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Abstract- Software Effort Estimation is highly important and considered to be a primary activity in 
software project management. The accurate estimates are conducted in the development of 
business case in the earlier stages of project management. This accurate prediction helps the 
investors and customers to identify the total investment and schedule of the project. The project 
developers define process to estimate the effort more accurately with the available mythologies using 
the attributes of the project. The algorithmic estimation models are very simple and reliable but not so 
accurate. The categorical datasets cannot be estimated using the existing techniques.  Also the 
attributes of effort estimation are measured in linguistic values which may leads to confusion. This 
paper looks in to the accuracy and reliability of a non-algorithmic approach based on adaptive neuro 
fuzzy logic in the problem of effort estimation. The performance of the proposed method 
demonstrates that there is a accurate substantiation of the outcomes with the dataset collected from 
various projects. The results were compared for its accuracy using MRE and MMRE as the metrics. 
The research idea in the proposed model for effort estimation is based on project domain and 
attribute which incorporates the model with more competence in augmenting the crux of neural 
network to exhibit the advances in software estimation. 
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Abstract-  Software  Effort  Estimation is highly important and 
considered to be a primary activity in software project 
management. The accurate estimates are conducted in the 
development of business case in the earlier stages of project 
management. This accurate prediction helps the investors and 
customers to identify the total investment and schedule of the 
project. The project developers define process to estimate the 
effort more accurately with the available mythologies using the 
attributes of the project. The algorithmic estimation models are 
very simple and reliable but not so accurate. The categorical 
datasets cannot be estimated using the existing techniques.  
Also the attributes of effort estimation are measured in 
linguistic values which may leads to confusion. This paper 
looks in to the accuracy and reliability of a non-algorithmic 
approach based on adaptive neuro fuzzy logic in the problem 
of effort estimation. The performance of the proposed method 
demonstrates that there is a accurate substantiation of the 
outcomes with the dataset collected from various projects. The 
results were compared for its accuracy using MRE and MMRE 
as the metrics. The research idea in the proposed model for 
effort estimation is based on project domain and attribute 
which incorporates the model with more competence in 
augmenting the crux of neural network to exhibit the advances 
in software estimation. 
Keywords: ANFIS, effort estimation, MRE, MMRE. 

I. Introduction 

chieving software economics in large-scale 
software development projectsare very important 
today. Software effort estimation is the process of 

determining the accurate effort required to maintain or 
develop a software. It is always an important practical 
problem in software engineering which is still unsolved. 
Effort estimates are done in initial stages of software 
engineering to calculate the effort in person-months 
required for the software development. Accurate effort 
estimation helps in planning design construction and 
transition phases of development and prioritize the 
components in business case. Unreliable estimates is 
the main important reason for project failure, which is 
expressed in 2007 Comp TIA survey of thousand IT 
professionals, finding that three of the four most-cited 
causes of IT project failure are due to poor estimation. 
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[Rosencrance 2007]. Noticing the importance of 
reliable effort estimation, the software project 
management contributors are now focusing on 
developing models to generate accurate effort of 
software during the earlier stages of software 
development. Effort estimation for software projects are 
categorized as non-algorithmic and algorithmic models. 
Algorithmic models applies the mathematical 
computation method and the non-algorithmic estimation 
uses fuzzy, neural network and other machine learning 
techniques.  The effectiveness of project management 
will be compromised if the Project managers are 
uncertain to adapt genuine estimation methodologies  

Boehm proposed a method called COCOMO 
that utilizes some experimental equation to estimate the 
effort using inputs like Kilo lines of code (KLOC), 
number of functions and other effort drivers. Neural 
network sare introduced in effort estimation process 
mainly for the training and learning from previous data. 
The model identifies a positive correlation between the 
dependent (effort) and independent variables (effort 
drivers). The half of the available data sets can be given 
for training and the remaining can be used to derive 
effort. The other techniques of software effort estimation 
are bottom-up, top-down, analogy estimation and expert 
judgments. 

II. Related Work 

Cuauhtemoc [1] provides justification that Fuzzy 
logic can be used to predict the effort of the small 
programs based on lines of code obtained from new 
and changed (N&C) and reused code from small 
programs developed by 74 programmers. This was 
used as the input for the fuzzy model for estimating 
effort and the accuracy of output was compared with the 
accuracy of Statistical regression model using the 
comparison criterion Mean Magnitude Error Relative to 
the estimate. 

