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Abstract-

  

Software vulnerability mitigation is a well-known

 

research area, and many methods have been proposed for it.

 

Some papers try to classify these methods from different 
specific

 

points of views. In this paper, we aggregate all 
proposed classifications

 

and present a comprehensive 
classification of vulnerability

 

mitigation methods. We define 
software vulnerability as a kind

 

of software fault, and 
correspond the classes of software vulnerability

 

mitigation 
methods accordingly. In this paper, the software

 

vulnerability 
mitigation methods are classified

 

into vulnerability

 

prevention, 
vulnerability tolerance, vulnerability removal and

 

vulnerability 
forecasting. We define each vulnerability mitigation

 

method in 
our new point of view and indicate some methods

 

for each 
class. Our general point of view helps to consider all

 

of the 
proposed methods in this review. We also identify the

 

fault 
mitigation methods that might be effective in mitigating the

 

software vulnerabilities but are not yet applied in this area. 
Based

 

on that, new directions are suggested for the future 
research.

 

I.

 

Introduction

 

oftware is an important part of a computer 
system. Being

 

complex or created by incompetent 
developers, faults might be

 

introduced to the 
software. There are faults that cause violating

 

the 
system security. These faults are called vulnerability. 
There

 

has been much research on preventing, detecting 
and analyzing

 

software vulnerabilities.

  

By the time of writing this paper there is a 
number of surveys

 

on the methods of mitigating 
vulnerabilities, i.e. [1], [2], [3]

 

and [4]. Among them, [4] 
surveys the static analysis vulnerability

 

detection 
methods that are applied in three areas that are

 

associated with sources of vulnerabilities, i.e., access-
control,

 

information-flow and application-programming-
conformance.

 

It reviews around 88 papers. The studied 
methods, however, do

 

not cover all the software 
vulnerability classes. Static analysis

 

methods are also 
surveyed in [3]. It reviews 23 papers and

 

classifies their 
methods with a different point of view. In

 

[1] static and 
dynamic

 

analysis methods are classified and

 

18 papers 
are briefly reviewed. The classification for static

 

analysis 
methods presented in that paper is similar to the on

 

in 
[3]. The most comprehensive survey is presented in [2] 

by Shahriar et al. in 2012. They review 173 papers and 
classify their methods in four classes, i.e., static 
analysis, dynamic analysis, monitoring and hybrid 
analysis. 

In this paper, we present a new definition for 
software vulnerability. Based on this definition, 
vulnerability mitigation methods are classified and 
reviewed with a new point of view. We use the general 
classification of fault mitigation methods as a base and 
extend it to a detailed classification of software 
vulnerability mitigation methods. 

Our comprehensive classification aggregates 
many of the classification presented in the previous 
surveys, i.e., [1], [3], [2] and [5]. Also, the general 
perspective applied in our survey helps to identify the 
fault mitigation methods that are not yet used in 
mitigating software vulnerabilities. Since we consider the 
software vulnerability as a type of fault, these methods 
may be helpful in mitigating software vulnerabilities. We 
suggest new directions for the future researches based 
on our analysis during the review of the proposed 
vulnerability mitigation methods. 

In this paper, our definition of software 
vulnerability is presented in section II. Based on this 
definition, software vulnerability mitigation methods are 
classified in section III. In this section, each class is 
described in details and some examples are reviewed. 
Section IV concludes the paper and presents some 
future directions. 

II. Defining Software Vulnerability 

To review vulnerability mitigation methods, a 
precise definition of software vulnerability is required. 
Different researchers have suggested definitions for this 
term which are nearly analogous but have differences. 
Matt Bishop et al. define software vulnerability by 
modeling the software as a state machine in [6], [7], [8] 
and [9]. In this model, a vulnerable state is the state that 
let unauthorized reads, changes or accessibility 
modifications to a source. They define vulnerability as a 
property in the system that let it enter into a vulnerable 
state. In [8] Bishop defines vulnerability as a weakness 
that makes it possible for a threat to occur, where a 
threat is a potential violation of security policy. Amoroso 
defines vulnerability as an unfortunate characteristic that 
allows a threat to potentially occur [10]. There are other 
definitions of software vulnerability in relation with 
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security policy, e.g. [11] and [1]. Most of them define it 
as a property, characteristic or weakness that may 
cause compromising the security policy. 

In order to clarify the terms property and 
security policy compromise, we redefine ”software 
vulnerability”. We use the precise definitions for the 
concepts in software security and reliability that are 
presented in [12] and construct our definition of 
software vulnerability. The taxonomy in [12] is presented 
in 2004 for the concepts of software security and 
reliability, such as fault, error, failure, vulnerability and 
attack. The authors define fault as the cause of error, 
while error is a state of the system that is probable to 
failure. Failure -or service failure is an event in which the 
delivered service is deviated from the correct service. In 
fact, a fault may become active and produce an error. 
Also the error may propagate inside the system and 
produce more errors. If the propagated error reaches 
system boundaries and affects the services, it becomes 
a failure. 

A service is defined in [12] as the behavior 
perceived by users in system boundaries. Correct 
services are determined by the system specification. 
Some parts of the system behavior are specified by the 
security policy, which is a partial system specification. 
Thus when a system deviates from the security policy, a 
security failure occurs. This means that compromising 
security policy causes a security failure. 

Faults are classified in [12] based on eight 
criteria, such as the phase of creation or occurrence, the 
objective, the phenomenological cause, the system 
boundary and the dimension. All combinations of the 
eight elementary fault classes would result in 256 
different combined classes. The authors, however, 
believe that not all combinations are possible. For 
example, there is no malicious non-deliberate faults, or 
all the natural faults are non-malicious. 

An attack is defined in [12] as a malicious 
external fault. An attack may be either an external 
hardware malicious fault, such as heating the RAM with 
a hairdryer to cause memory errors, or an external 
software malicious fault, such as a Trojan horse [12]. 
The term vulnerability is also defined in [12] as an 
internal fault that enables an external fault to harm the 
computer system, although harming the computer 
system is not clearly defined. 

According to the previous definitions, we 
consider software vulnerabilities as: 

  
 

We have concluded this definition, out of the 
definitions in [12], [8], [10], [11] and [1], since looking a 
vulnerability as a fault, instead of a property, better 
clarifies the concept of vulnerability by considering its 
relation to error, security failure and thus security policy. 
Like faults, a vulnerability may be dormant and never be 

activated. It also may be activated and propagated in 
the system. The activated vulnerability might never reach 
the boundaries. As an example, suppose that a buffer 
overflow occurs and the value of a return address in the 
stack changes as a result. But using a monitoring 
procedure, the unauthorized change is detected and the 
program halts. Thus, the security policy is not violated. 
Monitoring the program, as a vulnerability detection 
method, is explained in section III-B. When an active 
vulnerability reaches the system boundaries, it causes a 
security failure. For example, an attacker may activate 
the format string vulnerability in a program and make it 
print some confidential data from the memory [13]. 
Since the active vulnerability has reached the system 
boundaries, it has made a security failure. 

III. Vulnerability Mitigation Methods 

Since vulnerability mitigation is a well-known 
research area, a structured approach is required to 
review the previous related works. In this paper, we 
review vulnerability mitigation methods using a new 
point of view. We classify and review these methods 
based on how we define software vulnerability. In the 
previous section, software vulnerability is defined as an 
internal software fault. Since we considered vulnerability 
as a type of fault, the classifications of fault mitigation 
methods can be used as a base for classifying 
vulnerability mitigation methods. Avizienis et al. present 
a classification for the means of mitigating the faults to 
achieve a secure and dependable system in [12]. We 
use this general classification as a base and extend it 
into a detailed classification of vulnerability mitigation 
methods. Our classification is illustrated in figure 1. The 
vulnerability mitigation classes that are shown in figure 1 
are described in more details in the following sections. 
This figure presents a comprehensive view of the 
previous efforts in mitigating software vulnerabilities. Our 
classification also aggregates the classifications 
presented in the previous surveys, such as the ones 
presented in [1], [3], [2]. Moreover, this classification 
helps to identify the fault mitigation methods that can be 
applied to improve current software vulnerability 
mitigation methods. This helps to suggest new 
directions for the future research. 

a) Vulnerability prevention 
Generally, fault prevention means avoiding the 

fault introduction and occurrence in the application 
during the development. A fault may be introduced 
during any of the development phases: requirement 
analysis, design and implementation. To prevent the 
occurrence of software vulnerabilities during these 
phases, software security is emerged. Software security 
is the process of designing, building and testing 
software for security [14]. It aims at designing and 
implementing a secure software and educating 
developers, architects and users to build security in the 
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A New View on Classification of Software Vulnerability Mitigation Methods

Definition 2.1 Software vulnerabilities are internal faults
that may cause a security failure.



software [14]. There are various secure software 
development methods presented by now, such as 
Microsoft Security Development Lifecycle (SDL) [15], 
Security Quality Requirement Engineering (SQUARE) 
[16] and McGraw’s secure development method [14]. 
Also, there are secure coding best practices that are 
suggested for different programming languages. These 
best practices educate the programmers to prevent 
introduction of well-known vulnerabilities during the 
coding phase, such as [17] for .NET framework, [18] for 
C/C++ and [19] for Java. 

