

Software Development Top Models, Risks Control and Effect on
Product Quality

Abstract- In recent time, considerable efforts have been made to improve the quality of software
development process and subsequently the end product. One of such efforts is finding a way to
avoid or prevent risks in the overall process; and where or when it is not possible to prevent, risk
alleviation readily comes handy.

Several problem solving methods such as six thinking hat, risk table, and riskit analysis graph
(RAG) applied along with generic models such as spiral, waterfall, prototyping and extreme
programming have been used in the past to prevent risk and enhances both delivery time and
product quality.

However, some gaps were identified in the earlier works done in this area and in the generic
models designed for evaluating and controlling risks prompting the development of modern ones.

Hence, this work tries to investigate different types of risks and risk management models,
leaning on the gaps in research; it attempts to create a framework for better risk prediction and
alleviation with the aim of enhancing delivery time and product quality.

 GJCST-C Classification:

K.6.3

SoftwareDevelopmentTopModelsRisksControlandEffectonProductQuality

Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Publisher: Global Journals Inc. (USA)
Type: Double Blind Peer Reviewed International Research Journal
Volume 17 Issue 3 Version 1.0 Year 2017
Software & Data Engineering
Global Journal of Computer Science and Technology: C

By Ajayi W ., Adekunle, Y.A., Awodele, O., Akinsanya, A.O., Eze, M.O.
& Ebiesuwa Seun

Babcock University

© 2017. Ajayi W ., Adekunle, Y.A., Awodele, O., Akinsanya, A.O., Eze, M.O. & Ebiesuwa Seun. This is a research/review paper,
distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://
creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided
the original work is properly cited.

Software Development Top Models, Risks
Control and Effect on Product Quality

 Abstract

-

In recent time, considerable efforts have been made

to improve the quality of software development process and
subsequently the end product. One of such efforts is finding a
way to avoid or prevent risks in the overall process; and where
or when it is not possible to prevent, risk alleviation readily
comes handy.

 Several problem solving methods such as six
thinking hat, risk table, and riskit analysis graph (RAG) applied
along with generic models such as spiral, waterfall,
prototyping and extreme programming have been used in the
past to prevent risk and enhances both delivery time and
product quality.

 However, some gaps were identified in the earlier
works done in this area and in the generic models designed
for evaluating and controlling risks prompting the development
of modern ones.

 Hence, this work tries to investigate different types of
risks and risk management models, leaning on the gaps in

 research; it attempts to create a framework for better risk
prediction and alleviation with the aim of enhancing delivery
time and product quality. To enhance good understanding and
reading of the work, it has been structured into different
sections. It concludes on some recommendations for future
research in this paradigm.

I.

Introduction

n our world today, virtually everything around us
depends on software. Our businesses, banking
sector, educational system, our phones, home

gadgets, even our cars and houses have been made
smart and are being controlled by software (Chappell,
2012). Based

on this reality, it simply means without

quality software most business, basic home appliances
and security, even modern civilization could fall apart.

 To attain quality in software development, a
range of possible factors such as the process that births

 the software, the choice of models used, formation and
motivation of the teams involved in the development,
handling of risks and risk areas all must come to play.

 As would be explained later, amongst these
factors, the choice of process models vis-à-vis

how risks

is handled are some of the major determinant of quality
and quick delivery of software and these two are
inevitable entities in the developmental process (Poth
and Sunyaev, 2013).

 Office of Government Commerce-

OGC (2013)

defined risk as an uncertainty or set of events that if
allowed to occur, will have adverse or negative effect on

the software development process or the quality of the
end product. Risk is not limited by the location or site of
the software project, the time spent planning or the
sophistication of the resources invested into the
development process, it could happen anywhere and at
anytime during the software development life cycle
(SDLC).

Some examples of where improper
management of risks has led to either delay in delivery,
poor quality or total failure of projects include: Canada’s
payroll system which was proposed to make accounting
management easier but failed probably due to coding
error or some other unforeseen factors, and this
happened after spending whooping $50M.

Again, National Aeronautics and Space
Administration – NASA (1986) reported that for thirty two
(32) months, space shuttle could not launch into space
due to an unforeseen circumstances leading to the
death of the crew of “challenger” on Jan 28, 1986.

The popular “Y2K problem” in the late 1990s was
caused as a result of ignorance about the sufficiency of
using just the last two digits to represent the year
(Aggarwal and Singh, 2007).

These few aforementioned are just some
examples of notable projects that have either failed or
did not complete as scheduled due to poor risk control
procedure and bad planning.