Shiyna [2] compares the frameworks designed 
by using fuzzy logic and Neural Networks based on the 
accuracy of effort estimation. COCOMO NASA dataset 
had been used as the input for both the frameworks. 
These frameworks are validated using the parameters 
MMRE (Mean Magnitude of Relative Error) and Pred 
(Prediction Accuracy). The results show that Fuzzy Logic 
based framework works better when compared to the 
Neural Network framework. 

A 
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Ochodek [3] proposed the usage of Use Case 
Points (UCP) method to estimate the effort based on the 
use case model and two adjustment factors (With or 
Without Unadjusted Actor Weights). The cross-validation 
procedure has been used to compare the variants of 
adjustment factors. A group of 14 projects is considered 
as input which are used to arrive at a conclusion that the 
UCP method can be simplified without the use of 
adjustment factors. 

Iman [4] compares the software effort 
estimation computed by the conventional methods like 
function points, regression models and COCOMO with 
the model designed using fuzzy logic. The parameter 
Mean Magnitude of Relative Error (MMRE) is used to 
compute the accuracy of the considered methods. 

Anjana Bawa [5] explains the usage of Artificial 
Neural Networks to estimate the project effort as it is 
capable of learning from the previous data. The machine 
learning algorithms, Back-Propagation and Cascade 
Correlation are used to learn and classify the dataset 
and hence estimate the effort using the Neural 
Networks. 

By analyzing the previous work, it is evident that 
fuzzy logic is better than the conventional methods of 
effort estimation. By using the package points the 
complexity of estimating the lines of code for the 
considered software is reduced. By using the factor 
refinement, the time taken to compute the effort is less 
compared to the previous method where 15 attributes 
where obtained from the programmer to compute the 
effort. 

III. Proposed Approach 

We have considered 93 instances of NASA 
historical project data and also investigated and 
gathered thirty projects from many case studies and 
experiments [11][12][14][15] with consists of 15 
attributes and actual effort along with domain, area of 
work, Size. The fifteen attributes art converted to three 
index valued labelled as Human Perception and 
Performance Index (HPPI), Machine Requirement and 
Performance Index (MRPI), Process Requirement and 
Performance Index (PRPI). Adaptive Neuro-Fuzzy model 
(The Figure 1) for software development effort 
estimation is perfect in the learning and good 
interpretability. Artificial neural networks are made up of 
processing units in a parallel manner called as neurons 
these neurons are inter linked by connections. The input 
for this model is six grouped attributes. Each attribute 
represents one factor which leads to the development 
effort. Table 1 describes the refinement of attributes in 
such a way that 15 effort multipliers are grouped in 3 
clusters of refined attributes whose values are obtained 
from the software project developer. 

 
 

Table 1: Refined Attributes 

REFINED 
ATTRIBUTES EFFORT MULTIPLIERS 

Human 
Perception and 
Performance 
Index (HPPI) 

1. Analyst Efficiency 
2. Programmer Efficiency 
3. Application Maturity 
4. Modern Programming 

Practices 
5. Use of Software tools 
6. Virtual Machine 

Experience 
7. Language Experience 

Machine 
Requirement 

and 
Performance 
Index (MRPI) 

8. Time Constraint for CPU 
9. Turnaround Time 
10. Machine Volatility 

Process 
Requirement 

and 
Performance 
Index (PRPI) 

11. Process Complexity 
12. Storage Space 

Requirement 
13. Schedule Constraint 
14. Database Size 
15. Required Software 

Reliability 

This proposed model consolidates neural 
networks and fuzzy-logic principles in a combined 
ANFIS framework. This inference system correlates to 
the learning capability of fuzzy IF THEN rules to 
approximate the nonlinear functions.  

 

Figure 1 : Adaptive Neuro-Fuzzy model 

 

Figure 2 : Package Point Process 

a) Package Points 
The package point (figure 2) provides an 

alternate way to estimate the size that needs to be 
applied in a software project. Unlike function points and 
class points approach, the package points proves to be 
highly efficient in aiding to estimate effort and it is 
proven to work well with the ERP projects. In order to 
compute the package points, inputs are obtained 
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namely, scope, tasks and complexities. Package points 
are defined by standardizing the number of modules in 
the project primarily. Then the tasks to complete the 
modules are prioritized and defined by the client as per 
their requirement. Finally the complexity factors are 
loaded to arrive at the package point for the considered 
module.  