The programmers’ lack of security knowledge is 
an important reason for the introduction of 
vulnerabilities. Transferring the related information to the 
developers is an issue in vulnerability prevention. The 
SHIELDS project was an example of the attempts in this 
area [20]. The goal in this project was to create a 
database of security related information for 
programmers that can be used automatically. A unified 
modeling language was proposed in SHIELDS for 
representing this information [21]. Using this language, 
it is possible to specify a vulnerability class and its 
relations to the well-known attacks. It also helps to 

define the methods of preventing a vulnerability class. 
Thus, it helps the developers to learn how to prevent 
vulnerabilities in order to achieve the security goals of 
the application. Some tools were also developed based 
on this language in that project, such as GOAT [20] and 
TestInv-Code [22]. 

b) Vulnerability Tolerance 
In spite of vulnerability prevention efforts, 

vulnerabilities are created. Thus, vulnerability tolerance 
is required. Generally, fault tolerance methods accept 
the existence of faults and focus on preventing the 
activated faults from reaching the system boundaries 
and causing a failure. Fault tolerance is usually 
performed in two steps: error detection and recovery 
[12]. Therefore, we study monitoring methods based on 
three aspects: the applied error detection, error handling 
and fault handling techniques. Please note that since we 
look a vulnerability as a fault, we consider error as an 
active vulnerability. Thus, the mentioned three aspects 
are also named as active vulnerability detection, active 
vulnerability handling and vulnerability handling 
techniques respectively.  
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A New View on Classification of Software Vulnerability Mitigation Methods

Fig. 1: Our classification of vulnerability mitigation methods according to the classification of fault mitigation 
methods in [12]. The boxes with dashed borders show the methods that have not been used in mitigating software 

vulnerabilities yet.
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Error detection (active vulnerability detection)
There are vulnerability mitigation methods that 

control the execution of a program and detects active 
vulnerabilities at run-time. These methods are also 
called monitoring methods [2]. Various active 
vulnerability detection techniques have been used in the 
proposed monitoring methods. Some examples are
monitoring the memory and validating its integrity [23], 
[24], [25], controlling the flow of user provided data 
(taint analysis) [26], [27], [28], [29] and validating the 
arguments of specific functions [30], [31], [32].

For example, the return addresses of functions 
in the stack memory of the program are monitored in 
[23], [24] and [25] to detect stack overflows at run-time. 
If any unauthorized changes of the return addresses is 
detected, it is concluded that a buffer overflow 
vulnerability has become active in the program.  

Some monitoring methods track the flow of user 
provided un-trusted data at run-time and react 
appropriately if the untrusted data reach sensitive 
statements in the program, such as [26], [27], [28], [29]. 
This method is used to tolerate various vulnerabilities, 
such as DOM-based XSS [29], SQL injection [26], [27], 
[28], buffer overflow [26], [27], [28] and format string 
[26], [27], [28]. Some monitoring methods locate
specific functions in the program and control their 
arguments during the program execution, such as [30], 
[31] and [32].

For example, in [31] the program code is 
analyzed statically and the query strings, that are used 
as the arguments of SQL functions, are parsed to 
extract the ASTs of legitimate queries. In this method, 
the code is instrumented to control the values of SQL 
queries before executing the relevant functions. Before 
executing a query with un-trusted data, the monitoring
procedure extracts the AST of the query. It then 
compares the extracted AST with the AST of the 
legitimate queries. Any inconsistency between the two 
ASTs might reveal a malicious query. Thus, an 
appropriate reaction is taken by the monitoring
procedure to prevent security failures.  

Detecting the errors may be performed during 
the normal service delivery (concurrent detection). Also, 
it may be performed in specific times in which the 
application does not deliver services (preemptive 
detection). The latter is usually applied to eliminate the 
negative effects of software aging. All the studied 
monitoring methods detect active vulnerabilities during 
the normal service delivery. However, preemptive error
detection can be used to detect the activation of 
vulnerabilities that makes the program overuse the 
system resources, like the memory leakage vulnerability.

Error handling (active vulnerability handling)  
After an error is detected, it is handled in one of 

three ways: rollback, roll-forward and compensation. 

Many of the presented monitoring methods 
focus on detecting active vulnerabilities, but less 
attention is paid to handling the active vulnerabilities. It 
seems that more effort is required on designing 
appropriate handling methods for active vulnerabilities.
Although halting the program and throwing an exception
prevents a successful attack, they violate the availability 
of the software to the legitimate users. Thus, it may 
result in deniable of service. Therefore, more intelligent 
active vulnerability handling techniques should be 
designed for the monitoring methods. Since the rollback 
technique is usually used for the transient faults and 
software vulnerability is a permanent fault, this technique 
cannot be applied in the monitoring methods. Thus, the 
roll-forward and compensation techniques can be used 
to design more intelligent active vulnerability handling
methods.

Fault handling (vulnerability handling)
After handling the error, sometimes fault 

handling is performed to remove the fault and prevent 
the similar errors in the future. Of course, sometimes the 
fault is handled immediately after error detection. Fault 
handling is performed by first recognizing causes of the 

Using the rollback method, the system is restored to a 
previously stored error-free state. Then, the program 
continues normal execution from the restored state. In 
some applications, such as real-time applications, there 
is no time to rollback. Thus, roll forwarding is performed 
to change the system state into a degraded new state 
that contains no errors. Then, the program executes 
normally from the degraded state. Roll-forwarding is 
applicable for predictable errors. Another error handling
method is compensation. In this method, the 
redundancy in the current state is used to mask the error 
and let the program continues the execution. Many of 
the monitoring methods halt the program and generate 
an error message when they detect an active 
vulnerability, e.g. [32], [27], [33], [24]. In other words, 
many of the monitoring methods do not perform error 
handling. Some monitoring methods call an exception
handler and take the program to a pre-defined state 
[34], [26], [28]. Most of the monitoring methods that are 
used for web applications ignore the requests that result 
in errors and continue normal execution [30], [31], [35], 
[29]. Calling exception handlers and ignoring the 
malicious requests can be considered as simple roll-
forwarding actions, since the erroneous state is
changed into an error-free state and the program 
continues normal execution. However, more intelligent 
reactions can be performed after detecting active 
vulnerabilities. For example, in [36] the stack content 
and return addresses are stored to compensate for 
buffer overflow errors. When a buffer overflow error is 
detected, the monitoring procedure uses the stored 
data to help the program continue execution securely.



error. Usually, the faulty component is isolated to 
prevent the future activation of the fault. A spare fault-
free component is then replaced by the faulty one. The 
system is reconfigured based on the new structure. We 
are not aware of any monitoring method that consists of 
a vulnerability handling procedure. However, there are 
some specific methods for automatically patching the 
software vulnerabilities, such as [37], [38], [39], [40] and 
[41]. These methods might be usable in the proposed 
vulnerability tolerance methods to handle the 
vulnerabilities. The automatic patching methods analyze 
the malicious data that is used in an attack and modify 
the program to filter similar data in the future. These 
methods can be combined with preemptive active 
vulnerability detection techniques to generate a 
complete vulnerability tolerance solution. 

Table I summarizes the presented vulnerability 
tolerance methods so that the reader can review them 
easier. To sum up, there are various monitoring 
methods with enhanced error detection mechanisms 
presented by now. These methods pay more attention 
to detecting the errors. This might be due to the 
difference between software vulnerability and the other 
faults. Usually, software vulnerability is activated by 
malicious external faults. Therefore, detecting an active 
vulnerability reveals an ongoing attack. The software 
should resist the attack as soon as possible to prevent 
further damages. Thus, the quick detection of the active 
vulnerability is very important. Halting the program is the 
fastest low-risk response to the attack. However, it 
makes the program unavailable to the legitimate users 
as well. Thus, more intelligent error handling and 
vulnerability handling techniques should be added to 
the monitoring methods. To do so, a good starting point 
is inspiring by the current fault handling and error 
handling techniques and designing software 
vulnerability handling techniques. 

c) Vulnerability removal 

Vulnerability removal is performed to detect and 
remove the vulnerabilities that are created in software 
despite the vulnerability prevention efforts. Based on 
figure 1, the fault removal process consists of four 
steps: verification, diagnosis, correction and non-
regression verification. During the verification step, it is 
verified if the system adheres to the specification. If not, 
the reason (fault) is diagnosed and corrected. After 
removing the fault, the verification is repeated to check if 
the removal was effective. The verification at this step is 
called non-regression verification. 