Here in this work, an attempt would be made to
create a model for better risk prediction and alleviation
with an aim to enhance delivery time and product
quality. Since this work tries to address software risks
and its prevention, it is deemed fit to introduce its major
concepts.

a)

Major software risk Concepts

Based on OGC (2013) and the work of Chappell
(2012), the following are some of the major concepts

associated with software risks and the systematic
identification, evolution and prioritization of risk events
and their likely consequences.

1.

Software Risk Identification:

the concept of risk
identification falls into a futuristic category; it is a
prediction of the unpleasant events that may occur
along the developmental process.

2.

Software Risk Analysis:

understanding the nature of

the risk, likelihood of occurrence, and the degree of
impact. Impact level may be set from beginning
from range 0 to 5, or from low to medium and high.

I

35

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Ajayi W α., Adekunle, Y.A σ., Awodele, O ρ., Akinsanya, A.O Ѡ., Eze, M.O¥. & Ebiesuwa Seun§

Author α σ ρ Ѡ ¥§: Babcock University. e-mail: seunebi@gmail.com

3. Software Risk Planning: this is usually based on the
information gathered from analysis, one can then
come up with strategic actions and implement them
in order to avoid risk

4. Software Risk Monitoring: ensuring that the risk does
not occur and looking out for signals that indicate
occurrence.

i. Aim and Objectives
The aim of this work is to examine the possibility

of improving software quality through better control of
risk.

The basic objectives are to:

1. Show that proper risk control will enhance fast
delivery of software project objectives.

2. Show that quick identification of risk and risk areas
of software development process will reduce the
risk of the overall developmental project

3. Identify the basic parameter that must work together
to attain quality product (software).

4. Analyze previous risk management models and
existing works to establish gap or new trend in this
paradigm.

b)

Problem Statement

It is very imperative to state first that like every
sector; software development process too is
characterized by different types of challenges.

Earlier works studied in this paradigm show that
in most cases, success rates of software projects have
been found to be lower than expectation; and inability to
easily identify and control risk have been identified as a
major factor contributing to the failure rate.

Again, nowadays software is a major player in
our daily life. Almost all our daily activities, our gadgets,
cars, house security, depend on it, hence there are
needs to design and develop software with utmost
caution. It is believed that quality can only get better if
risk is handled well because it has a direct effect on the
quality of the software produced at the end of the whole
process.

Thus, the main goal of this work is to review
existing risk management techniques models along
some traditional software models and related works in
areas of software quality. After this, then come up with
research gaps and ideas on how to develop a more
meticulous model that will overcome the limitations in
existing models and help enhance quick delivery and
better quality.

c)

Methodology

The methodology adopted in developing this
work includes:

1.

Literature search and analysis.

2.

Model adaptation (from generic ones).

II. Literature Review

Of late, the study of risk in software
development has attracted great interest. To an extent,
one could look at it as just mere interest which started
as an attempt to test the strength of technology or
computer science in handling just about anything
possible; but more likely, the study of risk tends more to
the quest to attain “better quality” in software and
software developmental process. Hence to confirm
either of the assertions, in this section, we try to evaluate
some previous works done in this paradigm vis-à-vis
design, problem solving techniques and models.
However before proceeding, it is very pertinent to look
into the categorized and other intrinsic risks (as seen in
literature).

a) Categories of Risks
As analysed in OGC(2012), software project

risks and other Information Technology related projects
risks can be categorized into the following major areas.

i. Technical Risk: These categories of risks
identify potential design, implementation,
interface, verification and maintenance
problems. If not handled and managed very
well, this category of risk may threaten the
quality and timeliness of the software to be
produced.

ii. The second category is the development risk.
This risk according to OGC(2012), involves
inadequate planning, wrongly developed
product features, interfaces which are not user
oriented and failure of real life testing.

iii. Business Risk: The third category is the
business risk. Further classifications of this risk
are:

• Market risk: okay but no one really wants it
• Strategy risk: okay but no longer fits into the

clients strategy
• Sales risk: okay but sales force can-not sell
• Management risk: losing the support of senior

management due to a change
• Budget risk: okay but lost budgetary or

personnel commitment.

These amongst others include:

36

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

Furthermore, analysis and deductions made
from the work of Ghayyur and Khan(2010) used along
with Kaur, Kaur and Kaur (2014) on “Study of Different
Risk Management Model and Risk Knowledge
acquisition with WEKA” revealed some other intrinsic
risks that may occur or hinder the success of software
development and the processes associated with it.

