
© 2016. Suman Saha & Md. Syful Islam Mahfuz. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Comparative Analysis of Mapreduce Framework for Efficient
Frequent Itemset Mining in Social Network Data

 By Suman Saha & Md. Syful Islam Mahfuz

Abstract Social networking sites are the virtual community for sharing information among the people.
It raises its pularity tremendously over the past few years. Many social networking sites like Twitter,
Facebook, WhatsApp, Instragram, LinkedIn generates tremendous amount data. Mining such huge
amount of data can be very useful. Frequent itemset mining plays a significant role to extract
knowledge from the dataset. Traditional frequent itemsets method is ineffective to process this
exponential growth of data almost terabytes on a single computer. Map Reduce framework is a
programming model that has emerged for mining such huge amount of data in parallel fashion. In
this paper we have discussed how different MapReduce techniques can be used for mining frequent
itemsets and compared each other’s to infer greater scalability and speed in order to find out the
meaningful information from large datasets.

Keywords: social networks, frequent itemsets mining, apriori algorithm, mapreduce framework, eclat
algorithm.

GJCST-B Classification: C.1.4,C.2.1,C.2.4 J.4

ComparativeAnalysisofMapreduceFrameworkforEfficientFrequentItemsetMininginSocialNetworkData

 Strictly as per the compliance and regulations of:

-

Publisher: Global Journals Inc. (USA)
Type: Double Blind Peer Reviewed International Research Journal
Volume 16 Issue 3 Version 1.0 Year 2016
Cloud and Distributed
Global Journal of Computer Science and Technology: B

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

University of Chittagong

Comparative Analysis of Mapreduce Framework
for Efficient Frequent Itemset Mining in Social

Network Data
 Suman Saha α & Md. Syful Islam Mahfuz σ

Abstract-

Social networking sites are the virtual community for
sharing information among the people. It raises

its popularity
tremendously over the past few years. Many social networking
sites like Twitter, Facebook, WhatsApp, Instragram, LinkedIn
generates tremendous amount data. Mining such huge
amount of data can be very useful. Frequent itemset mining
plays a significant role to extract knowledge from the dataset.
Traditional frequent itemsets method is ineffective to process
this exponential growth of data almost terabytes on a single
computer. Map

Reduce framework is a programming model
that has emerged for mining such huge amount of data in
parallel fashion. In this paper we have discussed how different
MapReduce techniques can be used for mining frequent
itemsets and compared each other’s to infer greater scalability
and speed in order to find out the meaningful information from
large datasets.

Keywords:

social networks, frequent itemsets mining,
apriori algorithm, mapreduce framework, eclat algorithm.

I.

Introduction

ocial network is a virtual network that allows
peoples to create a public profile into

under a
domain so that peoples can communicate with

each other’s within that network.

It has obtained remar-

kable attention in the last few years. Many social net-

working sites such as Twitter, Facebook, WhatsApp,
Instragram, LinkedIn, Google+ through the internet are
frequently used by the people. People can share infor-

mation, news and many others through these social
networks. Facebook is the most popular social sites
which had more than 1.59 billion people in as of their
last quarter [11]. Other sites like Instagram had 400
million peoples

in September 2015, Twitter had 320
million peoples in March 2016, Google+ had 300 million
peoples in October 2013, and LinkedIn had 100 million
peoples in October 2015 [11]. Analysis can be

process in Database) which is process of finding
information from database and extracted knowledge
can be used for making effective business decision [12].
Frequent itemsets mining is a popular method to extract
the frequent itemset over a dataset. It also plays an
important role in mining associations, correlation,
sequential patterns, causality, episodes, multidimen-

sional patterns, max patterns, partial periodicity, emer-

ging patterns and many other significant data mining
tasks [2].

II.

Research Background

Social networks generates huge amount of data
possibly terabytes or more. These multidimensional data
often referred to as Big data. So it is not efficient
technique for mining such Big data on a single machine
because of its limited memory space, RAM speed, and
Processor capacity. So researchers have emphasized
on parallelization for mining such data set to improve the
mining performance. But there are several issues related
with parallelization such as load balancing, partition the
data, distribution of data, Job assignment, and data
monitoring that need to solve. MapReduce framework
has been introduced to solve this problem effectively.
Cloud computing provides unlimited cheap storage and
computing power so that it provides a platform for the
storage and mining mass data [1].