b) Validation in ANFIS Model 
ANFIS is a hybrid supervised method which 

adopts a hybrid learning algorithm to determine the 
parameters for fuzzy inference systems. It utilizes both 
least-squares method and propagation gradient 
descent method. This is used for training FIS 
membership function parameters to examine the given 
training data set. ANFIS can be executed using an 
optional argument for model validation. This is called as 
checking model for over fitting. The argument used for 
this is called as checking data set. 

c) Fuzzy Rule Inference 
Fuzzy rules are generated using package 

points, domain, type, Human Perception and 
Performance Index (HPPI), Machine Requirement and 
Performance Index (MRPI), Process Requirement and 
Performance Index (PRPI) and Actual effort.  A fuzzy set 
is illustrated using a membership function that relates 
with every point in the fuzzy set that comprises of 
numbers in the interval [0, 1], known as degree or grade 
of membership. Membership function used in this 
research work is Triangular Membership Function. 
Triangular Fuzzy Number (TFN) is defined using a triplet 
(α, m, β), where m denotes modal value, α and βsignify 
the right and left boundary correspondingly and is 
expressed as: 

μ(x) =

⎩
⎪
⎨

⎪
⎧

0,           x ≤  α
 x−α
m−α

, α ≤ x ≤ m
β−x
β−m

, m ≤ x ≤ β
0,          x ≥ β

�  (1) 

 Figure 3

 

:

 

Fuzzy Rules generated

 The equivalent characteristics of the rules the 
most significant aspect

 

of fuzzy logic systems. Instead 
of sharp swapping among

 

modes based on 
breakpoints, logic flows efficiently from sections where 
the system's performance is governed by

 

one rule or 
another.

 
Defuzzification converts from fuzzy to crisp 

conversions. The process converts the fuzzy value to the 
estimated value for the single data set. This is similar to 
a “rounding off” method. Defuzzification converts the 
collection of membership function data   to a single 
sealer quantity in corresponding membership degrees. 
It is characterized instructure of rules that convert 
variables to a fuzzy result, that is, the outcome is defined 
in terms of membership in fuzzy sets. 

 

 

 

                                                                     

(2)

 
IV.

 
Experimental Design 

a)
 

Evaluation Criteria
 1. Mean Magnitude Relative Error (MRE), is an

 
error ratio 

between the absolute deviations
 
of prediction to the 

actual effort in each of the referred project  
 

𝑀𝑀𝑀𝑀𝑀𝑀 = |(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  
− 𝑀𝑀𝐸𝐸𝐴𝐴𝑖𝑖𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖  

)
 
|/(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  

)       
                                                                        

(3)

 2. Mean Magnitude Relative

 

Error (MMRE)

 

is the 
average value of MER of all the referred projects

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1/𝑛𝑛∑𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖    (4)

 The Table 2 indicates the Package point and its 
subsequent domain with its actual effort and the non-
algorithmic estimated effort using the proposed method. 
The effort in the dataset is compared with this estimated 
effort

 
Table 2 :

 

Domain based Metrics

 Area Of Domain

 

Package 
Point

 

Actual  
Effort

 

Estimated 
Effort

 

Avionics 
monitoring

 

25.9

 

117.6

 

138.4

 
Mission planning

 

31.5

 

60

 

112

 

Simulation

 

66.6

 

352.8

 

402

 

Monitor Control

 

70

 

458

 

561

 

Real Data 
Processing

 

177.9

 

124

 

397

 
Communications

 

240

 

192

 

322

 

Batch Data 
Processing

 

25.9

 

117.6

 

119

 
Data Capture

 

31.5

 

60

 

67.7

 

Launch 
Processing

 

66.6

 

352.8

 

360.9

 
Application 

Ground

 

70

 

458

 

459

 
Utility

 

177.9

 

124

 

128
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Operating 
Systems

240 192 193.2

𝜇𝜇∗ 𝑤𝑤1 0 < ALV ≤1
𝜇𝜇∗ 𝑤𝑤1 +�1 –𝜇𝜇�∗𝑤𝑤2 1<ALV ≤ 2
𝜇𝜇∗𝑤𝑤1 +(1−𝜇𝜇 )∗𝑤𝑤1 2<ALV ≤ 3.5
𝜇𝜇∗ 𝑤𝑤2 +(1−𝜇𝜇 ) 𝑤𝑤3 3.5<ALV ≤ 5
𝜇𝜇∗ 𝑤𝑤3+(1− 𝜇𝜇 ) 𝑤𝑤2 5 <ALV ≤ 6.5
𝜇𝜇∗ 𝑤𝑤3+(1− 𝜇𝜇 ) 𝑤𝑤4 6. 5<ALV ≤ 8
𝑤𝑤4 ALV > 8

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 =



 

 

 
   

The preceding list of

 

algorithmic models are 
tested including KLOC (Kilo Lines Of Code)

 

value from 
the data

 

sets and efforts were estimated and these 
estimates are compared with the results obtained from 
Adaptive Neuro Fuzzy model.

