
© 2017. Maryam Mouzarani & Babak Sadeghiyan. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

A New View on Classification of Software Vulnerability
Mitigation Methods
 By Maryam Mouzarani & Babak Sadeghiyan
 Amirkabir University of Technology

Abstract- Software vulnerability mitigation is a well-known research area, and many methods have
been proposed for it. Some papers try to classify these methods from different specific points of
views. In this paper, we aggregate all proposed classifications and present a comprehensive
classification of vulnerability mitigation methods. We define software vulnerability as a kind of
software fault, and correspond the classes of software vulnerability mitigation methods accordingly.
In this paper, the software vulnerability mitigation methods are classified into vulnerability prevention,
vulnerability tolerance, vulnerability removal and vulnerability forecasting. We define each vulnerability
mitigation method in our new point of view and indicate some methods for each class. Our general
point of view helps to consider all of the proposed methods in this review. We also identify the fault
mitigation methods that might be effective in mitigating the software vulnerabilities but are not yet
applied in this area. Based on that, new directions are suggested for the future research.

GJCST-C Classification: H.3.4

ANewViewonClassificationofSoftwareVulnerabilityMitigationMethods

 Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Publisher: Global Journals Inc. (USA)
Type: Double Blind Peer Reviewed International Research Journal
Volume 17 Issue 1 Version 1.0 Year 2017
Software & Data Engineering
Global Journal of Computer Science and Technology: C

A New View on Classification of Software
Vulnerability Mitigation Methods

Maryam Mouzarani α & Babak Sadeghiyan σ

Abstract-

Software vulnerability mitigation is a well-known

research area, and many methods have been proposed for it.

Some papers try to classify these methods from different
specific

points of views. In this paper, we aggregate all
proposed classifications

and present a comprehensive
classification of vulnerability

mitigation methods. We define
software vulnerability as a kind

of software fault, and
correspond the classes of software vulnerability

mitigation
methods accordingly. In this paper, the software

vulnerability
mitigation methods are classified

into vulnerability

prevention,
vulnerability tolerance, vulnerability removal and

vulnerability
forecasting. We define each vulnerability mitigation

method in
our new point of view and indicate some methods

for each
class. Our general point of view helps to consider all

of the
proposed methods in this review. We also identify the

fault
mitigation methods that might be effective in mitigating the

software vulnerabilities but are not yet applied in this area.
Based

on that, new directions are suggested for the future
research.

I.

Introduction

oftware is an important part of a computer
system. Being

complex or created by incompetent
developers, faults might be

introduced to the
software. There are faults that cause violating

the
system security. These faults are called vulnerability.
There

has been much research on preventing, detecting
and analyzing

software vulnerabilities.

By the time of writing this paper there is a
number of surveys

on the methods of mitigating
vulnerabilities, i.e. [1], [2], [3]

and [4]. Among them, [4]
surveys the static analysis vulnerability

detection
methods that are applied in three areas that are

associated with sources of vulnerabilities, i.e., access-
control,

information-flow and application-programming-
conformance.

It reviews around 88 papers. The studied
methods, however, do

not cover all the software
vulnerability classes. Static analysis

methods are also
surveyed in [3]. It reviews 23 papers and

classifies their
methods with a different point of view. In

[1] static and
dynamic

analysis methods are classified and

18 papers
are briefly reviewed. The classification for static

analysis
methods presented in that paper is similar to the on

in
[3]. The most comprehensive survey is presented in [2]

by Shahriar et al. in 2012. They review 173 papers and
classify their methods in four classes, i.e., static
analysis, dynamic analysis, monitoring and hybrid
analysis.

In this paper, we present a new definition for
software vulnerability. Based on this definition,
vulnerability mitigation methods are classified and
reviewed with a new point of view. We use the general
classification of fault mitigation methods as a base and
extend it to a detailed classification of software
vulnerability mitigation methods.

Our comprehensive classification aggregates
many of the classification presented in the previous
surveys, i.e., [1], [3], [2] and [5]. Also, the general
perspective applied in our survey helps to identify the
fault mitigation methods that are not yet used in
mitigating software vulnerabilities. Since we consider the
software vulnerability as a type of fault, these methods
may be helpful in mitigating software vulnerabilities. We
suggest new directions for the future researches based
on our analysis during the review of the proposed
vulnerability mitigation methods.

In this paper, our definition of software
vulnerability is presented in section II. Based on this
definition, software vulnerability mitigation methods are
classified in section III. In this section, each class is
described in details and some examples are reviewed.
Section IV concludes the paper and presents some
future directions.

II. Defining Software Vulnerability

To review vulnerability mitigation methods, a
precise definition of software vulnerability is required.
Different researchers have suggested definitions for this
term which are nearly analogous but have differences.
Matt Bishop et al. define software vulnerability by
modeling the software as a state machine in [6], [7], [8]
and [9]. In this model, a vulnerable state is the state that
let unauthorized reads, changes or accessibility
modifications to a source. They define vulnerability as a
property in the system that let it enter into a vulnerable
state. In [8] Bishop defines vulnerability as a weakness
that makes it possible for a threat to occur, where a
threat is a potential violation of security policy. Amoroso
defines vulnerability as an unfortunate characteristic that
allows a threat to potentially occur [10]. There are other
definitions of software vulnerability in relation with

S

Author α: Dept. of Computer Engineering & Information Technology,
Amirkabir University of Technology, Tehran, Iran.
e-mail: mouzarani@aut.ac.ir
Author σ: Dept. of Computer Engineering & Information Technology,
Amirkabir University of Technology, Tehran, Iran.
e-mail: basadegh@aut.ac.ir

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

41

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

security policy, e.g. [11] and [1]. Most of them define it
as a property, characteristic or weakness that may
cause compromising the security policy.

In order to clarify the terms property and
security policy compromise, we redefine ”software
vulnerability”. We use the precise definitions for the
concepts in software security and reliability that are
presented in [12] and construct our definition of
software vulnerability. The taxonomy in [12] is presented
in 2004 for the concepts of software security and
reliability, such as fault, error, failure, vulnerability and
attack. The authors define fault as the cause of error,
while error is a state of the system that is probable to
failure. Failure -or service failure is an event in which the
delivered service is deviated from the correct service. In
fact, a fault may become active and produce an error.
Also the error may propagate inside the system and
produce more errors. If the propagated error reaches
system boundaries and affects the services, it becomes
a failure.

A service is defined in [12] as the behavior
perceived by users in system boundaries. Correct
services are determined by the system specification.
Some parts of the system behavior are specified by the
security policy, which is a partial system specification.
Thus when a system deviates from the security policy, a
security failure occurs. This means that compromising
security policy causes a security failure.

Faults are classified in [12] based on eight
criteria, such as the phase of creation or occurrence, the
objective, the phenomenological cause, the system
boundary and the dimension. All combinations of the
eight elementary fault classes would result in 256
different combined classes. The authors, however,
believe that not all combinations are possible. For
example, there is no malicious non-deliberate faults, or
all the natural faults are non-malicious.

An attack is defined in [12] as a malicious
external fault. An attack may be either an external
hardware malicious fault, such as heating the RAM with
a hairdryer to cause memory errors, or an external
software malicious fault, such as a Trojan horse [12].
The term vulnerability is also defined in [12] as an
internal fault that enables an external fault to harm the
computer system, although harming the computer
system is not clearly defined.

According to the previous definitions, we
consider software vulnerabilities as:

We have concluded this definition, out of the
definitions in [12], [8], [10], [11] and [1], since looking a
vulnerability as a fault, instead of a property, better
clarifies the concept of vulnerability by considering its
relation to error, security failure and thus security policy.
Like faults, a vulnerability may be dormant and never be

activated. It also may be activated and propagated in
the system. The activated vulnerability might never reach
the boundaries. As an example, suppose that a buffer
overflow occurs and the value of a return address in the
stack changes as a result. But using a monitoring
procedure, the unauthorized change is detected and the
program halts. Thus, the security policy is not violated.
Monitoring the program, as a vulnerability detection
method, is explained in section III-B. When an active
vulnerability reaches the system boundaries, it causes a
security failure. For example, an attacker may activate
the format string vulnerability in a program and make it
print some confidential data from the memory [13].
Since the active vulnerability has reached the system
boundaries, it has made a security failure.

III. Vulnerability Mitigation Methods

Since vulnerability mitigation is a well-known
research area, a structured approach is required to
review the previous related works. In this paper, we
review vulnerability mitigation methods using a new
point of view. We classify and review these methods
based on how we define software vulnerability. In the
previous section, software vulnerability is defined as an
internal software fault. Since we considered vulnerability
as a type of fault, the classifications of fault mitigation
methods can be used as a base for classifying
vulnerability mitigation methods. Avizienis et al. present
a classification for the means of mitigating the faults to
achieve a secure and dependable system in [12]. We
use this general classification as a base and extend it
into a detailed classification of vulnerability mitigation
methods. Our classification is illustrated in figure 1. The
vulnerability mitigation classes that are shown in figure 1
are described in more details in the following sections.
This figure presents a comprehensive view of the
previous efforts in mitigating software vulnerabilities. Our
classification also aggregates the classifications
presented in the previous surveys, such as the ones
presented in [1], [3], [2]. Moreover, this classification
helps to identify the fault mitigation methods that can be
applied to improve current software vulnerability
mitigation methods. This helps to suggest new
directions for the future research.

a) Vulnerability prevention
Generally, fault prevention means avoiding the

fault introduction and occurrence in the application
during the development. A fault may be introduced
during any of the development phases: requirement
analysis, design and implementation. To prevent the
occurrence of software vulnerabilities during these
phases, software security is emerged. Software security
is the process of designing, building and testing
software for security [14]. It aims at designing and
implementing a secure software and educating
developers, architects and users to build security in the

© 2017 Global Journals Inc. (US)1© 2017 Global Journals Inc. (US)1© 2017 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

42

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C
A New View on Classification of Software Vulnerability Mitigation Methods

Definition 2.1 Software vulnerabilities are internal faults
that may cause a security failure.

software [14]. There are various secure software
development methods presented by now, such as
Microsoft Security Development Lifecycle (SDL) [15],
Security Quality Requirement Engineering (SQUARE)
[16] and McGraw’s secure development method [14].
Also, there are secure coding best practices that are
suggested for different programming languages. These
best practices educate the programmers to prevent
introduction of well-known vulnerabilities during the
coding phase, such as [17] for .NET framework, [18] for
C/C++ and [19] for Java.

The programmers’ lack of security knowledge is
an important reason for the introduction of
vulnerabilities. Transferring the related information to the
developers is an issue in vulnerability prevention. The
SHIELDS project was an example of the attempts in this
area [20]. The goal in this project was to create a
database of security related information for
programmers that can be used automatically. A unified
modeling language was proposed in SHIELDS for
representing this information [21]. Using this language,
it is possible to specify a vulnerability class and its
relations to the well-known attacks. It also helps to

define the methods of preventing a vulnerability class.
Thus, it helps the developers to learn how to prevent
vulnerabilities in order to achieve the security goals of
the application. Some tools were also developed based
on this language in that project, such as GOAT [20] and
TestInv-Code [22].

b) Vulnerability Tolerance
In spite of vulnerability prevention efforts,

vulnerabilities are created. Thus, vulnerability tolerance
is required. Generally, fault tolerance methods accept
the existence of faults and focus on preventing the
activated faults from reaching the system boundaries
and causing a failure. Fault tolerance is usually
performed in two steps: error detection and recovery
[12]. Therefore, we study monitoring methods based on
three aspects: the applied error detection, error handling
and fault handling techniques. Please note that since we
look a vulnerability as a fault, we consider error as an
active vulnerability. Thus, the mentioned three aspects
are also named as active vulnerability detection, active
vulnerability handling and vulnerability handling
techniques respectively.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

43

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

A New View on Classification of Software Vulnerability Mitigation Methods

Fig. 1: Our classification of vulnerability mitigation methods according to the classification of fault mitigation
methods in [12]. The boxes with dashed borders show the methods that have not been used in mitigating software

vulnerabilities yet.

