performance surpassed by LASSO and random forest approaches in this paper — the 

capital cost savings would be $50,000 across the five minigrids. A reduction of the error 

to an average of 75% — performance surpassed by the Intercept-Only model in this 

study — would save roughly $25,000. This hypothetical example puts the capital cost 

savings of survey data at roughly $5,000 per site for small Malawian minigrids. Given 

estimated customer survey costs of $200–1,000 per site (Louie & Dauenhauer, 2016), 

the savings potential for improved site predictions is considerably higher than the survey 

expense.  

Expanding model generalizability and system flexibility 

Several factors limit the generalizability of this paper’s results to other geographies and 

contexts. For example, our load predictions relied on data derived from minigrid 

customer surveys in rural Tanzania. Each survey reflects a person’s responses to 

questions as filtered through her/his cultural and personal frame (Williams et al., 2019). 

Asking the same survey questions in a different context may deliver different information 

about the respondents.  

Due to limitations in the number of sites included in our sample, we were not able to 

incorporate site-level characteristics into our predictions. For example, we observed 

significant heterogeneity in the number of customers and mean customer loads across 

our sites (Figure 3.2.3b). These may be associated with characteristics such as distance 

from a major city or population density that might improve our predictions or make them 

more sensitive to geographical traits. However, we cannot generalize the effects of inter-

site variation from our sample size of 14 minigrids, so our demand predictions utilized 

only customer-level data.  
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Our one-year dataset also fails to distinguish between sites’ progression along the load 

growth curve. A recent longitudinal study of newly-electrified Kenyan customers found 

that loads tended to grow for roughly two years before steadying (Fobi et al., 2018). The 

same study found that rural customers tended to flatten their load growth sooner after 

connection than urban customers. More longitudinal data could enable prediction of 

customers’ daily demand at several future points in time (e.g., one, two, or five years 

after connection). In addition, a community’s progression along the load growth curve 

could be an important inter-site feature for demand prediction models to consider, as 

customers living in communities with higher average loads may be at a fundamentally 

different stage in their progression of energy use than those at low-load sites. For 

instance, in communities with a higher prevalence of household generators, customers 

may look to a minigrid as an opportunity to lower the cost of powering existing AC 

appliances. In this case the appliance inventory may be even more predictive of long-

term energy use compared to communities where most members do not have 

preexisting self-generation capacity.  

While our results represent a step forward in accuracy from current practice, they also 

demonstrate the challenge of predicting electricity demand for first-time customers. One 

prerequisite for progress in forecasting demand for these customers is improved data: 

more customers, longer time horizons, and diverse geographies. These will be key to 

lowering model error, understanding load growth over time, and making predictions for 

new places. Creating and accessing these datasets will require the standardization of 

data collection in the sector and platforms for sharing information while respecting the 

privacy of developers and customers.   

Further, right-sizing minigrid assets to initial demand is only the first step in building 

minigrids that serve growing customer loads at minimal cost throughout the project life. 
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Today, most minigrids are “static” designs in which generation and storage capacity are 

estimated prior to construction and are constant for the entire system lifespan. Modular 

minigrid designs allow system capacity to grow alongside customer demand, thereby 

limiting the risk of stranding system capacity due to over-sizing (Ehnberg et al., 2020). 

However, the sector has yet to adopt modular minigrids in practice, and additional 

research should study the techno-economic feasibility of these approaches. This paper 

provides an empirical basis for understanding the prediction accuracy that can be 

achieved using best-available data and methods, which will be a key input when 

modeling the value of flexible minigrid designs. 

Conclusion 

Minigrids could be the lowest-cost solutions for providing electricity to millions of people 

in rural sub-Saharan Africa, but the fledgling industry must significantly reduce costs if it 

is to scale and play its part in universal electrification by 2030. Both the technical and 

financial feasibility of minigrids rely on accurate predictions of customer electricity 

demand. To improve estimates, we used machine learning techniques and a database 

of survey and smart meter data from 1,378 Tanzanian minigrid customers. We found 

that combining brief customer surveys with smart meter data and machine learning 

models can reduce error in load predictions by an order of magnitude relative to 

common field practices. The LASSO — our best-performing model — predicted daily 

customer electricity demand with a median absolute error of 66% and 37% for individual 

customers and minigrid sites, respectively.  

However, despite access to a customer database that is exceptionally large and detailed 

for the sector, it is still challenging to accurately predict the electricity consumption of a 

specific business, household, or community. Even if utilizing best practices for predicting 

electricity consumption, minigrid practitioners should anticipate a range of prediction 
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errors (-80% to +20% across our sites for the LASSO) when designing their systems. 

Flexible or “modular” system designs allow engineers to add or remove system capacity 

to compensate for load growth or uncertainty in initial customer demand. Further studies 

should examine the financial value of modular design given the level of demand 

uncertainty observed in this paper.   

The quality of the input dataset can be ensured by using smart meters to track 

consumption and load growth for existing customers, and by targeting pre-build site 

surveys to inventory preexisting appliances.  Though our analysis focuses on initial daily 

load, customer and community load growth are also important parameters that may be 

even more affected by inter-site differences in development status. As more data 

become available across the industry, demand prediction methodologies should adjust 

to incorporate them, and explicitly account for community-specific characteristics. 
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3.3 Agricultural Productive Use Stimulation in Nigeria: Value Chain 

Analysis & Minigrid Feasibility Study 

This chapter summarizes the author’s contributions to a public report published by the 

United States Agency for International Development’s Nigeria Power Sector Program: 

Santana, S., Allee, A., Meng, Z., Omonuwa, W., Sherwood, J., Balaji, M. K., & Rosi-

Schumacher, K. (2020). Agricultural Productive Use Stimulation in Nigeria: Value 

Chain & Minigrid Feasibility Study (Power Africa Nigeria Power Sector Program No. 

720-674-18-F-00003; p. 203). Rocky Mountain Institute. 

https://pdf.usaid.gov/pdf_docs/PA00WQX4.pdf 

Author contributions: 

This study was funded by the United States Agency for International Development’s 

Nigeria Power Sector Program and conducted by Rocky Mountain Institute. Andrew 

Allee analyzed the value chains and authored Appendix A: In-Depth Value Chain 

Assessments (pages 43–135 in the full report). To conduct this analysis, Allee designed 

and digitized field interviews for Nigerian farmers, traders, and processors; analyzed 

survey data; and conducted value chain assessments for twelve agricultural value 

chains using field survey data, expert interviews, and literature review. Creation of the 

full report was a team effort. Scarlett Santana developed commercial business models 

and managed the project with James Sherwood. Zihe Meng conducted technoeconomic 

modelling, and Wayne Omonuwa coordinated stakeholder outreach and conducted 

appliance research. Sherwood, Santana, Allee, Meng and Omonuwa co-authored the 

main text of the report with editorial support from Balaji MK and Kira Rosi-Schumacher 

of Deloitte Consulting LLP. Sahel Consulting facilitated surveys of Nigerian value chain 

actors. 

https://pdf.usaid.gov/pdf_docs/PA00WQX4.pdf
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Abstract: 

For the millions of people living without access to electricity or poor grid supply, the holy 

grail of electrification is seamless integration of reliable power and income-generating 

activities that propel communities forward. Solar hybrid minigrids can provide cost-

competitive and reliable service with enough power to run productivity-enhancing 

machinery. These “productive use” activities can ensure steady sales for the minigrid 

company, allowing them to pay off their investment and then reinvest in bringing power 

to more customers. Here, we study opportunities to integrate rural electrification with 

processing in twelve crop value chains across Nigeria’s Kaduna and Cross River states. 

Using more than 250 field interviews with farmers, processors, and traders in over 40 

rural communities as well as extensive literature review and discussions with sector 

experts, we identify: 1) the most promising processing steps to electrify, 2) how these 

opportunities can be sustained through commercial business models, and 3) the 

strategies stakeholders can use to overcome barriers to deployment. We find that 

cassava grating, grain flour milling, and rice milling are primed for immediate 

electrification and deployment in Nigerian minigrids. Each of these can be electrified at 

scale in existing minigrids today, with little to no market development support. Further, 

there is a clear business case for the electric equipment used for these activities, 

allowing processors to recoup their investment within two years.  
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Introduction 

Millions of people who lack electricity access today can be served at low cost and high 

reliability by solar-hybrid minigrids. The nascent Nigerian minigrid industry is growing, 

connecting thousands of rural customers each year en route to an estimated $8 billon 

annual revenue opportunity (Yakubu et al., 2018b). “Productive uses” of energy convert 

energy access into goods and services that create financial or social value. These uses 

are the links between energy access and economic development (Cabraal et al., 2005), 

and the literature agrees that without a mechanism to translate newfound electricity 

access into increased economic productivity or above-basic energy services, simply 

providing a connection often fails to catalyze large gains in human development or 

energy consumption (Bernard, 2012; ESMAP, 2008; K. Lee et al., 2020a, 2020b).  

Providing larger loads to an electric utility also helps lower per-unit electricity costs and 

increase affordability for all customers by spreading fixed costs over more sales volume 

(McCall & Santana, 2018). Daytime electricity consumption is especially important to 

solar-hybrid minigrid operators because higher utilization of daytime solar has zero 

marginal cost, while batteries depreciate with each discharge and operating costs for 

backup generators vary with volatile fuel prices (SEforALL, 2020b). Without daytime 

productive use of electricity, most minigrids today have peak energy consumption during 

evening hours (Blodgett et al., 2016; Williams et al., 2017).   

Despite decades of case studies on the productive use of electricity, minigrids built today 

are still struggling to facilitate productive uses of energy in their communities (AMDA, 

2020). The research literature on this topic has tended to either be very context specific 

(e.g., E4I, 2020; Factor[e], 2020; FAO & GIZ, 2019; Lukuyu et al., 2020; Ngowi et al., 

2019) or very high-level (Cabraal et al., 2005; ESMAP, 2008; FAO, 2015). For instance, 

a 2019 Energy 4 Impact study of the potential of productive uses of minigrid electricity in 
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15 African counties provides an overview of possible productive use cases, but not 

enough detail to determine which use cases should be prioritized in a given community, 

and how they should be supported (E4I, 2019).  

The report summarized in this thesis chapter investigates opportunities to use minigrid 

electricity productively in Nigerian agricultural value chains. Using more than 250 field 

interviews with farmers, processors, and traders in over 40 rural communities as well as 

extensive literature review and discussions with sector experts, we identify: 1) the most 

promising processing steps to electrify, 2) how these opportunities can be sustained 

through commercial business models, and 3) the strategies stakeholders can use to 

overcome barriers to deployment. 

Study scope and methods 

The study focuses on twelve prominent agricultural value chains in Nigeria’s Cross River 

and Kaduna states. Table 3.3.1 shows the crops included along with the states in which 

field surveys observed them. These crops were selected based on their prevalence in 

rural Nigerian communities appropriate for minigrids, and the potential for steps in their 

value chains to be electrified.  

Table 3.3.1 Value chains included in this study and observed coverage between two target states 

Value Chain Kaduna Cross River 

Aquaculture  ✓ 

Cashew  ✓ 

Cassava  ✓ 

Cocoa  ✓ 

Cotton ✓ ✓ 

Cowpea ✓ ✓ 

Maize ✓ ✓ 

Milk ✓  

Rice ✓ ✓ 

Shea Nut ✓  

Sorghum ✓  

Soybean ✓ ✓ 
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Cross River and Kaduna states were selected as focus geographies because they are 

representative of Nigeria’s diverse agroecology. Figure 3.3.1 shows the location of 

communities surveyed in these states, which cover Nigeria’s two most prevalent 

agroecological zones: tropical semi-arid and tropical sub-humid environments 

(HarvestChoice, 2015).iii The tropical semi-arid zone in Kaduna is naturally suited to 

water-efficient, heat-tolerant crops like maize, sorghum and cowpea. Cross River’s 

wetter climate enables less drought-tolerant plants such as cocoa to thrive. Rice can be 

grown in both zones, especially when irrigation is available via fadama aquifers, natural 

sources, or pumped groundwater (Frenken, 2005). 

 

Figure 3.3.1. Map of Nigeria’s Tropical Agroecological Zones with communities surveyed in Kaduna and 
Cross River (HarvestChoice, 2015)  

 
iii Each of these environments experience distinct wet and dry seasons, with most rain falling 
roughly June through September. In Nigeria, annual rainfall decreases from south to north, from 
over 2,000 mm/year on the tropical coast to 500 mm/year in the northeast (Frenken, 2005). 
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Data collection approach 

To provide actionable recommendations, this study performed a comprehensive data 

collection exercise, both reviewing existing literature and collecting new data. Field 

surveys were conducted in 41 communities in Kaduna and Cross River states from 

November 2019 through January 2020. 264 field interviews were conducted by four local 

agricultural enumerators utilizing the Survey Solutions tablet-based interviewing tool.iv  

Table 3.3.2. Field survey interview tallies and sample questions 

Respondent 

Type 

n Sample Questions 

Community 

Champion 

42 • Which crops are produced by more than five farmers in this 
community? 

• In a typical day, which power sources do you use? 

• Which processing activities are conducted in this community? 
Which are mechanized? 

Agricultural 

Processor 

50 For a given processing activity: 

• What is the energy source and engine size, if applicable? 

• What are the operating costs for this equipment? 

• What is the gender of the operator? 

Farmer 115 For a given crop: 

• What are seasonal yields? 

• In what form, at what price, and to whom is the crop sold? 

• What is the demand for mechanical threshing and drying? 

Agricultural 

Trader 

57 For a given commodity: 

• What is the quantity, price and point of sale? 

• What are major points of post-harvest loss? 

Total 264  

 

Second, an exhaustive review of available literature was performed, including 190 

primary literature sources cited in the full report bibliography. Third, expert interviews 

were conducted with staff at over 50 organizations across the energy and agriculture 

 
iv Survey Solutions is a free computer-assisted personal interviewing tool developed by the World 
Bank. This platform was used to conduct, monitor, and analyze offline digital interviews with local 
value chain actors. 

https://mysurvey.solutions/
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sectors, including private sector companies, non-governmental organizations, 

development partners, financial institutions, and government agencies. The survey 

questionnaire targeted four types of value chain actors: community champions, farmers, 

agricultural processors, and agricultural traders.v Table 3.3.2 shows a count of the 

interviews conducted and along with example questions for each respondent class. 

These interviews were just under an hour in length per respondent, on average. 

Productive use activity prioritization methodology 

Across the 12 value chains included in this analysis, there are hundreds of possible 

combinations of crops and value chain activities to consider for electrification. The task 

of this study was to identify which of these activities are most promising for electrification 

and should be prioritized in productive use stimulation programs in the near-term. We 

used four criteria help rate productive use activities on a sliding scale from “deployment 

ready” to “significant support required”. They include: 

Local Capacity. Activities where local processors already possess the requisite 

knowledge and skill will be easier to electrify. If electrification of a value chain step 

requires significant deviation from typical processor practices then additional capacity 

building may be required to help processors adapt. Deployment-ready activities integrate 

into local processing operations without any significant re-training, and without risking 

low customer adoption of new “best practices” from outside groups. 