MapReduce Framework

S

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

45

Y
e
a
r

20
16

 (

)
B

Author α: Is now serving as a Lecturer in CSE Dept. at Bangladesh
University of Business and Technology (BUBT). He received his B.Sc
(Engg.) degree in Computer Science and Engineering from University
of Chittagong, Bangladesh in 2011. His research interests are Data
Mining, Pattern Recognition, Image Processing, Wireless Ad Hoc
Networks and Algorithms.
e-mail: sumancsecu04@gmail.com
Author σ: Received the B.Sc. degree in Computer Science and
Engineering from Patuakhali Science and Technology University,
Bangladesh in 2012. Currently, he is a Lecturer of Computer Science
and Engineering at Bangladesh University of Business and Technology.
His teaching and research areas include Data Mining, Wireless
Transmission, Neural Network and Embedded System design.
e-mail: mahfuzisl@pstu.ac.bd

performed over such Big data which plays a significant
role to improve the productivity of different companies in
both public and private sector. Storing huge amount of
data won’t have any value without KDD (Knowledge

Figure 1:

balancing which allow users to focus on the problem
without worrying about parallelization details [1]. Basi-

cally MapReduce framework works on key-value pairs.
The input data is divided into several parts and stored
into the different nodes. It uses two functions, one is
map function and another is reducing function. Map
function takes key-value pairs from each node as input
and generates key-value pairs which indicate local
frequent item set as output. Reduce function takes these
local frequent itemsets as input and combine these key-
value pair and generates output as key-value pairs
which indicates the global frequent item set. The above
process can be easily and effectively implement by
using Hadoop MapReduce frame.

Hadoop MapReduce is a software framework
for easily writing applications which process vast
amounts of data (multi-terabyte data-sets) in-parallel on
large clusters (thousands of nodes) of commodity
hardware in a reliable, fault-tolerant manner [13].
Hadoop is open software that built on Hadoop
Distributed File Systems (HDFS).

MapReduce
framework and HDFS are running on the same node.

Hadoop MapReduce Framework

In MapReduce, a large dataset is broken into
multiple blocks. Each block is stored on distinct nodes
to form cluster. In Figure 2, dataset is partitioned into
three blocks. Multiple maps (here three maps) are
running simultaneously on different parts called split
.One maps for each blocks. A local disk is used to store
the output of the each map. A local disk has multiple
partitions where output of maps is stored in all partitions.
One partition corresponds to each reducer in the
framework. Then one partition of each local disk is
copied into each reducer. Here output maps are stored
into three local disks. Each disk has two partitions.
Partitions of the local disk are copied into two reducers.

III. Preliminaries

a) Problem Definition
Let D be a database that contains N transa-

ctions. Assume that we have S number of nodes. Data-
base D with N transactions is divided into P equal sized
blocks {D1, D2, D3……,DP} automatically and assign each
of the block Di to the nodes. Each of the nodes contains
N/P transactions. Consider an itemset I in the database
D. Then I.supportCount indicates the global support-
Count of I in D. We can call I is globally frequent if it
satisfy the following conditions

supportCount ≥ s × N where s is the given
minimum support threshold.

b) Data Layout
Consider an itemset I = {I1, I2, I3, I4, I5} and D be

database with 5 transactions {t1, t2, t3, t4, t5}. Data
Layout can be Horizontal Layout or Vertical Layout.
Horizontally formatted data can be easily converted to
Vertical format by scanning the database once. Follo-
wing figures shows how Horizontal or Vertical can be
represented of the above itemset and database transa-
ctions.

These two different formats have the different
way of counting the support of the itemset. In horizontal
data format, whole database needs to scan k times to
determine the support of itemset. For example, if we
want to count the support of the itemset I = {I1, I2, I3, I4,
I5} then we need to scan the all transactions from t1 to t5.
After scanning then we get the support for the item I1 =
4, I2= 2, I3= 3, I4= 3, I5 = 4. In the similar way, if want to
find the support of the 2-itemset for example (I1, I5) then
again we need to scan the database and get support (I1,
I5) is 3. But if we consider the vertical format then it
needs only intersection of the TID list of itemset to get
the support of the itemset. For example, If we want to
get the support of both I1, I5 then we have to perform the
intersection operation of { t1, t2, t3, t4} with {t2, t3, t4, t5} and
get output of { t2, t3, t4}. So support (I1, I5) is 3. So vertical
data format reduces the number of times to scan the
database very effectively.