Most of the vulnerability removal methods focus 
on the verification step and don’t suggest any diagnosis 
or correction methods for the detected vulnerabilities. 
There are, however, special vulnerability diagnosis 
methods that diagnose the vulnerabilities that are 
exploited by malicious users. For example, in [42] 
exploitation of memory corruption vulnerabilities is 

detected and then the exploited vulnerability is 
automatically diagnosed. The result of diagnosis 
consists of the instruction that are exploited by an 
attacker to corrupt critical program data, the stack trace 
at the time of memory corruption and the history that the 
corrupted data are propagated after the initial 
corruption. This information helps the developers to 
remove the diagnosed vulnerabilities. We could not find 
any vulnerability diagnosis or correction procedure that 
is used after the verification step of a vulnerability 
removal method. We need vulnerability diagnosis and 
correction procedures that can be used after the 
verification step, not after detecting an attack. In other 
words, these procedures should not be based on the 
attack information, but based on the information 
achieved during the verification step. 

Some vulnerability detection methods perform 
the verification step by checking if the software adheres 
to the security specification, while some of them verify if 
specific vulnerabilities exist in the software. Figure 1 
illustrated our classification of vulnerability verification 
methods. We divide the verification methods into three 
main classes: static, dynamic and hybrid methods. 

i. Static analysis 
Static analysis methods do not execute the 

program. Instead, they examine the program code and 
study its possible behaviors. Therefore, the result of 
static analysis is true regardless of the input data and 
static methods are usually sound and conservative [43]. 
A sound method is able to detect any specified 
vulnerability in the program. In other words, if a 
vulnerability is defined for the static analyzer and exists 
in a program, the analyzer will surely find it. In order to 
be sound, the analyzer produces conservative results 
that are weaker than the actual ones and may not be 
very useful [43]. In fact, static analysis is appropriate in 
proving the absence of a specific vulnerability. Usually 
static analyzers create many false alarms, hence they 
cannot be very useful in proving the existence of a 
specific vulnerability. Static analysis may be performed 
on the program or on the behavior model of the 
program [12]. Thus, static analysis methods are divided 
into two main classes: program-based and model-
based methods. 
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ii.

 

Program-based methods

 

As figure 1 shows, these methods are classified 
into seven

 

subclasses. Each class is explained as 
follows.

 

Pattern Matching

 

The most basic static analysis method is pattern 
matching. A

 

pattern matcher considers the program as 
a text file. It may

 

not even distinguish between the code 
and the comments. The

 

pattern matcher searches for 
vulnerable functions or patterns

 

in the text of the 
program code. Thus, this method can be

 

implemented 
using any pattern matching utility, such as grep.

 

Such a 
tool needs a database of the vulnerability patterns. As

 

an example, Flawfinder [44] scans C/C++ programs to 
detect

 

buffer overflow or format string in them. This tool 
ignores the

 

text inside the comments and strings. 
However, it does not

 

recognize the type of function 
parameters and control flow or

 

data flow of the program. 
This lack of knowledge results in

 

many false decisions. 
Thus, it makes many false positive and

 

false negative 
alarms.
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Reviewed Paper Active vulnerability detection Active vulnerability handling Vulnerability handling Vulnerability

[23]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts or restarts the program.
(rollback)

None Buffer overflow

[24]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts the program. None Buffer overflow

[25]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts the program. None Buffer overflow

[26] Monitor the flow of un-trusted
data. (preemptive)

Invokes exception handlers.
(roll-forward)

None
Any vulnerability
that is exploitable
by malicious input
data.

[27] Monitor the flow of un-trusted
data. (preemptive)

Halts the program. None
Any vulnerability
that is exploitable
by malicious input
data.

[30]
Monitor the argument of
SQL-related functions.
(preemptive)

Ignores the request. (roll-
forward)

None SQL injection

[31]
Monitor the argument of
SQL-related functions.
(preemptive)

Ignores the request. (roll-
forward)

None SQL injection

[32]
Monitor the format argument
of printing functions. (pre-
emptive)

Halts the program. None Format string

[28]
Monitor the flow of un-trusted
data. (preemptive)

Invokes exception handlers.
(roll-forward)

None
SQL injection
Buffer overflow
Format string

[36]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Recovers the stack. (compen-
sation)

None Buffer overflow

[29] Monitor the flow of un-trusted
data. (preemptive)

Ignores the request. (roll-
forward) None DOM-based XSS

Lexical analysis
In this method, source code of the program is 

tokenized in order to recognize the variables and 
function arguments. Thus, the results of a lexical 
analyzer can be more accurate than the results of a 
pattern matcher. As an example, the tool ITS4 applies 
lexical analysis to detect buffer overflow, format string 

and race condition vulnerabilities in C or C++ programs
[45]. ITS4 scans the source code statically and breaks it
into series of lexical tokens. These tokens are compared
with the token streams that are defined in a vulnerability
database. The vulnerability database contains several 
handlers for well-known vulnerable functions in C/C++.

Parsing
In this method, source code of the program is 

parsed and represented in Abstract Syntax Trees (AST). 
The ASTs are then used to analyze the program 
syntactically and semantically. For example, Lint uses 
this method to detect vulnerabilities in programs written 
in C [46]. As another example, in [47] the ASTs of the 
source code are extracted and compared to the ASTs of 
different vulnerable codes. The main idea in [47] is that 
different vulnerabilities in software may be related to the 
same flawed programming pattern. Thus, the suggested 
method uses the ASTs of known vulnerable codes and 
searches for similar patterns in the target program.
When a similar pattern is found in the program, it may 
reveal an unknown vulnerability.

Data flow and taint analysis
In this method, the flow of data among the 

instructions is analyzed to determine possible values 
that a variable holds during the run time. Two well-
known program representations are used in this 
method: control flow and data flow graphs. In a control 
flow graph, each node represents an instruction and a 
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Table 1: Examples of vulnerability tolerance methods.
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execution dependency. In other words, a directed edge 
from node A to node B means that node A is executed 
after the execution of node B. The data flow graph is a 
modified version of the control flow graph in which new 
directed edges are added to show the data dependency 
among the instructions. In this graph, the node A has 
data dependency to the node B, if the data that is used 
in node A is already manipulated in node B. As an 
example, the vulnerability detection method presented in 
[48] extracts the control flow and data flow graphs from
the source code. It then compares extracted graphs with 
some patterns of known vulnerabilities. In this method, 
known vulnerabilities are specified as simple patterns of 
vulnerable functions or more complex flow-based rules.

  

A subclass of data flow analysis is called taint 
analysis. A taint analyzer only tracks the flow of data that 
come from un-trusted resources. The un-trusted 
resources include the network protocols, keyboard, 
touchpad, webcam, files, etc. Since most of the 
vulnerabilities are exploited by un-trusted input data, this 
method pays attention to the flow of un-trusted input 
data in the program. If such data reach sensitive
statements in the program, a vulnerability may be 
reported by the taint analyzer. The sensitive statements, 
called sinks, are defined according to the specified 
vulnerabilities. For example, the functions that execute 
SQL queries are usually defined as the sinks for SQL 
injection vulnerability. The propagation of tainted data 
among the instructions is determined based on some 
predefined rules. For example, if the data in a tainted
variable is assigned to an un-tainted variable, the un-
tainted variable will get tainted too.

Taint analysis is used in many of the proposed 
vulnerability detection  solutions, e.g. [49], [50], [51], 
[52] and [53], to detect various  vulnerability classes. 
Since this method focuses on the flow of tainted data, it 
does not consider the execution paths in the program
that are not affected by malicious data. This feature 
reduces the time of analysis and number of produced 
false positives. However, there are vulnerability classes 
that cannot be specified in such a source-sink structure,
e.g. logic vulnerabilities. Although an attacker exploits 
logic vulnerabilities with malicious data, the sinks cannot 
be easily specified for this class of vulnerability. For 
example, the sinks for SQL injection vulnerability are the 
query execution statements. But a sink for logic 
vulnerabilities may be any statement that manipulates 
the input data.