“Personnel Hiring and Shortfalls, Poorly trained project
team members (personnel risk), Unrealistic Schedules
and Budgets, Developing the Wrong Functions and
Properties, Developing the Wrong User Interface,

Aside what is identified as direct risk which may

delay, hinder success or cause total failure of software
projects, sometimes software project may also fail as a
result of the following.
a. Customer Involvement – for example in prototyping.
b. Using wrong process model.
c. Non consideration of risk.
d. Repetition of Task – e.g in the Risks management of

Spiral model.
Having done with the different categories of

risks possible in the software project development, the
following sections enumerate the different methods that
have been used in one way or the other to solve
problems or (and) in handling risks.
b) Overview of Some Existing Methods for Solving

Problems and Handling Risks Leveson (2013) shows that several methods
have been developed in the past to predict, avoid or
alleviate risks in the software development process.
Some of these methods include: (a) Use of risk table/log using RMMM (risk
mitigation, management and monitoring). (b)
Brainstorming. (c) Six thinking hat. (d) Risk analysis
graph (RAG). (e) Risk matrix. (g) The Rich picture. (h)
Use of financial models.

Other methods used for identifying risk include:
i. Check-listing: listing risks from past project.
ii. Interviews and Surveys: ask the right questions.
iii. SWOT Analysis: of products and methods.
iv. Direct Observations.

c) The Risk Table

A risk table or risk rating table is a tool for
assessing the likelihood and consequences of risk
(Worksafe, 2014). Although there are different opinions
on what should constitute the headings of the risk table,
It appears that the constituent of the headings is
subjective (based on the environment being assessed).
However, generally based on Williams (2004) on risk
management and some other earlier works in this area,
headings of a risk table template should at least
comprise of risk category, rank, risk-item, probability of
risk occurrence, last ranking and action taken. Other
views and addition that exist in this area tend to prefer
the use of risk matrix or in some cases use both table
and matrix.

A major point to note here is that to get better
result while trying to get inputs for the table, it is better to
consider an equally fit problem solving method for the
purpose. For instance, to generate the Risk table, brain
storming seems a perfect tool in enhancing the input for
the table. Else, capturing all that needs to be captured
may be a little challenging. To exemplify this, some
inputs were generated and presented as table 1 below.

Please note

that the input figures and other
parameters were generated during a class session with
some undergraduate software engineering students
through brainstorming and other available data.

Table 1: Showing risk inputs generated from the use of brainstorming technique and other available data (from the
client requirement /requirement engineering) for an action platform

Risk item Risk category Components likely to
be affected Probability

Impact level
(if allowed to

happen)

RMMM (Risk
monitoring, mgt

&mitigation

Team
member

Human resources Schedule/cost/over head 10% 3
Team members must
have clear knowledge of
project

Poor
estimate and
planning

Project team and
finance

Schedule, cost and
performance

15% 2
Correct budget
estimation

Project data Equipment/tech Schedule,cost,personnel 20% 4
Backup of files,
duplicate duties,

Cyber threats Technical Cost/data 10% 4
Build-in/Ensure proper
security

Theft/AZrm
robbery

Project/technical
Physical systems and
others/cost

2% 5
Hire guard, burglary,
Install security gadgets

The cyclic management approach of William (2004).

Essentially, the work of Williams (2004) which
was one of the earlier works done in the area of risk in
the early 2000 used the educational sector as a case
study. The approach sees risk management as cyclic
events which involve monitoring, identification, analysis,

prioritization, planning and mitigation, all of which
stands on communication. The work presents an in-
depth analysis of risk management, and also provided
an insight to inputs for the risk table that are not readily
available. For example, the work explains that if

37

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Software Development Top Models, Risks Control and Effect on Product Quality

numerical values were attached for the probability of a

Gold-Plating, User Platform Incompatibility, Continuing
Stream of Requirements Changes, Shortfalls in
Externally Furnished. Components, Shortfalls in
Externally Performed Tasks, Real-Time Performance,
Shortfalls, Straining Computer-Science Capabilities,
Case Tools under Performance, Unrealistic nature of
temporary project plan, Loss of project data,
development risk, Facility and equipment Machine
etc”

risk happening, (say in percentage) and impact is given
in (monetary

terms), the risk exposure can then be

calculated. According to their work, the risk exposure is
given by:

 Risk Exposure (RE) = P × C
 Where: P is the probability of occurrence for a risk and

 C is the impact of the loss to the product should the risk
occur.