c) Apriori Algorithm
Apriori algorithm is used for frequent itemsets

mining and association rule learning over transactio-
nal databases [16]. It was proposed by R. Agrawal and
Srikant in 1994. Apriori uses a Breadth-first search
approach where frequent subsets are extended one

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

46

Y
e
a
r

20
16

 (

)

© 2016 Global Journals Inc. (US)1

B
Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network

Data

MapReduce framework was proposed by Goo-
gle in 2014. It is used for processing a large amount of
data in parallel manner. It hides the problems like para-
llelization, fault tolerance, data distribution, and load

Figure 2:

Figure 3: Data Layout

item at a time, and groups of candidates are tested
against the data. At first scanning the database D and
count each item. Items that satisfy the minimum support
are conceded frequent 1-itemset.Then generates candi-
dates of 2-freqeunt itemset from frequent 1-itemset.
Scan the database again for counting the frequency of
candidate 2- itemset, compare candidate support count
with minimum support and determine the 2-frequent
itemset. In the similar way we can determine the fre-
quent k-itemset and generates candidate k+1 itemsets
by applying support and threshold conditions. Apriori
algorithm is two-step process one is join and another is
prune. Candidate k-itemset is generated by joining the
k-1 frequent itemset. And monotonic property is exploi-
ted to prune the candidates which are infrequent [5].
This process continues until the candidate itemset is not
NULL. Limitations of Apriori algorithm are finding the
each frequent itemset requires one full scan of the
database and candidate generation generates large
number subsets.

d) Eclat Algorithm
Eclat algorithm was proposed by ZAKI in 2000

for finding frequent itemset. Eclat uses vertical formatted
data rather than horizontal layout. As a result no need to
scan the database to find the support of (k+1) itemsets,
for k>=1 which achieves a good performance. Eclat is
based on depth-first search to traverse the prefix tree.
Eclat algorithm is very much similar with Apriori
algorithm. Similar to Apriori frequent 1-itemset is genera-
ted by scanning the database D. Candidate 2-itemset
are generated from frequent 1-itemset. Frequent 2-freq-
eunt itemset are generated from candidate 2-itemset by
clipping the infrequent itemsets. This process continues
until candidate itemset is not NULL. Different thing of
Eclat from Apriori is that Eclat algorithm partition the
search space and creates multiple non overlapping sub
spaces. Monotonic property states that if an itemset or
path in the tree is infrequent then all of its sub-trees are
infrequent and same are pruned; only frequent itemsets
are considered as prefix which gets added in a tree
[5].Same prefix type’s itemsets are categorized to the
same class and candidate itemsets can be conducted
only in the same class. Equivalence classes improve the
efficiency of collecting candidate itemsets and also
minimize the occupation of storage space. Eclat algori-
thm has the following limitations 1) Generation of candi-
date itemset is more than of Apriori because prior
knowledge may not enough to clip the candidate
itemsets. 2) If the itemset is much long then a great deal
of time is needed to determine whether two itemset can
be joined or not. 3) For the itemset of larger transac-
tions, calculation of intersection is not much efficient.
Although Eclat has some limitations but it has high
efficiency and very effective.

IV. Different Mapreduce Technique for
Finding Frequent Itemsets

a) PAriori algorithm
Parallel implementation of Apriori algorithm is

very easy to implement in Map Reduce framework [23].
The whole database is partitioned into subparts and
subparts are assigned into different node. As a result
parallel counting of each node is possible. Combiner
calculate locally intermediate sum of the data to reduce
the data size and transformed over the network. Hash
tables are used to check the data items that satisfy
minimum support. These frequent itemset are stored in
hash table and assigned to all the working processes.
After that reducer finds the global frequent itemsets from
the local itemset. These global frequent itemset at step i
are inputted to the mapper for the next step i+1 and
repeat the same procedure. Before inputted to the
mapper, candidate itemset are generated from the glo-

 bal itemset and apply prune technique on the candidate
itemset to reduce its size. Following figure shows the
parallel implementation of Apriori

algorithm for finding

the frequent itemsets.