A New View on Classification of Software Vulnerability Mitigation Methods
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

44

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

Error detection (active vulnerability detection)
There are vulnerability mitigation methods that

control the execution of a program and detects active
vulnerabilities at run-time. These methods are also
called monitoring methods [2]. Various active
vulnerability detection techniques have been used in the
proposed monitoring methods. Some examples are
monitoring the memory and validating its integrity [23],
[24], [25], controlling the flow of user provided data
(taint analysis) [26], [27], [28], [29] and validating the
arguments of specific functions [30], [31], [32].

For example, the return addresses of functions
in the stack memory of the program are monitored in
[23], [24] and [25] to detect stack overflows at run-time.
If any unauthorized changes of the return addresses is
detected, it is concluded that a buffer overflow
vulnerability has become active in the program.

Some monitoring methods track the flow of user
provided un-trusted data at run-time and react
appropriately if the untrusted data reach sensitive
statements in the program, such as [26], [27], [28], [29].
This method is used to tolerate various vulnerabilities,
such as DOM-based XSS [29], SQL injection [26], [27],
[28], buffer overflow [26], [27], [28] and format string
[26], [27], [28]. Some monitoring methods locate
specific functions in the program and control their
arguments during the program execution, such as [30],
[31] and [32].

For example, in [31] the program code is
analyzed statically and the query strings, that are used
as the arguments of SQL functions, are parsed to
extract the ASTs of legitimate queries. In this method,
the code is instrumented to control the values of SQL
queries before executing the relevant functions. Before
executing a query with un-trusted data, the monitoring
procedure extracts the AST of the query. It then
compares the extracted AST with the AST of the
legitimate queries. Any inconsistency between the two
ASTs might reveal a malicious query. Thus, an
appropriate reaction is taken by the monitoring
procedure to prevent security failures.

Detecting the errors may be performed during
the normal service delivery (concurrent detection). Also,
it may be performed in specific times in which the
application does not deliver services (preemptive
detection). The latter is usually applied to eliminate the
negative effects of software aging. All the studied
monitoring methods detect active vulnerabilities during
the normal service delivery. However, preemptive error
detection can be used to detect the activation of
vulnerabilities that makes the program overuse the
system resources, like the memory leakage vulnerability.

Error handling (active vulnerability handling)
After an error is detected, it is handled in one of

three ways: rollback, roll-forward and compensation.

Many of the presented monitoring methods
focus on detecting active vulnerabilities, but less
attention is paid to handling the active vulnerabilities. It
seems that more effort is required on designing
appropriate handling methods for active vulnerabilities.
Although halting the program and throwing an exception
prevents a successful attack, they violate the availability
of the software to the legitimate users. Thus, it may
result in deniable of service. Therefore, more intelligent
active vulnerability handling techniques should be
designed for the monitoring methods. Since the rollback
technique is usually used for the transient faults and
software vulnerability is a permanent fault, this technique
cannot be applied in the monitoring methods. Thus, the
roll-forward and compensation techniques can be used
to design more intelligent active vulnerability handling
methods.

Fault handling (vulnerability handling)
After handling the error, sometimes fault

handling is performed to remove the fault and prevent
the similar errors in the future. Of course, sometimes the
fault is handled immediately after error detection. Fault
handling is performed by first recognizing causes of the

Using the rollback method, the system is restored to a
previously stored error-free state. Then, the program
continues normal execution from the restored state. In
some applications, such as real-time applications, there
is no time to rollback. Thus, roll forwarding is performed
to change the system state into a degraded new state
that contains no errors. Then, the program executes
normally from the degraded state. Roll-forwarding is
applicable for predictable errors. Another error handling
method is compensation. In this method, the
redundancy in the current state is used to mask the error
and let the program continues the execution. Many of
the monitoring methods halt the program and generate
an error message when they detect an active
vulnerability, e.g. [32], [27], [33], [24]. In other words,
many of the monitoring methods do not perform error
handling. Some monitoring methods call an exception
handler and take the program to a pre-defined state
[34], [26], [28]. Most of the monitoring methods that are
used for web applications ignore the requests that result
in errors and continue normal execution [30], [31], [35],
[29]. Calling exception handlers and ignoring the
malicious requests can be considered as simple roll-
forwarding actions, since the erroneous state is
changed into an error-free state and the program
continues normal execution. However, more intelligent
reactions can be performed after detecting active
vulnerabilities. For example, in [36] the stack content
and return addresses are stored to compensate for
buffer overflow errors. When a buffer overflow error is
detected, the monitoring procedure uses the stored
data to help the program continue execution securely.

error. Usually, the faulty component is isolated to
prevent the future activation of the fault. A spare fault-
free component is then replaced by the faulty one. The
system is reconfigured based on the new structure. We
are not aware of any monitoring method that consists of
a vulnerability handling procedure. However, there are
some specific methods for automatically patching the
software vulnerabilities, such as [37], [38], [39], [40] and
[41]. These methods might be usable in the proposed
vulnerability tolerance methods to handle the
vulnerabilities. The automatic patching methods analyze
the malicious data that is used in an attack and modify
the program to filter similar data in the future. These
methods can be combined with preemptive active
vulnerability detection techniques to generate a
complete vulnerability tolerance solution.

Table I summarizes the presented vulnerability
tolerance methods so that the reader can review them
easier. To sum up, there are various monitoring
methods with enhanced error detection mechanisms
presented by now. These methods pay more attention
to detecting the errors. This might be due to the
difference between software vulnerability and the other
faults. Usually, software vulnerability is activated by
malicious external faults. Therefore, detecting an active
vulnerability reveals an ongoing attack. The software
should resist the attack as soon as possible to prevent
further damages. Thus, the quick detection of the active
vulnerability is very important. Halting the program is the
fastest low-risk response to the attack. However, it
makes the program unavailable to the legitimate users
as well. Thus, more intelligent error handling and
vulnerability handling techniques should be added to
the monitoring methods. To do so, a good starting point
is inspiring by the current fault handling and error
handling techniques and designing software
vulnerability handling techniques.

c) Vulnerability removal

Vulnerability removal is performed to detect and
remove the vulnerabilities that are created in software
despite the vulnerability prevention efforts. Based on
figure 1, the fault removal process consists of four
steps: verification, diagnosis, correction and non-
regression verification. During the verification step, it is
verified if the system adheres to the specification. If not,
the reason (fault) is diagnosed and corrected. After
removing the fault, the verification is repeated to check if
the removal was effective. The verification at this step is
called non-regression verification.

Most of the vulnerability removal methods focus
on the verification step and don’t suggest any diagnosis
or correction methods for the detected vulnerabilities.
There are, however, special vulnerability diagnosis
methods that diagnose the vulnerabilities that are
exploited by malicious users. For example, in [42]
exploitation of memory corruption vulnerabilities is

detected and then the exploited vulnerability is
automatically diagnosed. The result of diagnosis
consists of the instruction that are exploited by an
attacker to corrupt critical program data, the stack trace
at the time of memory corruption and the history that the
corrupted data are propagated after the initial
corruption. This information helps the developers to
remove the diagnosed vulnerabilities. We could not find
any vulnerability diagnosis or correction procedure that
is used after the verification step of a vulnerability
removal method. We need vulnerability diagnosis and
correction procedures that can be used after the
verification step, not after detecting an attack. In other
words, these procedures should not be based on the
attack information, but based on the information
achieved during the verification step.

Some vulnerability detection methods perform
the verification step by checking if the software adheres
to the security specification, while some of them verify if
specific vulnerabilities exist in the software. Figure 1
illustrated our classification of vulnerability verification
methods. We divide the verification methods into three
main classes: static, dynamic and hybrid methods.

i. Static analysis
Static analysis methods do not execute the

program. Instead, they examine the program code and
study its possible behaviors. Therefore, the result of
static analysis is true regardless of the input data and
static methods are usually sound and conservative [43].
A sound method is able to detect any specified
vulnerability in the program. In other words, if a
vulnerability is defined for the static analyzer and exists
in a program, the analyzer will surely find it. In order to
be sound, the analyzer produces conservative results
that are weaker than the actual ones and may not be
very useful [43]. In fact, static analysis is appropriate in
proving the absence of a specific vulnerability. Usually
static analyzers create many false alarms, hence they
cannot be very useful in proving the existence of a
specific vulnerability. Static analysis may be performed
on the program or on the behavior model of the
program [12]. Thus, static analysis methods are divided
into two main classes: program-based and model-
based methods.

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

45

Y
e
a
r

20
17

 (

)
C

ii.

Program-based methods

As figure 1 shows, these methods are classified
into seven

subclasses. Each class is explained as
follows.

Pattern Matching

The most basic static analysis method is pattern
matching. A

pattern matcher considers the program as
a text file. It may

not even distinguish between the code
and the comments. The

pattern matcher searches for
vulnerable functions or patterns

in the text of the
program code. Thus, this method can be

implemented
using any pattern matching utility, such as grep.

Such a
tool needs a database of the vulnerability patterns. As

an example, Flawfinder [44] scans C/C++ programs to
detect

buffer overflow or format string in them. This tool
ignores the

text inside the comments and strings.
However, it does not

recognize the type of function
parameters and control flow or

data flow of the program.
This lack of knowledge results in

many false decisions.
Thus, it makes many false positive and

false negative
alarms.

A New View on Classification of Software Vulnerability Mitigation Methods

Reviewed Paper Active vulnerability detection Active vulnerability handling Vulnerability handling Vulnerability

[23]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts or restarts the program.
(rollback)

None Buffer overflow

[24]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts the program. None Buffer overflow

[25]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Halts the program. None Buffer overflow

[26] Monitor the flow of un-trusted
data. (preemptive)

Invokes exception handlers.
(roll-forward)

None
Any vulnerability
that is exploitable
by malicious input
data.

[27] Monitor the flow of un-trusted
data. (preemptive)

Halts the program. None
Any vulnerability
that is exploitable
by malicious input
data.

[30]
Monitor the argument of
SQL-related functions.
(preemptive)

Ignores the request. (roll-
forward)

None SQL injection

[31]
Monitor the argument of
SQL-related functions.
(preemptive)

Ignores the request. (roll-
forward)

None SQL injection

[32]
Monitor the format argument
of printing functions. (pre-
emptive)

Halts the program. None Format string

[28]
Monitor the flow of un-trusted
data. (preemptive)

Invokes exception handlers.
(roll-forward)

None
SQL injection
Buffer overflow
Format string

[36]
Detect unauthorized changes
of return addresses. (preemp-
tive)

Recovers the stack. (compen-
sation)

None Buffer overflow

[29] Monitor the flow of un-trusted
data. (preemptive)

Ignores the request. (roll-
forward) None DOM-based XSS

Lexical analysis
In this method, source code of the program is

tokenized in order to recognize the variables and
function arguments. Thus, the results of a lexical
analyzer can be more accurate than the results of a
pattern matcher. As an example, the tool ITS4 applies
lexical analysis to detect buffer overflow, format string

and race condition vulnerabilities in C or C++ programs
[45]. ITS4 scans the source code statically and breaks it
into series of lexical tokens. These tokens are compared
with the token streams that are defined in a vulnerability
database. The vulnerability database contains several
handlers for well-known vulnerable functions in C/C++.

Parsing
In this method, source code of the program is

parsed and represented in Abstract Syntax Trees (AST).
The ASTs are then used to analyze the program
syntactically and semantically. For example, Lint uses
this method to detect vulnerabilities in programs written
in C [46]. As another example, in [47] the ASTs of the
source code are extracted and compared to the ASTs of
different vulnerable codes. The main idea in [47] is that
different vulnerabilities in software may be related to the
same flawed programming pattern. Thus, the suggested
method uses the ASTs of known vulnerable codes and
searches for similar patterns in the target program.
When a similar pattern is found in the program, it may
reveal an unknown vulnerability.

Data flow and taint analysis
In this method, the flow of data among the

instructions is analyzed to determine possible values
that a variable holds during the run time. Two well-
known program representations are used in this
method: control flow and data flow graphs. In a control
flow graph, each node represents an instruction and a

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

46

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

Table 1: Examples of vulnerability tolerance methods.