Offtake Market. Deployment-ready productive use activities have strong local markets 

to sell the output of the value-add step. Because minigrid communities may be isolated 

from peri-urban or urban markets, complex supply chain mechanisms are often required 

 
v Community champions are leaders or representatives of a community who know the community 
well and can provide high-level information about their residents and economy 
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to deliver products to buyers outside of nearby rural areas. Potential returns from some 

value-add products may justify efforts to support market access but doing so requires 

extra investment and success is not guaranteed. Immediate opportunities for productive 

use are those that can sell their products to local community members or through pre-

existing trade networks. 

Electric Equipment. Productive use opportunities for which there is a minigrid-

compatible appliance available on the Nigerian market today will be significantly easier 

to quickly deploy than opportunities requiring equipment import or design. Using 

preexisting equipment ensures that the equipment required to perform the processing is 

feasible to electrify and avoids complicating implementation programs by potentially 

costly development efforts. However, equipment piloting programs should be used to 

confirm appliance functionality with minigrid infrastructure and ensure rural customer 

satisfaction with its performance.  

Scalability. An initial minigrid productive use program will seek to benefit many 

communities over a broad geographical range. Productive use activities in value chains 

that are widespread and high-volume can be scaled more efficiently than niche or 

specialty products. Deployment-ready activities are likely to be replicable across 

thousands of Nigerian minigrid sites. In contrast, activities that depend upon rare 

preconditions for success—such as the offtake agreements with commercial dairy 

processors required to warrant milk chilling operations, or preexisting clusters of shea 

parklands to fulfill semi-mechanized shea butter production—will require significant 

support to scale.  
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Ranking activities by tiers 

Applying the four prioritization criteria defined above allows prospective productive use 

activities to be sorted into three tiers based on their readiness for electrification and 

implementation (Figure 3.3.2).  

Tier 1: Immediate. These activities are viable for immediate electrification in a minigrid 

context with minimal programmatic support beyond appliance financing and 

procurement. These activities begin with crops that are produced in high volumes and 

which are already commonly mechanically processed before sale into robust local 

markets. These are also the activities with the most robust appliance market, where 

minigrid-compatible equipment is already available for purchase and pilot testing. 

Integrating these activities would improve minigrid capacity utilization, and after field-

testing equipment it is recommended to incorporate them alongside all new minigrid 

projects in communities that cultivate these staple crops. 

Tier 2: Medium-Term. These activities are not far from being viable for electrification 

today but will require more program support than the immediate activities. Beyond just 

appliance financing, these supports may include enabling offtake, developing suitable 

appliances, or building local capacity. Tier 2 activities are not ready for immediate 

deployment in rural minigrids but have significant potential given community acceptance 

of new practices, minigrid-compatible electrical equipment, and robust market linkages 

for processed products. Although these hurdles are surmountable with proper support, 

the average minigrid developer would not be likely to address them alone. These 

activities are recommended for consideration by larger electrification programs that can 

include this support, or for local entrepreneurs and off takers with special sector 

expertise.  
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Tier 3: Long-Term. These activities may have long-term potential for electrification, but 

significant support would be required to make minigrid deployment economic and 

sustainable. This category includes the hundreds of latent agricultural processing 

activities that could conceivably utilize electricity but would require considerable effort to 

build adequate local capacity, market linkages, and supply of minigrid-compatible 

equipment from the ground up. These are activities which are either rarely conducted in 

rural communities or are primarily conducted manually. Though incorporation of these 

activities into a minigrid deployment program is not recommended today, many may be 

prime targets for study by agricultural development institutions or corporate actors 

interested in developing their local supply chains 

 

Figure 3.3.2. Illustration of tiers utilized to classify productive use activities by their readiness for 
electrification with minigrids 
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Summary of value chain analyses: cassava, maize, and rice 

This thesis chapter excerpts detailed value chain analyses for the three value chains 

analyzed by the study with highest gross national production value: cassava, maize, and 

rice. Appendix A in the full study (pages 43–135) includes these analyses for all 12 of 

the value chains listed in Table 3.3.1. 

Cassava value chain analysis 

• Cassava is a critical staple food grown at high volumes throughout Nigeria. 

• Nearly all cassava is mechanically processed before consumption. Cassava 

tubers are highly perishable in their raw form and must be processed within 24–

72 hours of harvest. In minigrid-suitable communities, there is substantial local 

capacity to meet this processing demand.  

• Cassava grating is a leading candidate for electrification. Nearly all cassava 

products require peeled roots to be grated into a soft mash amenable to further 

processing, and nearly all grating is mechanical in Nigeria. The diesel lister 

engine is the costliest part of the mechanical grinder, and there 

is potential opportunity to displace fossil fuels while saving on fuel cost.  

Crop background and market characteristics 

A 2010 assessment by UNIDO rates cassava as the agricultural value chain with 

greatest development potential in Nigeria (UNIDO, 2010). The tuber is a staple food crop 

in the country, which leads the world in production at 55 million metric tons per year, 

grown by 30 million farmers (FAO, 2019b). A cheap source of carbohydrates, cassava is 

Nigeria’s top staple crop but is a poor source of other nutrients.  

The plant performs well in sub-optimal soil and rainfall conditions and is a perennial with 

a very wide harvesting window. Cassava is produced across virtually all of Nigeria's 
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agro-ecological zones, but the top ten producing states in the south and central belt 

(Cross River, Kaduna, Kogi, Benue, Enugu, Imo, Ogun, Ondo, Taraba, Anambra, Oyo) 

account for 63% of production (GIZ, 2014). In our survey, 93% of communities in Cross 

River cultivated cassava, but communities visited in northern Kaduna did not. 

Smallholder cassava yields are low relative to the global average — just 2.5 t/ha on a 

dry mass basis compared to nearly 7 t/ha achieved in southeast Asia using best 

practices (FAO, 2019b). Per-area production has not shown much improvement in the 

past 50 years (De Souza et al., 2017), but Nigeria’s total cassava production has risen 

steadily as production has spread to occupy increasing amounts of land (Figure 3.3.3). 

Cassava has a highly flexible cultivation cycle: left unharvested, healthy plants will keep 

growing tubers for years (McNulty & Oparinde, 2015). 

Cassava farming is a nearly $10 billion dollar industry in Nigeria, which produces an 

estimated 60 million metric tons of the tuber each year (FAO, 2019b). The Nigerian 

cassava value chain is extremely complex and the crop can be processed into hundreds 

of different final products (Hillocks et al., 2002). However, 85–90% of cassava goes to a 

few processed foods: gari (a toasted granular meal), fufu/akpu/lafun (fermented pastes) 

and cassava starch. These dishes are central to the Nigeria diet: one report claims that 

four out of five rural Nigerians eat a cassava-based meal at least once per week 

(Ezedinma et al., 2007). 

The remaining 10–15% of Nigerian cassava is processed industrially, most often 

chipped and integrated into animal feed. The International Institute of Tropical 

Agriculture has also developed a process for converting cassava peels into a high-

quality livestock feed (IITA, 2018), but most cassava peelers we interviewed had not 

monetized their peelings. 
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There are nascent industrial markets for high-quality cassava flour and cassava fuel 

ethanol, but prospective communities for off-grid minigrids are not commonly connected 

to these supply chains. It is possible that local minigrid communities might supply 

cassava chips to these industrial offtakers in the future, but today such opportunities are 

rare. See Box 1 for further discussion.  

 

Figure 3.3.3. Gross national production (left) and farm-gate value (right) of Nigerian cassava (FAO, 2019b) 

Post-harvest losses 

Cassava tubers are living organs. Once removed from the plant, the tubers continue to 

metabolize and deteriorate quickly (Hillocks et al., 2002). This perishability limits shelf 

life to less than three days, meaning that raw tubers must be quickly consumed or 

processed into shelf-stable staples such as gari, which can be stored for 6 months or 

more depending on storage conditions (UNIDO, 2010). The losses during this phase of 

the value chain can be quite high, especially if bottlenecks in transport or local 

processing capacity occur, leaving raw tubers to spoil in post-harvest storage. 
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After cassava has been transformed into gari or starch, only 6–7% of the final product is 

lost during storage (Oguntade, 2013). Because cassava food products have been 

developed as methods to prolong shelf-life, these post-harvest losses are low relative to 

other crops, such as maize, which can lose over 25% of the product during the 

marketing stage. In general, the higher the processing capacity of local communities, the 

lower the risk that cassava will spoil during its limited (~24 hour) window from harvest to 

processing. This natural requirement for local processing makes the crop a strong 

candidate for value chain electrification via minigrids.  

 

Figure 3.3.4. Margaret Matiki peeling cassava in the shade in Egoja-Ndim community, Cross River state. 

Value chain description 

We focus our cassava value chain analysis on gari production, which is an important 

food across all of Nigeria’s geographical regions (Phillips et al., 2004). Of the 40 cassava 
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actors we interviewed in Kaduna and Cross River states, 80% were engaged primarily in 

farming and processing cassava to produce gari, or in trading gari itself. Figure 3.3.5 

describes each step in gari production.  

 

Figure 3.3.5. Value chain summary from fresh cassava to gari 
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Local cassava trade 

Figure 3.3.6 summarizes the gari market flows as reported by local traders. Of the 

communities we surveyed, gari was the only prominent marketed product. Traders buy 

gari mainly from local processors, some of whom are farmers themselves. The gari is 

then distributed roughly evenly between other traders who take the gari outside of the 

community, and local households who consume it.   

 

Figure 3.3.6. Summary of local trade flows reported in field surveys. Flow size is proportional to the 
likelihood of the trade: about half of the time gari is sold to households as the final buyer. 

These trade flows demonstrate a strong demand for locally produced gari, which 

ensures an offtake market for local processors. If gari processing increases beyond the 

community demand, we also observe market linkages to other traders beyond the 
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community, giving confidence that increased gari production will not be stranded in 

minigrid communities even if the local market is saturated. These trade dynamics are a 

best-case scenario for local value-added products. 

Opportunities for electrification in cassava processing 

Analyzing key considerations for cassava production activities finds both Tier 1 (cassava 

grating) and Tier 3 (mechanical cassava peeling and cassava chipping) opportunities. 

These analyses are below. 

TIER 1 

Cassava Grating 

Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ● All cassava-producing communities surveyed had at least 
one mechanized gari processor within the town. 

Offtake Market ● Gari and related products are staples with strong local 
markets. 

Electric 
Equipment 

● Electric cassava graters are available in Nigeria, and old 
graters can be retrofit with new electric motors. After a quality 
control pilot, these  pieces of equipment are ready to deploy 
at scale. 

Scalability ● The cassava market is widespread throughout the South and 
Middle Belt of Nigeria and most cassava products require a 
grating step.  

Nearly all cassava products require peeled roots to be grated into a soft mash amenable 

to further processing, and nearly all grating is mechanical in Nigeria. Mechanical 

cassava grating was present in most cassava-producing communities included in the 

field survey, all powered by petrol or diesel motors. Mechanical cassava graters use a 

motor and pulley system to spin a grating drum. The peeled tubers are loaded into a 

hopper and a stick or other prod is sometimes used to maintain contact between the 
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material and grating surface. Cassava grating can be readily electrified through new 

electrical graters or electric motor retrofits.vi 

The diesel lister engine is the costliest part of the mechanical grinder, and there 

is potential opportunity to displace fossil fuels while saving on fuel cost. A separate 

survey of cassava machinery in Oyo state found that at the grid edge, both diesel and 

electric graters were available, and electric graters were more likely to be operated by 

women than diesel graters (Davies et al., 2008). Appendix C.2 in the full report presents 

technoeconomic analysis for a gari business using an electric cassava grater. 

Interview respondents speculated that less cassava would spoil post-harvest if new 

graters were to raise local cassava grating capacity. 

 

Figure 3.3.7. Isaac Ibuogbeche with his diesel cassava grater in Woda community, Cross River state. 
Customers bring peeled tubers that are processed into gari. He would like to upgrade his old machine, which 
costs 2000 N/month ($5.50/month) to service, but he cannot access credit to make the purchase. 

 
vi Bennie Agro Limited (NG) sells an electric cassava grater with 3300 kg/hr capacity, powered by 
a 7.5kW three-phase motor for N700,000 (~$1,930). 



145 
 

TIER 3 

Mechanical Cassava Peeling 
Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◑ 
Only a quarter of respondents had ever seen a mechanical 
cassava peeler. 

Offtake Market ◕ 
Peeling is a critical step for all cassava products marketed in 
Nigeria. 

Electric 
Equipment 

◔ 
Today’s small-scale peeling machinesvii have not been 
widely adopted because they are neither proficient at the 
task nor cost effective. 

Scalability ◑ Limited to processors or communities who process enough 
cassava to maintain high utilization of mechanical peeling. 

Mechanical cassava peeling could improve efficiency of workers but is not preferred by 

cassava processors. Manual cassava peeling is extremely labor intensive, accounting 

for an estimated 35% of labor hours in cassava processing operations (Westby, 2002). 

However, only one in four cassava value chain actors surveyed had seen mechanical 

peeling in action, and the process has proven difficult to mechanize. Peeling machines 

struggle to peel irregularly shaped tubers completely, requiring a manual peeler to follow 

the machine in many cases. Additionally, small tubers can be completely lost in the 

process as they are scraped down to nothing before larger tubers are finished. For these 

reasons, even some equipment manufacturers don’t endorse their peelers for most 

customers (CassavaTech, 2020). If an appropriately sized electric cassava peeler were 

able to ensure quality, and available in Nigeria, mechanical peeling may become a more 

attractive candidate for productive use. However, this would require significant 

innovation to improve the efficacy and reduce the cost of the machine itself. 

 

  

 
vii Goodway (CN) sells an electric cassava peeler with 3300 kg/hr capacity, powered by a 3 kW 
three-phase motor. 
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Box 1. Domestic industrial cassava processing could provide large offtake 

markets, but potential for local electrification is low.  

There is a strong case to be made for Nigerian production of cassava starch, high-

quality cassava flour, cassava fuel ethanol, and other highly-processed products 

(Phillips et al., 2004). However, industrial processing capacity is currently low and 

concentrated in large facilities that source from their own plantations or buy raw tubers 

from outgrower schemes.  

To ensure quality of their final products, industrial processors only purchase fresh, raw 

tubers from aggregators who can sell in bulk. They do not source cassava in any 

intermediate form, which limits the role of electrification in minigrid contexts. Additionally, 

the time sensitivity of raw cassava post-harvest as well as the expense of transporting 

undried tubers makes it difficult for large processors to source from remote communities 

(O Coulibaly et al., 2014).  

Attempts to localize industrial processing have not been successful. For example, in the 

early 2000s, the IITA/USAID/Thresh Cassava Enterprise Development Project aimed to 

establish local cassava flour producers in the Niger Delta region, 90% of these 

operations had failed by 2011 as the local producers struggled to keep cost low enough 

to compete with imports and industrial-scale producers (Daniels et al., 2011).  
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Cassava Chipping 
Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◕ 
While not a primary business in the surveyed communities, it 
is common practice to chip and dry leftover or irregular 
cassava tubers that are not utilized for food production.   

Offtake Market ◔ 
Local demand for cassava chips is low, but there are 
potentially large industrial domestic and international markets. 