Parallel implementation of Apriori algorithm

b)

MRApriori algorithm

Parallel implementation algorithm provides

good scalability but repeated scanning of the whole
database is still needed. MRAriori improves over the
PAriori is that it needs only one full scan of the
database. It scans only the intermediate data repeatedly
that generally reduces per iteration. Singh (2014)
proposed the MapReduce Apriori algorithm for finding
the frequent itemsets [24]. Two main parts of Apriori
algorithm. One is generating candidate itemsets and
another is generating frequent itemsets from candidate
itemsets. MRApriori algorithm is based on HDFS. HDFS
divides the entire database into blocks and blocks are
assigned to the

different mappers running on multiple
nodes. The input to the mappers is the (key, value) pairs
where key is the transactional ID and value is the list of
items. Output of the mappers is also (key’, value’) pairs
where key’ is the item in the transaction and value’ is
1.Combiner performs the local for the key’ of the same

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

47

Y
e
a
r

20
16

 (

)
B

Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network
Data

key value and inputted to the shuffle and exchange part.
In shuffle and exchange part, given output from the
combiner it makes a list of items of the form (key’, list

Figure 4:

(value”)) pairs and passes to the reducers. Reducers
takes the pairs as inputs, sum up the values of
respective keys and outputs the pairs (key’, value”’)
pairs where key’ is item and value’’’as support count
must satisfy the minimum support threshold. By merging
the the outputs from all reducers frequent 1-itemset can
be generated. If we find the frequent 2-itemsets then at
first candidate 2-itemsets will be generated and then we
have to find out frequent 2-itemsets from the candidate
itemsets. To find the frequent k-itemsets, frequent 1-
itemsets are inputted to the mapper and mapper
generated candidate k-itemsets. A candidate itemsets is
selected as key and value is 1 if mapper finds that item
in the transaction list which is assigned to the mapper.
All the remaining procedures are same.

Figure

5:

MRAriori procedure

c)

Parallel FP-growth Algorithm

Parallel FP-Growth is the parallel version of FP-
Growth [21]. Let we have N different computers. In
sharding, Database DB transaction is partitioned into
different parts called shard and stored on N different
computers. In parallel counting step, generate the
support values for all the items in DB using Map-Reduce
pass. Each mapper loads a shard and discovers the
Vocabulary I.

Finally result is stored in F-list. Divide the
all the items in F-list and generate group-dependent G-
list in grouping items during grouping items step.

 Block diagram of Parallel FP-Growth approach

Both F-list and G-list are small in size and
possible to compute in a single computer. Each G-list
has unique identifier (g_id).Parallel FP-growth works in
two steps: one is mapper and another is reducer. Group
dependent transactions are generated in mapper step.
At first mapper reads the G-list. Each mapper is fed one
shard and gives outputs of one or more key-value pairs
where key indicates the group_id and value indicate the
generated group dependent transaction list. For each
group_id, map reducer creates a shard of group
dependent transactions from all group dependent
transactions. Then reduces processes each shard one
after another. During the process, at first it creates a
local FP tree and then growth its conditional FP-trees
recursively while it may generates discovered pattern
during this process. Finally results in parallel FP-growth
are aggregating to generate the final result.

d) Balanced FP-Growth
Balanced FP-growth consists of two rounds of

Map Reduce [22]. In Balanced FP-Growth, two major
improvements are done over the Parallel FP-Growth.
One is balanced partition of the database D to improve
the parallelization and other is no aggregating operation
is needed for finding frequent itemsets. Balanced FP-
Growth consists of the following steps:
Sharding: Partition the database D into successive
partitions and assigned into the different nodes. If we
use Hadoop Map Reduce then just copy the database
into the Hadoop Distributed File System. Hadoop
automatically perform the Sharding.
Parallel Counting: One MapReduce technique is used
for counting the entire items. One shard is inputted to
exactly one mapper. The input is <key, value= Ti> pair
to the mapper where Ti ⊂ database transaction. and
output is also <key’, value’> pair. Reducer calculates
the sum of all the values that have the same key' and
outputs <key', sum (values')> pair. Output of this phase
frequent items called F-lists that is sorted in descending
order based on frequency.
Balanced Grouping: To improve the parallelization of the
overall mining, balanced grouping partition the F-list into

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

48

Y
e
a
r

20
16

 (

)

© 2016 Global Journals Inc. (US)1

B
Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network

Data

G-list and balanced the load among the groups. It can
be divided into two steps.