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

47

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

execution dependency. In other words, a directed edge
from node A to node B means that node A is executed
after the execution of node B. The data flow graph is a
modified version of the control flow graph in which new
directed edges are added to show the data dependency
among the instructions. In this graph, the node A has
data dependency to the node B, if the data that is used
in node A is already manipulated in node B. As an
example, the vulnerability detection method presented in
[48] extracts the control flow and data flow graphs from
the source code. It then compares extracted graphs with
some patterns of known vulnerabilities. In this method,
known vulnerabilities are specified as simple patterns of
vulnerable functions or more complex flow-based rules.

A subclass of data flow analysis is called taint
analysis. A taint analyzer only tracks the flow of data that
come from un-trusted resources. The un-trusted
resources include the network protocols, keyboard,
touchpad, webcam, files, etc. Since most of the
vulnerabilities are exploited by un-trusted input data, this
method pays attention to the flow of un-trusted input
data in the program. If such data reach sensitive
statements in the program, a vulnerability may be
reported by the taint analyzer. The sensitive statements,
called sinks, are defined according to the specified
vulnerabilities. For example, the functions that execute
SQL queries are usually defined as the sinks for SQL
injection vulnerability. The propagation of tainted data
among the instructions is determined based on some
predefined rules. For example, if the data in a tainted
variable is assigned to an un-tainted variable, the un-
tainted variable will get tainted too.

Taint analysis is used in many of the proposed
vulnerability detection solutions, e.g. [49], [50], [51],
[52] and [53], to detect various vulnerability classes.
Since this method focuses on the flow of tainted data, it
does not consider the execution paths in the program
that are not affected by malicious data. This feature
reduces the time of analysis and number of produced
false positives. However, there are vulnerability classes
that cannot be specified in such a source-sink structure,
e.g. logic vulnerabilities. Although an attacker exploits
logic vulnerabilities with malicious data, the sinks cannot
be easily specified for this class of vulnerability. For
example, the sinks for SQL injection vulnerability are the
query execution statements. But a sink for logic
vulnerabilities may be any statement that manipulates
the input data.

Annotation-based methods
Annotation is a comment that the programmer

makes in the code about the desired behavior of a
function or an instruction. It may be defined as a set of
pre- and post-conditions or as simple pre-execution
conditions. An annotation-based analysis algorithm

reads the annotations, analyzes the code statically and
verifies if the conditions are met in the program. There
are plenty of annotation languages presented so far,
such as SPLINT [54], MECA [55], Sparse [56], SAL [57]
and a Comment [58].

Since there is a huge number of statements and
functions in the programs, manual annotation is usually
very time consuming and fault prone [58]. There are
annotation languages that provide some facilities to
annotate the program more easily, such as MECA [55]
and aComment [58]. Among them, aComment is
designed to help in detecting concurrency faults in the
operating systems and allows the programmers to
define the pre- and post-conditions that are related to
the interrupts in each function. It also infers the
annotation of some functions automatically to reduce
the programmers’ workload. In this way, the
programmers are not supposed to annotate all the
functions manually.

Although some of these languages help in
reducing the required time and effort for annotating the
programs, they usually have a different syntax and

directed edge between two nodes represents their

semantics than the applied programming languages.
Therefore, the programmers and verifiers have to make
extra efforts to learn another language in order to use
this method. Also, the programmers should be familiar
with the security requirements of the programs and the
vulnerability classes to annotate the program
appropriately. Therefore, the success of this method
depends on the programmers’ knowledge of software
security. Moreover, this method is not helpful in
analyzing the COTS1 software and third party
components since their source code is not available.

Constraint analysis
In this method, the program is analyzed

statically and some constraints are calculated for
specific objects in it. The constraints are defined
according to specific vulnerabilities and are solved to
verify if the program suffers from those vulnerabilities.
Constraint analysis was first proposed by Wagner et al.
in [50]. The resulted tool, called BOON, considers the
strings in a C program as an abstract data type. There
are also predefined functions that manipulate this data
type, such as strcpy(), strcat(), etc. BOON summarizes
the state of each string by two integer values: the
allocated size for the string and its current length. For
each string in the buffer, it analyzes the string
manipulating statements in the program to verify if the
length of the string exceeds its allocated size. If such
condition is inferred, the program might contains buffer
overflow vulnerabilities.

It is important to note that the constraints are
determined by the analyzer in this method, not by the
programmer. This makes the constraint analysis method
different from the annotation-based analysis method.

1
Commercial off-the-shelf

Moreover, constraint

analysis does not increase the
programmer’s workload since

generation of the
constraints is performed automatically

and does not
involve the programmer. Of course, it cannot

profit the
programmers’ knowledge of the code to do a more

efficient analysis.

Theorem proving

In this method, the software and its specification
are

expressed as some formulas of logics or algebraic
systems.

Also, the security requirements of software are
expressed

as some theorems. Proving these theorems
demonstrates the

satisfaction of the security
requirements. Otherwise, there is

a fault (vulnerability) in
the program. As an example, in [59]

the source code of

target program is statically analyzed and

some first-
order formulas are generated that assert the absence

of
certain faults and vulnerabilities, such as out-of-bounds

array access. If the generated asserts are proved, the
program

does not contain such faults and
vulnerabilities.

Although the results of analysis are accurate in
the theorem

proving methods, they demand expertise
and enough

experience. In fact, theorem proving is
difficult to be achieved

automatically and requires high-
quality staff to apply this

method, which is very time-
consuming. So it is generally

used to verify correct
design rather than the actual code [60].

A New View on Classification of Software Vulnerability Mitigation Methods

Analysis Method Description Advantages shortcomings Examples

Pattern Matching
Considers the program as a
text file and searches for vul-
nerability patterns in the text.

Simple, fast.
Does not have any idea about the types
of function parameters and control or
data flow of the program and so gen-
erates many false alarms.

[44].

Lexical Analysis
Tokenizes the code to recog-
nize variables and function ar-
guments.

Variables and function
arguments are recognized.
More accurate than the
pattern matching method.

Lack of knowledge about the syntax
and semantics of the code causes false
alarms. Requires the high level source
code.

[45].

Parsing

Parses the code and represents
it in Abstract Syntax Trees
(AST) to be analyzed syntac-
tically and semantically.

Understands the code syntac-
tically and semantically, less
false alarms in comparison
with the above two methods.

Requires the high level source code.
[47], [46],
[30], [31],
[66].

Annotation-based
methods

Comments that the program-
mer makes about the desired
behavior of the code. The
code is then analyzed stati-
cally to verify if the condi-
tions are met.

Profits the programmers’
knowledge to do a focused

analysis.

The programmer must learn an addi-
tional language to do the annotation.

[54], [55],
[56], [57],
[58].

Theorem proving

The security requirements of
software are expressed as
some theorems. Proving these
theorems, demonstrates the
satisfaction of the security re-
quirements or existence of
vulnerabilities.

Accuracy.
Difficult to be achieved automatically
and requires high-quality staff to apply

this method
[59].

Data flow analysis
(Taint analysis)

Tracks the flow of the data
that comes from un-trusted
resources and warns if the
data reaches sensitive pro-
gram points.

Reduces the analysis time and
number of false positives by
not considering the execution
paths in the program that
are not affected by un-trusted
data.

Cannot detect vulnerabilities that are
not defined specifically in a source-sink

structure.

[51], [52],
[53], [67],
[50], [68],
[69], [70].

Constraint analysis

Analyzes the program, asso-
ciates constraints with some
objects in the code and solves
them to verify if the program
is vulnerable.

Constraints are generated
automatically and do not
increase the programmer’s
workload.

Does not profit the programmer’s
knowledge of the code (in comparison
with the annotation method).

[50], [51],
[52], [53].

Model checking

Models the program and then
checks the model to verify if
it satisfies specified require-
ments.

Only the modeling and re-
quirement specification is per-
formed manually by the hu-
man analyzer, rest of the anal-
ysis is done automatically.

Modeling the program and specifying its
security requirements- if done manually-
is time consuming and fault prone.
State-explosion problem when the num-
ber of program states is large.

[61], [62],
[63], [71],
[64].

Table 2: Static analysis methods: a comparison

iii. Model-based methods (model checking)
In this method, the program is modeled and

then analyzed to verify if it complies with its
specifications, e.g. [61], [62], [63] and [64]. If a specific
requirement is not satisfied in the software, this method
provides some counter examples. Model checking helps
the human analyzers by automating a noticeable part of
the analysis. Although modeling and specifying the
requirements may be done manually, analyzing all

possible states of the program and verifying the
requirements are done automatically. This is a great
help in analyzing large programs. A well-known example
of using this method for detecting vulnerabilities is
MOPS [63]. Using MOPS, the program is modeled as a
push-down automaton2. Also, the requirements are

2

A push down automaton is a type of computational model. It is
similar to NFAs except that it uses an additional component called a
stack. In this model, state transitions are chosen based on three

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

48

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

49

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

defined through safety properties. A safety property is
represented as a finite state automaton. It defines the
ordering constraints on security related operations. After
modeling the program and defining its constraints,
MOPS searches exhaustively through possible program
states to check if a reachable state violates the safety
properties.

Abstracting the program in a model is a
challenging task in this method. The model should be
expressive enough to have a precise analysis. Thus,
some model checking methods 2A push down
automaton is a type of computational model. It is similar
to NFAs except that it uses an additional component
called a stack. In this model, state transitions are
chosen based on three components; input signal,
current state and what is at the top of the stack. Thus,
the stack plays the role of an additional memory for it.
also help the analyzer to model the target program. For
example, MOPS uses the control flow of the program to
build its automata. Also, in [64] the GCC compiler is
used to automatically model and verify the programs
that are written in any language supported by this
compiler, i.e. C, C++, Java, etc. This is done by
employing an intermediate language of GCC, called
GIMPIL, that is common to all the supported languages.
The model is extracted from the intermediate
representation of the program and is checked against
the defined specification by the use of Moped. Moped is
a model checking tool for push down systems365].

There are, however, some shortcomings in the
model checking method. Although the modeling phase
is performed automatically in some model checking
methods, the analyzer should manually specify the
security requirements in this method. This is again time
consuming and may cause errors in the results. Also,
the method suffers from state-explosion problem for
large programs.

Table II summarizes the reviewed static analysis
methods. Note that all these methods inherit the general
advantages and shortcomings of static analysis.

iv. Dynamic Analysis

By executing the program with actual data,
dynamic analysis studies the exact run-time behavior of
the program. Dynamic analysis can be as fast as the
execution of the program, whereas static analysis
generally requires more computation time to obtain
accurate results [43]. The main challenge in dynamic
analysis methods is executing all the possible execution
paths in the program and activating all vulnerabilities in
those paths. In fact, acquiring an appropriate test data
set, that make the program behave more diversely, is an
issue in these methods. The most important
shortcoming of dynamic analysis methods is that they

components; input signal, current state and what is at the top of the
stack. Thus, the stack plays the role of an additional memory for it.

are unable to guarantee the analysis of all feasible
execution paths. Therefore, the dynamic analysis is not
sound and is mostly used to prove the existence of
specific vulnerabilities in the programs. The dynamic
methods are classified into two main classes in [12]:
methods that use symbolic input values and methods
that use actual (concrete) input values to test the
program. Based on the recent advances in dynamic
analysis methods, we classify these methods in three
classes based on the type of applied input values:
concrete execution, symbolic execution and concolic
(concrete + symbolic) execution methods. The following
subsections describe each class in more details.

a) Concrete execution
In this method, the program is executed with

actual data and its behavior is analyzed to detect
vulnerabilities. There are four dynamic analysis methods
that use actual data to execute the program during the
analysis: fault injection, mutation-based analysis,
dynamic taint analysis and dynamic model checking.

i. Fault injection
In this method, the external faults are injected to

the program to examine its behavior. According to our
definition in section II, the external faults abuse the
internal faults and cause unauthorized behaviors in the
program. In other words, internal faults are activated by
the external fault and are propagated to reach the
program boundaries. Therefore, inability to handle
external faults may reveal a vulnerability in the program.