Electric 
Equipment 

◕ 
Chipping machines are common and simple to manufacture. 

Scalability ◔ 
In today’s market environment, commercialization of cassava 
chipping requires a rare combination of factors: a critical mass 
of cassava production, an aggregator with a transport network 
to local farms and quality control capacity, and a final offtaker. 

 

Cassava that is not utilized for local food products may be chipped, dried, and utilized as 

a carbohydrate source for fuel ethanol or animal feed production (Taiwo, 2006). Electric 

cassava chipping machines are simple to manufacture and widely available,  viii and local 

drying practices are usually sufficient to achieve the 15% moisture content requirement.  

China imports $1 billion of dried cassava per year, accounting for 65% of global imports 

(Tridge, 2020). Nigeria, however, is not a player in the cassava export market. Southeast 

Asia — namely Thailand, Indonesia and Vietnam — account for nearly all global exports 

(Bentley, 2016). 

The near-term viability of electrified cassava chipping is limited by market bottlenecks. 

Local demand for cassava chips is low, but there are large potential domestic markets 

and international markets. For example, if Nigerian cassava processors could aggregate 

cassava chip production to a scale on the order of 1,000 tons per month, it is likely that a 

foreign ethanol producer could be interested in entering an offtake agreement. ix 

However, this level of production is commensurate with aggregation of roughly 200 

 
viii NCAM Limited (NG) sells an electric combined grater and Chipping machine with 600 kg/hr 
capacity, powered by a 3.7kW three-phase motor. 
ix Interview: Ayodeji Balogun, CEO, AFEX Commodities Exchange Limited, February 2020. 
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smallholders producing 3 t/ha on 2 hectares. These farmers may represent a significant 

segment of the staple food supply in the remote communities in which they live, and 

without a smooth transition to other market sources of food, these communities may risk 

acute local food shortages and price spikes. Such coordination between large groups, 

smallholders, and foreign actors is not within the purview of an initial productive use 

stimulation program but given the correct stakeholders and offtaker the electrification of 

cassava chipping could have potential as a new value stream for minigrids and local 

entrepreneurs. 
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Maize value chain analysis 

• Maize is widely grown and consumed in Nigeria. 10 million metric tons of 

production per year flow roughly equally to human consumption and animal feed. 

• Local markets for maize are strong. Nigerian households directly purchase an 

estimated 2.5 million tons of maize grain each year and process it themselves or 

at fee-for-service mills.  

• Maize flour milling is a Tier 1 opportunity. Most existing small-scale processers 

are millers who produce corn meals and flours. Most maize milling is already 

mechanized, and electric motors may replace the diesel prime movers in existing 

mills. 

• Minigrid-run maize threshing may provide a revenue stream for developers. 

Maize is typically mechanically threshed by businesses based outside minigrid 

communities, but customers show a willingness to utilize a local fee-for-service 

thresher in the community center.  

Crop background and market characteristics 

The Nigerian maize sector leads sub-Saharan Africa in gross production (10 million 

metric tons), number of farmers (9 million households), and land area (5.7 million 

hectares) (BMGF, 2015). Maize offtake markets are split roughly evenly between human 

consumption and animal feed (Beillard & Nzeka, 2019). Households use maize meal for 

many traditional dishes including pap, tuwo, gwate, donkunu, massam, and guraza. 20% 

of Nigerian households consume these maize-derived products at least once per week, 

each of which requires maize to be ground into flour meal (Cadoni & Angelucci, 2013). In 

total, Nigerian households directly purchase an estimated 2.5 million tons of maize grain 

each year to then process themselves or at fee-for-service mills (BMGF, 2015). 
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Roughly 15% of domestic maize is processed into consumer food products such as 

cereal or beer. The processed animal feed market consumes 50–60% of domestic maize 

production, with poultry and aquaculture feed driving demand increases over time 

(BMGF, 2015). As local incomes increase, so does demand for chicken, fish, and eggs, 

and thus the maize feed markets have shown strong correlation with Nigerian economic 

growth (UNIDO, 2010). From 2003 to 2015, the volume of feed used in Nigeria 

increased 600%, largely driven by investment in poultry feed (Liverpool-Tasie et al., 

2016). Maize is by far the greatest contributor to animal feed in Nigeria, with sorghum, 

cassava and wheat as distant runners-up (Beillard & Nzeka, 2019). 

Maize was the most widespread crop across the two states studied, cultivated in 70% 

and 100% of communities in Cross River and Kaduna states, respectively. Maize can 

thrive under the high solar radiation and seasonal rainfall that characterize Nigeria’s 

middle belt (BMGF, 2014). However, Nigerian farmers lag other African producers in 

yield: averaging just 2 t/ha versus 3.8 t/ha average in South Africa and potential yields of 

nearly 5 t/ha (FAO, 2019b; Foli, 2012). These lower yields have been largely attributed 

to inadequate soil nutrient management and water supply shortages in drought years, 

though experts warn that over-application of fertilizers in response to these challenges 

could endanger soil and water resources in the long term (Lopez et al., 2019; Morris et 

al., 2007). Though all maize farmers surveyed stated interest in expanding their maize 

production to increase dry grain sales, other studies find that market conditions do not 

incentivize farmers to intensify production through investing in their farms, as low grain 

prices and high transport costs limit profit margins (Liverpool-Tasie, Omonona, et al., 

2017). As with several other crops in this analysis, climate change poses an ongoing risk 

to maize farmers as erratic rainfall, floods and drought degrade soil fertility and crop 

output (T. Abdoulaye et al., 2019). For now, Nigeria leads Africa in total production by 
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keeping very large amounts of land under maize — 626,000 hectares are dedicated to 

maize in Kaduna state alone (BMGF, 2015).  

Nigerian maize production has grown steadily in volume and value since the 1980s 

despite interannual disruptions due to regional conflicts, pestilence, and drought (Figure 

3.3.8). Almost all production is consumed domestically, with less than 1% formally 

exported (Cadoni & Angelucci, 2013). Imports play a limited role as domestic maize 

dominates local food retail volume in small towns and big cities alike (Liverpool-Tasie, 

Reardon, et al., 2017). Trade flows generally move dried maize grain from production 

zones in the central belt and northern states and towards feed processing centers in 

Ibadan, Lagos, Warri and Enugu in the south (FEWS & USGS, 2008). Some informal 

trade occurs across the border and into neighboring countries.  

 

Figure 3.3.8. Gross national production (left) and farm-gate value (right) of Nigerian maize harvested for dry 
grain (FAO, 2019b) 
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Post-harvest losses 

Most smallholder maize is dried on the stalk, harvested, sun-dried once more, threshed, 

and then sold as dry grain. Once properly dried, maize is relatively shelf-stable and can 

be stored for about three months with limited risk of spoilage (Oguntade, 2013). 

However, improperly handled maize often spoils. Offtakers report losses of 3–10% of 

maize grain at the local aggregator level due to improper storage and drying.x Likewise, 

50% of maize marketers and 80% of maize feed millers report losses due to spoilage 

(Oguntade, 2013).  

Aflatoxins are a primary source of contamination for stored maize grains. The toxins are 

byproducts from Aspergillus fungi that grow in grain with >14% moisture content that is 

stored in warm environments. Peanuts and other grains, like sorghum, can also be 

affected by aflatoxins (Apeh et al., 2016). The Standards Organization of Nigeria 

imposes limits on aflatoxins in packaged foods, although the strength of enforcement by 

the Nigerian Agency for Food and Drug Administration is perceived to be low (Ademola 

et al., 2017). Compared to industrially processed maize, locally produced food products 

are much more likely to be incompletely dried, improperly stored, and contaminated by 

aflatoxins. This is one important barrier to integration of local maize grains or maize 

products into industrial food markets.  

Common ground-drying techniques exacerbate risk of aflatoxin accumulation, as does 

storage of grain at more than 14% moisture content or in humid environments that 

stimulate mold growth (Tefera, 2012). The solution to these losses is to store properly 

dried grain in improved bags or metal silos (Kimenju & De Groote, 2010). Access to 

improved storage is solvable with access to capital and extension services. However, as 

 
x Interviews with Nestle Nigeria, Diageo, January 2020. 
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climate change continues to make seasonal rains less predictable, traditional sun-drying 

practices will become increasingly unreliable means for producing safe, dry maize grain. 

Low-cost mechanical grain drying may reduce post-harvest losses, but there are 

significant barriers to adoption in a minigrid context (Appendix A.3.3 in full report).  

Commercial field treatments such as Aflasafe have been developed to prevent growth of 

aflatoxin-producing fungal strains on crops at a cost of 12–20 USD/hectare, but these 

treatments have yet to be widely adopted in the areas we surveyed.xi 

Value chain description 

Nearly 100% of maize in Nigeria is harvested for dry grain. In this value chain, all maize 

is left in the field until partially dry, then de-husked, dried further, threshed, and 

winnowed. 50–60% of this maize is then bagged and ultimately processed into animal 

feed. Of the maize production that goes to human food, nearly 100% is milled into a 

meal or flour before consumption. We observed mechanical maize flour mills in most 

maize-producing communities we surveyed.  We present the value chain for maize flour 

here because it includes most local processing steps (Figure 3.3.9). 

 
xi https://aflasafe.com/ 

https://aflasafe.com/
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Figure 3.3.9. The maize value chain from harvested cobs to maize flour 
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Local trade 

In the minigrid-suitable communities surveyed, maize was primarily traded as dried grain 

(Figure 3.3.10). Most local traders sourced from local farmers and sold to a mixture of 

local household and small processors. About one third of traders primarily sold this grain 

on to other traders beyond the community. These trade patterns are evidence of strong 

local markets for maize grain, including a large portion that is milled into flour by small 

processors, or by households at fee-for-service mills.  

 

Figure 3.3.10. Local trade flows for dried maize grain. Flow size is proportional to the likelihood of the trade 
from source to final buyer. 
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Opportunities for Electrification in Maize Flour Production 

Analyzing key considerations for maize flour production activities finds Tier 1 (maize 

flour milling), Tier 2 (threshing and winnowing), and Tier 3 (mechanical grain drying) 

opportunities. These analyses are included below. 

TIER 1 

Maize Flour Milling 

Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ● 
Most maize-producing communities surveyed had at least 
one mechanized maize miller within the town. 

Offtake Market ● 
Maize meals are staples with strong local markets. 

Electric 
Equipment 

● 
Electric maize mills are available in Nigeria, and old mills 
can be retrofit with new electric motors.xii After a quality 
control pilot, these pieces of equipment are ready to deploy 
at scale. 

Scalability ● 
Maize has the broadest geographical coverage of the crops 
studied and local mills account for about a quarter of 
domestic processing.  

 

Nearly all maize staples are made from a maize meal or flour, which is typically 

produced from a fossil-powered mill. In Nigeria, the textured, coarse flour of a plate mill 

is preferred to the fine powder of a hammer mill (B. Clarke & Rottger, 2006). During flour 

milling, oversized petrol or diesel motors turn a mill drive shaft to perform the grinding 

motion of the equipment. Processor interviews confirm that these mills tend to have high 

operation and upkeep costs, and the combustion motors that drive them are old, noisy, 

and unreliable. 

A recent pilot by the Efficiency for Access Coalition introduced standalone PV-battery-

coupled and plug-in electric maize mills to operators in Tanzania, Kenya, and Uganda 

(E4I, 2020). Although the standalone devices allowed the mill to function off-grid, 

 
xii Bennie Agro (NG) sells an electric multipurpose miller with 2000 kg/hr capacity, powered by an 
18.6kW three-phase motor  
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operators and customers found the 33 kg/hour throughput to be far below the acceptable 

capacity, leading to long wait times for fee-for-service customers. To increase this 

throughput, manufacturers would need to increase PV and battery capacity, thus raising 

the equipment price. Unlike standalone solar setups, minigrid-connected mills can draw 

on plentiful three-phase power to match diesel motor throughput.  

There are a range of electric models on the market today that claim 250 to 2000 kg/hour 

capacities with 3 to 18 kW induction motors.  

Mill economics can be further improved if the same appliance can process other 

commodities such as cowpea, sorghum, rice, and soybean (B. Clarke & Rottger, 2006).  

TIER 2 

Maize Threshing 
Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◑ 
Mechanical threshing is common among maize farmers, 
though mobile mechanical threshers are often brought in 
from outside communities. 

Offtake Market ● 
Local traders, households, and processors provide a 
strong market within minigrid-suitable communities. 

Electric 
Equipment 

◕ 
Electric maize threshers are available in Nigeriaxiii and old 
threshers can be retrofit with new electric motors.  

Scalability ● 
Nearly all maize grain is shelled from the cob before sale 
or processing, and all maize farmers report interest in a 
mechanical threshing option for the right price. 

 

Manual maize threshing (also called “shelling”) is a very slow process, at most 

processing 25 kg of maize grain per person per hour (Mejía, 2003). As a result, nearly 

90% of maize farmers pay to speed things up either by hiring manual labor or a 

mechanical thresher. Of the crops targeted by this study, maize was most likely to be 

 
xiii Unic and sons (NG) sells a mechanical thresher with 400kg/hr capacity, powered by a 1.8kW 
single-phase motor while Bennie Agro (NG) sells a mechanical thresher with 2000kg/hr capacity, 
powered by 14KW three-phase motor. 
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mechanically threshed, with only 30% of farmers reporting that they predominately 

utilized manual threshing.  

However, there were no local threshing machines reported to be located within the 

minigrid-suitable communities surveyed. During harvest season, local entrepreneurs 

travel between communities to offer mobile threshing services to remote farmers, as 

shown in the photo below. An electrified version of this mobile business model would 

require a battery-powered threshing system, which has not been developed to date. 

However, plug-in electric threshers are available in Nigeria and could be centrally 

located in minigrid powered communities. This centralized threshing model would 

require harvested crops to be transported from the farm to a stationary machine, which 

poses a transportation problem for many. Survey enumerators observed that some 

farmer cooperatives are bridging the infrastructure gap between rural communities and 

centralized threshing sites by collecting the produce in rural communities and 

transporting it back to centralized threshing sites.  

If the transportation problem could be solved, 87% of interviewed maize farmers said 

they would be willing to transport their maize harvest to a central threshing area. 

However, customer willingness to pay for this service, after accounting for transport 

costs, is unknown. Comments from field enumerators indicate that even if mechanical 

threshing is available, farmers will typically choose the cheaper of the two options 

between manual and mechanical threshing. In addition, the seasonality of the maize 

harvest and interannual fluctuations in production make it difficult to anticipate the 

capacity utilization of this equipment over its life. 

Minigrid threshing pilots can further test the business model for stationary electric maize 

threshers, to ensure customers are willing to pay fees that can justify the cost of owning 

and operating the equipment. Minigrids that own and operate threshers may be able to 
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use excess peak solar power to keep operating costs close to zero, improving the 

likelihood that customers can be served at a reasonable fee. 

Nonetheless, success requires either development of a battery-powered appliance or 

additional due diligence to ensure off-grid uptake of a centralized threshing model. Thus, 

we classify maize threshing as a Tier 2 activity. 