Annotation-based methods
Annotation is a comment that the programmer 

makes in the code about the desired behavior of a 
function or an instruction. It may be defined as a set of 
pre- and post-conditions or as simple pre-execution 
conditions. An annotation-based analysis algorithm 

reads the annotations, analyzes the code statically and 
verifies if the conditions are met in the program. There
are plenty of annotation languages presented so far, 
such as SPLINT [54], MECA [55], Sparse [56], SAL [57] 
and a Comment [58].

Since there is a huge number of statements and 
functions in the programs, manual annotation is usually 
very time consuming and fault prone [58]. There are 
annotation languages that provide some facilities to 
annotate the program more easily, such as MECA [55] 
and aComment [58]. Among them, aComment is 
designed to help in detecting concurrency faults in the 
operating systems and allows the programmers to 
define the pre- and post-conditions that are related to 
the interrupts in each function. It also infers the 
annotation of some functions automatically to reduce 
the programmers’ workload. In this way, the 
programmers are not supposed to annotate all the 
functions manually.

Although some of these languages help in 
reducing the required time and effort for annotating the 
programs, they usually have a different syntax and 

directed edge between two nodes represents their 

semantics than the applied programming languages. 
Therefore, the programmers and verifiers have to make 
extra efforts to learn another language in order to use 
this method. Also, the programmers should be familiar 
with the security requirements of the programs and the 
vulnerability classes to annotate the program 
appropriately. Therefore, the success of this method
depends on the programmers’ knowledge of software 
security. Moreover, this method is not helpful in 
analyzing the COTS1 software and third party 
components since their source code is not available.

Constraint analysis
In this method, the program is analyzed 

statically and some constraints are calculated for 
specific objects in it. The constraints are defined 
according to specific vulnerabilities and are solved to 
verify if the program suffers from those vulnerabilities. 
Constraint analysis was first proposed by Wagner et al. 
in [50]. The resulted tool, called BOON, considers the 
strings in a C program as an abstract data type. There 
are also predefined functions that manipulate this data
type, such as strcpy(), strcat(), etc. BOON summarizes
the state of each string by two integer values: the 
allocated size for the string and its current length. For 
each string in the buffer, it analyzes the string 
manipulating statements in the program to verify if the 
length of the string exceeds its allocated size. If such 
condition is inferred, the program might contains buffer 
overflow vulnerabilities.

It is important to note that the constraints are 
determined by the analyzer in this method, not by the 
programmer. This makes the constraint analysis method 
different from the annotation-based analysis method. 
                                                           
1
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Moreover, constraint

 

analysis does not increase the 
programmer’s workload since

 

generation of the 
constraints is performed automatically

 

and does not 
involve the programmer. Of course, it cannot

 

profit the 
programmers’ knowledge of the code to do a more

 

efficient analysis.

 

Theorem proving

 

In this method, the software and its specification 
are

 

expressed as some formulas of logics or algebraic 
systems.

 

Also, the security requirements of software are 
expressed

 

as some theorems. Proving these theorems 
demonstrates the

 

satisfaction of the security 
requirements. Otherwise, there is

 

a fault (vulnerability) in 
the program. As an example, in [59]

 

the source code of 

target program is statically analyzed and

 

some first-
order formulas are generated that assert the absence

 

of 
certain faults and vulnerabilities, such as out-of-bounds

 

array access. If the generated asserts are proved, the 
program

 

does not contain such faults and 
vulnerabilities.

 

Although the results of analysis are accurate in 
the theorem

 

proving methods, they demand expertise 
and enough

 

experience. In fact, theorem proving is 
difficult to be achieved

 

automatically and requires high-
quality staff to apply this

 

method, which is very time-
consuming. So it is generally

 

used to verify correct 
design rather than the actual code [60].
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Analysis Method Description Advantages shortcomings Examples

Pattern Matching
Considers the program as a
text file and searches for vul-
nerability patterns in the text.

Simple, fast.
Does not have any idea about the types
of function parameters and control or
data flow of the program and so gen-
erates many false alarms.

[44].

Lexical Analysis
Tokenizes the code to recog-
nize variables and function ar-
guments.

Variables and function
arguments are recognized.
More accurate than the
pattern matching method.

Lack of knowledge about the syntax
and semantics of the code causes false
alarms. Requires the high level source
code.

[45].

Parsing

Parses the code and represents
it in Abstract Syntax Trees
(AST) to be analyzed syntac-
tically and semantically.

Understands the code syntac-
tically and semantically, less
false alarms in comparison
with the above two methods.

Requires the high level source code.
[47], [46],
[30], [31],
[66].

Annotation-based
methods

Comments that the program-
mer makes about the desired
behavior of the code. The
code is then analyzed stati-
cally to verify if the condi-
tions are met.

Profits the programmers’
knowledge to do a focused

analysis.

The programmer must learn an addi-
tional language to do the annotation.

[54], [55],
[56], [57],
[58].

Theorem proving

The security requirements of
software are expressed as
some theorems. Proving these
theorems, demonstrates the
satisfaction of the security re-
quirements or existence of
vulnerabilities.

Accuracy.
Difficult to be achieved automatically
and requires high-quality staff to apply

this method
[59].

Data flow analysis
(Taint analysis)

Tracks the flow of the data
that comes from un-trusted
resources and warns if the
data reaches sensitive pro-
gram points.

Reduces the analysis time and
number of false positives by
not considering the execution
paths in the program that
are not affected by un-trusted
data.

Cannot detect vulnerabilities that are
not defined specifically in a source-sink

structure.

[51], [52],
[53], [67],
[50], [68],
[69], [70].

Constraint analysis

Analyzes the program, asso-
ciates constraints with some
objects in the code and solves
them to verify if the program
is vulnerable.

Constraints are generated
automatically and do not
increase the programmer’s
workload.

Does not profit the programmer’s
knowledge of the code (in comparison
with the annotation method).

[50], [51],
[52], [53].

Model checking

Models the program and then
checks the model to verify if
it satisfies specified require-
ments.

Only the modeling and re-
quirement specification is per-
formed manually by the hu-
man analyzer, rest of the anal-
ysis is done automatically.

Modeling the program and specifying its
security requirements- if done manually-
is time consuming and fault prone.
State-explosion problem when the num-
ber of program states is large.

[61], [62],
[63], [71],
[64].

Table 2: Static analysis methods: a comparison

iii. Model-based methods (model checking)
In this method, the program is modeled and 

then analyzed to verify if it complies with its 
specifications, e.g. [61], [62], [63] and [64]. If a specific 
requirement is not satisfied in the software, this method 
provides some counter examples. Model checking helps 
the human analyzers by automating a noticeable part of 
the analysis. Although modeling and specifying the 
requirements may be done manually, analyzing all 

possible states of the program and verifying the 
requirements are done automatically. This is a great 
help in analyzing large programs. A well-known example 
of using this method for detecting vulnerabilities is 
MOPS [63]. Using MOPS, the program is modeled as a 
push-down automaton2. Also, the requirements are 
                                                           
2

A push down automaton is a type of computational model. It is 
similar to NFAs except that it uses an additional component called a 
stack. In this model, state transitions are chosen based on three 
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defined through safety properties. A safety property is
represented as a finite state automaton. It defines the 
ordering constraints on security related operations. After 
modeling the program and defining its constraints, 
MOPS searches exhaustively through possible program 
states to check if a reachable state violates the safety 
properties.

Abstracting the program in a model is a 
challenging task in this method. The model should be 
expressive enough to have a precise analysis. Thus, 
some model checking methods 2A push down 
automaton is a type of computational model. It is similar
to NFAs except that it uses an additional component 
called a stack. In this model, state transitions are 
chosen based on three components; input signal,
current state and what is at the top of the stack. Thus, 
the stack plays the role of an additional memory for it.
also help the analyzer to model the target program. For
example, MOPS uses the control flow of the program to
build its automata. Also, in [64] the GCC compiler is 
used to automatically model and verify the programs 
that are written in any language supported by this 
compiler, i.e. C, C++, Java, etc. This is done by 
employing an intermediate language of GCC, called 
GIMPIL, that is common to all the supported languages.
The model is extracted from the intermediate 
representation of the program and is checked against 
the defined specification by the use of Moped. Moped is 
a model checking tool for push down systems365].

There are, however, some shortcomings in the 
model checking method. Although the modeling phase 
is performed automatically in some model checking 
methods, the analyzer should manually specify the 
security requirements in this method. This is again time 
consuming and may cause errors in the results. Also, 
the method suffers from state-explosion problem for 
large programs.