Figure 6:

i.

Mining the load estimation:

In this step, estimate the
load unit which is amount of work of running FP-
Growth on conditional pattern base of each frequent
item

ii.

Balanced Partition:

In this step, fairly partition the
load units among different groups.

Parallel FP Growth:

This step uses MapReduce phase
again. In map phase, Original database D transactions
are transformed to new group dependent transactions
and construct FP tree. And the reducer recursively done
the FP-Growth

on the group dependent transactions in
the reduce phase.

e)

Dist-Eclat

In general, we partition the large database into

equal sized sub database. Then mining the sub
databases separately and combined them to obtain
local frequent item sets. Finally all local frequent item
sets are combined and use prune method to obtain
global frequent item sets. As a result this approach
comes with large communication cost and is prohibitive
to implement in Hadoop. For effective mining and
overcome this situation Distributed version of Eclat (Dist-
Eclat) partition the search space rather than data space
[20]. Dist-Eclat use depth first search approach for
finding frequent item sets. As a result we need to store
only limited number candidate item sets in memory.

Figure

7:

Dist-Eclat Procedure

Dist-Eclat works in the following three steps:

Finding the frequent item sets:

At first vertical database
is equally partitioned to create the sub database called
shards and assigned them to the mappers. Mappers
find the local frequent

item sets from the shards.
Combined all local frequent item sets which is done
input of the reduce phase.

K-FIs Generation: This step generates kth

frequent
itemsets. Each mapper is assigned the combined form
of local frequent item sets. Then mapper finds

the kth
sized superset of the items using Eclat method. Finally a
reducer assigns the frequent itemsets to the individual
mappers.

Subtree mining:

Eclat algorithm is used for mining the
prefix tree from the assigned subsets.

f)

BigFIM

There are some limitations associated with Dist-
Eclat method. Firstly in Dist-Eclat, mapper needs the
whole datasets to generate FIs. As a result large number
tid-list may not fit in the memory. Secondly, mapper
needs the complete dataset for mining the sub tree
which is prohibitive in this Dist-Eclat. To overcome this
limitation, BigFIM method can be used [20]. It is
combination of both Apriori and Eclat algorithm for

mining the large dataset. BigFIM consists of the followi-

ng steps:

Generating k-FIs:

BigFIM overcomes the difficulties
arises for large tid list by constructing k-FIs using Apriori
algorithm. At first database is partitioned into sub parts
and each mapper receives sub part of the database.
Mapper use Apriori algorithm to find out the local
frequent item set. These

local frequent item set inputted
to the reduce function. Reducer combines all local
frequent item set, pruned the item set and find out the
global frequent item set. This global frequent item set
are redistributed to all mappers as a candidate item set
for the next step. This process is repeated to k times to
find the k+1 FIs

Finding Potential Extensions:

This step obtains tid-lists
for (k+1)-FIs. Local tid-list are collected from all
mappers by the reducer and combines them for
generating global tid-list.

And assign the computed
global tid-list as a complete prefix groups to the
mappers.

SubtreeMining:

Here, mapper performed on individual
prefix groups. Eclat algorithm is applied to mine the
prefix groups as conditional database that fits into a
memory for

frequent item set.

BigFIM Procedure

g)

ClustBigFIM

ClustBigFIM provides the hybrid approach
which is the combination of parallel k-means, Apriori,
and Eclat algorithm [5]. It gives an approximate result
that is very much close to original result with faster
speed. ClustBigFIM has the following four steps for
finding frequent itemsets from large datasets.

At first clusters are generated using parallel k-
means algorithm based on Compute_Dist function and
combiner function.

Apriori algorithm is used for mining generated clusters
in step 1.Mapper find the local support and Reducer
calculate the global supports.Upto certain length k,
Apriori used to find frequent k-length itemsets. But for
higher length k+1, use pruning technique on the
candidate itemsets to generate frequent itemsets.

From the generated prefixes, built a prefix tree
and obtain tid_lists for k+1 frequent itemsets .Mappers
computes the local tid_lists and reducer compute the
single global tid_lists.