The external faults may be injected by
corrupting input data to verify if the program is able to
handle them. Most of the blackbox vulnerability
scanners corrupt input data and analyze the reaction of
the program, such as [72] and [73]. The black-box
scanners have access to the inputs and outputs of the
program. They might also have very little knowledge
about the program internal structure [74]. They usually
create the corrupted data based on known attack
patterns to study if the program can resist these attacks
or suffers from the relevant vulnerabilities. Another group
of dynamic vulnerability detectors that inject corrupted
input data to the programs are fuzzers. Takanen et al.
introduced fuzzing for detecting vulnerabilities for the
first time. They suggested injecting unexpected random
input data to the program and studying its behavior [74].
The difference between fuzzers and black-box
vulnerability scanners is that fuzzers don’t corrupt input
data exactly based on a list of attack patterns. In fact,
they generate numerous random faulty data hoping that
some data make the program crash. The main
advantages of this method were simplicity and
independence from the analyzed program. Thus, the
method could be used easily to detect vulnerabilities in
different programs. However, fuzzers were not intelligent
enough to corrupt input data effectively and cover most
of the execution paths. In order to have better program

coverage, new fuzzers focus on producing well-formed
corrupted data [75], satisfying data validation checks in
the program like checksums [76], being aware of the
state of the program during the fuzzing [77] and
producing consistent input data with the path conditions
to make the program execute all the branches [78], [79],
[80], [81]. All these enhancements made fuzzers play an
effective role in detecting vulnerabilities during the
recent years [82]. Injecting faults into the program can
be done randomly or intelligently. By the word random,
we mean that faulty data are generated semi-randomly
based on predefined patterns. For example, in order to
detect buffer overflow, random input data with different
lengths are generated. Here the predefined pattern
determines the length of input data and the other
properties are set randomly. Takanen et al. consider
random fuzzers as the ones that make small random
changes into the valid data. For example, a FTP fuzzer
may randomly add valid/invalid commands to the test
data or chose the arguments of the commands
randomly [74]. Random fuzzers sometimes use
evolutionary algorithms to guide random choices and
extend the program coverage, e.g. [83], [84]. Random
corruption of data is simple and independent from the
logic and structure of the programs. Moreover,
randomness helps to reveal a wide range of behaviors
of the programs while the designed testcases by the
human analyzer may not. This is because the designed
test-cases are prepared by a human analyzer who may
not think of all possible behaviors of the program.

Corrupting the data intelligently is performed
based on a previous analysis of the program. Although it
requires more analysis efforts, it helps in extending the
program coverage. For example, imagine a program
that compares one of the input values with an integer
value and exits if they are not equal. Using the random
method, the possibility of passing this constraint is one
out of 232. By analyzing the code before injecting faulty
data, the analyzer is able to extract the constraint and
generate the data in a way that complies with the
constraint. This helps the intelligent corruption method

 have more reliable program coverage [74].
ii. Mutation-based analysis

As mentioned before, acquiring appropriate test
data is an issue in dynamic analysis. When the program
behaves normally during the test process, it means that
either there is no vulnerability in the program or the test
data don’t reveal the vulnerabilities in the program. In
the latter case, the data set is not diverse enough to
activate the vulnerabilities. Mutation is a method that is
concerned with enhancing the data set during the
dynamic analysis. In this method, specific vulnerabilities
are injected into the program code intentionally. If the
current data set does not detect the injected
vulnerability, it will not detect similar vulnerabilities in the
original version of the program. Thus, the analyzer

augments the data set so that it can detect the
vulnerability. A version of a program in which a specific
vulnerability is created, is called a mutant. For example,
in a mutant the function strncpy() is replaced with
strcpy() to make it buffer overflow vulnerable. A good
test data set distinguishes the mutants from the original
version of the program and kills them. If no test-case
kills the mutants, the data set must be augmented [85].

This method is effective in detecting software
vulnerabilities [85], though it requires considerable
amount of time and effort. If the changed statements in
a mutant are executed by the test data, the mutant
would be effective. Otherwise, the result of analysis
does not reveal the difference between the mutant and
the original version of the program. Therefore, some
computations are required to generate appropriate
testcases that make the program execute the intended
path which contains the vulnerability.

Also, automatic creation of mutants for complex
vulnerabilities is a challenge. As an example, the
strncpy () functions are automatically changed to strcpy
() for creating mutants to detect buffer overflow in [85].
There are, however, more complicated buffer overflow
scenarios like copying an array in a loop that causes
overflow. Moreover, creating mutants for logic
vulnerabilities requires a deep understanding of the
logic of the program. Thus, automatic generation of
mutants may not be feasible.

iii. Dynamic model checking
This method, which is also called execution-

based model checking [86], [87], is a model checking
method that executes the program exhaustively and
checks if it satisfies the specifications. For example, the
tools VeriSoft [88], JavaPathFinder [89], CMC [90],
Bogor [91] and DART [92] apply this method in their
analysis. Random execution in dynamic model checking
is mostly the result of two factors: program inputs and
scheduling choices of a scheduler [87]. For each
random input and schedule choice, the resulted
behavior of the program is analyzed by monitoring the
process and its environment, e.g. registers and the
stack. Here, each state consists of the entire machine
state. When the execution reaches a state, in which the
specification is compromised, the related input value
and schedule choice are presented as a counter-
example.

An advantage of dynamic model checking is
that by executing the program, the machine handles the
semantics of the instructions. In other words, there is no
need to formally represent the semantics of the
programming language and the machine instructions
[87]. However, there is a time-state-soundness tradeoff
in this method. Since the states represent the entire
machine state, they contain many details and require
more storage space. Thus, storing all the states might
be infeasible for large programs. At the same time,

A New View on Classification of Software Vulnerability Mitigation Methods

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

50

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

exploring the states without a history of visited ones may
cause visiting similar states again and again. When no
state is recorded, the model checker spends too much
time to make sure it has traversed all possible states.
Storing the states reduces the verification time by
making sure that no state is revisited. Yet, it requires too
much space [87].

iv. Dynamic taint analysis
This method is similar to static taint analysis as

it tracks the flow of information from un-trusted sources
to the sinks. However, it tracks the flow of tainted data
during the execution of the program, some examples
are [93], [94], [95] and [96]. Schwartz et al. describe
this method precisely in [93]. They introduce a
language, named SIMPIL, that formally defines the
algorithms of dynamic taint analysis. Before the
execution, all the variables are considered untainted.
While executing the program, variables may get tainted
according to a predefined policy. This policy defines
how the taint data propagate from a variable to other
variables. For example, when tainted data are used in
an argument of an arithmetic operation, the policy
defines that the result of this operation should be
considered tainted. If a tainted value reaches a sink, the
analyzer reports a vulnerability.

The basic taint analysis methods limit taint
propagation to the direct assignments. This might make
the results of the analysis inaccurate [97]. Sarwar et al.
present some scenarios in [97] to show how basic taint
analysis can be ineffective. An example scenario is that
the tainted data are used in a conditional statement
(without any direct assignment to other variables) and
affect on the control flow of the program. Also, tainted
data might be used to define the number of an iterative
action or as the index of an un-tainted array. The taint
analysis method should pay attention to these indirect
effects of the tainted data in calculating the taint
propagation. Considering such effects is not always
easy. For example, the tainted variable might cause
information leakage through a side channel. To detect
such vulnerability, the analyzer should taint a large
amount of variables that results in many false alarms
[97].

Table III summarizes and compares the
advantages and disadvantages of the concrete
execution methods. Each method inherits the
advantages and shortcomings of dynamic analysis.

b) Symbolic execution
Using the symbolic execution method, the

program is executed with symbolic input values instead
of concrete data values [98], [99]. Thus, the values of
program variables are represented as symbolic
expressions over the symbolic input. During the
symbolic execution, the state of the program and the
conditions of the current path are calculated

symbolically. The

path conditions are updated any time
a branch instruction is executed.

At the end of an

executed path, the path conditions are

solved using a

constraint solver. There are various constraint

solvers

presented by now, such as STP [100] and Z3 [101] that

solve the constraints on binary vectors and Hampi [102]
and

S3 [103] that solve the constraints on string

variables. If the

constraint solver solves the path
conditions, it generates some

concrete input data that

are used to execute the intended path

in the program.

There are several challenges with the symbolic
execution

method. For example path explosion, the
overhead of constraint

solving for complicated paths,
non-determinism of

concurrent programs and the trade-
off between precision and

scalability of modeling the
memory are some of the challenges

in applying
symbolic execution [104]. Cadar and Sen present

the
challenges of this method and mention some solutions
for

them [104].

To overcome these challenges, a solution is
combining symbolic

execution with concrete execution.
The result is a new

method that is called concolic
execution. This method is

described in the next section.

c)

Concolic execution

A problem with pure symbolic execution is that
the constraints

of complex loops and recursive functions
may get

very complicated and cannot be resolved in an
acceptable

time [105]. Concrete execution applies real
data to execute the

program. There is a little chance to
traverse all the feasible

paths in this method. Using the
combined method, concolic

+ symbolic execution, the
concrete data is used to simplify

the complex
constraints that are generated by the symbolic

execution. This method was first presented by Godefroid
et al.

in [92]. Concolic execution is performed by
changing some

symbols in the complex constraints into
the concrete values.

This helps to achieve better
program coverage with much less

computation
overhead.

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

51

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

Concolic execution is used in many of the
recent fuzzers to extend their knowledge about the
program, such as KLEE [78], EXE [80], Simfuzz [75],
CUTE [106], SAGE [79], Taintscope [105] and [107].
For example, CUTE combines symbolic execution with
concrete execution to create input data traverse deeper
paths in the program. It first executes the program with
concrete input data. During the execution, it calculates
symbolically the constraints of the executed path. The
calculated constraints are then negated one by one,
from the last to the first. After each negation, the
resulted constraints are queried from a constraint solver.
If the constraint solver solves the new constraints, the
result is used to generate new test data that traverse
other execution paths in the program.

Table 3:

Concrete execution methods: a comparison

Concolic execution is also used in other
dynamic vulnerability

detection methods. For example in
[108] a dynamic model

checking method is applied that
uses concolic execution for

state-space exploration of
the analyzed application. In [108],

concolic execution
helps to model the application as a finitestate

automata
and to guide further state-space exploration.

d)

Hybrid analysis

The previous sections described static and
dynamic analysis

methods and their advantages and
shortcomings. The idea of

combining static and
dynamic analysis was first proposed by

Ernst in [43]. He
suggested that hybrid analysis can combine

the static
and dynamic analysis methods to generate a new

analysis method that profits a great amount of
soundness

and accuracy advantages of each method
with little sacrifices.

Monitoring and static analysis methods are also
combined in

[110] to detect SQL injection errors and

© 2017 Global Journals Inc. (US)1

A New View on Classification of Software Vulnerability Mitigation Methods

Analysis Method Description Advantages shortcomings Examples

Fault injection

Faults are generated semi-
randomly. (random corrup-
tion)
Fault injection is based on
some previous analysis of the
program. (intelligent corrup-
tion)

Simplicity and independence
in random corruption of in-
puts. (random corruption)
More reliable code coverage,
less false negatives. (intelli-
gent corruption)

Cannot detect logic vulner-
ability. Less reliable code
coverage. (random corrup-
tion)
More effort is required for
testing each single program.
(intelligent corruption)

[83],[84],
[75], [76],
[78],[79],
[80].

Mutation-based
Analysis

Injects vulnerability into the
program code. If the current
data set does not reflect the in-
jected vulnerability, it would
not detect similar vulnerabili-
ties in the original version of
the program.

Reduces false negatives by
enriching test data.

Expensive in time and com-
putation. Automatic muta-
tion of complicated vulner-
abilities is a challenge.

[85].

Dynamic taint anal-
ysis and sanitization

Tracks the flow of informa-
tion from input sources to the
sinks during the run-time.

Reduces the analysis time
and number of false posi-
tives by not considering the
paths in the program that
are not affected by malicious
data.

Cannot detect vulnerabilities
that are not defined in spe-
cific source-sink structure.

[93],[96].

Dynamic Model
checking

A model checking method in
which the program is executed
with concrete input values ex-
haustively.

No need to formally rep-
resent the semantics of the
programming languages and
machine instructions.