Table II summarizes the reviewed static analysis 
methods. Note that all these methods inherit the general 
advantages and shortcomings of static analysis.

iv. Dynamic Analysis

By executing the program with actual data, 
dynamic analysis studies the exact run-time behavior of 
the program. Dynamic analysis can be as fast as the 
execution of the program, whereas static analysis 
generally requires more computation time to obtain 
accurate results [43]. The main challenge in dynamic 
analysis methods is executing all the possible execution
paths in the program and activating all vulnerabilities in
those paths. In fact, acquiring an appropriate test data 
set, that make the program behave more diversely, is an 
issue in these methods. The most important 
shortcoming of dynamic analysis methods is that they 
                                                                                                    
components; input signal, current state and what is at the top of the 
stack. Thus, the stack plays the role of an additional memory for it.

are unable to guarantee the analysis of all feasible 
execution paths. Therefore, the dynamic analysis is not 
sound and is mostly used to prove the existence of
specific vulnerabilities in the programs. The dynamic 
methods are classified into two main classes in [12]: 
methods that use symbolic input values and methods 
that use actual (concrete) input values to test the 
program. Based on the recent advances in dynamic 
analysis methods, we classify these methods in three 
classes based on the type of applied input values:
concrete execution, symbolic execution and concolic 
(concrete + symbolic) execution methods. The following 
subsections describe each class in more details.

a) Concrete execution
In this method, the program is executed with 

actual data and its behavior is analyzed to detect 
vulnerabilities. There are four dynamic analysis methods 
that use actual data to execute the program during the 
analysis: fault injection, mutation-based analysis, 
dynamic taint analysis and dynamic model checking.  

i. Fault injection
In this method, the external faults are injected to 

the program to examine its behavior. According to our 
definition in section II, the external faults abuse the 
internal faults and cause unauthorized behaviors in the 
program. In other words, internal faults are activated by 
the external fault and are propagated to reach the 
program boundaries. Therefore, inability to handle
external faults may reveal a vulnerability in the program.

The external faults may be injected by 
corrupting input data to verify if the program is able to 
handle them. Most of the blackbox vulnerability 
scanners corrupt input data and analyze the reaction of 
the program, such as [72] and [73]. The black-box
scanners have access to the inputs and outputs of the 
program. They might also have very little knowledge 
about the program internal structure [74]. They usually 
create the corrupted data based on known attack 
patterns to study if the program can resist these attacks 
or suffers from the relevant vulnerabilities. Another group 
of dynamic vulnerability detectors that inject corrupted 
input data to the programs are fuzzers. Takanen et al. 
introduced fuzzing for detecting vulnerabilities for the 
first time. They suggested injecting unexpected random 
input data to the program and studying its behavior [74]. 
The difference between fuzzers and black-box 
vulnerability scanners is that fuzzers don’t corrupt input 
data exactly based on a list of attack patterns. In fact, 
they generate numerous random faulty data hoping that 
some data make the program crash. The main
advantages of this method were simplicity and 
independence from the analyzed program. Thus, the 
method could be used easily to detect vulnerabilities in 
different programs. However, fuzzers were not intelligent 
enough to corrupt input data effectively and cover most 
of the execution paths. In order to have better program 



coverage, new fuzzers focus on producing well-formed 
corrupted data [75], satisfying data validation checks in 
the program like checksums [76], being aware of the 
state of the program during the fuzzing [77] and 
producing consistent input data with the path conditions 
to make the program execute all the branches [78], [79], 
[80], [81]. All these enhancements made fuzzers play an 
effective role in detecting vulnerabilities during the 
recent years [82]. Injecting faults into the program can 
be done randomly or intelligently. By the word random, 
we mean that faulty data are generated semi-randomly 
based on predefined patterns. For example, in order to 
detect buffer overflow, random input data with different 
lengths are generated. Here the predefined pattern 
determines the length of input data and the other 
properties are set randomly. Takanen et al. consider 
random fuzzers as the ones that make small random 
changes into the valid data. For example, a FTP fuzzer 
may randomly add valid/invalid commands to the test 
data or chose the arguments of the commands 
randomly [74]. Random fuzzers sometimes use 
evolutionary algorithms to guide random choices and 
extend the program coverage, e.g. [83], [84]. Random 
corruption of data is simple and independent from the 
logic and structure of the programs. Moreover, 
randomness helps to reveal a wide range of behaviors 
of the programs while the designed testcases by the 
human analyzer may not. This is because the designed 
test-cases are prepared by a human analyzer who may 
not think of all possible behaviors of the program. 

Corrupting the data intelligently is performed 
based on a previous analysis of the program. Although it 
requires more analysis efforts, it helps in extending the 
program coverage. For example, imagine a program 
that compares one of the input values with an integer 
value and exits if they are not equal. Using the random 
method, the possibility of passing this constraint is one 
out of 232. By analyzing the code before injecting faulty 
data, the analyzer is able to extract the constraint and 
generate the data in a way that complies with the 
constraint. This helps the intelligent corruption method 

 have more reliable program coverage [74].  
ii. Mutation-based analysis 

As mentioned before, acquiring appropriate test 
data is an issue in dynamic analysis. When the program 
behaves normally during the test process, it means that 
either there is no vulnerability in the program or the test 
data don’t reveal the vulnerabilities in the program. In 
the latter case, the data set is not diverse enough to 
activate the vulnerabilities. Mutation is a method that is 
concerned with enhancing the data set during the 
dynamic analysis. In this method, specific vulnerabilities 
are injected into the program code intentionally. If the 
current data set does not detect the injected 
vulnerability, it will not detect similar vulnerabilities in the 
original version of the program. Thus, the analyzer 

augments the data set so that it can detect the 
vulnerability. A version of a program in which a specific 
vulnerability is created, is called a mutant. For example, 
in a mutant the function strncpy( ) is replaced with 
strcpy( ) to make it buffer overflow vulnerable. A good 
test data set distinguishes the mutants from the original 
version of the program and kills them. If no test-case 
kills the mutants, the data set must be augmented [85]. 

This method is effective in detecting software 
vulnerabilities [85], though it requires considerable 
amount of time and effort. If the changed statements in 
a mutant are executed by the test data, the mutant 
would be effective. Otherwise, the result of analysis 
does not reveal the difference between the mutant and 
the original version of the program. Therefore, some 
computations are required to generate appropriate 
testcases that make the program execute the intended 
path which contains the vulnerability. 

Also, automatic creation of mutants for complex 
vulnerabilities is a challenge. As an example, the 
strncpy ( ) functions are automatically changed to strcpy
( ) for creating mutants to detect buffer overflow in [85]. 
There are, however, more complicated buffer overflow 
scenarios like copying an array in a loop that causes 
overflow. Moreover, creating mutants for logic 
vulnerabilities requires a deep understanding of the 
logic of the program. Thus, automatic generation of 
mutants may not be feasible. 

iii. Dynamic model checking 
This method, which is also called execution-

based model checking [86], [87], is a model checking 
method that executes the program exhaustively and 
checks if it satisfies the specifications. For example, the 
tools VeriSoft [88], JavaPathFinder [89], CMC [90], 
Bogor [91] and DART [92] apply this method in their 
analysis. Random execution in dynamic model checking 
is mostly the result of two factors: program inputs and 
scheduling choices of a scheduler [87]. For each 
random input and schedule choice, the resulted 
behavior of the program is analyzed by monitoring the 
process and its environment, e.g. registers and the 
stack. Here, each state consists of the entire machine 
state. When the execution reaches a state, in which the 
specification is compromised, the related input value 
and schedule choice are presented as a counter-
example. 

An advantage of dynamic model checking is 
that by executing the program, the machine handles the 
semantics of the instructions. In other words, there is no 
need to formally represent the semantics of the 
programming language and the machine instructions 
[87]. However, there is a time-state-soundness tradeoff 
in this method. Since the states represent the entire 
machine state, they contain many details and require 
more storage space. Thus, storing all the states might 
be infeasible for large programs. At the same time, 
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exploring the states without a history of visited ones may 
cause visiting similar states again and again. When no 
state is recorded, the model checker spends too much 
time to make sure it has traversed all possible states. 
Storing the states reduces the verification time by 
making sure that no state is revisited. Yet, it requires too 
much space [87]. 

iv. Dynamic taint analysis 
This method is similar to static taint analysis as 

it tracks the flow of information from un-trusted sources 
to the sinks. However, it tracks the flow of tainted data 
during the execution of the program, some examples 
are [93], [94], [95] and [96]. Schwartz et al. describe 
this method precisely in [93]. They introduce a 
language, named SIMPIL, that formally defines the 
algorithms of dynamic taint analysis. Before the 
execution, all the variables are considered untainted. 
While executing the program, variables may get tainted 
according to a predefined policy. This policy defines 
how the taint data propagate from a variable to other 
variables. For example, when tainted data are used in 
an argument of an arithmetic operation, the policy 
defines that the result of this operation should be 
considered tainted. If a tainted value reaches a sink, the 
analyzer reports a vulnerability. 