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

49

Y
e
a
r

20
16

 (

)
B

Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network
Data

Prefix groups are assigned to the mappers
which is the conditional database that fits completely
into the memory. Subtrees are mined independently by

Figure 8:

i. Find Clusters

ii. Finding K-FIs

iii. Generate Single Global TID list

iv. Subtree Mining

 the mappers using depth first search. Longer frequent
itemsets as prefixes are used for better load balancing.

ClustBig

FIM Procedure

Comparative Analysis

PApriori algorithm is very easy to implement in
Map Reduce framework. It provides good performance
and efficient for large database. But user needs to give
number of reducers and repeated scanning of the full
database in PApriori. MRApriori technique overcomes
this situation of repeated scanning. It scans only the
intermediate data repeatedly that generally reduces per
iteration. It is also efficient and provides good
performance for large database. But processing time of
MRAprioi is same as PAriori. No significant reduction
was done for faster execution in MRApriori over PApriori.
Parallel version of Parallel-FP Growth is scalable. But if
we consider this technique based on memory and
speed then it is not efficient. Balanced FP-Growth is
improved version of Parallel-

FP Growth. It balances the
load distributed among the nodes. And also executes
faster than the parallel FP-Growth using singletons. But
the way this technique partition the search space is not
efficient. Dist-Eclat is distributed version of Eclat.
Advantage of this technique is its faster execution of
processing. But it is not scalable. To overcome the
limitation of Dist-Eclat, BigFIM technique was proposed.
BigFIM is the combination of both technique Apriori and
Eclat.

It removes the scalability problem of Dist-Eclat but
it is not as much faster as Dist-Eclat. ClustBigFIM
overcomes the speed problem of BigFIM. It is also
hybrid approach that is combination of parallel k-means,
Apriori, and Eclat algorithm. Advantage of this technique
is that it requires less time than BigFIM for execution. It
is also scalable. Table shows the comparison results of
various MapReduce techniques interms of speed,
scalability and execution time. Both Balanced FP-
Growth and ClustBigFIM technique have high speed up,
high scalability and less execution time but in Balanced
FP-Growth partition the search space is not efficient.

Table 1: Comparative analysis

MapReduce
Technique Speedup

Scalability

 Execution
Time

PAriori Low High More

MRApriori High High More

Parallel FP-
Growth

High High More

Balanced FP-
Growth

High High Less

Dist-Eclat High Low Less

BigFIM Low High Less

ClustBigFIM High High Less

VI Conclusion
Social network generated tremendous amount

of data. So frequent itemset mining on these Big data
can be extremely useful. But traditional mining methods
become ineffective for mining such data because of
large resource criteria and excess communication cost.
MapReduce programming model as a parallel program-
mming model has emerged for mining such Bigdata. In
this paper we analyses and studied different types of
MapReduce technique such as PApriori, MRApriori,
Parallel FP-Growth, Balanced FP-Growth, Dist-Eclat,
BigFIM, ClustBigFIM etc. From the above discussion
ClustBigFIM gives better result among all of them based
on faster execution and scalability.

References Références Referencias

1. Farzanyar, Zahra, and Nick Cercone(2013). Efficient
mining of frequent itemsets in social network data
based on MapReduce framework. In Proceedings of
the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
pp. 1183-1188. ACM.

2. Le Zhou; Zhiyong Zhong; Jin Chang; Junjie Li;
Huang, J.Z.; Shengzhong Feng(2010). Balanced
parallel FP-Growth with MapReduce," Information
Computing and Telecommunications (YCICT), 2010
IEEE Youth Conference on , vol., no., pp.243,246.

3. J Manyika, M Chui, B Brown, J Bughin, R Dobbs, C
Roxburgh, AH Byers (2011). Big data: The next
frontier for innovation, competition, and productivity.
McKinsey Global Institute, 1-137.

4. R. Agrawal and R. Srikant(1994).Fast Algorithms for
Mining Association Rules in Large Databases. In:
Proceedings of the Twentieth International Confere-
nce on Very Large Databases (VLDB), pp. 487-499.

5. S.Gole and B. Tidke (2015). Frequent Itemset
Mining for Big data in Social Media using ClusBig
FIM algorithm. International Conference on Perva-
sive Computing (ICPC).

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

50

Y
e
a
r

20
16

 (

)

© 2016 Global Journals Inc. (US)1

B
Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network

Data

V.