 

 

Figure 3.3.11. A petrol maize thresher operating in a peri-urban zone outside Abuja. 
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TIER 3 

Mechanical Maize Grain Drying 
Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◔ Nearly all maize grain is sun-dried. Introduction of a 
mechanical option would require capacity building. 

Offtake Market ◑ Offtakers may offer higher prices for improved grain quality 
with uniform moisture content, but only through aggregators 
who can ensure scale and quality. 

Electric 
Equipment 

◔ Mechanical grain dryers commonly use fossil fuel as a heat 
source. All-electric options are available in Nigeria but will 
likely be cost-prohibitive to run at minigrid electricity prices.xiv  

Scalability ◕ All maize grain must be dried: an appropriate drying 
technology combined with a market to value precise moisture 
content control could achieve scale. 

As described above, maize grain suffers from aflatoxin contamination primarily because 

of prevalent sun-drying techniques that expose the grain to contaminants and fail to 

reduce the moisture content below 14% before storage. Industrial offtakers acknowledge 

this problem and have expressed interest in paying premiums for quality, dry grain if an 

aggregator could conduct the transaction at a large scale. However, the exact price 

increase that a farmer or entrepreneur would experience is dependent upon the 

negotiated contract price between the aggregator and offtaker, and it is unclear whether 

the operating costs of local mechanical drying can be sustained by the marginal price 

increase of selling premium quality grain.  

One third of maize farmers interviewed experienced difficulties in sun-drying maize at 

least once per season, and it is likely that many more are failing to dry to safe moisture 

levels without detecting the problem (Ademola et al., 2017). However, mechanical drying 

practices remain untested in minigrid-suitable communities and it is unclear if provision 

of minigrid electricity will improve the prospects of the practice. Crop dryers in developed 

contexts typically use natural gas, liquefied petroleum, or biomass fuel as a heat source, 

 
xiv Some members of the Agricultural Machineries & Equipment Fabricator Association of Nigeria 
(AMEFAN) sell electric dryers. 
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as resistive electrical heating is cost prohibitive. Solar dryers or hybrid solar-fossil dryers 

utilize solar radiation to heat their contents directly, thus reducing fuel costs 

(Vijayavenkataraman et al., 2012). Others utilize ultrasound, infrared and/or micro 

electromagnetic waves to dry crops using electricity, and at a higher degree of energy 

efficiency (Kumar et al., 2014). These alternatives to conventional drying are better 

suited to electrification. However, our review of appliances available in Nigeria did not 

find models of these low-energy alternatives, and it is likely that further equipment and 

market development would be required to prove and scale the technologies. Despite all 

the appliance options, passive solar heating devices — perhaps as simple as a 

corrugated metal roof and concrete slab — may provide the simplest, cheapest boost to 

sun-drying. 

 

Figure 3.3.12. Maize drying prior to shelling in Takalafiya community, Kaduna state after an October harvest. 
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Rice value chain analysis 

• Domestic rice production and processing is smallholder-led, substantial 

and growing. Consumer preferences, government policies, and agricultural 

development efforts provide strong tailwinds for Nigerian rice.  

• Domestic rice struggles to beat imports on quality and price. Imported rice is 

cheaper, higher quality and typically delivered directly to population centers. 

• Rice milling is a top opportunity for electrification. 80% of Nigerian rice is 

processed by small-scale millers, most of whom operate outdated equipment. 

Replacing old one-stage diesel rice mills with new two-stage electric mills can 

reduce process losses and operating costs and improve quality by better 

separating by-products and reducing breakage 

• Wood-fired parboilers are prevalent, smoky, and predominantly operated 

by women, but difficult to electrify. Though there is much room to improve 

parboiling efficiency and reduce indoor air pollution impacts, it is unlikely that 

minigrid electricity could cost-effectively serve the need. 

• Irrigation is necessary for optimal yields but unlikely to be electrified by 

minigrids. Today, rice fields — and the irrigation pumps that serve them — are 

located far from community centers. For electric irrigation pumps to be profitable 

to serve with a minigrid, the cost of building distribution to the rice fields must be 

balanced by electricity sales to pumps that are not run continuously throughout 

the year.  

Crop background and market characteristics 

Rice is the third most valuable Nigerian crop after cassava and maize, with an annual 

market value around $3 billion per year (FAO, 2019b). Nigerians consume an average 

32 kg of rice per capita per year, which translates to roughly 1% of 2019 per-capita gross 
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domestic product (PwC, 2018). The share of rice in the Nigerian diet has increased by 

12x since the 1970s, and demand for rice is expected to continue as customers 

substitute rice for traditional staples that are more time-intensive to cook (Gyimah-

Brempong et al., 2016). Smallholder farmers account for 80% of Nigerian rice production 

(PwC, 2018). Rice was reported to be cultivated by five or more farmers in 75% and 

46% of communities surveyed in Cross River and Kaduna states, respectively. 

Despite sizeable domestic production, Nigeria is consistently among the world’s top 

three rice importers. Consumers prefer cheaper imports from Thailand and India: in 

some markets roughly five bags of imported rice are sold for every bag of local rice 

(Beillard & Nzeka, 2019). Imports are also driven by growing customer appetites for 

polished, contaminant-free, high-quality rice (Emodi, 2012).The Nigerian government 

has attempted to impose a 70% tariff on rice imports arriving by sea and in 2019 

imposed an outright ban on all overland trade (Beillard & Nzeka, 2019). Under these 

policies, some foreign rice still enters Nigeria illegally by way of neighboring countries 

with lower import tariffs and permeable borders but several sector stakeholders report an 

uptake in demand for local rice in response to the border closings (Kassa & Zeufack, 

2020).  

The poor competitiveness of domestic rice production is driven largely by low ability to 

pay for mechanization and inputs in primary production: the national average 

mechanization rate is estimated at 0.3 hp/ha, compared to an FAO-recommended 

minimum of 1.5 hp/ha (Sims et al., 2016).  

Nigerian rice yields are just 50% of the global average (FAO, 2019b).This is due to a 

variety of factors including a lack of access to improved seeds, fertilizer, and irrigation 

(Tinsley, 2012).Rice grains are the seeds of a grass plant that flourishes under irrigated 

conditions. Since most Nigerian rice is produced by smallholder farmers, good crop 
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yields require disparate smallholders to seasonally irrigate their paddies. Access to 

irrigation depends on a variety of factors across Nigeria’s agroecological zones, but only 

15% of rice-growing area is estimated to be irrigated nationally (Beillard & Nzeka, 2019; 

FAO, 2016). Small-scale irrigation could double rice yields under certain conditions, 

though the financial benefit to farmers will depend on irrigation cost, the fertilizer 

application rate, and farmers’ risk tolerance (Xie et al., 2017). In addition, the farmers we 

surveyed report that their fields are typically far from the town center: 92% say it takes 

longer than 15 minutes to walk there, and 25% report a commute longer than 45 

minutes. Assuming a 4 mile-per-hour walking speed, this puts average farms more than 

a mile from the city center, which is beyond the service territory for most minigrids. 

 

Figure 3.3.13. Gross national production (left) and farm-gate value (right) of Nigerian paddy rice (FAO, 
2019b) 
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Post-harvest losses 

Post-harvest losses in Nigerian rice may be as high as 20–40% (Oguntade et al., 2014). 

Losses typically occur through harvest, processing, and market stages, with minimal 

spoilage occurring at the consumer level (Danbaba et al., 2019). Storage losses are not 

a major concern. Losses due to spillage from containers and mishandling during the 

marketing process cannot be resolved through modern, electrified equipment. However, 

traditional threshing, and parboiling processes each lose about 5–6% of incoming paddy 

rice. At the milling stage, traditional mills also waste paddy components by failing to 

adequately separate waste streams from milled paddy and from each other, as 

discussed below. 

Value chain description 

Figure 3.3.14 shows the rice value chain from harvest to milled head rice, focusing on 

parboiled rice production which represents over 90% of the local rice consumed in 

Nigeria (Danbaba et al., 2019).  
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Figure 3.3.14. Rice value chain from harvested rice plants to milled head rice 
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Local trade 

Local rice traders predominantly source threshed paddy rice from local farmers (Figure 

3.3.15). Half of local traders report that they sell primarily to other traders outside the 

community, with the other half staying among local households and small processors. 

The portion of the rice that stays within the community will typically be parboiled and 

milled by local entrepreneurs and households. These trade flows are evidence of very 

strong local offtake markets for rice milled in minigrid communities. 

 

Figure 3.3.15. Local trade flows for paddy rice. Flow size is proportional to the likelihood of the trade from 
source to final buyer. 
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Opportunities for electrification in milled rice production 

Analyzing key considerations for milled rice production activities finds Tier 1 (rice milling) 

and Tier 3 (threshing, mechanical grain drying) opportunities. These analyses are 

included below. 

TIER 1 

Rice Milling 

Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ● 
Local rice mills were observed in 100% of the rice-producing, 
minigrid-suitable communities surveyed. 

Offtake Market ● 
Strong demand for locally milled rice by households and 
markets. 

Electric 
Equipment 

● 
Electric rice mills are available, and two-stage rice millsxv 
offer strong value proposition over outdated one-stage mills. 

Scalability ● 80% of domestic rice is milled by small-scale local 
processors. 

 

Rice milling is a top-tier opportunity for electrification with minigrids, and there is strong 

national demand for the service. An estimated 80% of domestic rice consumed in 

Nigeria is milled at the local level by processors with <500 kg/hour milling capacity 

(Johnson & Masias, 2016). These smaller mills cannot serve the market demand: circa 

2014, the annual demand for milled rice was 1.9 million tons greater than annual 

production (Oguntade et al., 2014). At the same time, an estimated 80% of industrial rice 

mills are running at less than 25% capacity as they struggle to source sufficient local rice 

to sustain their operations (Nzeka & Taylor, 2017). Local small-scale rice mills have 

ready access to paddy rice produced nearby, pushing their capacity utilization up to 50% 

(Lançon et al., 2003). But smaller players struggle to reduce operational costs enough to 

compete with imports on price (Beillard & Nzeka, 2019).  Most small rice mills operating 

 
xv NCAM (NG) sells a two-stage rice mill with 800kg/hr capacity, powered by 10.4KW three-phase 
motor. 
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in Nigeria today are old, expensive to run, and produce a low rice yield at suboptimal 

quality. One study found that the average rice mill in operation was 18 years old 

(Adeyemi et al., 2017). Most of these old mills are single-pass one-stage ‘Engelberg’ rice 

mills that produce a basic milled rice and a mixed waste residue that contains broken 

grain, rice bran, and rice husks. Modern two-stage mills reduce grain breakage and 

better separate these byproducts, resulting in better quality milled rice. High quality rice 

grains can be sold at a 50% price premium (170 N/kg vs 115 N/kg) (Oguntade et al., 

2014). The separation of rice bran and rice husk allows processors to sell these waste 

streams as an animal feed input or a biomass fuel for parboiling, respectively (id).  

Energy costs are 65–80% of operating costs for fee-for-service rice mills, and it is 

estimated that a 1% increase in diesel price can drive a 10% increase in cost of 

production over the lifetime of the mill (Adeyemi et al., 2017). Efficient, three-phase 

electric motors can vastly reduce millers’ exposure to fuel price risk. 

TIER 3 

Rice Threshing 
Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◔ 
Rice is typically threshed manually in minigrid-suitable 
communities. If a fossil-powered mechanical thresher is 
used, it operates where the harvest occurs: in fields that may 
be far from community centers. 

Offtake Market ● 
Strong demand for paddy rice by local households, 
processors, and traders. 

Electric 
Equipment 

◑ 
Electric rice threshers are available but would need to be 
situated in a central area to be powered by a minigrid, 
requiring actors to change their practices.xvi Standalone solar 
or battery-powered threshers could enable mobility but have 
yet to be developed. 

Scalability ● Threshing is a critical step in all rice harvests in Nigeria, and 
the task must be done at the local level. Demand for a cost-
competitive mechanical threshing option would be 
widespread. 

 
xvi Alaral Tech Engineering Design & Fabrication, member of AMEFAN sells electric rice 
threshers. 
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Threshing removes the dense rice grains from the bulky grass on which it grows. This 

step increases the density of the material and enables efficient transport and handling 

throughout the rest of the value chain. Therefore, rice value chain actors strongly prefer 

early threshing at the farm site over transportation of the crop to a centralized threshing 

location. Mechanical rice threshers are typically mobile equipment that can be easily 

transported by light vehicle or by hand. An added benefit of in-field threshing is that it 

allows the excess rice plant material to be returned to the soil, which helps prevent 

depletion of soil carbon (Ghimire et al., 2017).These mobile threshers have proven to be 

good investments, achieving an estimated 50% IRR (Danbaba et al., 2019).  

Electrification of rice threshing would require either 1) a change in value chain practices 

to transport rice to centralized threshing locations, or 2) development of a mobile electric 

rice thresher. Because transporting whole rice plants is suboptimal, as discussed above, 

a grid-independent thresher is the most likely solution. If a minigrid is present, a battery 

system could be paired with an existing thresher design, although further investigation 

would be required to determine if the power and size requirements of this power supply 

can be met at a price point that does not render the battery thresher uncompetitive with 

fossil options.  

During manual threshing, an estimated 5% of rice is broken or scattered on the ground 

as the grains are beat from the grass. Additionally, manual threshing practices are more 

likely to introduce stones and other small debris into the paddy, raising the non-rice 

content (i.e., “add mixture”), and lowering the sale price. Compared to manual threshing, 

mechanical threshers increase output capacity from roughly 30 to 150 kg/hour (Lançon 

et al., 2003). Taken together, electrical threshing could make processing five times faster 

while reducing post-harvest losses and slightly increasing the sale price.   
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If the correct device can be designed and successfully piloted, there is likely to be a 

strong offtake market and high potential for scale across the country. Nearly all rice 

farmers report that they would be interested in utilizing mechanical threshing if it is cost-

competitive with hiring laborers for manual processing. But only 18% report that they 

would “definitely be willing” to transport their harvested rice to a centralized threshing 

location served by a minigrid. For the rest, the success of mechanized threshing 

depends on the price of the service as well as its ability to accommodate the preferences 

and habits of value chain actors.  

Rice Parboiling 

Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◑ 
Locally milled rice is parboiled in minigrid-suitable 
communities, typically using a pot or oil drum heated over a 
wood fire. Operation of more efficient parboiling vessels 
would require capacity building to change practices. 

Offtake Market ● 
Strong demand for parboiled rice by local households, 
processors and traders. 

Electric 
Equipment 

◔ 
There are no electric parboilers on the market. In theory, a 
very energy-efficient electric parboiling vessel may be cost-
competitive with wood at minigrid, but such a device has yet 
to be designed. 

Scalability ● Parboiling is a critical step for domestic Nigerian rice and is 
typically done at the local level.  