The basic taint analysis methods limit taint 
propagation to the direct assignments. This might make 
the results of the analysis inaccurate [97]. Sarwar et al. 
present some scenarios in [97] to show how basic taint 
analysis can be ineffective. An example scenario is that 
the tainted data are used in a conditional statement 
(without any direct assignment to other variables) and 
affect on the control flow of the program. Also, tainted 
data might be used to define the number of an iterative 
action or as the index of an un-tainted array. The taint 
analysis method should pay attention to these indirect 
effects of the tainted data in calculating the taint 
propagation. Considering such effects is not always 
easy. For example, the tainted variable might cause 
information leakage through a side channel. To detect 
such vulnerability, the analyzer should taint a large 
amount of variables that results in many false alarms 
[97]. 

Table III summarizes and compares the 
advantages and disadvantages of the concrete 
execution methods. Each method inherits the 
advantages and shortcomings of dynamic analysis. 

b) Symbolic execution 
Using the symbolic execution method, the 

program is executed with symbolic input values instead 
of concrete data values [98], [99]. Thus, the values of 
program variables are represented as symbolic 
expressions over the symbolic input. During the 
symbolic execution, the state of the program and the 
conditions of the current path are calculated 

symbolically. The

 

path conditions are updated any time 
a branch instruction is executed.

 
At the end of an 

executed path, the path conditions are
 
solved using a 

constraint solver. There are various constraint
 
solvers 

presented by now, such as STP [100] and Z3 [101] that
 

solve the constraints on binary vectors and Hampi [102] 
and

 
S3 [103] that solve the constraints on string 

variables. If the
 

constraint solver solves the path 
conditions, it generates some

 
concrete input data that 

are used to execute the intended path
 
in the program.

 

There are several challenges with the symbolic 
execution

 

method. For example path explosion, the 
overhead of constraint

 

solving for complicated paths, 
non-determinism of

 

concurrent programs and the trade-
off between precision and

 

scalability of modeling the 
memory are some of the challenges

 

in applying 
symbolic execution [104]. Cadar and Sen present

 

the 
challenges of this method and mention some solutions 
for

 

them [104].

 

To overcome these challenges, a solution is 
combining symbolic

 

execution with concrete execution. 
The result is a new

 

method that is called concolic 
execution. This method is

 

described in the next section.

 

c)

 

Concolic execution

 

A problem with pure symbolic execution is that 
the constraints

 

of complex loops and recursive functions 
may get

 

very complicated and cannot be resolved in an 
acceptable

 

time [105]. Concrete execution applies real 
data to execute the

 

program. There is a little chance to 
traverse all the feasible

 

paths in this method. Using the 
combined method, concolic

 

+ symbolic execution, the 
concrete data is used to simplify

 

the complex 
constraints that are generated by the symbolic

 

execution. This method was first presented by Godefroid 
et al.

 

in [92]. Concolic execution is performed by 
changing some

 

symbols in the complex constraints into 
the concrete values.

 

This helps to achieve better 
program coverage with much less

 

computation 
overhead.
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Concolic execution is used in many of the 
recent fuzzers to extend their knowledge about the 
program, such as KLEE [78], EXE [80], Simfuzz [75], 
CUTE [106], SAGE [79], Taintscope [105] and [107]. 
For example, CUTE combines symbolic execution with 
concrete execution to create input data traverse deeper 
paths in the program. It first executes the program with 
concrete input data. During the execution, it calculates 
symbolically the constraints of the executed path. The 
calculated constraints are then negated one by one, 
from the last to the first. After each negation, the 
resulted constraints are queried from a constraint solver. 
If the constraint solver solves the new constraints, the 
result is used to generate new test data that traverse 
other execution paths in the program.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 3:

 

Concrete execution methods: a comparison

 

 
 
 

Concolic execution is also used in other 
dynamic vulnerability

 

detection methods. For example in 
[108] a dynamic model

 

checking method is applied that 
uses concolic execution for

 

state-space exploration of 
the analyzed application. In [108],

 

concolic execution 
helps to model the application as a finitestate

 

automata 
and to guide further state-space exploration.

 

d)

 

Hybrid analysis

 

The previous sections described static and 
dynamic analysis

 

methods and their advantages and 
shortcomings. The idea of

 

combining static and 
dynamic analysis was first proposed by

 

Ernst in [43]. He 
suggested that hybrid analysis can combine

 

the static 
and dynamic analysis methods to generate a new

 

analysis method that profits a great amount of 
soundness

 

and accuracy advantages of each method 
with little sacrifices.

 

 

 

 
 

 
 

 
 

 
  

 
 

 
 

  

 
 

 
  

Monitoring and static analysis methods are also 
combined in

 

[110] to detect SQL injection errors and 

© 2017   Global Journals Inc.  (US)1
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Analysis Method Description Advantages shortcomings Examples

Fault injection

Faults are generated semi-
randomly. (random corrup-
tion)
Fault injection is based on
some previous analysis of the
program. (intelligent corrup-
tion )

Simplicity and independence
in random corruption of in-
puts. (random corruption)
More reliable code coverage,
less false negatives. (intelli-
gent corruption)

Cannot detect logic vulner-
ability. Less reliable code
coverage. (random corrup-
tion)
More effort is required for
testing each single program.
(intelligent corruption)

[83],[84],
[75], [76],
[78],[79],
[80].

Mutation-based
Analysis

Injects vulnerability into the
program code. If the current
data set does not reflect the in-
jected vulnerability, it would
not detect similar vulnerabili-
ties in the original version of
the program.

Reduces false negatives by
enriching test data.

Expensive in time and com-
putation. Automatic muta-
tion of complicated vulner-
abilities is a challenge.

[85].

Dynamic taint anal-
ysis and sanitization

Tracks the flow of informa-
tion from input sources to the
sinks during the run-time.

Reduces the analysis time
and number of false posi-
tives by not considering the
paths in the program that
are not affected by malicious
data.

Cannot detect vulnerabilities
that are not defined in spe-
cific source-sink structure.

[93],[96].

Dynamic Model
checking

A model checking method in
which the program is executed
with concrete input values ex-
haustively.

No need to formally rep-
resent the semantics of the
programming languages and
machine instructions.

Time-state-soundness trade-
off.

[88],[89],
[90],[91],
[92].

From then, many researchers have combined 
these methods, in different manners, to make up for 
each other’s shortcomings. For example, Monga et al. 
combine static and dynamic analysis to detect XSS and 
SQL injection vulnerabilities in PHP applications in [109]. 
The suggested method first analyzes the code statically 
and extracts the control flow graph of the functions in it. 
These graphs are then connected together to obtain an 
inter-procedural control flow graph (iCFG). The iCFG is
analyzed to extract the possible paths from the tainted 
sources to the sinks in it. For each sink, backward 
slicing is used to detect the statements that affect the 
tainted argument. These statements are monitored at 
run time. When a tainted value is used in a sink, the 
monitoring procedure passes it to an oracle to verify if it 
can exploit a vulnerability. The oracle have a database 
of well-known attack patterns that are used to exploit
different vulnerabilities. For example, the implemented 

oracle for mysql query() performs a limited syntactically 
analysis on the SQL queries and searches for the 
tainted characters in unsafe positions. In this method, 
the sanitizing procedures are assumed to be perfect.

prevent the successful attacks. In the static analysis 
phase the hotspots, that are statements in the program 
that execute a SQL query, are identified. Also the control 
flow of the program is extracted. Then, the query strings 
in the hotspots are parsed. Considering the control flow 
of the program, a FSA for each hotspot is created to 
model the legitimate queries. During the monitoring
phase, the queries are checked against the relative FSA 
to prevent execution of malicious queries.

As the last example, hybrid analysis is used in 
[111] to detect logic vulnerabilities in web applications. 
The logic vulnerabilities are usually related to the 
intended functionality of an application. Thus, there is no 
general specification for them that can be used in 
different applications. For example, consider an online 
store that allows the users to use coupons for having 
discount on specific items. It has a policy which
determines that each coupon should be used only once. 
A logic vulnerability, however, allows the users to reuse 
a coupon and reduce the cost to zero. Since logic 
vulnerabilities are created based on the functionality of 
the application, the vulnerability detection method 
requires the specification of the program. The proposed 
method in [111] consists of two steps. First, the web 
application is executed with normal input data. The
executed traces are then analyzed to infer the 
specification of the application. This is based on the 
intuition that normal behavior of the program reflects the 
properties that are intended by the programmer. In fact, 
because the specification of the program is not always 
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available, this method uses dynamic analysis to obtain 
it. The inferred specification is presented in the form of 
likely invariants. In the second step, model checking is 
used to analyze the web application based on the
inferred specification.

e) Vulnerability forecasting
Generally, fault forecasting is used to predict 

the quality or quantity of the faults that are left in the 
system and will be activated in the future. It is mainly 
concerned with estimating the current reliability of the 
system and predicting its future reliability. This 
prediction may be qualitative or quantitative (usually 
probabilistic). The qualitative forecasting identifies and 
ranks the future failure modes. Also, the event
combinations that lead to the failures are identified.