Time-state-soundness trade-
off.

[88],[89],
[90],[91],
[92].

From then, many researchers have combined
these methods, in different manners, to make up for
each other’s shortcomings. For example, Monga et al.
combine static and dynamic analysis to detect XSS and
SQL injection vulnerabilities in PHP applications in [109].
The suggested method first analyzes the code statically
and extracts the control flow graph of the functions in it.
These graphs are then connected together to obtain an
inter-procedural control flow graph (iCFG). The iCFG is
analyzed to extract the possible paths from the tainted
sources to the sinks in it. For each sink, backward
slicing is used to detect the statements that affect the
tainted argument. These statements are monitored at
run time. When a tainted value is used in a sink, the
monitoring procedure passes it to an oracle to verify if it
can exploit a vulnerability. The oracle have a database
of well-known attack patterns that are used to exploit
different vulnerabilities. For example, the implemented

oracle for mysql query() performs a limited syntactically
analysis on the SQL queries and searches for the
tainted characters in unsafe positions. In this method,
the sanitizing procedures are assumed to be perfect.

prevent the successful attacks. In the static analysis
phase the hotspots, that are statements in the program
that execute a SQL query, are identified. Also the control
flow of the program is extracted. Then, the query strings
in the hotspots are parsed. Considering the control flow
of the program, a FSA for each hotspot is created to
model the legitimate queries. During the monitoring
phase, the queries are checked against the relative FSA
to prevent execution of malicious queries.

As the last example, hybrid analysis is used in
[111] to detect logic vulnerabilities in web applications.
The logic vulnerabilities are usually related to the
intended functionality of an application. Thus, there is no
general specification for them that can be used in
different applications. For example, consider an online
store that allows the users to use coupons for having
discount on specific items. It has a policy which
determines that each coupon should be used only once.
A logic vulnerability, however, allows the users to reuse
a coupon and reduce the cost to zero. Since logic
vulnerabilities are created based on the functionality of
the application, the vulnerability detection method
requires the specification of the program. The proposed
method in [111] consists of two steps. First, the web
application is executed with normal input data. The
executed traces are then analyzed to infer the
specification of the application. This is based on the
intuition that normal behavior of the program reflects the
properties that are intended by the programmer. In fact,
because the specification of the program is not always

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

52

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

53

Y
e
a
r

20
17

(
)

C

© 2017 Global Journals Inc. (US)

available, this method uses dynamic analysis to obtain
it. The inferred specification is presented in the form of
likely invariants. In the second step, model checking is
used to analyze the web application based on the
inferred specification.

e) Vulnerability forecasting
Generally, fault forecasting is used to predict

the quality or quantity of the faults that are left in the
system and will be activated in the future. It is mainly
concerned with estimating the current reliability of the
system and predicting its future reliability. This
prediction may be qualitative or quantitative (usually
probabilistic). The qualitative forecasting identifies and
ranks the future failure modes. Also, the event
combinations that lead to the failures are identified.

The quantitative forecasting is performed by
modeling or operational testing. These methods are
complementary, since the results of operational tests
are usually used to model the system more accurately.
Software Reliability Growth Models (SRGM) are used
generally for fault forecasting. In fact, SRGMs model the
testing process [112]. In most of these models, the rate
of fault detection gradually reduces and the cumulative
number of faults eventually approaches a fixed value.
These models help to predict the number of left faults in
the software and determine when the software is ready
to be released. They are also used to estimate the
required efforts for future maintenance.

There are probabilistic models for predicting the
rate of vulnerability detection, named Vulnerability
Detection Models (VDM). Alhazmi and Malaiya
proposed a specific model, named AM4 for vulnerability
detection in [113]. In this model the rate of vulnerability
detection depends on two factors: one of these factors
reduces as the number of remaining undetected
vulnerabilities declines. The second factor increases
with the time. In this way, the rate of vulnerability
detection is modeled in a S-shaped form. In fact, AML is
created based on the observation that the detectors5

pay little attention to the newly published software.
Gradually people become familiar with the software and
the detectors pay more attention to it. Thus, the rate of
vulnerability detection increases by time and peaks at
some period. By the introduction of newer versions of
the program, the detectors’ interest becomes lower and
the rate of vulnerability detection decreases. Alhazmi
and Malaiya examined the applicability of this model to
various operating systems in [113] and [114]. The
results demonstrated that AML fits the data of several
operating systems.

All the mentioned models are time-based. It
means that they determine the detection rate based on
the calendar time. An effort-based model, named AME 2,

is proposed by Alhazmi and Malaiya in [113]. They
believe that time-based models do not consider the
changes that occur in the environment during the
lifetime of the system. Thus, they consider the number of
installations as an important environmental factor that
affects the rate of vulnerability detection. It is based on
the observation that the detectors are more interested in
the software that is installed in many computers.
Therefore, the rate of vulnerability detection is modeled
in AME based on the number of installations. Sung-
whan Woo et al. explore the applicability of AML and
AME to some HTTP servers, i.e., IIS and Apache. The
results indicate that these models are applicable to the
HTTP servers in addition to the operating systems [112].

4Alhazmi-Malaiya Logistic model
5People that analyze applications in order to detect vulnerabilities in
the mand report them to the vendors of applications or use them
maliciously
2Alhazmi-Malaiya Effort-based model

Of course, this method does not consider many
of the effective factors on the detection trend. For
example, it only calculates the cyclomatic complexity to
estimate the code complexity. There are other
complexity metrics that can be considered in addition to

A problem with the studied VDMs is that they
are parametric models that should be fitted to real
vulnerability data [115]. To model the vulnerability
detection rate in a specific application, a large amount
of historical vulnerability data is required. Therefore, it is
necessary that many of the vulnerabilities be discovered
already. Hence, these models cannot be applied to
predict the detection rate for newly released software.
Also, it is shown in [116] that the precision of VDMs
depend on the number of known vulnerabilities. The
precision of the VDMs are usually very low at the early
stages in the lifecycle of the program. It seems that the
problem is because the models don’t consider the
features of each application in their predictions. Thus,
they need a history of detected vulnerabilities to
estimate the security level of the program. There are
many features in each application and its environment
that affect the rate of vulnerability detection. Rahimi and
Zargham present a VDM in [115] based on two effective
factors: code complexity and code quality. The code
complexity is defined based on the cyclomatic
complexity. Also, the code quality determines its
compliance with secure coding practices. They believe
that more vulnerabilities are detected in the applications
with lower code quality. Also, the possibility of detecting
vulnerabilities is less in the applications with
complicated codes. Thus, the source code of the
application is statically analyzed to compute the two
factors. The computed data are then used to model the
vulnerability detection rate. Since this model does not
need a database of detected vulnerabilities, it can be
used for newly released applications. The authors
analyze four applications to study the impact of these
factors on the vulnerability detection trend. The analysis
results show that the proposed method can predict
vulnerabilities even in early stages of the application’s
lifecycle.

this one. The environmental parameters can also

be
considered for a good prediction. As an example, even
the

seasonal changes affect the rate of vulnerability
discovery. It is

shown in [117] that more vulnerabilities
are reported during the

mid-end and year-end months.
Also, the presented method in

[115] is based on
analyzing the source code of the application.

So it
cannot be helpful when the source code is not available.

There are some qualitative methods for estimating the
current

security level of the application. For example
OWASP ASVS

consists of several check lists that helps
to determine the

security level of a web application
[118]. It classifies the check

lists in thirteen classes,
such as authentication, access control, session
management, etc. In each class the check lists are

grouped into three security levels. If an application
passes all

the check lists of a group, it is achieves the
respective security

level. These methods only estimate
the current security level.

Based on the current level, it is
possible to predict the future

failure modes. However,
we could not find any qualitative

method that predicts
and ranks the future security failures

based on the
current state.

V.

Conclusions

During the past decades various methods have
been presented

for mitigating software vulnerabilities. A
comprehensive

classification of the proposed methods
helps to achieve a

general understanding of this
research area. In this paper, we

defined software
vulnerability as an internal fault. By considering

software
vulnerability as a type of fault, we classified the

vulnerability mitigation methods based on the general
classification

of the fault mitigation methods. We
extended the general

classification of fault mitigation
methods, represented it in

the context of software
vulnerability and added more detailed

subclasses into it.
We divided vulnerability mitigation methods

into four
main classes: vulnerability prevention, vulnerability

tolerance, vulnerability removal and vulnerability
forecasting.

The vulnerability prevention methods
attempt to prevent the

occurrence of software
vulnerability. Software security and the

secure coding
best practices are examples of these efforts. The

question is why, despite the vulnerability prevention
efforts,

vulnerabilities are still created. Oliveira et al.
believe that

educating the developers is not enough for
preventing the

vulnerabilities [119], because security is
not an issue for the

developers. They believe that the
human’s memory is limited

and can only keep a limited
number of mental elements

available at a time. The
programmers are also supposed to

create applications
with correct functionality and acceptable

performance.
Under the time pressure, an ordinary situation

in
software programming, the programmers usually chose

the

simplest solutions for developing the software and
pay little

attention to the security concerns. Oliveira et al.
suggest developing

assistant tools that remind the
educated programmers

the security concerns during the
development.

Besides educating the programmers, intelligent
assistant tools

are required to notify the security
concerns at specific statements

or functions. Thus, in
the future we should work on

designing and
implementing intelligent assistant tools that help

the
programmers to avoid generating vulnerabilities during
the

design and implementation of the applications.
These tools

should be intelligent enough not to bother
the developers with

many false alarms. They may use
the enhanced static analysis

methods to analyze the
code during the coding phase and warn

the
programmers at sensitive situations. This will help the

programmers to use their security knowledge more
effectively

in preventing the vulnerabilities.

Vulnerability tolerance methods accept the
existence of vulnerabilities

in the programs and prevent
the active vulnerabilities

from making security failures. In
this paper, the vulnerability

tolerance methods were
studied based on three aspects: the

applied active
vulnerability detection technique, active vulnerability

A New View on Classification of Software Vulnerability Mitigation Methods

handling technique and vulnerability handling technique.
All the reviewed vulnerability mitigation methods detect
active vulnerabilities during the normal execution of the
program (concurrently). However, there are active
vulnerabilities that overuse system resources and make
the resources unavailable to legitimate users after a
period of time, such as the memory leakage
vulnerability. The security failure as a result of these
vulnerabilities can be prevented by checking the system
resources periodically. Thus, preemptive error detection
can be applied to detect if such vulnerabilities are
active.

Most of the vulnerability tolerance methods
focus on detecting the active vulnerabilities. However,
less attention is paid to handling the (active)
vulnerability. In the proposed methods, active
vulnerabilities are handled by halting the program,
restarting the program or invoking an exception handler.
Although these mechanisms limit the negative effects of
the active vulnerability, they violate the availability of the
application to the legitimate users. Thus, more intelligent
vulnerability handling techniques are required for the
current vulnerability tolerance methods. A good starting
point is inspiring by the current fault tolerance methods.
As an example, software diversity is a fault tolerance
method that is used to make the programs reliable. In
this method, various versions of software with the same
specification but different design or implementation-
process the same request and the correct result is
achieved by voting the results of the different versions.
The result of such system is more reliable, since it is less

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

54

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

possible

that all the versions of software suffer from the
same fault

and so a request does not cause errors in all
versions. This

method can be used in software security
to tolerate malicious

requests. For example, recently
software diversity has been

used in [120] to tolerate
active vulnerabilities in web browsers.

In the proposed
method, different browsers are used to process

the
user’s requests. Since the browsers are designed and

implemented differently, it is less probable that all the
applied

browsers contain similar vulnerabilities. Thus,
malicious data

cannot compromise all the browsers. The
correct response to

the client’s request is achieved by
voting the responses of the

browsers. Also, some
protection mechanisms, such as ASLR

that protects
system against memory corruption vulnerabilities

[121],
are inspired by the idea of using diversity to make the

program unpredictable for the attackers. A new direction
for

the future research could be adopting the current
fault tolerance

methods to handle different software
vulnerabilities. As there

is no vulnerability handling
mechanism in the current proposed

methods, we
should work on designing complete vulnerability

tolerance methods that contain appropriate active
vulnerability

handling and vulnerability handling
mechanisms.