 However, less was done to compare what
would have been the result if a different model is chosen
instead of agile method which was used in the scenario;
this could also be improved on.

d)

The Rich Picture

 The rich picture is a requirement gathering and
knowledge elicitation tool which uses cartoon-like and
somehow inexperienced pictures, diagram and symbols
to aid quick thinking and depict ideas about a situation
(Berg and Pooley, 2013). Going by Better Evaluation-

 BE (2016) analysis, it is a mind map which helps to
open discussion, and then later lead to shared
understanding of a situation. Though to use this
method, one needs to first identify the issue that needs
to be addressed, and then develop an unstructured
narrative of the scenario of the challenge.

In their work, Bell and Morse (2010) used rich

picture to harness solutions to problems from team
members mind expressed through their different
drawing. According to them, in using this method, two
major rules have to be followed.

The drawings have to be visible to all team
members at all times so it is clear to all what decisions
have been made as to the components and linkages
within the system being considered. Secondly, text
should be limited or avoided totally because diagrams
are much easier to appreciate visually.

Generally, the rich picture belongs to the
category of soft system methodology (SSM) which is
used for gathering information about complex or “hard
knot” situation. As shown in fig 1a and fig 1b below, the
end point should be a picture of the problem situation ;
a very detailed and rich one which can be put together
and analyzed within the time frame.

Though Bell and Morse (2010) work depicts rich
picture in clear terms and richness in solving the set
goal of their work, it however did not present much on
the drawback or weaknesses of the model.

As seen in Pedell and Vetere (2005) and some
other works of earlier researchers of the technique, in
order to understand the pictures in its true form, the
initial sketches might also need to be detailed which
may lead to waste of project time. Although to some
Information Technology project managers, this may
seem like few minutes wasted, but when compared to
the execution time of other techniques, this means a lot!

And this constitutes a major gap compared to other
methods for addressing risk.

Again, the rich picture does not take care of
issues of laziness and team members who cannot
create or interpret pictorial representations. In most
cases, another form of algorithm may be needed for
pictorial interpretation.

38

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

Fig. 1a: Showing rich picture drawn with free hand

source: (Horan, 2000)

Fig. 1b: Showing another example of rich picture

39

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Software Development Top Models, Risks Control and Effect on Product Quality

Source: http://www.conceptdraw.com

e) Brainstorming
Brainstorming is a fast and easy way to

generate original ideas for problem solving and
innovation (Unicef, 2015). Based on this author, it can
be done alone or in a group. However, before the
brainstorming exercise, some grand rules must be set
for participant. Amongst others, some of these rules
include, originality of ideas, no criticism, and the
exercise must be done within a time frame.

In Naser and AlMutairi(2015) brainstorming
technique was implemented to find its effect in
improving the problem solving skills for a set of male
students in Kuwait. The result tends to be positive as
envisaged from the beginning. However, the authors
view and usage of this method is too narrow or simply
biased along gender line.

Females’ capacity to offer solutions and advice
has enjoyed lots of advancements with good result in
recent times (Forbe, 2014) and (Claremont, 2012).
Hence, restricting females to the confines of household
limit opportunities and it’s a waste of potential for ideas.

Again, the author did not analyse the risks embedded in
using the approach.

Generally, brainstorming ought to be used for
divergent thinking and must be used as such. It is an
important strategy in provoking creativity and solving
problems in virtually every field. The technique must be
applied in a controlled team meeting, restricted to one
point per person at a time and judging others is not
allowed. Through the technique, lots of ideas about risk
and difficult issues can be generated.

f) The Risk Analysis Graph (RAG)

The RAG is an acronym for Riskit Analysis
Graph. It is one of the oldest Model or methods of
analysing and managing risks. Several works have been
done to analysed the RAG. The work of Freimut
et.al.(2001) sees Riskit technique as a broad risk
management process that is rooted on sound
theoretical principles designed to have sufficiently low
overhead and complication so that it can be deployed in
a real-time limited software development project.

Fig. 2: Showing RAG.
 Source

: (Freimut et.al

2001)

Based on this author, the model allows the

totality of risks captured in the developmental process
and the project as a whole to be broken down into
components such as factors, events, outcomes of an
event, reactions, and effects on overall goals. By doing
this, the impact of any risk can be explicitly considered
by building up the scenario that encapsulates it.

Furthermore, it allows visual yet more formal
documentation of risks and risk areas (enhances
communication)
Major limitations noted from this model are in the
following areas:

1. Risks prioritization during risk analysis is based
on their probability and loss.

40

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

2. Documentation effort may be too high.
Literatures consulted for this study show that

each of these risk control methods comes with basic
strength as well as weakness.

For example the Capacity Maturity Model
Integration-

CMMI strength could be an advantage when
used along with RAG since the CMMI is well grounded
in documentation (Coffin and Lane, 2009).