 

Parboiling gelatinizes the starch in paddy rice grains which toughens them and reduces 

breakage during milling (Buggenhout et al., 2014). It also moves nutrients from the bran 

(which is removed during milling) into the inner portion of the grain, improving nutrition of 

the otherwise starch-heavy grain that remains after milling (Heinemann et al., 

2005).Finally, parboiled rice is simply easier to cook. Because of these benefits and 

consumer taste preferences, 90–95% of Nigerian paddy rice is parboiled (Danbaba et 

al., 2019).  
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The parboiling process varies according to consumer tastes and traditions, but typically 

entails 4–8 hours of soaking in hot water (initially 60–70° C), followed by 10–20 minutes 

of steaming (100–110° C) (Balbinoti et al., 2018). During steaming, some quantity of 

water is heated to a boil in the pot and the rice is added directly into the boiling water to 

partially cook. After parboiling, the paddy rice is air-dried, ideally to the ~14% moisture 

content preferred by millers.  

Traditional parboiling practices 

Traditional parboiling techniques are time-consuming, energy inefficient, and 

inconsistent in quality (Usman et al., 2014). Most parboilers use open pots or oil drums 

heated by wood fires, as shown to the right. These heating systems are inefficient, 

imparting heat from the firewood to the surroundings as well as to the water and rice in 

the pot. Hard-earned heat also escapes as steam through the top of the lidless container 

rather than staying in the parboiling rice mixture. These inefficiencies mean that 

traditional parboilers are using around seven times more energy than required, which 

translates to extra fuelwood and longer periods of time spent tending smoky fires 

(Kwofie et al., 2016).  

Women bear the burden of the parboiling process, including the time requirement and 

long-term health hazards of smoke inhalation (Tinsley, 2012). 100% of the participants 

asked about the gender balance of parboiling reported that the activity was always 

performed by women.  
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Figure 3.3.16. A traditional parboiling arrangement in Dawan Malam community, Kaduna state. 

Improved parboiling practices 

These problems have made parboiling a strong target for development intervention. 

Programs have introduced of a variety of improved parboiling vessels, as well as 

capacity building. The RIPMAPP program introduced simple false-bottom pots that heat 

only the minimum amount of water required for steaming, and use a lid to contain the 

steam within the pot (RIPMAPP, 2016b).This configuration reduces energy requirements 

and evenly steams the rice as the steam equally heats each grain throughout the pot, 

which reduces inconsistencies in quality in the batch. In 2018, RIPMAPP reported a 10–

20% price improvement due to adoption of these improved practices by over 14,000 

parboilers. AfricaRice’s larger GEM Parboiler utilizes a pot with a specialized steaming 

basket to ensure even heating and an improved wood stove to improve heat transfer 

from the fire to the parboiler contents (Ndindeng et al., 2015). In both cases, significant 

capacity building was required to ensure proper operation of these improved parboiling 

methods.  
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Figure 3.3.17 AfricaRice’s GEM parboiling unit for medium-scale operations. Photo excerpted from 
Ndindeng et al. (2015)  

In addition to improving energy efficiency, parboiling operations may be improved by 

using alternative heat sources. Simply burning rice husk waste from nearby mills may 

reduce the time and money spent on wood fuel by up to 35%, one study finds (Kwofie et 

al., 2016). Purpose-built rice husk stoves may further improve combustion efficiency and 

reduce energy costs but are not mass produced (Kwofie et al., 2017). Other agricultural 

residues such as maize stalks were occasionally used as a wood substitute by our 

survey respondents. Minigrid electricity could in theory serve parboiling heat demand, 

but in practice this is unlikely to be economically infeasible without significant 

improvement in energy efficiency and purpose-built electric heating parboilers. Box 2 

analyzes the cost of electrifying parboiling under various efficiency scenarios, showing 

that electric heating at today’s minigrid tariff fails to compete with fuelwood heating on 

cost even given a 15-fold reduction in the energy required to parboil a kilogram of rice.  
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Box 2 Electrification of rice parboiling is not cost competitive with fuelwood 
even if significant efficiency improvements and minigrid tariff reductions are 
achieved.  

 

Figure 3.3.18. Cost of parboiling one kilogram of paddy rice using different energy sources, at varying 
levels of energy efficiency. References:  a Kwofie, 2017; b Ndindeng, 2015; c Usman, 2014. 

Today in Nigeria, it is much cheaper to parboil with wood than with electricity. The 
above plot shows the costs of parboiling one kilogram of paddy rice using fuelwood 
and using electricity at two different minigrid tariffs. Dotted vertical lines demarcate the 
energy requirements (in MJ/kg rice) of three different operations: a large-scale 
commercial parboiler in India, a small-scale GEM parboiler developed by AfricaRice, 
and small-scale traditional parboiler. For reference, consider that one kilogram of 
milled rice is worth roughly $0.70-1.00 in local markets. At $0.60/kWh — a minigrid 
tariff reflective of today’s prices — even industrial efficiencies do not reduce the 
parboiling energy costs below $0.20/kg. At $0.20/kWh — an aspirational tariff for the 
minigrid sector — it is possible for highly efficient operations to approach $0.5-0.10/kg 
for parboiling energy expenditure. But such efficiency improvements will require 
purpose-built electric parboiling vessels, likely using induction heating and well-
insulated container walls.  

For the foreseeable future, direct fire heating of parboiling vessels will continue to be 
the norm in Nigeria. Moving away from wood fires may pose benefits to the local 
women who tend them, and who gather the wood. For these reasons, electricity may 
not need to reach precise cost parity with traditional practices. But such a transition 
will require significant electricity cost reductions, efficiency improvements, and local 
capacity building, all of which are beyond the scope of early productive use 
interventions by the minigrid sector. 
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Mechanical Rice Drying 

Support Required: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 

Local Capacity ◔ 
Nigerian smallholders typically sun-dry grains, including rice.  

Offtake Market ◑ 
Though mechanically dried rice can certainly be sold into 
existing local markets, these buyers may not value the 
improved quality due to lack of consistent grading standards. 

Electric 
Equipment 

◔ 
Some mechanical dryers are manufactured in-country but 
rely on fossil fuels as primary heat input. 

Scalability ◕ All harvested rice must be dried before sale. If widespread 
quality standards increase the sensitivity of the market to rice 
moisture content, the scale of the activity is potentially large.  

 

Before reaching the local market, Nigerian parboiled rice is dried twice: first after 

threshing and then following parboiling. The target moisture content is 12.5–14% by 

mass (RIPMAPP, 2016b). Paddy rice stored with a higher moisture content risks molding 

during storage or reduced milling yields.  

Most Nigerians sun-dry rice in the open air, and all survey respondents in the rice value 

chain used this method at least some of the time. Possible drying surfaces included bare 

ground, tarpaulins, roads, roofs, and purpose-built concrete platforms. These practices 

are typically adequate: only one in four rice farmers surveyed experienced drying 

problems during the harvest season. However, many cereal grain experts we 

interviewed expect that climate change will continue to make seasonal rains less 

predictable, and thus increase the proportion of farmers who are having trouble sun-

drying their crops.  

The Standards Organization of Nigeria has specified a grading standards for paddy rice, 

and a variety of international milled rice standards are available (RIPMAPP, 2016a). 

Despite the existence of these standards, most smallholder rice is not consistently 

graded for quality at the paddy or milled rice stage. As a result, incremental 

improvements in dryness or quality are not consistently valued by local markets.  
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Mechanical dryers exist and are prominent in more developed markets with stricter 

tolerances for rice dryness and quality. These include some rice dryers that require input 

air to be heated (usually by fossil fuels), and other low-temperature units that require 

much less energy input (IRRI, 2020). Introduction of the latter may allow drying of rice 

using minigrid power without reliance on other energy sources, but implementation of 

such an intervention would require significant capacity building.  

Although there are drawbacks to sun-drying of rice, many NGO-led efforts to introduce 

mechanical drying at the smallholder have failed (Tinsley, 2012). Simply sun-drying on a 

raised concrete surface rather than the ground or a tarpaulin may significantly improve 

results, and plastic greenhouse-style solar dryers offer more control at zero energy cost 

(Imoudu & Olufayo, 2000; Puello-Mendez et al., 2017).  
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Summary of Study Findings 

This section summarizes the findings of the full report, which included additional 

technoeconomic analysis and business model development in addition to detailed value 

chain studies for nine more target crops not included in this thesis chapter (Figure 

3.3.19).   

 

Figure 3.3.19. Summary of evaluations for all crop and value chain activity pairs analyzed 

This study applied a productive use lens to post-harvest activities for 12 target value 

chains, focusing on opportunities for minigrid electricity to improve the efficiency of the 

SUPPORT REQUIRED: ● Deployment-Ready – ◕ Minimal – ◑ Moderate – ◔ Significant 
 

 Activity Value 

Chain 

Local 

Capacity 

Offtake 

Market 

Electric 

Equipment 

Scalability 

TIER 1 Grating Cassava ● ● ● ● 
 Flour Milling Maize ● ● ● ● 

  Sorghum ◕ ◕ ● ◕ 

  Cowpea ● ● ● ● 

  Soybean ◕ ◕ ● ◕ 

 Rice Milling Rice ● ● ● ● 

TIER 2 Threshing Maize ◑ ● ◕ ● 
  Sorghum ◑ ◕ ◕ ◑ 

  Cowpea ◑ ● ◕ ◕ 

  Soybean ◑ ◕ ◑ ◑ 

 Water Pumping Aquaculture ◑ ● ◕ ◔ 

TIER 3 Threshing Rice ◔ ● ◑ ● 
 Parboiling Rice ◑ ● ◔ ● 

 Shea Butter Shea Nuts ◑ ◔ ◑ ◔ 

 Drying Maize ◔ ◑ ◔ ◕ 

  Sorghum ◔ ◑ ◔ ◔ 

  Cowpea ◔ ◑ ◔ ◕ 

  Soybean ◔ ◑ ◔ ◑ 

  Rice ◔ ◑ ◔ ◕ 

  Cocoa ◔ ◑ ◑ ◔ 

 Cold Storage Aquaculture ◑ ◔ ● ◔ 

  Milk (chilling) ◔ ◑ ◕ ◔ 

 Peeling Cassava ◑ ◕ ◔ ◑ 

 Chipping Cassava ◕ ◔ ◕ ◔ 

 Fish Smoking Aquaculture ◑ ◕ ◔ ◕ 

 Kernel Production Cashew ◔ ◔ ◑ ◑ 
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processing steps between the farm gate and locally marketed products. After applying 

our prioritization framework (Figure 3.3.2), we found immediate opportunities to electrify 

fossil-fueled and manually-performed processing activities for several key crops widely 

cultivated in rural Nigeria.  

There are three clear Tier 1 activities across six crops primed for immediate 

electrification and implementation in Nigeria. Cassava grating, rice milling, and flour 

milling (across several grains) all have strong fundamental characteristics indicating that 

electrifying them can be straightforward and successful. Each of these opportunities 

requires little to no market development support in order to be implemented today and at 

large scale. For flour milling, this potential is further strengthened by the opportunity to 

use multi-crop milling equipment to broaden the local processor’s business opportunity 

and reduce market risk. Section 4 in the full report explores whether these opportunities 

are commercially viable for processors and beneficial to minigrid economics. 

Tier 2 crops have medium-term potential if provided with support to overcome one or 

more barriers to deployment, particularly regarding the capacity of local actors and 

economies to adjust to mechanization. Value chain actors may need to change behavior 

to adapt to the requirements of mechanized processing. For example, adoption of a 

centralized multi-crop thresher depends on farmers’ ability and willingness to transport 

their dried cereals to the town center, rather than hiring labor to thresh grains in the field. 

These adaptations are conceivable but require additional effort. 

Tier 3 activities have longer-term potential if extensive barriers are addressed. For 

example, cassava chipping is simple to mechanize but minigrid-suitable communities are 

not connected to the industrial markets where the chips are sold. The viability of cassava 

chipping as a productive use activity thus depends upon the ability of other actors to 

support access to an industrial offtake market where orders are demarcated in 
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thousands of tons per year. Today, ensuring this access would require coordination of 

disparate cassava growers and chippers, aggregation and quality control, and purchase 

agreements with large corporations. For other activities, electric appliances do not exist, 

and may be challenging to develop. For example, electric parboilers could conceivably 

be built but would probably be cost-prohibitive to operate under a minigrid tariff (Box 2). 

Others need a rare combination of enabling conditions: milk chilling operations require 

collocation of dairy-producing communities and industrial dairy processors. 

 

Figure 3.3.20. Comparison of cash flow analyses for electrification of Tier 1 processing activities under 
conservative financing assumptions: a 15-year loan tenor at 30% weighted average cost of capital (WACC). 
Graphic created by Zihe Meng. 

Deploying Tier 1 activities in minigrids in Kaduna and Cross River states would reduce 

local processors’ fuel costs and improve minigrid capacity utilization per technoeconomic 

analysis in Appendix C in the full report. Figure 3.3.20 shows the net present value of 

investments in all Tier 1 equipment under two different sales modalities: a buy-and-sell 
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model (BnS) where the processor purchases raw materials and then sells the value-

added product, and a fee-for-service model (FFS) in which the processor charges a flat 

fee to mill or grate the raw material for others.  

Most of the configurations analyzed had a positive net-present value under financing 

assumptions considered realistic by the Nigerian financial institutions we interviewed. 

The exception is the FFS rice milling: we made the conservative assumption that the 

fee-for-service charge for the new, electric two-stage rice mill would be the same as the 

service charge for the old mill. Under this assumption, the miller does not receive the 

50% price premium (170 N/kg vs 115 N/kg) for the higher quality of milled rice that 

her/his new equipment produces, nor is the miller compensated for the improved paddy 

rice yields (less breakage and loss of grain) enabled by the new mill. In this case, the 

fuel cost savings alone are not enough to justify the $1,800 investment in an electric rice 

mill. However, it is plausible that a fee-for-service processor could internalize the 

customer benefits of the new mill by raising the service fee to reflect the higher quality 

product, or by charging for milling services per kilogram of milled rice output (rather than 

per kilogram of paddy input). Either of these business model changes would improve the 

economic case for FFS rice milling significantly. 

Our technical analysis also shows that adding productive use loads to a minigrid system 

can raise daytime electricity sales and improve minigrid economics for both customers 

and operators. Figure 3.3.21 shows the effect of adding loads from Tier 1 activities to a 

minigrid powering a typical rural Nigerian community (77 kWpeak solar minigrid with 

battery storage and diesel backup). We used load data from existing Nigerian minigrid 

customers to define the BASE case load and then introduced modeled loads for 

productive use activities commensurate with our survey results for similarly sized 

communities cultivating cassava, maize, and rice: nine cassava graters, five rice mills, 
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and 12 small flour mills. In the BASE+All scenario, an optimized minigrid design calls for 

an additional 10 kW of PV capacity, equally sized genset, and 40 kWh more battery 

storage compared to the BASE scenario. Further modelling documentation is provided in 

Appendix C of the full report. 

 

Figure 3.3.21. The effect of productive use loads on typical 24-hour minigrid load curves. Created by Zihe 
Meng. 

Modelling results show that adding these productive use loads can significantly increase 

utilization of daytime solar generation and reduce the tariff required to achieve a 15% 

internal rate of return from $0.60/kWh to $0.49/kWh. 