 
•

 

Halstead Model-

 

This model developed by 
Halstead, concerning the supplied lines of source 
code from the programmer and formulates a 
relation,

 
Effort = 0.7 ∗

 

(KLOC)

 

2
  

 

(5)

 
•

 

Bailey-Basili Model -

 

This model developed by 
Bailey-Basili, between delivered lines of source 
code and formulates a relation,

 
Effort = 5.5 ∗

 

(KLOC)

 

1.16

  

                    (6 )

 
•

 

Doty Model -

 

This model developed by Doty, 
between delivered lines of source code and 
formulates a relation,

 
Effort = 5.288 ∗

 

(KLOC)

 

1.047
  

 

(7)

 
•

 

COCOMO -

 

It was the

 

first model suggested by 
Barry Boehm. This model has been widely accepted 
in practice. In the COCOMO model, the code-size S 
is given in thousand LOC (KLOC) and Effort is in 
person-month.

 
Effort = a ∗

 

(KLOC)

 

b
  

 

(8)

 
Where a, b are complexity factors. This model 

uses three sets of a, b depending on the complexity of 
the software.

 

The basic COCOMO model is simple and 
easy to use.

 
•

 

COCOMO II -

 

It comprises of three variants,

 

namely, 
early

 

design model, Application composition model, 
and Post architecture model. This is an 
augmentation of intermediate COCOMO model and 
defined as,

 
Effort = 2.9 ∗

 

(KLOC)

 

1.10

   

(9)

 
b)

 

Numerical Results

 
This section reports the experimental

 

results of 
predictions

 

obtained from soft computing models and 
other algorithmic models. The actual effort existing in the 
dataset is associated with the estimated

 

effort and finally 
Mean Relative Error

 

is calculated. The

 

following graphs 
(figure 4) shows

 

the Mean Relative Error variations in 
Doty, Bailey, COCOMO I and COCOMO II, Halstead and 
Neuro Fuzzy models.

 
 

 

Figure  4 : Doty Estimation Vs Actual Effort 

 

Figure 5 : Bailey Estimation Vs Actual Effort 

 

Figure 6 : COCOMO I Estimation Vs Actual Effort 
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Figure 7 : COCOMO II Estimation Vs Actual Effort 

 

Figure 8 : Halstead Estimation Vs Actual Effort 

 

Figure 9 : Fuzzy Based Estimation Vs Actual Effort 

The following table summarizes the MMRE 
value of all the algorithmic and non-algorithmic models 
discussed above for all the referred projects.  

Table 3 : MMRE comparison 

 Doty Bailey Halstead COCOMO 
I 

COCOMO 
II 

Fuzzy 
Estimation 

MMRE 5.15 6.47 6.06 9.14 7.54 3.11 

V. Conclusion 

Early effort estimation in software development 
lifecycle is an important activity for project planning and 
resource allocation. This research work proposes an 
efficient model in estimating the software effort. The 
outcomes of the estimation obtained using

 
the direct 

algorithmic methods indicates the divergence between 
the actual and the estimated effort. The outcome of non-
algorithmic method comprising of the adaptive neuro 
technique based estimation decreases the Mean 
Magnitude of Relative Error (MMRE). Hence the 
examination of effort from algorithmic method and non-
algorithmic method prove that adaptive neuro fuzzy 
based estimation is more efficient than the algorithmic 
methods for the estimation process. The success of 
estimation depends upon the accuracy and stability of 
the method in various measures.  Future work is 
planned to investigate the clustering algorithms in 
estimation process and apply Neuro Fuzzy model on 
large datasets.

 

 

1. Cuauhtemoc Lopez-Martin, “A fuzzy logic model for 
predicting the development effort of short scale 
programs based upon two independent variables”, 
Applied Soft Computing, Vol.11, 2010. 

2. Shiyna Kumar, Vinay Chopra, “Neural Network and 
Fuzzy Logic based framework for Software 
Development Effort Estimation”, International 
Journal of Advanced Research in Computer Science 
and Software Engineering, Vol.3, No. 5, 2013. 

3. M. Ochodek, J.Nawrocki and K.Kwarciak, 
“Simplifying effort estimation based on Use Case 
Points”, Information and Software Technology, 
Vol.53, 2011. 