Fig. 3:

Showing standard riskit analysis graph icons

g)

Software Process Models and Risk

A software process is a planned set of activities
which are considered necessary to develop a software
system while a software process model is as an abstract
representation of a process which presents a
description of the process from some particular point of
view (Sommerville, 2011). Software process model
presents a description of a process from some
particular perspective as:

1.

Specification.

2.

Design.

3.

Validation.

4.

Evolution.

Several or different process models could be
employed for the development of software (Ali Munassar
and Govardhan, 2010). Based on this author and
deductions from the works of SEI CMMI (2014) and
Moniruzzaman and Hossain (2013) these process
models which have been used in the past for software
development involve the following major process.

Ali Munassar and Govardhan(2010) work was
an extensive comparison work on the major but different

models of software engineering. Basically, their work
presents the five of the development models namely,
waterfall, Iteration, V-shaped, spiral and Extreme
programming. Based on the review of some existing
work, their study was able to analyse the advantages
and disadvantages of the different models, and make
comparison amongst them to show the defects.
However, this work was just a” literary comparison” no
empirical or practical study was done to

establish their
claims.

We can say based on their work and other
literatures, that the models do have their strengths,
weaknesses and limitations. While the waterfall model
(fig 4) may be used in small or medium projects low
overhead and less attention to

risk, the spiral model may
not be suitable for small projects but has an inherent
plan for risk. Hence, for the purpose of this work, our
attention shall be on the spiral model. The choice of the
spiral model was due to the original tenacity built into it

for risk prevention.

41

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Software Development Top Models, Risks Control and Effect on Product Quality

1. The waterfall model
2. The spiral model
3. The V- Model
4. Prototyping
5. Extreme programming
6. Capacity Maturity Model Integration
7. Agile

 Source: adapted from (Ali Munassar and Govardhan, 2010)

h) The Spiral Model
Under normal circumstances, a process model

covers the entire lifetime of a product (Sommerville,
2011). Hence, a major risk that can emanate during
software development is wrong choice of model.
However, once the model is chosen right, the risk is
already alleviated to a certain level. A generic software
process model with such perception that risk may occur
is the spiral model (Ali Munassar and Govardhan, 2010).
Software risks were introduced for the first time in the
Spiral model by Mr. Berry Boehm (Boehm, 1988; and
Khan & Ghayyur, 2010) The spiral model as shown in

fig 5 below, operates in loops with all the stages(or
loops) of the spiral designed with at least an aspect of
the requirement engineering which also include the
verification and validation (known as V&V) and a
perception of risk.

The development processes are represented as
a spiral rather than as a sequence of activities with
backtracking. Each loop in the spiral corresponds to a
phase in the developmental process. Unlike other
models such as the waterfall model, phases such as
specification or design in spiral model are not fixed. The
different loops of the spiral are chosen based on what is
required and risks are explicitly addressed at every loop
as they are encountered throughout the process.

Advantages of Using the Spiral model.

Based on the works of Sommerville(2011) and
Ali Munassar and Govardhan (2010) amongst others,
the following are the advantages of the spiral model.

Fig. 5: Showing the spiral model.

 Source: (Sommerville, 2011)

42

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

Fig. 4

1. It is realistic: the model accurately reflects the
iterative nature of software development on projects
with unclear requirements

2. It is flexible: it combines the advantages of the
waterfall model and some evolutionary methods

3. It is a comprehensive model which decreases risk
along the loop

4. It provides good visibility for the project

Disadvantages

i)

Review of Related Works

This section showcases previous works done in
this area of study (using some other methods) to
enhance the quality of software.

The first to consider in this group is Hossain,
Kashem and Sultana(2013) work on “Enhancing
Software Quality Using Agile Techniques”; their work
depicts agile as a capable technique for ensuring good
quality in software through measuring the “traditional
quality factors” against how they are handled using agile
technique. The work began by first Identifying the
software quality factors (SQF) and Quality Assurance
(QA), then went ahead to describe the agile techniques
with special reference to software quality evaluation with
agile technique. It however, did not analyse agile
flavours, which may make the work a little too broad and
difficult to

know which one really helps in achieving
quality. More on this will be discussed under the gap in
research.

In another view by Vashisht, Lal and
Sureshchandar

(2016) on “Defect Prediction Framework
Using Neural Networks for Software Enhancement
Projects”, they argue that though various approaches
have been proposed in the past for effective and
accurate prediction of software defects but most are not
easily adopted in real life situations. Hence, their work
aimed (majorly) at providing a more user-friendly,
effective and acceptable framework which will help in
predicting the defects in the phases across software
enhancement projects. The work began with an analysis
of the Software enhancement project life cycle, and then
followed by the overview of the neural networks
stressing their automatic learning ability over the
traditional expert system. The design or proposed
framework was later presented. The work is a clear
approach to identifying defect and thereby enhancing
the quality of the end product. The only set back here is
not analyzing other methods such as fuzzy or other
classification models to see if or not a neural network is
better.