While this analysis provides initial insight into the potential economic impacts of 

electrifying these specific productive uses in a rural minigrid context, additional study is 

warranted. The limited scope of this study does not provide for a broader analysis of all 

potential agricultural productive uses and did not allow for specific site studies. In our 
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models, we assume that productive loads are consistent throughout the year per reports 

by surveyed processors. Other agricultural processing activities, however, can be highly 

seasonal and activity level might vary with the harvest cycle. For example, if rice millers 

are only active for eight months of the year, our expected tariff reduction from the BASE 

case to BASE+All would be only 7% instead of 12%, as revenue decreases while system 

maintenance costs remain mostly constant. If seasonal productive loads are to be 

served by minigrid, the seasonality should be more carefully considered when optimizing 

the system design. 

In addition, for rural processors in minigrid-powered communities to adopt productive 

use equipment, they must know a suitable appliance exists and have the credit to 

purchase it, the reliable electricity to power it, and the markets required to sell its 

produce. In the full report, appendices D and E present commercial business models 

that can support appliance procurement, and a deployment strategy to initiate and scale 

the process, respectively. 

The Tier 1 activities identified in this study are a natural proving ground for the potential 

of productive use of minigrid electricity in agricultural value chains. We conclude that 

these activities can be electrified to the benefit of rural processors and electricity 

providers. Pilot projects that test and debug these use cases are critical inputs to the 

development of a larger scale deployment strategy, which can bridge credit, education, 

and market access gaps to improve profitability of processing, reduce electricity prices, 

and take thousands of fossil fueled mills and graters out of circulation.  
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4 Energy, Agriculture, and Rural Livelihoods 

 

A woman making maize flour with a fossil-powered mill in Odogbolu, Nigeria. Photo from RMI site visit. 

The work in this section draws from my experience across the energy and agriculture 

sectors, obtained while completing the previous research contributions in this thesis. 

Section 4.1 is an ongoing writing project that aims to convince agriculture and energy 

stakeholders of the fundamental interdependence of these two sectors in rural 

development, and to guide efforts to respond to the missed opportunity at their nexus. I 

would like to gratefully acknowledge several colleagues for ongoing input on the piece: 

Stephen Doig, James Sherwood, Nathan Williams, Daniel Affsprung, and June Lukuyu. I 

offer a special thanks to Lee Lynd for his encouragement to take on the complex topic, 

and for his continued mentorship during the writing process. 
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4.1 Leveraging the agriculture-energy nexus for multiplicative human 

development benefits 

Introduction 

While many people enjoy the highest standards of living in human history, rampant 

inequality divides the lucky from the unlucky as billions are projected to fall short of the 

United Nations Sustainable Development Goals (SDGs) for 2030 (UN, 2019). 789 million 

do not have access to electricity (IEA et al., 2020), one in two people cook with firewood 

or other traditional fuels (ESMAP, 2020b), and over 700 million live on less than $1.90 

per day (World Bank, 2020).  

Inequalities exist everywhere, but extreme poverty is disproportionately sub-Saharan 

African and rural. Extreme poverty is three times higher in rural areas than urbans areas 

(UN, 2019), and 83% of multidimensionally poor people live in sub-Saharan Africa or 

South Asia (OPHI & UNDP, 2019). Of those without electricity access, 70% are sub-

Saharan African and 85% live in a rural place (IEA et al., 2020). 

Achieving such interconnected goals as eliminating poverty and hunger (SDGs 1 and 2), 

enabling access to affordable clean energy (SDG 7), steadying the climate (SDG 13), 

and realizing gender equality (SDG 5) will require solutions that bypass incremental 

progress in one goal in favor of exponential gains across multiple goals (Sethi et al., 

2017; UN, 2019). These whole systems solutions are characterized by multiplicative 

returns, wringing out two or four times the benefit for every unit of investment than 

investing in each sector alone (Hawken et al., 2000). 

The United Nations Development Program (UNDP) advocates for paradigm-shifting 

interventions that increase incomes and expand the capabilities that allow people to 

realize their full potential while stabilizing the planetary systems we rely upon (UNDP, 



186 
 

2019, Chapter 7, 2020). The UNDP is informed by the capabilities approach to 

understanding welfare, which focuses on a person’s substantial freedom to choose what 

to be and do, rather than the person’s accrual of resources (i.e., resourcism) or some 

measure of happiness (i.e., utilitarianism) (Nussbaum, 2000; A. Sen, 1992). Disparities 

in capability are at the heart of disparities in human development because they 

fundamentally limit a person’s control over their life (i.e., what to “do” and “be”) (A. Sen, 

1992). While this understanding of poverty goes beyond income poverty, it does 

acknowledge that progress fundamentally includes the capacity to generate income and 

use it.  

The intersection of agriculture and energy has long been acknowledged as fertile ground 

for generating multiplicative human development benefits (Cabraal et al., 2005; Greeley, 

1987; Newell et al., 2019; Stout, 1979). Yet, many agricultural workers still grow and 

process their crops by hand or with expensive fossil fuels (FAO, 2015). In parallel, many 

energy access investments such as minigrids struggle as residential loads start out low 

and productive uses of electricity in the surrounding economy are slow to materialize 

(AMDA, 2020; Booth et al., 2018; Lukuyu et al., 2021). A renaissance of interest and 

investment is responding to this missed opportunity. Investments to increase energy use 

in agriculture are a key component of Sustainable Energy for All’s COVID-19 recovery 

spending recommendations (SEforALL, 2020a). The Nigeria Electrification Project — a 

$550 million effort to increase electricity access to off-grid households and businesses 

— includes a component that seeks to synergize the deployment of solar home systems 

and minigrids with income-generating uses of energy (REA, 2018).  

Although there is strong interest in pulling the complementary levers of energy and 

agriculture for human benefit, there is limited shared understanding of how this nexus 

functions today in rural communities and how it can produce desired outcomes. This 
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chapter shows how a whole systems approach can leverage the complementary 

strengths of each sector: expanding capabilities with energy access, raising incomes in 

agricultural value chains, and solving pressing agricultural problems with new energy 

resources. We adopt the capabilities approach to human development, and we explicitly 

consider the context of rural communities with low rural electricity access, high 

employment in agriculture, and high poverty rates. This includes many of the 

communities facing extreme poverty and low energy access today: 80% of those living 

on less than $1.90 per day live in rural areas and 65% work in agriculture (Castañeda et 

al., 2018).  

With a shared mental model, stakeholders can work together across the energy and 

agriculture sectors to support virtuous cycles of human development and lower the risk 

of ineffective interventions and unintended consequences. In the following sections, we 

articulate such a model for the agriculture-energy nexus, learn from historical 

experiences at the nexus, and derive principles for successful interventions. 

Energy and agriculture are complementary development levers, 

and investment in either sector alone is inherently incomplete 

Our first argument is that there is a fundamental interdependence between the energy 

and agriculture sectors in the low-income, low-energy-access, agrarian communities we 

consider here. As described in Figure 4.1.1, there are high-level benefits to investing in 

agriculture, which has strong ties to local livelihoods, and in energy, which is a basic 

enabler of human capability expansion. In addition to this general complementarity, there 

is an opportunity to use energy to solve agricultural problems, which we define as the 

agriculture-energy nexus. 
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Figure 4.1.1. The agriculture-energy nexus can drive a virtuous cycle of human development by expanding 
capabilities and increasing incomes. 

Agricultural development has exceptional leverage on local livelihoods, but 

less leverage on capability expansion 

Agriculture is the economic mainstay of agrarian communities, where farming, 

shepherding, fishing, and related activities are the means of production and 

employment, and the backdrop of everyday life. This gives growth in the agricultural 

sector outsized influence on incomes among the poorest compared to other sectors 

(Valdés & Foster, 2010; World Bank, 2007). As development economist Michael Lipton 

writes, there are “virtually no examples of mass dollar poverty reduction since 1700 that 

did not start with sharp rises in employment and self-employment income due to higher 

productivity in small family farms” (Lipton, 2005, p. viii). Several recent meta-studies of 

agricultural development interventions that enhance crop or livestock value generation 

and market conditions find that these programs have exceptional leverage on rural 

incomes (Bernstein et al., 2019). For example, farmer field schools and agricultural input 
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subsidies can significantly improve crop yields and farmer earnings (Hemming et al., 

2018; Waddington et al., 2014).  

However, increasing agricultural productivity, on its own, cannot enable the fullest 

expansion of human development per the capabilities approach: the freedom to choose 

what to be and do. Consider, for instance, that 80% of global landholders own less than 

two hectares (HLPE, 2013). For these farmers, the size of their field imposes a ceiling on 

their income. A Malawian farmer with two hectares may increase her capabilities to 

match the average United States maize yield of about 11 metric tons per hectare (FAO, 

2020d). But selling this produce at $265xvii per metric ton still gives her just $5,830 for 

selling the whole harvest, which translates to $16/day for the year if it is her only income 

source. 

Historically, extreme rural poverty has decreased alongside structural economic 

transformation that increases worker productivity, shifts farming from subsistence to 

diversified, market-oriented production systems; and creates off-the-farm jobs (FAO, 

2017, 2019a). For the Malawian famer with two hectares of maize, these broader 

changes may empower her to switch to higher-value crops, or open her to stable 

markets, or help her create value-added products from her maize, or enable her to begin 

an off-farm career (Gill et al., 2016; World Bank, 2005). Increasing energy consumption 

invariably accompanies these broader transformations, powering productivity increases, 

job creation, and new capabilities at home (Moss et al., 2020). Although energy is just 

one component of development-enabling infrastructure that includes transportation, 

 
xvii Representative of crowdsourced 2020 farmgate maize prices in Malawi, where the modal price 
reported by farmers was 200 MWK per kilogram, and during which time the exchange rate was 
roughly 750 MWK to 1 USD (Ochieng & Baulch, 2020). 
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water, sanitation, and information technology, among others (FAO, 2019a), each other 

component fundamentally requires energy to function.xviii  

Energy is a prerequisite to many capabilities, but energy access alone is 

often insufficient to grow incomes 

The energy sector can directly support this broader economic transformation in addition 

to increasing earnings for actors throughout agricultural value chains. Energy services 

are indispensable to modern life, and provision of these services buoys the aspirations 

of people previously living in the dark (ESMAP, 2015; Parikh et al., 2012). Access to 

electricity is consistently among individuals’ top development priorities. In a recent 

survey of 1,200 Africans across 34 countries, 90% of respondents indicated that 

expansion of rural electrification should be a high priority for their governments 

(Afrobarometer, 2018).  

Yet, energy access alone does not enable the expansion of capabilities or incomes (K. 

Lee et al., 2020b; World Bank, 2008). Of the few studies using randomized experiments 

and statistical significance tests to assess the household-level impact of electricity 

access, only half find a positive impact on assessed outcomes (Bayer et al., 2020). A 

recent randomized control trial of over 2,000 Kenyan households found no statistically 

significant impacts of electrification 32 months after receiving a subsidized connection to 

the central grid, but no additional supports beyond a light bulb socket and power outlets 

(K. Lee et al., 2020a). Today, grid extension and distributed energy resources are 

supplying reliable electricity to millions of previously un- or under-served households 

(ESMAP, 2020a). But newly-connected customers often struggle to use energy access 

 
xviii Inclusive economic growth also relies on non-physical institutional foundations, including 
democratic accountability, anti-corruption measures, social safety nets, adequate education, et 
cetera (Lustig et al., 2016; Manning, 2020; K. Sen, 2014).  
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to increase productivity, incomes, and electricity consumption (AMDA, 2020; Bernard, 

2012; Burlig & Preonas, 2016; Contejean & Verin, 2017; Taneja, 2018). This is 

especially true for those in the lowest income strata, who have the least resources to 

acquire the appliances that make use of newfound power (Khandker et al., 2014).  

The problem is that energy has no value in and of itself: it is a material prerequisite to 

creating valued capabilities (Nussbaum, 2000). The capabilities approach appropriately 

shifts the focus from how much energy people have to what energy can allow them to 

do. Day, Walker, and Simcock (2016) conceptualize the relationship between energy 

sources, services and end uses as a flow from energy sources to basic capabilities.xix 

For example, an energy source (e.g., ethanol fuel supply) is converted into an energy 

service (e.g., burned by a stove for cooking), which provides a specific secondary 

capability (e.g., preparing healthy food), which supports a more generic basic capability 

(e.g., bodily health). The aim of energy investment in poor rural communities, then, is to 

enable the use of energy resources to expand capabilities, which includes the ability to 

be more productive and generate more income. 

Coordinating energy and agriculture investments can pull complementary 

development levers 

In impoverished agrarian communities with low energy access, coordinated investments 

in agriculture and energy can spur multiplicative human development gains that siloed 

investments in either sector will miss. Investing exclusively in agricultural value chains 

can boost local incomes but fail to foster foundational infrastructure required for modern 

life. On the other hand, rural energy access is a vital input to increasing human 

 
xix Smith and Seward (2009) distinguish between ‘basic’ and ‘secondary’ capabilities to separate 
the fundamental dimensions of human well-being (i.e., basic capabilities) from the more specific 
capabilities that may be actualized to help achieve a basic capability (i.e., secondary capabilities). 
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productivity and capabilities. Yet, energy access alone does not stimulate human 

development when it is deployed without supporting its use in the local economy. A 

whole systems approach can leverage the complementary strengths of each sector: 

expanding capabilities with energy access, raising incomes in agricultural value chains, 

and directly using energy services to solve pressing agricultural problems. 

As shown in Figure 4.1.1, using energy to perform agricultural tasks can drive a virtuous 

cycle that expands incomes and capabilities. A lack of suitable energy resources 

encumbers cultivation, processing, transportation, storage, and marketing along 

agricultural value chains, inflating production costs, raising post-harvest losses, and 

precluding value addition (FAO, 2015). From the perspective of a single farmer, this 

energy poverty manifests as spoilage of the tomato harvest without adequate storage 

options (Sibomana et al., 2016), or an outdated diesel-powered flour mill that runs on 

overpriced ‘black market’ fuel and is perpetually down for repairs (B. Clarke & Rottger, 

2006; Lam et al., 2019).  

Productively using energy in agriculture can also ensure market demand for new energy 

service providers, thereby strengthening the economics of energy production and 

utilization. Consider rural electrification. One fundamental technoeconomic challenge to 

serving rural customers are the large upfront costs required to build lengthy distribution 

lines to connect widely-spaced households who tend to have low loads relative to 

urbanites, and who are more likely to live in poverty (NELA, 1913; World Bank, 2008; 

Zomers, 2003). Robust rural electricity loads allow the fixed costs of connecting low-use 

customers to be spread over more kilowatt-hours of electricity sales, improving the 

business case for connecting them and recouping infrastructure investments at more 

affordable electricity prices (McCall & Santana, 2018). In previous successful rural 
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electrification efforts, a large portion of this rural load growth has come from agricultural 

uses, as we discuss in a following section. 

 

Figure 4.1.2. The processes by which the agriculture-energy nexus supports human development. There are 
positive feedbacks created by working in both sectors in parallel (outer feedback loop), and by using energy 
services to improve agricultural activities (agriculture-energy nexus). 