4. Iman Attarzadeh and Siew Hock Ow, “Software 
Development Effort Estimation Based on a New 
Fuzzy Logic Model”, International Journal of 
Computer Theory and Engineering, Vol. 1, No. 4, 
2009. 

5. Anjana Bawa and Rama Chawla, “Experimental 
Analysis of Effort Estimation Using Artificial Neural 

0

5

10

15

20

1 11 21 31 41 51 61 71 81 91

M
ea

n 
Re

la
tiv

e 
Er

ro
r

Projects

Actual Effort COCOMO II

0
5

10
15
20

1 11 21 31 41 51 61 71 81 91

M
ea

n 
Re

la
tiv

e 
Er

ro
r

ProjectsActual Effort Halstead

0
5

10
15
20

1 11 21 31 41 51 61 71 81 91

M
ea

n 
Re

la
tiv

e 
Er

ro
r

ProjectsActual Effort Fuzzy Estimation

A Neuro Fuzzy Algorithm to Compute Software Effort Estimation

© 2016   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
I 
Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

27

Y
e
a
r

20
16

  
 (

)
C

References Références Referencias



 

 

Network”, International Journal of Electronics and 
Computer Science Engineering, Vol.1, No.3, 2011. 

6. Mohammad Azzeh, Daniel Neagu and Peter I. 
Cowling, “Analogy-based software effort estimation 
using Fuzzy numbers”, The Journal of Systems and 
Software, Vol.84, 2011. 

7. Sun-Jen Huang, Nan-Hsing Chiu and Li-Wei Chen, 
“Integration of the grey relational analysis with 
genetic algorithm for software effort estimation”, 
European Journal of Operational Research, Vol.188, 
2007. 

8. M. Kazemifard, A. Zaeri, N. Ghasem-Aghaee, M.A. 
Nematbakhsh and F. Mardukhi , “Fuzzy Emotional 
COCOMO II Software Cost Estimation (FECSCE) 
using Multi-Agent Systems”, Applied Soft 
Computing, Vol.11, 2011. 

9. Emad A. El-Sebakhy, “Functional networks as a 
novel data mining paradigm in forecasting software 
development efforts”, Expert Systems with 
Applications, Vol.38, 2011. 

10. Magne Jørgensen, “Contrasting ideal and realistic 
conditions as a means to improve judgment-based 
software development effort estimation”, Information 
and Software Technology, Vol.53, 2011. 

11. Bente Anda, Endre Angelvik, and Kirsten 
Ribu,”Improving Estimation Practices by Applying 
Use Case Models”, product focused software 
process improvement, Springer,2002. Kirsten Ribu, 
“Estimating Object-Oriented Software Projects with 
Use Cases, University of Oslo. 2001 

12. AP Subriadi, Sholiq, A P Ningrum. “Critical review of 
the effort rate value in use case point method for 
estimating software development effort” Journal of 
Theoretical and Applied Information Technology, 
January 2014 

13. M. Azzeha, Ali Bou Nassifb, Leandro L. Minkuc, “An 
empirical evaluation of ensemble adjustment 
methods for analogy-based effort estimation” 
Journal of Systems and Software, may 2015 

14. A.B Nassif, L.F. Capretz, “Software Effort Estimation 
in the Early Stages of the Software Life Cycle Using 
a Cascade Correlation Neural Network Model” 13th 
ACIS International Conference on Software 
Engineering, Artificial Intelligence, Networking and 
Parallel & Distributed Computing (SNPD), 2012  

15. Nassif, A.B.; Capretz, L.F.; Ho, D. "Estimating 
Software Effort Using an ANN Model Based on Use 
Case Points",  Machine Learning and Applications 
(ICMLA), 2012 11th International Conference on, On 
page(s): 42 - 47 Volume: 2, 12-15 Dec. 2012 

16. El Bajta, M. "Analogy-Based Software Development 
Effort Estimation in Global Software Development", 
Global Software Engineering Workshops (ICGSEW), 
2015 IEEE 10th International Conference on, on 
page(s): 51 – 54. 

 
 

A Neuro Fuzzy Algorithm to Compute Software Effort Estimation

© 2016   Global Journals Inc.  (US)1

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
I 
Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

28

Y
e
a
r

20
16

  
 (

)
C


	A Neuro Fuzzy Algorithm to Compute Software Effort Estimation
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Proposed Approach
	IV. Experimental Design
	V. Conclusion
	References Références Referencias