Poth and Sunyaev (2013) research an “Effective
Quality Management: Risk-

and Value-based Software
Quality Management “by designing effective quality
management (-EQM) to help software quality
management (-SQM) to negotiate acceptable quality
targets (based on standard quality factors) with all
stakeholders -

and to adjust them as the development

progresses if need be. Based on their work, the main
stakeholder parties are the end users or customers, the
development team or department, and the operational
management. Most often in software projects some
stakeholders, like users or customers, do not personally
participate in the quality assurance (-QA) planning
process, and make only a review of the QA strategy and
plan. In this case, in the first step, the SQM has to
substitute for the missing stakeholders in the QA
planning meetings. In the second step, the SQM has

to
legitimate the plan for the stakeholders to accept. The
same happens if changes with the planned QA activities
are required to react to unexpected occurrences which
cause adjustments to the planning.

The authors went further to describe the stages
of the IPDCA-cycle of EQM which guides the SQM
during the product life cycle. Three different models –

the V-model, the Scrum and Spice were presented and
analysed in details. The “V-model example is based on
the electric/electronic development of an engineering
company, while the SCRUM (scrumalliance.org)
example is based on the software for an airline’s
customer benefit program and the spice (ISO/IEC
15504) example is based on the electric/electronic
product development organization of an automotive
supplier”. In all cases, the authors were able to establish
its main aim. However their work did not link their
findings with other notable metrics for quality.

III.

Gaps

After the analysis of the existing works both in
the area of problem solving techniques and the closely
related works the following were identified as major
gaps in their works.

1.

From the work of Hossain et.al(2013) agile strength
and technique for enhancing quality were clearly
outlined; but very little or nothing was mentioned on
how agile handles risk when used in software
development and how this could help in quality.

Again the work treated agile technique as a
broad topic and did not say much on its different
flavours. Although all agile product must conform to
agile manifesto but special attention to a particular one
among the different flavours (which according to
Ferreira

and Cohen, (2008)

include -

“eXtreme
Programming (XP), crystal methods, scrum, dynamic
systems development methodology (DSDM), feature-
driven development (FDD), and pragmatic
Programming”) would have made it easier to know the

43

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Software Development Top Models, Risks Control and Effect on Product Quality

exact flavor with the strength in making the quality
better.

2. Vashisht, Lal and Sureshchandar(2016) view of
enhancing quality through defect prediction
framework using neural networks-: The work was
able to achieve the set objective. It however did not

1. It requires great technical expertise in risk analysis
and risk management to function well.

2. Model is not so widely used because it is poorly
understood by nontechnical management.

3. It involves high administrative overhead because of
competent professional management involvement.

4. It may not work well for small project.

analyse other methods such as fuzzy or other
classification models to see if or not they would
have done better than the neural networks in the
paradigm being considered.

The work is more like an extension of what they
already have in use; it did not demonstrate that risk has
a direct impact on quality, it rather infer it and the work
did not link their findings with other notable metrics for
quality.

Aside these gaps, most of the researchers have
only dwelt purely on the generic models. Although they
seems to have handled some (NOT ALL)

of the
identified risk one way or the other, but we don’t know if
or not other methods could have done it better. For
instance, the risk analysis graph (presented as riskit)
worked on by Freimut et.al.(2001), is very strong and
unique in its approach to risk management and as
stated earlier, it is rooted on sound theoretical
foundations, helps in overhead reduction of cost and
can be applied in real, time-constrained project.
However, RAG as a method is a broad risk management
process which may not be suitable for medium or small
projects such that would be considered as the prototype
later in this work

We believe to test their strength and forestall
any problem along developmental process, some of the
models or methods may have to be combined as hybrid
to ensure smooth running e.g spiral and prototyping
used vis-à-vis a problem solving method. Another
aspect is combining the strength of agile for handling
small project and that of the CMMI (though normally
used in big projects) for documentation.

IV.

Conclusion

Software development takes a lot of planning,
money, team work and energy. The interaction of these
basic things called the constraints in Sommerville (2011)
is shown in fig 6 below. However, it must be noted that
no matter the amount of these factors put into it; it takes
just one thing to go wrong for the whole process to go
wrong and end up in lesser product quality. Conversely,
it takes a combination of at least three things

to have a
quality product. These three things include: tools,
technology and methods.