The quantitative forecasting is performed by 
modeling or operational testing. These methods are 
complementary, since the results of operational tests 
are usually used to model the system more accurately. 
Software Reliability Growth Models (SRGM) are used 
generally for fault forecasting. In fact, SRGMs model the 
testing process [112]. In most of these models, the rate 
of fault detection gradually reduces and the cumulative 
number of faults eventually approaches a fixed value. 
These models help to predict the number of left faults in 
the software and determine when the software is ready 
to be released. They are also used to estimate the 
required efforts for future maintenance.

There are probabilistic models for predicting the 
rate of vulnerability detection, named Vulnerability 
Detection Models (VDM). Alhazmi and Malaiya 
proposed a specific model, named AM4 for vulnerability 
detection in [113]. In this model the rate of vulnerability 
detection depends on two factors: one of these factors 
reduces as the number of remaining undetected 
vulnerabilities declines. The second factor increases
with the time. In this way, the rate of vulnerability 
detection is modeled in a S-shaped form. In fact, AML is 
created based on the observation that the detectors5

pay little attention to the newly published software. 
Gradually people become familiar with the software and 
the detectors pay more attention to it. Thus, the rate of 
vulnerability detection increases by time and peaks at 
some period. By the introduction of newer versions of 
the program, the detectors’ interest becomes lower and 
the rate of vulnerability detection decreases. Alhazmi 
and Malaiya examined the applicability of this model to 
various operating systems in [113] and [114]. The 
results demonstrated that AML fits the data of several 
operating systems.

All the mentioned models are time-based. It 
means that they determine the detection rate based on 
the calendar time. An effort-based model, named AME 2,

is proposed by Alhazmi and Malaiya in [113]. They 
believe that time-based models do not consider the 
changes that occur in the environment during the 
lifetime of the system. Thus, they consider the number of 
installations as an important environmental factor that 
affects the rate of vulnerability detection. It is based on
the observation that the detectors are more interested in 
the software that is installed in many computers. 
Therefore, the rate of vulnerability detection is modeled 
in AME based on the number of installations. Sung-
whan Woo et al. explore the applicability of AML and 
AME to some HTTP servers, i.e., IIS and Apache. The 
results indicate that these models are applicable to the 
HTTP servers in addition to the operating systems [112].

                                                           
4Alhazmi-Malaiya Logistic model
5People that analyze applications in order to detect vulnerabilities in 
the mand report them to the vendors of applications or use them 
maliciously
2Alhazmi-Malaiya Effort-based model

Of course, this method does not consider many 
of the effective factors on the detection trend. For 
example, it only calculates the cyclomatic complexity to 
estimate the code complexity. There are other 
complexity metrics that can be considered in addition to 

A problem with the studied VDMs is that they 
are parametric models that should be fitted to real 
vulnerability data [115]. To model the vulnerability 
detection rate in a specific application, a large amount 
of historical vulnerability data is required. Therefore, it is 
necessary that many of the vulnerabilities be discovered 
already. Hence, these models cannot be applied to
predict the detection rate for newly released software. 
Also, it is shown in [116] that the precision of VDMs 
depend on the number of known vulnerabilities. The 
precision of the VDMs are usually very low at the early 
stages in the lifecycle of the program. It seems that the 
problem is because the models don’t consider the 
features of each application in their predictions. Thus, 
they need a history of detected vulnerabilities to 
estimate the security level of the program. There are 
many features in each application and its environment 
that affect the rate of vulnerability detection. Rahimi and 
Zargham present a VDM in [115] based on two effective 
factors: code complexity and code quality. The code 
complexity is defined based on the cyclomatic 
complexity. Also, the code quality determines its
compliance with secure coding practices. They believe 
that more vulnerabilities are detected in the applications 
with lower code quality. Also, the possibility of detecting 
vulnerabilities is less in the applications with 
complicated codes. Thus, the source code of the 
application is statically analyzed to compute the two 
factors. The computed data are then used to model the
vulnerability detection rate. Since this model does not 
need a database of detected vulnerabilities, it can be 
used for newly released applications. The authors 
analyze four applications to study the impact of these 
factors on the vulnerability detection trend. The analysis 
results show that the proposed method can predict 
vulnerabilities even in early stages of the application’s
lifecycle.



 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

this one. The environmental parameters can also

 

be 
considered for a good prediction. As an example, even 
the

 

seasonal changes affect the rate of vulnerability 
discovery. It is

 

shown in [117] that more vulnerabilities 
are reported during the

 

mid-end and year-end months. 
Also, the presented method in

 

[115] is based on 
analyzing the source code of the application.

 

So it 
cannot be helpful when the source code is not available.

 

There are some qualitative methods for estimating the 
current

 

security level of the application. For example 
OWASP ASVS

 

consists of several check lists that helps 
to determine the

 

security level of a web application 
[118]. It classifies the check

 

lists in thirteen classes, 
such as authentication, access control, session 
management, etc. In each class the check lists are

 

grouped into three security levels. If an application 
passes all

 

the check lists of a group, it is achieves the 
respective security

 

level. These methods only estimate 
the current security level.

 

Based on the current level, it is 
possible to predict the future

 

failure modes. However, 
we could not find any qualitative

 

method that predicts 
and ranks the future security failures

 

based on the 
current state.

 
 

V.

 

Conclusions

 

During the past decades various methods have 
been presented

 

for mitigating software vulnerabilities. A 
comprehensive

 

classification of the proposed methods 
helps to achieve a

 

general understanding of this 
research area. In this paper, we

 

defined software 
vulnerability as an internal fault. By considering

 

software 
vulnerability as a type of fault, we classified the

 

vulnerability mitigation methods based on the general 
classification

 

of the fault mitigation methods. We 
extended the general

 

classification of fault mitigation 
methods, represented it in

 

the context of software 
vulnerability and added more detailed

 

subclasses into it. 
We divided vulnerability mitigation methods

 

into four 
main classes: vulnerability prevention, vulnerability

 

tolerance, vulnerability removal and vulnerability 
forecasting.

 

The vulnerability prevention methods 
attempt to prevent the

 

occurrence of software 
vulnerability. Software security and the

 

secure coding 
best practices are examples of these efforts. The

 

question is why, despite the vulnerability prevention 
efforts,

 

vulnerabilities are still created. Oliveira et al. 
believe that

 

educating the developers is not enough for 
preventing the

 

vulnerabilities [119], because security is 
not an issue for the

 

developers. They believe that the 
human’s memory is limited

 

and can only keep a limited 
number of mental elements

 

available at a time. The 
programmers are also supposed to

 

create applications 
with correct functionality and acceptable

 

performance. 
Under the time pressure, an ordinary situation

 

in 
software programming, the programmers usually chose 

the

 

simplest solutions for developing the software and 
pay little

 

attention to the security concerns. Oliveira et al. 
suggest developing

 

assistant tools that remind the 
educated programmers

 

the security concerns during the 
development.

 

Besides educating the programmers, intelligent 
assistant tools

 

are required to notify the security 
concerns at specific statements

 

or functions. Thus, in 
the future we should work on

 

designing and 
implementing intelligent assistant tools that help

 

the 
programmers to avoid generating vulnerabilities during 
the

 

design and implementation of the applications. 
These tools

 

should be intelligent enough not to bother 
the developers with

 

many false alarms. They may use 
the enhanced static analysis

 

methods to analyze the 
code during the coding phase and warn

 

the 
programmers at sensitive situations. This will help the

 

programmers to use their security knowledge more 
effectively

 

in preventing the vulnerabilities.

 

Vulnerability tolerance methods accept the 
existence of vulnerabilities

 

in the programs and prevent 
the active vulnerabilities

 

from making security failures. In 
this paper, the vulnerability

 

tolerance methods were 
studied based on three aspects: the

 

applied active 
vulnerability detection technique, active vulnerability
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handling technique and vulnerability handling technique.
All the reviewed vulnerability mitigation methods detect 
active vulnerabilities during the normal execution of the 
program (concurrently). However, there are active 
vulnerabilities that overuse system resources and make 
the resources unavailable to legitimate users after a 
period of time, such as the memory leakage 
vulnerability. The security failure as a result of these
vulnerabilities can be prevented by checking the system 
resources periodically. Thus, preemptive error detection 
can be applied to detect if such vulnerabilities are 
active.