Figure 9:

6. D. Khanaferov, C. Lue and T. Wang (2014). Social
Network Data Mining Using Natural Language
Processing and Density Based Clustering”, IEEE
international Conference on Semantic Computing.

7. J. Dean and S. Ghemawat: Mapreduce (2004).
Simplified Data Processing on Large Clusters. In:
Proceedings of the Sixth Symposium on Operating
System Design and Implementation (OSDI), pp.
137-150.

8. Zhang, Zhigang, Genlin Ji, and Mengmeng Tang
(2013). MREclat: An Algorithm for Parallel Mining
Frequent Itemsets. In Advanced Cloud and Big Data
(CBD), 2013 International Conference on, pp. 177-
180. IEEE.

9. Yahya, Othman, Osman Hegazy, and Ehab Ezat
(2012). An efficient implementation of Apriori algori-
thm based on Hadoop- Mapreduce model.

10. Moens, Sandy, Emin Aksehirli, and Bart Goethals
(2013). Frequent itemset mining for big data. In Big
Data, 2013 IEEE International Conference on, pp.
111-118.

11. http://www.adweek.com/socialtimes/heres-how- ny-
people-are-on-facebook-instagram-twitter-other-big-
social-networks/637205.

12. Usama Fayyad, Gregory Piatetsky-Shapiro, and
Padhraic Smyth (1996). The KDD process for extra-
cting useful knowledge from volumes of data. Com-
mun. ACM 39, 11, 27-34.

13. https://hadoop.apache.org/docs/r1.2.1/mapred_tuto
rial.html.

14. http://www.drdobbs.com/database/hadoop-the-lay-
of-the-land/240150854.

15. M. J. Zaki and K. Gouda (2003). Fast vertical mining
using diffsets. Proceedings of the ninth ACM SIGK-
DD international conference on Knowledge disco-
very and data mining, New York, USA, pp. 326- 335.

16. https://en.wikipedia.org/wiki/Apriori_algorithm
17. N. Li, L. Zeng, Q. He, and Z. Shi (2012). Parallel

implementation of Apriori algorithm based on Map-
Reduce. In Proc. SNPD, pages 236–241.

18. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister (2010). A runtime
for iterative MapReduce. In Proc. HPDC, pages
810–818. ACM.

19. Zhiyong Ma, Juncheng Yang, Taixia Zhang and Fan
Liu (2016). An Improved Eclat Algorithm for Mining
Association Rules Based on Increased Search
Strategy “International Journal of Database Theory
and Application Vol.9, No.5 , pp.251-266 .

20. Moens, S.; Aksehirli, E.; Goethals, B. (2013).
Frequent Itemset Mining for Big Data," Big Data,
2013 IEEE International Conference on , vol., no.,
pp.111-118, doi: 10.1109/BigData.2013.6691742

21. L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S.
Feng(2010). Balanced parallel FP-Growth with
MapReduce. In Proc. YC-ICT, pages 243–246.

22. Dawen Xia, Yanhui Zhou, Zhuobo Rong, and Zili
Zhang, IPFP (2013). An improved parallel FP-
Growth Algorithm for Frequent Itemset Mining,
isiproceedings.org.

23. Suhel Hammoud (2011). MapReduce Network
Enabled Algorithms for Classification Based on
Association Rules”, Brunel University.

24. S.Singh,R. Garg, P.K.Mishra (2014). Review of
Apriori Based Algorithms on MapReduce Frame-
work”, ICC.

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

51

Y
e
a
r

20
16

 (

)
B

Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network
Data

	Comparative Analysis of Mapreduce Framework for Efficient Frequent Itemset Mining in Social Network Data
	Author
	Keywords
	I.Introduction
	II.Research Background
	III. Preliminaries
	a) Problem Definition
	b) Data Layout
	c) Apriori Algorithm
	d) Eclat Algorithm

	IV. Different Mapreduce Technique for Finding Frequent Itemsets
	a) PAriori algorithm
	b) MRApriori algorithm
	c) Parallel FP-growth Algorithm
	d) Balanced FP-Growth
	e) Dist-Eclat
	f) BigFIM
	g) ClustBigFIM
	i. Find Clusters
	ii. Finding K-FIs
	iii. Generate Single Global TID list
	iv. Subtree Mining

	V.Comparative Analysis
	VI Conclusion
	References Références Referencias