Figure 4.1.2 presents a model in which energy and agriculture sectors intersect and 

drive human development. As described by Day, Walker, and Simcock (2016), the 

energy sector expands capabilities when appropriate energy supply (e.g., ethanol 

cooking fuel) is translated into energy services (e.g., clean cooking), which ultimately 

produce income and/or enhance capabilities (e.g., ability to be in good health). In 

parallel, agricultural activities (e.g., production, processing, storing trading) translate raw 

agricultural resources (e.g., land, inputs, farmer knowledge, and farmer ability) into 

products, which labor and offtake markets translate into income and/or capabilities (e.g., 
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ability to buy food and avoid hunger). There are two virtuous cycles at play. First, 

improved livelihood outputs from either sector can create income and expanded 

capabilities that positively feed back into both sectors. For example, if clean cooking 

services become available, time spent collecting firewood can be shifted to other uses 

including leisure, education, or increasing agricultural productivity among many others. 

Second, energy can be used directly at the agriculture-energy nexus to boost 

productivity and decrease costs. The energy consumed by productive uses steadies 

demand for energy services sold by providers. 

Today’s investments in the energy and agriculture sectors are 

largely uncoordinated 

Despite the promise of coordinated energy and agriculture investments, recent 

development spending on these two sectors has been largely siloed. Figure 4.1.3 

summarizes human development activity and spending reported in the International Aid 

Transparency Initiative (IATI) database from 2010 to 2020. 9,953 activities have either 

an energy or agriculture sector focus, with reported spending of $55 billion.xx However, 

only 52 activities (0.5%) report working in both energy and agriculture, accounting for 

$2.1 billion of reported spending.  

Electricity access investments in particular have prioritized spending on supplying 

electricity (i.e., increasing the number of households connected and megawatts of 

capacity installed), leaving new customers to figure out how to use newfound power on 

their own (McCall & Santana, 2018). For example, from 2000 to 2008 the World Bank 

 
xx Authors’ calculations from the International Aid Transparency Initiative database, which tracks 
international development spending (https://iatistandard.org/). We include all reported activities 
that have reported sector information, that have been completed or are in implementation or 
finalization; and which report a lower middle income, low income, or least developed recipient 
country.  



195 
 

invested over 50 times more in electricity supply than in demand-side supports in Africa 

(Barnes et al., 2010). Without demand-side support, rural customers struggle to use their 

newfound energy access for more than basic lighting and residential uses, even when a 

minigrid offers robust, reliable service suitable for productivity-enhancing equipment 

(AMDA, 2020; Posner, 2020).  

 

Figure 4.1.3. Development spending reported in the IATI database for 2010 to 2020. Participation in the 
database is voluntary and not all development activities and spending are included in these data. For scale, 
consider that a separate report calculated that $243 billion was spent in philanthropy and official 
development assistance in 2018 alone across 47 countries with available data (Osili et al., 2020).  

Although these facts do not definitively prove that no energy or agriculture activities have 

unreported overlaps, these trends resonate with a widely-recognized division between 

actors in these sectors, which are often siloed and managed by separate groups of 

people within governments, multilateral organizations, and NGOs (Liu et al., 2018). This 

siloed, supply-centric approach is in stark contrast with previous successful rural 

electrification efforts in the US, Europe, Southeast Asia, and elsewhere, which relied on 

extensive cross-sectoral coordination to increase electricity use on the farm and enable 

payback of infrastructure investments (Nordhaus et al., 2019). 
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Going forward by looking backward: lessons from previous 

success at the energy-agriculture nexus 

Previous successful efforts to spur human development in rural areas have leveraged 

the fundamental complementarity of energy and agriculture. We examine the United 

States case in detail, where these levers helped raise rural electricity access from 10% 

of farms in 1935 to nearly 90% by 1950 (Nye, 1992). From analyzing this case, we 

observe three drivers of success. First, partnerships between energy and agriculture 

actors formed a supportive ecosystem that coordinated investment, shared expertise, 

and directly served farmers who wanted to use energy in their work. Second, pilot 

projects identified and tested energy solutions to agricultural problems. Third, low-cost 

financing was used to support both energy supply and demand, funding transmission 

and distribution as well as home wiring and equipment purchases for agricultural actors.  

The role of cross-sectoral partnerships, effective pilots, and low-cost 

financing in electrifying rural America 

Compared to urban customers who were rapidly connecting to the grid, American 

farmers in the early 20th century faced both the technoeconomic headwinds of rural 

electrification and the condescension of some utility managers who regarded them as 

“backward, unmodern, and unsophisticated” (Hirsh, 2018, p. 304). Stimulating on-farm 

electricity use was the key to overcoming objective challenges to financially sustainable 

grid extension, and to disproving the subjective belief that farmers could not modernize 

and become reliable electricity consumers. 

A supportive ecosystem of partners identified promising uses of electricity on the farm, 

developed and marketed appropriate equipment, and offered low-cost loans and 

extension programs that facilitated deployment of these equipment in practice. A 1923 
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extension service bulletin from the University of Wisconsin observed there was “not 

enough electrical machinery developed at the present time which the farmer [could] use 

profitably to make it possible for him to become a large consumer [of power]” (Duffee & 

Palmer, 1923, p. 29). The Committee on the Relation of Electricity to Agriculture (CREA) 

— a body financed by the national trade group of electric utilities — supported pioneers 

who discovered and tested these uses (Hirsh, 2018). The CREA convened cohorts of 

public and private stakeholders to do the work, including power companies, government 

agencies (e.g., US Department of Agriculture), trade groups (e.g., American Farm 

Bureau Federation), equipment manufacturers (e.g., General Electric), and agricultural 

engineers and extension agents from land grant universities (REA, 1960). These 

partners supported agricultural engineers who applied their academic training and 

extensive on-farm experience to investigate hundreds of potential electricity use cases 

on test farms (Duffee & Palmer, 1923). The systematic study of electricity uses by CREA 

and others separated the profitable electricity uses (e.g., irrigation, egg incubation) from 

the fanciful (e.g., moth deterrence, electric plowing) and set the table for widespread 

integration of electricity and agriculture (Hirsh, 2018; NELA, 1913). 

To fund the distribution lines and home wiring required to power these end uses, the US 

Rural Electrification Administration (REA) lent immense amounts of money (equivalent to 

0.3% of gross domestic product from 1935–1939) to electric cooperatives, private 

utilities, and households at half the prevailing market rate for most loans at the time 

(Kitchens & Fishback, 2015; Slattery, 1940). By 1943, REA loans had funded 380,000 

miles of power lines and connected over a million rural customers (REA, 1960). To help 

customers procure new equipment, the federal Electric Home and Farm Authority 

provided installment financing on generous terms and collaborated with manufacturers 

to reduce sticker prices (Coppock, 1940). A mosaic of educational programs, marketing 
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campaigns, and live demonstrations by local, state and federal actors conveyed the 

benefits of putting electricity to work in agriculture, and helped farmers adapt (Cebul, 

2018; REA, 1936; Wolfe, 2000). Figure 4.1.4 shows an infographic included in a guide 

for REA cooperative members illustrating the many uses of electricity on the farm. 

With all of these supports in place, farmers were able to grow their electricity use by 

home appliances and productivity-enhancing equipment. For every dollar invested in 

providing rural electricity access, households spent an estimated $3–4 more for home 

wiring, electric appliances and equipment, and plumbing (REA, 1960). In addition to 

providing the benefits of in-home electricity, the REA supports ultimately helped raise 

overall crop output and production value, and increased the value of land and buildings 

on farms (Kitchens & Fishback, 2015).  

Rural electrification in other countries has also proceeded alongside agricultural 

investment, particularly in activities that would increase daytime consumption, improving 

utility cost recovery while linking electricity access to economic growth (Nordhaus et al., 

2019). For example, a cornerstone of the Thai Provincial Electricity Authority’s (PEA) 

rural electrification program were “load-building teams” that identified suitable productive 

end-uses of electricity in local value chains (e.g., irrigation pumping, rice milling), offered 

low-cost finance from the Bank of Agriculture and Agricultural Cooperatives, and 

provided customer service to support adoption (Tuntivate & Barnes, 2010). Thai rural 

electricity access rose from 7% in the early 1970’s to 97% by 2000 (R. M. Shrestha et 

al., 2004), and economic growth mirrored electricity demand growth (Greacen & 

Greacen, 2004). 
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Figure 4.1.4. An infographic depicting uses of electricity on the farm from a 1939 guide for REA cooperative 
members (REA, 1939, p. 23) 

Distinguishing between the historical case and present day 

Countries striving to complete rural electrification today do so under their own context 

conditions. The US REA’s success came alongside the New Deal, which was the most 

ambitious peacetime reform and stimulus in United States history (Fishback & Wallis, 

2012). Agriculture also accounted for 7.7% of US GDP and 22% of employment in 1930, 

so there were ready opportunities to tie new energy uses to the means of income 

generation, especially in rural areas (Dimitri et al., 2005). Some countries with low rates 

of electricity access today have significantly different starting conditions. For example, 
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the GDP per capita at the start of the US REA’s efforts was $9,644 in 2017 dollars, 

which is around eight times higher than the GDP per capita in Kenya and India at the 

start of their electrification programs (K. Lee et al., 2020b).  

Importantly, modern technologies also offer capabilities for expanding rural power that 

are greatly improved compared to 1930: low-cost solar photovoltaics and battery 

storage, autonomous control systems allowing distributed energy resources to manage 

themselves, much-improved appliance efficiency, et cetera. Self-sufficient minigrids — 

usually powered by renewables — can provide electric power at costs competitive with 

personal fossil fuel generators, and costs are falling (Agenbroad et al., 2018; Lam et al., 

2019). Importantly, minigrids can provide both electricity generation and distribution to a 

community at a fraction of the per-project capital cost of a large conventional power plant 

(Williams, 2017). Connecting customers to these clean and resilient systems can skip 

predominately-fossil-fueled generation systems and reduce GHG emissions significantly 

compared to an alternative where these loads are instead served by diesel generators 

(Moner-Girona et al., 2018). Today’s vastly more efficient appliances also allow users to 

squeeze more benefits out of the first few watts of energy access that may be provided 

by low-cost standalone solar systems (Alstone et al., 2015). LEDs brighten homes and 

businesses at an order of magnitude better efficiency than incandescent bulbs (and four 

orders of magnitude more lumens per watt than an open flame) (I. L. Azevedo et al., 

2009). Exponential gains in the electrical efficiency of computing have yielded 

remarkable information technology advances, including mobile phones that can be 

charged with minimal energy access and which provide a gateway to information, 

banking, and communications services (Calderon et al., 2019; Koomey et al., 2011). 
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How to leverage the agriculture-energy nexus for multiplicative 

human development benefits 

Drawing from the understanding of the agriculture-energy nexus we have established 

and lessons from historical experiences at the nexus, we conclude by providing three 

pillars of successful coordination of agriculture and energy investment for human 

development (Figure 4.1.5). First, cross-sectoral partnerships must create a supportive 

ecosystem for energy and agriculture actors to coordinate investments and share 

expertise. Second, pilot projects should iterate on nexus solutions, starting with an 

agricultural imperative and matching the right energy source and equipment to local 

needs. Third, low-cost financing on the supply and demand side can simultaneously 

lower the cost of energy supply and support productive use of this energy. 

 

Figure 4.1.5. Three components of effective agriculture-energy programs.  
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Create a supportive ecosystem for coordinated energy and agriculture 

interventions through cross-sectoral partnerships 

Despite their inherent interdependence, investments in energy and agriculture today are 

much more likely to be siloed than coordinated (Figure 4.1.3). Cross-sectoral 

partnerships are key to unlocking the benefits of synchronization, which include both the 

high-level benefits stemming from the complementarity of these sectors (Figure 4.1.2), 

and the specific virtuous cycle at the energy-agriculture nexus (Figure 4.1.1). 

In previous successful rural electrification campaigns, convening bodies such as the US 

CREA and the Thai PEA formed supportive ecosystems that enabled farmers to 

leverage new energy resources to expand their capabilities and incomes while 

strengthening the economics of rural utilities. They built partnerships connecting the 

efforts of actors across sectors. In the U.S. CREA case, this included agricultural 

engineers who worked with farmers to identify promising uses of energy on the farm, 

equipment manufacturers who built the devices to solve the problem, marketers and 

extension agents who familiarized farmers with new solutions, and government agencies 

that subsidized both infrastructure deployment (i.e., the “supply side”) and families’ 

equipment purchases (i.e., the “demand side”).  

To form these partnerships today, each country or region needs to identify their specific 

unmet needs and unrealized opportunities at the intersection of these sectors. Figure 

4.1.2 shows the components, links and feedbacks that must be functional to maximize 

nexus benefits.  Oftentimes a break in one of these components implies a partnership 

that needs to be formed. For example, efforts to enhance value-addition in rice 

production with new electric rice mills will be undermined by a rice crop that is 

unpredictable for lack of irrigation or other agricultural inputs. Partnerships between 
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agricultural agencies who are supporting sustainable rice cultivation and the energy-side 

actors who are introducing the rice mills can help both achieve their goals.   

Use pilots to develop reliable energy solutions to pressing problems in 

agricultural value chains 

The best agriculture-energy nexus solutions will start with a pressing agricultural 

problem and then use the right energy resource and equipment to solve it (Factor[e], 

2020). For the partners who comprise a supportive agriculture-energy ecosystem, this 

requires detailed knowledge of the agricultural imperative for an energy service, the 

needs of prospective customers, and the on-ground realities that will determine project 

success.  

For instance, a recent study of twelve Nigerian agricultural value chains found clear 

opportunity to use minigrid-powered equipment to reduce costs and improve earnings in 

cassava grating, grain flour milling, and rice milling (Santana et al., 2020). Each of these 

agriculture-energy use cases are readily deployable at existing minigrid sites because 

they intake common agricultural commodities, perform processing steps which are now 

mechanically processed by expensive fossil-powered equipment, and produce products 

which are locally sold and consumed. Electric mills and graters can be cheaper and 

more reliable than fossil-powered incumbent equipment and can also improve end-

product yield and quality. However, even in these cases, “off-the-shelf” electrical 

replacements may flounder in the face of on-the-ground challenges. For example, a new 

electric flour mill may fail to attract customers because its milling is too slow, or its 

product too coarse (E4I, 2020). Or the resilience of the milling business may be undercut 

by crop production systems that are prone to poor yields in dry years which may become 

more frequent or severe as the climate changes (Diedhiou et al., 2018; Sultan et al., 
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2019). Navigating the upsides and downsides of the energy and agriculture aspects of 

these nexus challenges will require iterating on the solution design and business model 

through direct engagement with the target end user. 

There is thus no substitute for field pilots when fine tuning agriculture-energy solutions. 

There are many use cases to test — one report found more than 100 along the milk, 

rice, and horticulture value chains alone (FAO, 2015) — and there is a growing body of 

individual case studies. A systematic review of these studies would be a useful 

contribution to this topic but is beyond the scope of this chapter. However, we do find 

some common themes emerging across several pilots.  