Vulnerability removal is performed to detect and
remove the

vulnerabilities in the software. The focus of
most of the

current vulnerability removal methods is on
verifying the

vulnerabilities. In fact, less attention is paid
on designing

appropriate methods for diagnosis,
correction and regression

verification of software
vulnerabilities. There are some vulnerability diagnosis
and correction methods that are used

after detecting the
exploitation of a vulnerability. But specific

methods are
required for diagnosis and correction of the

vulnerabilities that are detected during the verification of
the

program. Currently, automatic patching methods
analyze an

attack and generate software patches based
on the pattern of

malicious data that are used in the
attack. These methods

can be modified to automatically
generate patches based on

the results of analyzing the
program and according to the

mechanism of detected
vulnerabilities.

There are numerous vulnerability detection
methods presented

by now. Most of the recent
vulnerability detection methods

tend to combine the
previous methods in order to profit their

advantages at
the same time. For example, the concolic execution

method combines the concrete and symbolic execution

methods to reduce the complexity of pure symbolic
execution

and increase the program coverage. As
another example, static

taint analysis is used with the
constraint analysis method

to limit the overhead of
program analysis and compute the

constraints only on
the tainted data [51]. Also, the control and

data flow of
the program are extracted in [122], [62] and [63]

to
model the program automatically and detect

vulnerabilities

by performing the model checking. There
are more possible

combinations that are not applied yet
and might be effective

in detecting the vulnerabilities
more accurately. For example,

the annotation can be
used in model checking to profit the

programmers’
knowledge for modeling the program.

Also, most of the vulnerability removal and
vulnerability

tolerance methods consider a specific
vulnerability class based

on their own definition of the

relevant software vulnerability.

Therefore, an imprecise
definition of the intended vulnerability

would cause
inaccurate results in the proposed method. In addition,
some methods only consider a limited number of

vulnerability classes. To handle new vulnerability
classes, the

algorithm of these methods has to be
changed. Many of the

presented methods or tools are
not able to detect all of the

vulnerability classes [123],
[124]. By now, the researchers’

focus was mainly on
designing more accurate methods.

A new research trend is making the vulnerability
detection

methods extendable. In this way, an accurate
method for

detecting a specific vulnerability can also be
used to detect

other vulnerabilities. To make a
vulnerability detection method

extendable, we suggest
designing vulnerability detection algorithms

that are

A New View on Classification of Software Vulnerability Mitigation Methods

independent from the sought vulnerability classes. Such
algorithms are able to detect any specified
vulnerabilities in the program. Designing such methods
requires a general model for specifying the
vulnerabilities that encompasses any vulnerability
classes, even the future ones. Based on this model,
various vulnerabilities are specified for the detection
algorithms to be detected automatically in the programs.

There are a few extendable vulnerability removal
methods, such as [125], [126] and [124]. However,
these methods are limited to specific programming
languages. Also, some of them are not expressive
enough to specify any vulnerability classes. For
example, in [127] an extendable vulnerability method is
presented for detecting the vulnerabilities in web
applications that are written in Java. The specification
method of [127] does not support some data types, e.g.
integer, float and character. Therefore, it is not possible
to define certain operations, such as mathematical
operations or comparing the characters, in specifying a
vulnerability. This is not a limitation for specifying
vulnerabilities in object-oriented programs, such as
Java. Because they encapsulate these operations in
certain methods for each data type. It is, however, a
limitation for specifying vulnerabilities in other
languages, such as C. For example, it is not possible to
specify integer overflow vulnerabilities in C programs
with this method.

The vulnerability forecasting methods predict
the number of left vulnerabilities in the software and
determine when the software is ready to be released.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

55

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

They are also used to estimate

the required efforts for
the future maintenance. Some vulnerability

forecasting
methods use the vulnerability detection

models to
predict the rate of vulnerability detection during

the
lifecycle of the software. The first vulnerability detection

models were in fact software reliability growth models
that

were applied for predicting the vulnerability
detection rate.

The next models were designed
especially for the vulnerability

detection rate. These
models consider effective parameters on

the detection
of vulnerabilities, such as time and the number of

installations. Since these models do not consider
characteristics

of the software in their predictions, they
need a history of the

detected vulnerabilities to predict
the vulnerability detection

rate in the future. These
models are not accurate especially at

the early stages in
the lifecycle of programs. New vulnerability

detection
models consider the characteristics of the software to

achieve more accurate predictions. In this paper, we
reviewed

a vulnerability detection model that is based
on two characteristics

of the program: cyclomatic
complexity of the source

code and the level of
compliance with secure coding practices.

There are,
however, other characteristics that affect on the rate

of
vulnerability detection, such as software support,
version

of the program, availability of the source code or
usage of third-party components. For example, the rate
of vulnerability

detection decreases in time for a
program with effective support

that periodically presents
patches and resolves problems

in the program. Also, it
might be more difficult to detect

vulnerabilities in the
higher versions of a program than in its

lower versions.
The future models can use other characteristics

of
software to model the vulnerability prediction rate more

accurately. Also, they can combine software
characteristics

with the effective

environmental factors,
such as time and

number of installations, to generate
more accurate models.

The possibility of analyzing the program and the
program

analysis method become important when the
vulnerability

detection models consider the
characteristics of software. For

example, a model may
be based on some characteristics in

the source code of
the program. Thus, it is not possible to

use such model
when the source code of the program is not

available.
Also, vulnerability forecasts based on inaccurate

software analysis are not reliable. In the future, static
and dynamic analysis methods that are proposed for
detecting

the vulnerabilities can be used to better
analyze the current

characteristics of a program and
predict the future rate of

vulnerability detection
accurately.

References Références Referencias

1.

W. Jimenez, A. Mammar, A. Cavalli, R. Fourier,
Software vulnerabilities,

prevention and detection

methods: a review, in: Proceeding of the

first
International Workshop on Security in Model Driven
Architecture

(SEC-MDA)., 2009.

2.

H. Shahriar, M. Zulkernine, Mitigating program
security vulnerabilities:

Approaches and challenges,
ACM Computing Surveys (CSUR)

44 (3) (2012) 11.

3.

K. Zafar, A. Ali, Static techniques for vulnerability
detection, Linkoping

University, Sweden.

4.

M. Pistoia, S. Chandra, S. J. Fink, E. Yahav, A
survey of static analysis

methods for identifying
security vulnerabilities in software systems,

IBM
Systems Journal 46 (2) (2007) 265–288.

5.

B. Liu, L. Shi, Z. Cai, M. Li, Software vulnerability
discovery techniques:

A survey, in: Proceeding of
the Fourth International Conference

on Multimedia
Information Networking and Security (MINES), IEEE,
2012, pp. 152–156.

6.

M. Bishop, A taxonomy of unix system and network
vulnerabilities,

Tech. rep., Technical Report CSE-95-
10, Department of Computer

Science, University of
California at Davis (1995).

7.

M. Bishop, D. Bailey, A critical analysis of
vulnerability taxonomies,

Tech. rep., Technical
Report CSE-96-11, Department of Computer

Science, University of California at Davis. (1996).

A New View on Classification of Software Vulnerability Mitigation Methods

8. M. Bishop, Computer security: art and science,
Addison-Wesley, 2002.

9. H. R. Shahriari, R. Jalili, M. Bishop, A general
framework for categorizing vulnerabilities regarding
their impact on security policy, Computers and
Security.

10. I V. Krsul, Software vulnerability analysis, Ph.D.
thesis, Purdue University (1998).

11. R. C. Seacord, A. D. Householder, A structured
approach to classifying security vulnerabilities,
Tech. rep., Technical report CMU/SEI-2005- TN-003.
Carnegie-mellon univ pittsburgh pa software
engineering inst. (2005).

12. A Avizienis, J.-C. Laprie, B. Randell, C. Landwehr,
Basic concepts and taxonomy of dependable and
secure computing, Dependable and Secure
Computing, IEEE Transactions on 1 (1) (2004) 11–
33.

13. M. F. Ringenburg, D. Grossman, Preventing format-
string attacks via automatic and efficient dynamic
checking, in: Proceedings of the 12th ACM
conference on Computer and communications
security, ACM, 2005, pp. 354–363.

14. G. McGraw, Software security: building security in,
Vol. 1, Addison- Wesley Professional, 2006.

15. M. Howard, How do they do it? a look inside the
security development lifecycle at microsoft, MSDN
Magazine (2005) 107–114.

16. N. R. Mead, T. Stehney, Security quality
requirements engineering (SQUARE) methodology,
Vol. 30, ACM, 2005.

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

56

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

17.

Secure Coding Guidelines, https://msdn.microsoft.
com/en-us/library/

d55zzx87%28v=vs.90%29.aspx,
[Online;

accessed 2016-10-14].

18.

R. C. Seacord, Secure Coding in C and C++,
Pearson Education, 2005.

19.

F. Long, D. Mohindra, R. C. Seacord, D. F.
Sutherland, D. Svoboda,

The CERT Oracle Secure
Coding Standard for Java, Addison-Wesley

Professional, 2011.

20.

The Shields Project, (2012), http://www.shields-
project.eu, [Online; accessed 2016-10-23].

21.

D. Byers, N. Shahmehri, Unified modeling of
attacks, vulnerabilities

and security activities, in:
Proceedings of the 2010 ICSE Workshop

on
Software Engineering for Secure Systems, ACM,
2010, pp. 36–42.

22.

N. Shahmehri, A. Mammar, E. Montes de Oca, D.
Byers, A. Cavalli,

S. Ardi, W. Jimenez, An advanced
approach for modeling and detecting

software
vulnerabilities, Information and Software Technology

54 (9) (2012) 997–1013.

23.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S.
Beattie, A. Grier,

P. Wagle, Q. Zhang, H. Hinton,
Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks., in: Usenix
Security,

Vol. 98, 1998, pp. 63–78.

24.

T.-c. Chiueh, F.-H. Hsu, Rad: A compile-time
solution to buffer

overflow attacks, in: Proceeding of
the 21st International Conference

on Distributed
Computing Systems, 2001., IEEE, 2001, pp. 409–
417.

25.

B. B. Madan, S. Phoha, K. S. Trivedi, Stackoffence:
a technique for

defending against buffer overflow
attacks, in: Proceeding of International

Conference
on Information Technology: Coding and Computing.

ITCC 2005., Vol. 1, IEEE, 2005, pp. 656–661.

26.

M. Dalton, H. Kannan, C. Kozyrakis, Raksha: a
flexible information

flow architecture for software
security, in: ACM SIGARCH Computer

Architecture
News, Vol. 35, ACM, 2007, pp. 482–493.

27.

G. E. Suh, J. W. Lee, D. Zhang, S. Devadas, Secure
program execution

via dynamic information flow
tracking, in: ACM SIGOPS Operating

Systems
Review, Vol. 38, ACM, 2004, pp. 85–96.

28.

J. Clause, W. Li, A. Orso, Dytan: a generic dynamic
taint analysis

framework, in: Proceedings of the
2007 international symposium on

Software testing
and analysis, ACM, 2007, pp. 196–206.

29.

B. Stock, S. Lekies, T. Mueller, P. Spiegel, M. Johns,
Precise clientside

protection against dom-based
cross-site scripting, in: Proceedings

of the 23rd
USENIX security symposium, 2014, pp. 655–670.

30.

S. Manmadhan, T. Manesh, A method of detecting
sql injection attack

to secure web applications,
International Journal of Distributed and

Parallel
Systems 3 (6) (2012) 1.

31.

Z. Su, G. Wassermann, The essence of command
injection attacks in

web applications, in: ACM
SIGPLAN Notices, Vol. 41, ACM, 2006,

pp. 372–382.

32.

C. Cowan, M. Barringer, S. Beattie, G. Kroah-
Hartman, M. Frantzen,

J. Lokier, Formatguard:
Automatic protection from printf format string

vulnerabilities., in: USENIX Security Symposium,
Vol. 91, Washington,

DC, 2001.

33.