Most of the vulnerability tolerance methods 
focus on detecting the active vulnerabilities. However, 
less attention is paid to handling the (active) 
vulnerability. In the proposed methods, active 
vulnerabilities are handled by halting the program,
restarting the program or invoking an exception handler. 
Although these mechanisms limit the negative effects of 
the active vulnerability, they violate the availability of the 
application to the legitimate users. Thus, more intelligent 
vulnerability handling techniques are required for the 
current vulnerability tolerance methods. A good starting 
point is inspiring by the current fault tolerance methods. 
As an example, software diversity is a fault tolerance 
method that is used to make the programs reliable. In 
this method, various versions of software with the same 
specification but different design or implementation- 
process the same request and the correct result is 
achieved by voting the results of the different versions. 
The result of such system is more reliable, since it is less 
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possible

 

that all the versions of software suffer from the 
same fault

 

and so a request does not cause errors in all 
versions. This

 

method can be used in software security 
to tolerate malicious

 

requests. For example, recently 
software diversity has been

 

used in [120] to tolerate 
active vulnerabilities in web browsers.

 

In the proposed 
method, different browsers are used to process

 

the 
user’s requests. Since the browsers are designed and

 

implemented differently, it is less probable that all the 
applied

 

browsers contain similar vulnerabilities. Thus, 
malicious data

 

cannot compromise all the browsers. The 
correct response to

 

the client’s request is achieved by 
voting the responses of the

 

browsers. Also, some 
protection mechanisms, such as ASLR

 

that protects 
system against memory corruption vulnerabilities

 

[121], 
are inspired by the idea of using diversity to make the

 

program unpredictable for the attackers. A new direction 
for

 

the future research could be adopting the current 
fault tolerance

 

methods to handle different software 
vulnerabilities. As there

 

is no vulnerability handling 
mechanism in the current proposed

 

methods, we 
should work on designing complete vulnerability

 

tolerance methods that contain appropriate active 
vulnerability

 

handling and vulnerability handling 
mechanisms.

 

Vulnerability removal is performed to detect and 
remove the

 

vulnerabilities in the software. The focus of 
most of the

 

current vulnerability removal methods is on 
verifying the

 

vulnerabilities. In fact, less attention is paid 
on designing

 

appropriate methods for diagnosis, 
correction and regression

 

verification of software 
vulnerabilities. There are some vulnerability diagnosis 
and correction methods that are used

 

after detecting the 
exploitation of a vulnerability. But specific

 

methods are 
required for diagnosis and correction of the

 

vulnerabilities that are detected during the verification of 
the

 

program. Currently, automatic patching methods 
analyze an

 

attack and generate software patches based 
on the pattern of

 

malicious data that are used in the 
attack. These methods

 

can be modified to automatically 
generate patches based on

 

the results of analyzing the 
program and according to the

 

mechanism of detected 
vulnerabilities.

 

There are numerous vulnerability detection 
methods presented

 

by now. Most of the recent 
vulnerability detection methods

 

tend to combine the 
previous methods in order to profit their

 

advantages at 
the same time. For example, the concolic execution

 

method combines the concrete and symbolic execution

 

methods to reduce the complexity of pure symbolic 
execution

 

and increase the program coverage. As 
another example, static

 

taint analysis is used with the 
constraint analysis method

 

to limit the overhead of 
program analysis and compute the

 

constraints only on 
the tainted data [51]. Also, the control and

 

data flow of 
the program are extracted in [122], [62] and [63]

 

to 
model the program automatically and detect 

vulnerabilities

 

by performing the model checking. There 
are more possible

 

combinations that are not applied yet 
and might be effective

 

in detecting the vulnerabilities 
more accurately. For example,

 

the annotation can be 
used in model checking to profit the

 

programmers’ 
knowledge for modeling the program.

 

Also, most of the vulnerability removal and 
vulnerability

 

tolerance methods consider a specific 
vulnerability class based

 

on their own definition of the

 

relevant software vulnerability.

 

Therefore, an imprecise 
definition of the intended vulnerability

 

would cause 
inaccurate results in the proposed method. In addition, 
some methods only consider a limited number of

 

vulnerability classes. To handle new vulnerability 
classes, the

 

algorithm of these methods has to be 
changed. Many of the

 

presented methods or tools are 
not able to detect all of the

 

vulnerability classes [123], 
[124]. By now, the researchers’

 

focus was mainly on 
designing more accurate methods.

 

A new research trend is making the vulnerability 
detection

 

methods extendable. In this way, an accurate 
method for

 

detecting a specific vulnerability can also be 
used to detect

 

other vulnerabilities. To make a 
vulnerability detection method

 

extendable, we suggest 
designing vulnerability detection algorithms

 

that are 

A New View on Classification of Software Vulnerability Mitigation Methods

independent from the sought vulnerability classes. Such 
algorithms are able to detect any specified
vulnerabilities in the program. Designing such methods 
requires a general model for specifying the 
vulnerabilities that encompasses any vulnerability 
classes, even the future ones. Based on this model, 
various vulnerabilities are specified for the detection 
algorithms to be detected automatically in the programs.

There are a few extendable vulnerability removal 
methods, such as [125], [126] and [124]. However, 
these methods are limited to specific programming 
languages. Also, some of them are not expressive 
enough to specify any vulnerability classes. For 
example, in [127] an extendable vulnerability method is
presented for detecting the vulnerabilities in web 
applications that are written in Java. The specification 
method of [127] does not support some data types, e.g. 
integer, float and character. Therefore, it is not possible 
to define certain operations, such as mathematical 
operations or comparing the characters, in specifying a 
vulnerability. This is not a limitation for specifying
vulnerabilities in object-oriented programs, such as 
Java. Because they encapsulate these operations in 
certain methods for each data type. It is, however, a 
limitation for specifying vulnerabilities in other 
languages, such as C. For example, it is not possible to 
specify integer overflow vulnerabilities in C programs 
with this method.

The vulnerability forecasting methods predict 
the number of left vulnerabilities in the software and 
determine when the software is ready to be released. 
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They are also used to estimate

 

the required efforts for 
the future maintenance. Some vulnerability

 

forecasting 
methods use the vulnerability detection

 

models to 
predict the rate of vulnerability detection during

 

the 
lifecycle of the software. The first vulnerability detection

 

models were in fact software reliability growth models 
that

 

were applied for predicting the vulnerability 
detection rate.

 

The next models were designed 
especially for the vulnerability

 

detection rate. These 
models consider effective parameters on

 

the detection 
of vulnerabilities, such as time and the number of

 

installations. Since these models do not consider 
characteristics

 

of the software in their predictions, they 
need a history of the

 

detected vulnerabilities to predict 
the vulnerability detection

 

rate in the future. These 
models are not accurate especially at

 

the early stages in 
the lifecycle of programs. New vulnerability

 

detection 
models consider the characteristics of the software to

 

achieve more accurate predictions. In this paper, we 
reviewed

 

a vulnerability detection model that is based 
on two characteristics

 

of the program: cyclomatic 
complexity of the source

 

code and the level of 
compliance with secure coding practices.

 

There are, 
however, other characteristics that affect on the rate

 

of 
vulnerability detection, such as software support, 
version

 

of the program, availability of the source code or 
usage of third-party components. For example, the rate 
of vulnerability

 

detection decreases in time for a 
program with effective support

 

that periodically presents 
patches and resolves problems

 

in the program. Also, it 
might be more difficult to detect

 

vulnerabilities in the 
higher versions of a program than in its

 

lower versions. 
The future models can use other characteristics

 

of 
software to model the vulnerability prediction rate more

 

accurately. Also, they can combine software 
characteristics

 

with the effective

 

environmental factors, 
such as time and

 

number of installations, to generate 
more accurate models.

 

The possibility of analyzing the program and the 
program

 

analysis method become important when the 
vulnerability

 

detection models consider the 
characteristics of software. For

 

example, a model may 
be based on some characteristics in

 

the source code of 
the program. Thus, it is not possible to

 

use such model 
when the source code of the program is not

 

available. 
Also, vulnerability forecasts based on inaccurate

 

software analysis are not reliable. In the future, static 
and dynamic analysis methods that are proposed for 
detecting

 

the vulnerabilities can be used to better 
analyze the current

 

characteristics of a program and 
predict the future rate of

 

vulnerability detection 
accurately.
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