Moreover, after attaining the “initial or presumed
quality”, measuring it to confirm if actually it is the
intended or proposed quality level is another major
concern. Hence, some certain metric needs to be put in
place to ascertain if or not the end product is qualitative.
To this end, Chappell (2012) reports on how the quality
of software product can be measured. Going by the
report, the following basic and cogent parameters must
be looked out for.

other things that have to do or fall under the
functional requirements of the developed system.

b)

The process that births the software.

Fig. 6: Showing software project constraints.

Source : (Sommerville, 2011)

Aside these, the system and other components

must meet specified requirements by the client as stated
by both parties in the memorandum of understanding
(MOU).

Again, the development must ensure that the

system and other component meet client needs. By
monitoring quality risks and product evolution over its
life cycle, quality assurance team can make right
choices and enhance the quality of product.

 The concept of software risk is broad and
generally risk abounds in virtually every aspects of
software project development. The more we are able to
predict them, the easier and smoother the process and
the better the quality of software produced at the end of
the developmental process.

a)

Future work

 In the future we intend to :

44

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

c) Structure: this involves code efficiency,
maintainability, security, testability, understandability
etc.

a) Functionality - this involves factors such as the
performance, ease of learning and ease of use plus

1. Improve on RAG (expand an aspect to capture
aspects relating to data during system migration)

2. Do a comparative analysis of two software models -
possibly two that were not already analysed here
(using some basic factors) to test their suitability
and possibly acceptance in software projects.

3. Apply the developed model in identifying and pre-
empting risk that may occur in a particular software
project area or task.

4. Implement and evaluate the efficiency level of the
present models compared with proposed one.

b)

Further proposition on tools to employ in this work

1.

Set theory.

2.

Fuzzy logic and;

3.

Bayesian algorithm/nearest neighbor (to Hazard
/risk) in this case we set conditions for a project
entity (say the critical path).

References Références Referencias

1.

Aggarwal K.K and Y. Singh (2007). Software
Engineering (3RD edition.), New Age.

2.

Ali Munassar1 N. M. and Govardhan A. (2010) A
Comparison Between Five Models Of Software

Engineering, International Journal of Computer
Science Issues, Vol. 7, Issue 5, September 2010.

3.

Bell S. and Morse S.(2010). Rich Pictures: a means
to explore the ’Sustainable Group Mind’, The Open
University’s repository of research publications and
other research outputs, accessed on 04/03/2017
from

http://oro.open.ac.uk/24617/1/ISDRC_16_~
_Bell_Morse_Rich_Pictures.pdf

4.

Berg T. and Pooley R.(2013) Contemporary
Iconography for Rich Picture Construction,
Systems Research and Behavioral Science,
wi ley onl inedigi ta l l ibrary.

5.

Better Evaluation-

BE (2016): Rich pictures, viewed
on 27th

mar,

2017 from: http://www.betterevaluation.
org/en/evaluation-options/richpictures

6.

Boehm, B.(1988) A Spiral Model for Software
Development and Enhancement Computer, vol. 21,

No. 5, May 1988, pp. 61-72.

7.

Chappell D

(2012) The Three aspects of software
quality:

Functional, Structural and Process,
sponsored by Microsoft Corporation, viewed on
05/03/2017 from : http://www.davidchappell.com/

writing/white_papers/The_Three_Aspects_of_Softwa
re_Quality_v1.0-Chappell.pdf

8.

Coffin and Lane (2007) A Practical Guide To Seven
Agile Methodologies, Part 1, viewed from

http://www.devx.com/architect/Article/32761/1954

9.

Forbes (2014) Who Makes A Better Leader: A Man
Or A Woman? Accessed on 04/03/2017 from

https://www.forbes.com/sites/sebastianbailey/2014/
07/23/who-makes-a-better-leader-a-man-or-a

woman.

10.

Freimut B., Hartkopt S., Kaiser P., Kontio J and
Kobitzsch W.(2001) An Industrial Case Study of

Implementing Software Risk Management,
ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th

11.

Horan P(2000) Using rich pictures in information
system teaching, 1st

International Conference on

system thinking in management, 2000, pp 257 –

262.

Enhancing Software Quality Using Agile
Techniques,

IOSR Journal of Computer Engineering
(IOSR-JCE) Vol 10, Issue 2 (Mar. -

Apr. 2013), PP
87-93.

13.

Kaur K., Kaur A.,Kaur R. (2014) Study of Different
Risk

Management Model and Risk Knowledge

acquisition with WEKA, International Journal of
Engineering Research and General Science Volume
2, Issue 4.

14.