B. Salamat, A. Gal, T. Jackson, K. Manivannan, G.
Wagner, M. Franz,

Multi-variant program execution:
Using multi-core systems to defuse

buffer-overflow
vulnerabilities, in: proceedings of International
Conference

on Complex, Intelligent and Software
Intensive Systems.

CISIS 2008., IEEE, 2008, pp.
843–848.

34.

G. S. Kc, A. D. Keromytis, V. Prevelakis, Countering
code-injection

attacks with instruction-set
randomization, in: Proceedings of the 10th

ACM
conference on Computer and communications
security, ACM,

2003, pp. 272–280.

35.

G. Iha, H. Doi, An implementation of the binding
mechanism in the

web browser for preventing xss
attacks: introducing the bind-value

headers, in:
Availability, Reliability and Security, 2009. ARES’09.

International Conference on, IEEE, 2009, pp. 966–
971.

A New View on Classification of Software Vulnerability Mitigation Methods

36. S. Gupta, P. Pratap, H. Saran, S. Arun-Kumar,
Dynamic code instrumentation to detect and
recover from return address corruption, in:
Proceedings of the 2006 international workshop on
Dynamic systems analysis, ACM, 2006, pp. 65–72.

37. M. Zhang, H. Yin, Appsealer: Automatic generation
of vulnerability specific patches for preventing
component hijacking attacks in android
applications, in: Proceedings of the 21th Annual
Network and Distributed System Security
Symposium (NDSS 2014), 2014.

38. W. Cui, M. Peinado, H. J. Wang, M. E. Locasto,
Shieldgen: Automatic data patch generation for
unknown vulnerabilities with informed probing, in:
Security and Privacy, 2007. SP’07. IEEE Symposium
on,IEEE, 2007, pp. 252–266.

39. T. Wang, C. Song, W. Lee, Diagnosis and
emergency patch generation for integer overflow
exploits, in: Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer, 2014, pp.
255–275.

40. A. Smirnov, T.-c. Chiueh, Automatic patch
generation for buffer overflow attacks, in:
Information Assurance and Security, 2007. IAS
2007. Third International Symposium on, IEEE,
2007, pp. 165–170.

41. Z. Liang, R. Sekar, D. C. DuVarney, Automatic
synthesis of filters to discard buffer overflow attacks:
A step towards realizing self-healing systems., in:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

57

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

42.

J. Xu, P. Ning, C. Kil, Y. Zhai, C. Bookholt,
Automatic diagnosis

and response to memory
corruption vulnerabilities, in: Proceedings of

the
12th ACM conference on Computer and
communications security,

ACM, 2005, pp. 223–234.

43.

M. D. Ernst, Static and dynamic analysis: Synergy
and duality, in:

WODA 2003: ICSE Workshop on
Dynamic Analysis, 2003, pp. 24–27.

44.

D. A. Wheeler, Flawfinder, http://www.dwheeler.
com/flawfinder, [Online; accessed 2016-10-23]
(2001).

45.

J. Viega, J.-T. Bloch, Y. Kohno, G. McGraw, Its4: A
static vulnerability

scanner for c and c++ code, in:
Proceedings of the 16th Annual

Computer Security
Applications Conference, ACSAC’00, IEEE, 2000,

pp. 257–267.

46.

S.

C. Johnson, Lint, a C program checker, Bell
Telephone Laboratories,

1977.

47.

F. Yamaguchi, M. Lottmann, K. Rieck, Generalized
vulnerability

extrapolation using abstract syntax
trees, in: Proceedings of the 28th

Annual Computer
Security Applications Conference, ACM, 2012, pp.

359–368.

48.

H. Kim, T.-H. Choi, S.-C. Jung, H.-C. Kim, O. Lee,
K.-G. Doh,

Applying dataflow analysis to detecting
software vulnerability, in:

Proceeding of the 10th
International Conference on Advanced
Communication

Technology. ICACT 2008., Vol. 1,
IEEE, 2008, pp. 255–258.

49.

N. Jovanovic, C. Kruegel, E. Kirda, Pixy: A static
analysis tool for

detecting web application
vulnerabilities, in: Proceeding of the 2006

IEEE
Symposium on Security and Privacy, IEEE, 2006,
pp. 6–pp.

50.

D. Wagner, J. S. Foster, E. A. Brewer, A. Aiken, A
first step towards

automated detection of buffer
overrun vulnerabilities., in: NDSS, 2000,

pp. 2000–
02.

51.

V Ganapathy, S. Jha, D. Chandler, D. Melski, D.
Vitek, Buffer overrun

detection using linear
programming and static analysis, in: Proceedings

of
the 10th ACM conference on Computer and
communications

security, ACM, 2003, pp. 345–354.

52.

Y. Xia, J. Luo, M. Zhang, Detecting memory access
errors with

flow-sensitive conditional range analysis,
in: Embedded Software and

Systems, Springer,
2005, pp. 320–331.

53.

F. Yu, T. Bultan, O. H. Ibarra, Symbolic string
verification: Combining

string analysis and size
analysis, in: Tools and Algorithms for the

Construction and Analysis of Systems, Springer,
2009, pp. 322–336.

54.

D. Evans, D. Larochelle, Improving security using
extensible

lightweight static analysis, software, IEEE
19 (1) (2002) 42–51.

55.

J. Yang, T. Kremenek, Y. Xie, D. Engler, Meca: an
extensible,

expressive system and language for
statically checking security properties, in:
Proceedings of the 10th ACM conference on
Computer and

communications security, ACM,
2003, pp. 321–334.

56.

Y. Tsuruoka, J. Tsujii, S. Ananiadou, Accelerating
the annotation of

sparse named entities by dynamic
sentence selection, BMC bioinformatics

9 (Suppl
11) (2008) S8.

57.

M. Howard, A brief introduction to

the standard
annotation language (SAL),

http://blogs.msdn.com/

b/michael_howard/archive/2006/05/19/602077.aspx,
[Online; accessed 2016-10-22]

(2006).

58.

L. Tan, Y. Zhou, Y. Padioleau, acomment: mining
annotations from

comments and code to detect
interrupt related concurrency bugs,

in: Proceedings
of the 33rd international conference on software

engineering, ACM, 2011, pp. 11–20.

59.

D. Detlefs, G. Nelson, J. B. Saxe, Simplify: a
theorem prover for

program checking, Journal of the
ACM (JACM) 52 (3) (2005) 365– 473.

60.

G. Tian-yang, S. Yin-sheng, F. You-yuan, Research
on software security

testing, World Academy of
science, engineering and Technology

70 (2010)
647–651.

61.

S. Chaki, S. Hissam, Precise

buffer overflow
detection via model

checking (2005).

A New View on Classification of Software Vulnerability Mitigation Methods

USENIX Annual Technical Conference, General
Track, 2005, pp. 375–378.

62. W.-S. R¨odiger, Merging static analysis and model
checking for improved security vulnerability
detection, Ph.D. thesis, Master thesis, Dept. of Com.
Sc. Augsburg University (2011).

63. H. Chen, D. Wagner, Mops: an infrastructure for
examining security properties of software, in:
Proceedings of the 9th ACM conference on
Computer and communications security, ACM,
2002, pp. 235–244.

64. R. Hadjidj, X. Yang, S. Tlili, M. Debbabi, Model-
checking for software vulnerabilities detection with
multi-language support, in: Proceeding of the sixth
Annual Conference on Privacy, Security and Trust,
PST’08., IEEE, 2008, pp. 133–142.

65. J. Esparza, D. Hansel, P. Rossmanith, S. Schwoon,
Efficient algorithms for model checking pushdown
systems, in: Computer Aided Verification, Springer,
2000, pp. 232–247.

66. J. Ren, B. Cai, H. HE, C. HU, A method for detecting
software vulnerabilities based on clustering and
model analyzing, Journal of Computational
Information Systems 7 (4) (2011) 1065–1073.

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

58

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

http://blogs.msdn.com/�

67.

B. Livshits, M. S. Lam, Finding security
vulnerabilities in java

applications with static
analysis, in: Proceedings of the 14th conference

on
USENIX Security Symposium, Vol. 14, 2005.

68.

G. Wassermann, Z. Su, Static detection of cross-site
scripting vulnerabilities,

in: Proceeding of the
ACM/IEEE 30th International Conference

on
Software Engineering. ICSE’08., IEEE, 2008, pp.
171–180.

69.

J. Newsome, D. Song, Dynamic taint analysis for
automatic detection,

analysis, and signature
generation of exploits on commodity software,

in:
Proceedings of the 12th Network and Distributed
System Security

Symposium (NDSS05), 2005.

70. P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena,
M. Veanes, Fast

and precise sanitizer analysis with
bek, in: Proceedings of the 20th

USENIX conference
on Security, USENIX Association, 2011, pp. 1–1.

71.

L. Wang, Q. Zhang, P. Zhao, Automated detection
of code vulnerabilities

based on program analysis
and model checking, in: Proceeding

of the Eighth
IEEE International Working Conference on Source
Code

Analysis and Manipulation, IEEE, 2008, pp.
165–173.

72.

G. Pellegrino, D. Balzarotti, Toward black-box
detection of logic flaws

in web applications, in:
Proceedings of the Network and Distributed

System
Security (NDSS) Symposium, 2014.

73.

S. Kals, E. Kirda, C. Kruegel, N. Jovanovic, Secubat:
a web vulnerability

scanner, in: Proceedings of the
15th international conference on

World Wide Web,
ACM, 2006, pp. 247–256.

74.

A Takanen, J. D. Demott, C. Miller, Fuzzing for
software security

testing and quality assurance,

Artech House, 2008.

75.

D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, N.
Nystrom, W. Wang,

Simfuzz: Test case similarity
directed deep fuzzing, Journal of Systems and
Software 85 (1) (2012) 102–111.

76.

T. Wang, T. Wei, G. Gu, W. Zou, Taintscope: A
checksum-aware

directed fuzzing tool for automatic
software vulnerability detection,

in: Proceeding of
2010 IEEE Symposium on Security and Privacy

(SP),
IEEE, 2010, pp. 497–512.

77.

A Doup´e, L. Cavedon, C. Kruegel, G. Vigna,
Enemy of the state:

A state-aware black-box web
vulnerability scanner., in: USENIX

Security
Symposium, 2012, pp. 523–538.

78.

A Cadar, D. Dunbar, D. R. Engler, Klee: Unassisted
and automatic

generation of high-coverage tests for
complex systems programs., in:

OSDI, Vol. 8, 2008,
pp. 209–224.

79.

P. Godefroid, M. Y. Levin, D. A. Molnar, Automated
whitebox fuzz

testing., in: NDSS, Vol. 8, 2008, pp.
151–166.

80.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, D.
R. Engler,

Exe: automatically generating inputs of

death, ACM Transactions on

Information and
System Security (TISSEC) 12 (2) (2008) 10.

81.

I Haller, A. Slowinska, M. Neugschwandtner, H.
Bos, Dowsing for

overflows: A guided fuzzer to find
buffer boundary violations., in:

Usenix Security,
2013, pp. 49–64.

82.

S. Heelan, Vulnerability detection syst ems:Think
cyborg, not robot,

IEEE Security and Privacy 9
(3) (2011) 74–77.

83.

S. Sparks, S. Embleton, R. Cunningham, C. Zou,
Automated vulnerability

analysis: Leveraging control
flow for evolutionary input

crafting, in: Proceeding of
Twenty-Third Annual Computer Security

Applications Conference. ACSAC 2007., IEEE, 2007,
pp. 477–486.

84.

J. DeMott, R. Enbody, W. F. Punch, Revolutionizing
the field of greybox

attack surface testing with
evolutionary fuzzing, BlackHat and

Defcon.

85.

H. Shahriar, M. Zulkernine, Music: Mutation-based
sql injection

vulnerability checking, in: Proceeding of
the Eighth International

Conference on Quality
Software. QSIC’08., IEEE, 2008, pp. 77–86.

86.

A Groce, R. Joshi, Extending model checking with
dynamic analysis,

in: Verification, Model Checking,
and Abstract Interpretation, Springer,

2008, pp.
142–156.

87.

R. Jhala, R. Majumdar, Software model checking,
ACM Computing

Surveys (CSUR) 41 (4) (2009) 21.