First, despite an overwhelming interest in using electricity (usually from photovoltaics) to 

perform agricultural functions, not all agriculture-energy nexus challenges are best 

solved by this energy source. The potential for productive uses of electricity to improve 

minigrid capacity utilization has motivated several recent studies that intentionally focus 

on the use of minigrid electricity in value chains (Avila et al., 2020; Booth et al., 2018; 

E4I, 2019; Santana et al., 2020). Self-sufficient PV-battery (i.e., “standalone”) systems 

have their own strengths and weaknesses compared to grid-connected equipment. For 

example, relatively mature standalone solar irrigation pumps can provide irrigation at 

lower cost than fossil-powered pumps, and can serve fields far from electrified town 

centers (Efficiency for Access Coalition, 2019). In contrast, early pilots of standalone PV-

battery grain mills struggle to balance high up-front capital costs and lower throughput 

compared to diesel alternatives (E4I, 2020). There is considerably less attention given to 

other energy resources, such as bioenergy and solar heat, which may be better suited to 

some agricultural problems. For example, solar dryers that directly use heat from the sun 

to dry crops may often be more thermodynamically sensible (and more cost-effective) 

than applications that would first generate PV electricity and then use it to run an electric 
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heating element (R. Shrestha, 2017). Bioenergy-based solutions can provide energy 

services (e.g., clean cooking with ethanol or biogas, milk chilling with biogas, rice 

parboiling with waste rice husks) in addition to bio-based side-products with on-farm 

uses (e.g., soil amendments and fertilizer). For example, a farm with two cows can use 

an anerobic digester to produce enough biogas for 2–4 hours of cooking per day in 

addition to 80 liters of liquid organic fertilizer per day (IDB, 2016). One head-to-head 

comparison of milk chillers powered by biogas and solar in Kenya finds a much higher 

IRR and higher direct job creation for the biogas option, which utilizes locally available 

feedstocks to meet milk chilling needs at much lower unit capital costs than standalone 

solar options (FAO & GIZ, 2019, sec. 3.1.3). 

Second, most of these agriculture-energy case studies do not explicitly consider the 

sustainability or resilience of the agricultural production systems upon which their target 

value chain relies. Partnerships should leverage agricultural stakeholders’ decades of 

experience on these considerations, rather than leaving energy sector actors to navigate 

the complex processes underlying agricultural resilience.  

Third, every case study we cite considers the upfront cost of acquiring new equipment to 

be a major barrier to adoption of agriculture-energy solutions. This challenge aligns with 

a pervasive lack of access to credit and financial inclusion among the world’s rural poor 

(Demirguc-Kunt et al., 2018), and it motivates our third pillar of successful agriculture-

energy interventions: support of equipment purchases via low-cost loans. 

Use low-cost loans to support the “last mile” of nexus solutions while 

prioritizing individual agency to choose which problems to solve 

Affordable, accessible equipment loans can support the “last mile” of agriculture-energy 

solution adoption while prioritizing individuals’ right to choose which problems to solve. 
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Agricultural equipment can have sticker prices in the thousands of US dollars, which is 

prohibitive for many would-be equipment owners and operators who have little access to 

credit or savings. Experience from both historical rural electrification programs and 

recent agricultural equipment pilots prove the importance of “demand side” supports that 

help customers overcome this barrier. The US Electric Home and Farm Authority and 

the Thai Bank of Agriculture and Agricultural Cooperatives used below-market-rate loans 

to successfully support customers on the “demand side” of rural electrification.  

Low-cost financing gives people the agency to choose their own pathway to expanding 

their incomes and capabilities. This tool fits with the capabilities approach to human 

development, which prioritizes agency through which an individual can “effectively shape 

their own destiny” (A. Sen, 1999, p. 11) and be an “active participant in change, rather 

than … a passive and docile recipient of instructions or dispensed assistance” (A. Sen, 

1999, p. 281). In the spirit of this approach, affordable loans maximize a person’s 

options, leaving them free to translate capabilities into the life they want to live. 

Equipment financing can be successfully implemented as the capstone of a supportive 

agriculture-energy ecosystem that has identified, tested, and debugged agriculture-

energy use cases. In the historical case, farmers were presented with suitable 

equipment by via manufacturer catalogs, extension programs, and demonstration 

“roadshows”. These equipment were designed to meet specific agricultural needs 

through iteration with agricultural engineers on real test farms. Finally, low-cost capital 

was applied to both the supply and demand side, supporting both the provision and use 

of energy.  
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Conclusion 

In the rural, agrarian communities where much of the world’s most extreme poverty 

persists, coordinated investment in energy and agriculture sectors can generate 

multiplicative gains in human development. These investments can leverage the 

complementary characteristics of each sector, as more profitable and resilient 

agricultural value chains increase income, while energy services expand capabilities 

prerequisite to modern life. Further, new energy resources can be directly used to solve 

pressing agricultural problems and drive a virtuous cycle of productivity gains at the 

agriculture-energy nexus. The agriculture-energy nexus was a core part of previous 

success in rural development, and today’s technologies are poised to use these 

synergies for still more human benefit — and faster. To proceed, we must apply the 

lessons of the past to the realities of each rural community today. Cross-sectoral 

partnerships are essential to coordinating investments in both energy and agriculture to 

ensure that —at minimum — complementary interventions are deployed close enough in 

time and place to create beneficial spillovers. These partnerships can bring 

multidisciplinary expertise and resources to bear in a supportive ecosystem that unlocks 

the full potential of the agriculture-energy nexus. The best nexus solutions will utilize 

energy resources and equipment to solve pressing agricultural problems, and on-ground 

pilots will be essential to iteratively test and improve these solutions within the context in 

which they will be deployed. Last, with these partnerships and vetted solutions in place, 

low-cost financing on both the energy supply and demand sides can unleash the 

agriculture-energy nexus at scale. Once energy supply is in place, affordable equipment 

loans are vital to helping farmers overcome the upfront cost barrier to acquiring new 

equipment that solves the agricultural problems they want to solve.  
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5 Conclusion & Future Work 

This dissertation studied the opportunity to leverage sustainable energy for human 

development through the lens of two technologies: bioenergy and miniature solar-hybrid 

electricity grids (i.e., “minigrids”). Both technologies will be key components of 

successful climate stabilization. Bioenergy comprises a large fraction of renewable 

energy used today and will be required in increasing amounts to reduce the emissions 

intensity of transport and industry, among other sectors (Section 2.1.1). For 

communities lacking reliable and affordable electricity, distributed energy resources such 

as standalone solar systems and minigrids can offer clean electricity access more 

cheaply than extending the centralized grid (Section 3.1), and at significantly lower 

climate impact than personal fossil-powered generators or connection to a fossil-heavy 

centralized grid (ESMAP, 2019; Lam et al., 2019). 

Alongside clear climate benefits to sustainable bioenergy and clean rural electrification, 

there are tremendous opportunities for these technologies to accelerate progress across 

several Sustainable Development Goals. Bioenergy’s natural interconnection with local 

infrastructure gives it strong leverage on jobs and income in agrarian communities 

(Section 2.1.2). Decentralized energy resources can provide reliable electricity access 

upon which most modern necessities and industries rely (Section 3.1). 

This thesis does not seek to catalog the climate benefits of bioenergy and minigrids, or 

to analyze which deployment approaches would have more or less favorable emissions 

outcomes. The enormous emissions reduction potential of these technologies is already 

thoroughly documented in the literature, yet the pace of deployment today falls far below 

the rates necessary to reach climate goals. Instead of reiterating climate arguments to 

speed progress, this body of work addresses specific barriers that impede wider 

deployment of these technologies for human benefit. This framing aims to resonate with 
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the practitioners, donors, and governments who will ultimately determine which solutions 

are prioritized and realized.  

Bioenergy 

Bioenergy requires land to produce biomass feedstock, which inextricably connects it to 

the surrounding environment, agricultural livelihoods, and food security (Sections 2.1.2–

2.1.4). The research contributions in Section 2 studied the potential to use extant global 

pasture lands more effectively — perhaps freeing land for bioenergy feedstock 

production — and then analyzed the drivers of national food security, which may be 

affected by such changes in agricultural land use or productivity. 

Section 2.2 provided the first global assessment of yield gaps on grazed pasture land, 

which is the largest use of land by humans and of interest as a land stock with potential 

to produce more food and bioenergy feedstock. For all subcategories of grazed-only 

permanent pasture assessed, we found potential to increase productivity several-fold. 

However, because productivity of grazed pasture systems is generally low, even large 

relative increases in yield translated to small absolute gains in global protein production. 

These results highlight the potential of extensive grazing lands to be put to better use, 

perhaps by converting existing pasture into mixed crop-livestock systems that produce 

both bioenergy feedstock and animal products.  

Future work can translate these global-scale estimates of intensification potential into 

actionable intensification strategies on the ground. There is a wide array of potential 

interventions, including raising stocking density of livestock, introducing rotational 

grazing, and growing appropriate crops alongside livestock, among others. The optimal 

approach for each pastoralist depends on idiosyncratic economic and ecological 

constraints. Our high-level analysis indicates regions where yield gaps are large, and 
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where there is strong potential for ground-level data and farmer engagement to identify 

pasture management improvements that raise incomes, increase land use efficiency, 

and, perhaps, provide a land source for bioenergy crop cultivation.   

Section 2.3 studied cross-national differences in food security to clarify the relative 

strengths of potential drivers (e.g., quantity and quality of agricultural land, agricultural 

productivity, household spending), many of which may be influenced by large-scale 

bioenergy deployment. Household spending, as measured by per-capita household final 

consumption expenditure, consistently explained more variance in national food security 

scores than other drivers. The quantity and quality of a nation’s agricultural land were 

not predictive of either food security metric. The results of this cross-national analysis 

support a causal mechanism where, in the absence of exceptional local factors, an 

increase in income drives increase in food security. This understanding of food security 

challenges an oft-made assumption of the “food versus fuel” critique of bioenergy: that 

reallocation of land and agricultural resources to bioenergy production necessarily 

disrupts food security. 

Future work can build upon these results to consider how bioenergy projects may be 

designed to positively affect food security. We showed that rising household incomes 

have singular leverage on food security, suggesting that bioenergy projects that raise 

local economic prospects may be expected to positively influence food security even if 

they displace some incumbent agricultural production. Of course, these positive impacts 

on food security would be dependent upon good governance of programs that engage 

local people fairly (e.g., outgrower schemes, see Section 2.1.2). Further high-level study 

of food security drivers is unlikely to advance this discussion. Rather, the effects of 

bioenergy on food security should be studied in a specific place in time, using case 

studies that record context conditions (see Robledo‐Abad et al., 2017) and test the 
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hypothesis that local employment from bioenergy production operations can raise 

incomes, and thus food security. 

Minigrids 

Solar-diesel hybrid minigrids are a promising energy access solution that can provide 

reliable power sufficient for productivity-enhancing machinery, but the nascent industry is 

still in the process of reducing costs and attracting private sector investment (Agenbroad 

et al., 2018; Williams et al., 2015). Minigrid projects live or die on customer electricity 

consumption, which is often their sole source of revenue. The research contributions in 

Section 3 tested a new approach to predicting this customer electricity demand more 

accurately and studied options for raising demand by using it in agricultural processing.  

Section 3.2 tested a data-driven approach to improving demand predictions using 

survey and smart meter data from 1,378 Tanzanian electricity customers served by 14 

minigrids. Our best-performing model combined smart meter data, customer survey 

data, and machine learning models to out-perform standard field practice by an order of 

magnitude, emphasizing the importance of collecting and using customer data across a 

growing minigrid portfolio. However, despite access to a customer database that is 

exceptionally large and detailed for the sector, it was still challenging to accurately 

predict the electricity consumption of a specific business, household, or community. 

Even if utilizing best practices for predicting electricity consumption, minigrid 

practitioners should anticipate a range of prediction errors (-80% to +20% across our 

sites for our best-performing model) when designing their systems.  

Further studies should examine the financial value of flexible, or “modular”, designs 

given the level of demand uncertainty we observed. Modular system designs allow 

engineers to add or remove system capacity to compensate for load growth or 
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uncertainty in initial customer demand. There is a growing consensus among industry 

stakeholders that modular designs — used in combination with more accurate initial load 

predictions — can help address the demand uncertainty problem. However, minigrid 

developers do not have guidance on how to pursue a modular design, and the expected 

payoff for this new approach has not been analyzed. It would be useful to model the 

economic value of a modular system (which is flexible but requires overhead to assess 

and modify minigrid capacity) versus a bespoke system (which is inflexible but only 

requires one design step) under varying levels of customer load uncertainty. The same 

technoeconomic minigrid model could also be used to determine a “minimum viable 

scale”: the smallest customer loads that can be served by a solar-hybrid minigrid while 

still overcoming the high fixed costs of project development and paying back investors 

over the project life. In practice, this minimum viable scale benchmark could help 

determine whether a modular minigrid would be cost-competitive with standalone solar 

systems for a given community. 

Section 3.3 summarizes a feasibility study that evaluated opportunities to raise minigrid 

loads and direct electricity access towards human development. We identified several 

near-term opportunities to use minigrid electricity for income-generating activities across 

12 Nigerian agricultural value chains. These included three clear “Tier 1” activities 

primed for immediate electrification at Nigerian minigrid sites: cassava grating, rice 

milling, and grain flour milling. These activities all have strong fundamental 

characteristics indicating that electrifying them can be straightforward and successful. 

Despite their promise, none of these productive uses are commonly deployed at 

Nigerian minigrids today. Widespread adoption will require a concerted effort to pilot, 

debug, and scale the electric equipment that performs these activities. 
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Although our study included a deep review of the literature for the 12 Nigerian value 

chains within our scope, there is a clear need for a broader review of the global literature 

for agriculture-energy applications. Today, there are hundreds of published case studies 

of various crop-activity combinations (e.g., electric flour milling, efficient biomass rice 

parboiling, biogas milk chilling), but there is no systematic review of these disparate 

analyses. A review paper that synthesizes the findings from this literature — much of 

which has been published as reports or white papers outside of traditional academic fora 

— would be an important contribution to the growing international community with 

interest at the energy-agriculture nexus. Such a review could separate the promising 

applications from the fanciful and prevent redundant studies by an international 

development community that is new to the energy-agriculture nexus and often unaware 

of previous work in this area.     

The agriculture-energy nexus 

The fundamental complementarity between energy and agriculture in rural development 

is a common thread through all the research contributions in Sections 2 and 3. Energy 

projects in agrarian communities are inextricably tied to the fates of farmers, and to the 

agricultural sector that employs them. Likewise, efforts to increase crop yields or create 

higher value products or decrease post-harvest losses do so under the limitations posed 

by the energy supply. Section 4 concludes the thesis by explaining this complementarity 

and showing how to leverage it for multiplicative human development benefits. Unlocking 

the potential of the agriculture-energy nexus will require cross-sectoral collaboration, 

targeted pilot projects that test solutions to pressing agricultural problems, and 

affordable equipment financing for the energy supplier and end user. The next step is to 

put these recommendations into practice. The Nigerian Rural Electrification Agency’s 

Energizing Agriculture program, for instance, could use an accelerator model to learn by 
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doing, convening cross-sectoral teams to advance agriculture-energy nexus solutions. 

The next phase of progress on this topic should be led by the needs of stakeholders who 

are working in full view of the complex challenges facing farmers, processors, and 

traders. Further academic research will be most useful if it responds directly to the 

questions and concerns raised by those on the ground, and least useful if it fails to 

meaningfully engage with local context.  
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