Khan Q. and Ghayyur S. (2010) Software risks and
mitigation in global software development, Journal

of Theoretical and Applied Information Technology
JATIT 2010.

15.

Leveson N.G (2013) Learning from the Past to Face
the Risks of Today, Communications of the ACM,
Vol. 56 No. 6, Pages 38-42.

16.

Merchant K.(2012) How Men And Women Differ:
Gender Differences

in Communication

Styles,
Influence Tactics, and Leadership Styles, accessed
on 05/03/2017 scholarship.claremont.edu/cgi/

view

content.cgi?article=1521&context=cmc_theses

17.

Moniruzzaman A B M and Hossain S.A (2013)
Comparative Study on Agile software development
methodologies

18.

Naser A. and AlMutairi M. (2015) Effect of Using
Brainstorming Strategy in Developing Creative
Problem Solving Skills among male Students in
Kuwait: A Field Study on Saud Al-Kharji

School in
Kuwait City , Journal of Education and Practice,

Vol
6 , Nos 3.

19.

Office of Government Commerce (2012; 2013)
Project in a Controlled environment (PRINCE 2),

TSO, UK.

20.

Oxford Advanced Learners dictionary (2016). Oxford
Advanced Learners, Oxford University Press,
accessed on 27/02/20167 http://www.oxfordlearne
rsdictionaries.com/definition/english/

21.

Parnas D.L.(2011) The Risks of Stopping Too Soon,
Communications of the ACM, Vol. 54 No. 6, Pages
31-33.

22.

Pedell S. and Vetere F (2005) Visualizing use
context with picture scenarios in the design
process,

MobileHCI '05: Proceedings of the 7th
international conference on Human computer
interaction with mobile devices & services,

ACM,
Salzburg, Austria, 271-274.

23.

Poth A.and Sunyaev A. (2013). Effective Quality
Management: Risk-

and Value-based Software
Quality

Management, IEEE Software Publication,
viewed from : http://www.isq.uni-koeln.de/fileadmin
/wiso_fak/wi_isq/pdf/IEEE_Software_Sunyaev.pdf

on
05/05/2017.

45

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Software Development Top Models, Risks Control and Effect on Product Quality

24. Reich B.H and Sauer C.(2010) Roles of the External
IT Project Manager, Communications of the ACM,
Vol. 53 No. 5, Pages 126-129.

ACM SIGSOFT international symposium on
Foundations of software engineering, ACM , pp
277 – 287.

12. Hossain A., Kashem A., and Sultana S.(2013)

26.

Unicef

(2015) Brainstorming , Free-flowing creativity
for problem-solving, accessed on 30th

march 2017
from: https://www.unicef.org/knowledge-exchange

/files/Brainstorming_production.pdf

27.

Vashisht V., Lal M., and Sureshchandar G.S. (2016)
Defect Prediction Framework Using Neural

Networks for Software Enhancement Projects,
British

Journal of Mathematics & Computer Science,
16(5): 1-12, 2016, Article no.BJMCS.26337.

28.

William L.(2004) Risk management, accessed on
29th

March 2017 from: http://agile.csc.ncsu.edu/

SEMaterials/RiskManagement.pdf

29.

Worksafe

(2014) Assess-

risk rating table,

accessed
29th

March, 2017 from: http://www.worksafe.
govt.nz/worksafe/toolshed/safe-use-of-machinery-
toolkit/assess-risk-rating-table.

30.

Wright D. (2011) Should

Privacy Impact
Assessments Be Mandatory?

Communications of
the ACM,

Vol. 54 No. 8.

46

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Software Development Top Models, Risks Control and Effect on Product Quality

25. SEI Software Engineering Institute (2004): viewed
from: http://www.sei.cmu.edu/cmmi/general/ Somm
erville I. (2011). Software Engineering 9,
Pearson, USA.

Global Journals Inc. (US)

Guidelines Handbook 2017

www.GlobalJournals.org

	Software Development Top Models, Risks Control and Effect onProduct Quality
	Author
	I.Introduction
	a)Major software risk Concepts
	i. Aim and Objectives

	b) Problem Statement
	c) Methodology

	II. Literature Review
	a) Categories of Risks
	b) Overview of Some Existing Methods for SolvingProblems and Handling Risks
	c) The Risk Table
	d) The Rich Picture
	e) Brainstorming
	f) The Risk Analysis Graph (RAG)
	g) Software Process Models and Risk
	h) The Spiral Model
	i) Review of Related Works

	III. Gaps
	IV. Conclusion
	a) Future work
	b) Further proposition on tools to employ in this work

	References Références Referencias