88.

P. Godefroid, Model checking for programming
languages using

verisoft, in: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium

on
Principles of programming languages, ACM, 1997,
pp. 174– 186.

89.

K. Havelund, T. Pressburger, Model checking java
programs using java

pathfinder, International

A New View on Classification of Software Vulnerability Mitigation Methods

Journal on Software Tools for Technology Transfer 2
(4) (2000) 366–381.

90. M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, D.
L. Dill, Cmc: A pragmatic approach to model
checking real code, ACM SIGOPS Operating
Systems Review 36 (SI) (2002) 75–88.

91. M. B. Dwyer, J. Hatcliff, Bogor: an extensible and
highly-modular software model checking framework,
in: ACM SIGSOFT Software Engineering Notes, Vol.
28, ACM, 2003, pp. 267–276.

92. P. Godefroid, N. Klarlund, K. Sen, Dart: directed
automated random testing, in: ACM Sigplan
Notices, Vol. 40, ACM, 2005, pp. 213–223.

93. E. J. Schwartz, T. Avgerinos, D. Brumley, All you
ever wanted to know about dynamic taint analysis
and forward symbolic execution (but might have
been afraid to ask), in: Proceeding of the 2010 IEEE
Symposium on Security and Privacy (SP), IEEE,
2010, pp. 317–331.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

59

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

94.

S. Lekies, B. Stock, M. Johns, 25 million flows later:
large-scale detection

of dom-based xss, in:
Proceedings of the 2013 ACM SIGSAC

conference
on Computer & communications security, ACM,
2013, pp.1193–1204.

95.

M. G. Kang, S. McCamant, P. Poosankam, D. Song,
Dta++: Dynamictaint analysis with targeted control-
flow propagation., in: NDSS, 2011.

96.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda,

C. Kruegel, G. Vigna, Saner: Composing
static and dynamic analysis

to validate sanitization
in web applications, in: Proceeding of IEEE

Symposium on Security and Privacy. SP 2008.,
IEEE, 2008, pp. 387–401.

97.

G. Sarwar, O. Mehani, R. Boreli, D. Kaafar, On the
effectiveness of

dynamic taint analysis for protecting
against private information leaks

on android-based
devices, in: Proceeding of the 10th International

Conference on Security and Cryptography
(SECRYPT), 2013.

98.

L. A. Clarke, A program testing system, in:
Proceedings of the 1976

annual conference, ACM,
1976, pp. 488–491.

99.

D. Davidson, B. Moench, T. Ristenpart, S. Jha, Fie
on firmware: Finding

vulnerabilities in embedded
systems using symbolic execution., in: USENIX
Security, 2013, pp. 463 –478.

100.

V Ganesh, D. L. Dill, A decision procedure for bit-
vectors and arrays,

in: Computer Aided Verification,
Springer, 2007, pp. 519–531.

101.

L. De Moura, N. Bjørner, Z3: An efficient smt solver,
in: Tools and

Algorithms for the Construction and
Analysis of Systems, Springer,

2008, pp. 337–340.

102.

A Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, M.
D. Ernst, Hampi:

a solver for string constraints, in:
Proceedings of the eighteenth

international
symposium on Software testing and analysis, ACM,
2009,

pp. 105–116.

103.

M.-T. Trinh, D.-H. Chu, J. Jaffar, S3: A symbolic
string solver for

vulnerability detection in web
applications, in: Proceedings of the

2014 ACM
SIGSAC Conference on Computer and
Communications

Security, ACM, 2014, pp. 1232–
1243.

104.

C. Cadar, K. Sen, Symbolic execution for software
testing: three

decades later, Communications of the
ACM 56 (2) (2013) 82–90.

105.

Z. Wang, J. Ming, C. Jia, D. Gao, Linear obfuscation
to combat

symbolic execution, in: Computer
Security–ESORICS 2011, Springer,

2011, pp. 210–
226.

106.

K. Sen, D. Marinov, G. Agha, CUTE: a concolic unit
testing engine

for C, Vol. 30, ACM, 2005.

107.

D. Molnar, X. C. Li, D. A. Wagner, Dynamic test
generation to find

integer bugs in x86 binary linux
programs, in: Proceedings of the 18th

conference on
USENIX security symposium, USENIX Association,

2009, pp. 67–82.

108.

C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E.
X. Wu, D. Song,

Mace: Model-inference-assisted
concolic exploration for protocol and

vulnerability
discovery., in: USENIX Security Symposium, 2011,
pp.

139–154.

109.

M. Monga, R. Paleari, E. Passerini, A hybrid analysis
framework for

detecting web application
vulnerabilities, in: Proceedings of the 2009

ICSE
Workshop on Software Engineering for Secure
Systems, IEEE

Computer Society, 2009, pp. 25–32.

110.

W. G. Halfond, A. Orso, Combining static analysis
and runtime monitoring

to counter sql-injection
attacks, in: ACM SIGSOFT Software Engineering
Notes, Vol. 30, ACM, 2005, pp. 1–7.

111.

Felmetsger, L. Cavedon, C. Kruegel, G. Vigna,
Toward automated

detection of logic vulnerabilities
in web applications, in: USENIX

Security
Symposium, 2010, pp. 143–160.

112.

S.-W. Woo, H. Joh, O. H. Alhazmi, Y. K. Malaiya,
Modeling vulnerability

discovery process in apache
and iis http servers, Computers &

Security 30 (1)
(2011) 50–62.

113.

O. H. Alhazmi, Y. K. Malaiya, Quantitative
vulnerability assessment

of systems software, in:
Proceedings of annual reliability and maintainability

symposium, 2005, pp. 615–620.

114.

O. Alhazmi, Y. Malaiya, I. Ray, Security
vulnerabilities in software

systems: A quantitative
perspective, in: Data and Applications Security XIX,
Springer, 2005, pp. 281–294.

115.

S. Rahimi, M. Zargham, Vulnerability scrying method
for software

vulnerability discovery prediction
without a vulnerability database,

Reliability, IEEE
Transactions on 62 (2) (2013) 395–407.

116.

O. H. Alhazmi, Y. K. Malaiya, Application of
vulnerability discovery

models to major operating

A New View on Classification of Software Vulnerability Mitigation Methods

systems, Reliability, IEEE Transactions on 57 (1)
(2008) 14–22.

117. H. Joh, Y. K. Malaiya, Seasonal variation in the
vulnerability discovery process, in: Proceedings of
ICST’09 International Conference on Software
Testing Verification and Validation, 2009., IEEE,
2009, pp. 191–200.

118. Application Security Verification Standard (ASVS),
https://www.owasp.org/images/5/58/OWASP_ASVS
_ Version_ 2.pdf, [Online; accessed 2016-10-8].

119. D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J.
Cappos, Y. Zhuang, It’s the psychology stupid: how
heuristics explain software vulnerabilities and how

L

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

60

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

C

priming can illuminate developer’s blind spots,

in:
Proceedings of the 30th Annual Computer Security
Applications

Conference, ACM, 2014, pp. 296–305.

120.

H. Xue, N. Dautenhahn, S. T. King, Using replicated
execution for a

more secure and reliable web
browser., in: NDSS, 2012.

121.

L. Szekeres, M. Payer, T. Wei, D. Song, Eternal war
in memory, in:

IEEE Symposium on Security and
Privacy, 2013.

122.

D. Balzarotti, M. Cova, V. V. Felmetsger, G. Vigna,
Multi-module

vulnerability analysis of web-based
applications, in: Proceedings of

the 14th ACM
conference on Computer and communications
security,ACM, 2007, pp. 25–35.

123.

J. Bau, E. Bursztein, D. Gupta, J. Mitchell, State of
the art: Automated

black-box web application
vulnerability testing, in: Proceeding of the

2010 IEEE
Symposium on Security and Privacy (SP), IEEE,
2010, pp.

332–345.

124.

M. Almorsy, J. Grundy, A. S. Ibrahim, Supporting
automated vulnerability

analysis using formalized
vulnerability signatures, in: Proceedings

of the 27th
IEEE/ACM International Conference on Automated

Software Engineering, ACM, 2012, pp. 100–109.

125.

F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling
and discovering

vulnerabilities with code property
graphs, in: Proceedings of 2014

IEEE Symposium
on Security and Privacy (SP), IEEE, 2014, pp. 590–
604.

126.

W. Mallouli, A. Mammar, A. Cavalli, W. Jimenez,
Vdc-based dynamic

code analysis: Application to c
programs, Journal of Internet Services and
Information Security 1 (2/3) (2011) 4–20.

127.

B. Livshits, Improving software security with precise
static and

runtime analysis, Ph.D. thesis, Stanford
University (2006).

128.

U. Shankar, K. Talwar, J. S. Foster, D. Wagner,
Detecting format string

vulnerabilities with type
qualifiers., in: USENIX Security Symposium,

2001,
pp. 201–220.

129.

L. C. Paulson, Proving properties of security
protocols by induction, in:

Proceedings of the 10th
workshop on Computer Security Foundations, IEEE,
1997, pp. 70–83.

130.

M. Burrows, M. Abadi, R. M. Needham, A logic of
authentication,

in: Proceedings of the Royal Society
of London A: Mathematical,

Physical and
Engineering Sciences, Vol. 426, The Royal Society,
1989,

pp. 233–271.

131.

T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL:
a proof assistant

for higher-order logic, Vol. 2283,
Springer Science & Business Media,

2002.

132.

D. Larochelle, D. Evans, Statically detecting likely
buffer overflow

vulnerabilities., in: USENIX Security
Symposium, Vol. 32, Washington

DC, 2001.

133.

C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S.
Choi, A taxonomy

of computer program security
flaws, ACM Computing Surveys

(CSUR) 26 (3)
(1994) 211–254.

134.

R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L.
Konigsford, S. Tokubo,

D. A. Webb, Security
analysis and enhancements of computer operating

systems, Tech. rep., Technical report NBSIR-76-
1041. National

bureau of standards Washington inst
for computer sciences and technology.

(1976).

135.

R. Bisbey, D. Hollingworth, Protection analysis: Final
report (1978).

136.

P. Anderson, Codesurfer/path inspector,
Proceeding of the 20th IEEE

International
Conference on Software Maintenance, 2004.
Proceedings, 2004.

137.

T. A. Henzinger, R. Jhala, R. Majumdar, G. Sutre,
Software verification

with blast, in: Model Checking
Software, Springer, 2003, pp. 235–239.

138.

S. Rawat, D. Ceara, L. Mounier, M.-L. Potet,
Combining static

and dynamic analysis for
vulnerability detection, arXiv preprint

arXiv:

1305.3883.

139.

R. Anderson, Security in open versus closed system
the dance of

boltzmann, coase and moore, Open
Source Software Economics.

140.

E. Rescorla, Is finding security holes a good idea?,
Security & Privacy,

IEEE 3 (1) (2005) 14–19.

141.

J. D. Musa, K. Okumoto, A logarithmic poisson
execution time

model for software reliability
measurement, in: Proceedings of the 7th

international conference on Software engineering,
IEEE Press, 1984,

pp. 230–238.

142.

J. Dahse,

T. Holz, Simulation of built-in php features
for precise static

code analysis, in: Symposium on
Network and Distributed System

Security (NDSS),
2014.

A New View on Classification of Software Vulnerability Mitigation Methods

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

61

Y
e
a
r

20
17

 (

)
C

© 2017 Global Journals Inc. (US)

	A New View on Classification of Software Vulnerability Mitigation Methods
	Author
	I.Introduction
	II. Defining Software Vulnerability
	III. Vulnerability Mitigation Methods
	a) Vulnerability prevention
	b) Vulnerability Tolerance
	c) Vulnerability removal
	i. Static analysis
	ii.Program-based methods
	iii. Model-based methods (model checking

	iv. Dynamic Analysis
	a) Concrete execution
	i. Fault injection
	ii. Mutation-based analysis
	iii. Dynamic model checking
	iv. Dynamic taint analysis

	b) Symbolic execution
	c)Concolic execution
	d)Hybrid analysis
	e) Vulnerability forecasting

	V.Conclusions
	References Références Referencias

