
© 2015. Racharla Suresh Kumar & Prof. Bachala Sathyanarayana. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 15 Issue 2 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Evolutionary Computing based an Efficient and Cost Effective
Software Defect Prediction System

 By Racharla Suresh Kumar & Prof. Bachala Sathyanarayana
 Sri Krishnadevaraya University, India

Abstract- The earlier defect prediction and fault removal can play a vital role in ensuring software
reliability and quality of service. In this paper Hybrid Evolutionary computing based Neural Network
(HENN) based software defect prediction model has been developed. For HENN an adaptive genetic
algorithm (A-GA) has been developed that alleviates the key existing limitations like local minima and
convergence. Furthermore, the implementation of A-GA enables adaptive crossover and mutation
probability selection that strengthens computational efficiency of our proposed system. The
proposed HENN algorithm has been used for adaptive weight estimation and learning optimization in
ANN for defect prediction. In addition, a novel defect prediction and fault removal cost estimation
model has been derived to evaluate the cost effectiveness of the proposed system. The simulation
results obtained for PROMISE and NASA MDP datasets exhibit the proposed model outperforms
Levenberg Marquardt based ANN system (LM-ANN) and other systems as well. And also cost
analysis exhibits that the proposed HENN model is approximate 21.66% cost effective as compared
to LM-ANN.

Keywords: software defect prediction, artificial neural network, adaptive genetic algorithm, levenberg
marquardt, object oriented software metrics, cost estimation.

GJCST-G Classification: D.4.8

EvolutionaryComputingbasedanEfficientandCostEffectiveSoftwareDefectPredictionSystem

 Strictly as per the compliance and regulations of:

Evolutionary Computing based an Efficient and
Cost Effective Software Defect Prediction

System
Racharla Suresh Kumar α & Prof. Bachala Sathyanarayana σ

Abstract- The earlier defect prediction and fault removal can
play a vital role in ensuring software reliability and quality of
service. In this paper Hybrid Evolutionary computing based
Neural Network (HENN) based software defect prediction
model has been developed. For HENN an adaptive genetic
algorithm (A-GA) has been developed that alleviates the key
existing limitations like local minima and convergence.
Furthermore, the implementation of A-GA enables adaptive
crossover and mutation probability selection that strengthens
computational efficiency of our proposed system. The
proposed HENN algorithm has been used for adaptive weight
estimation and learning optimization in ANN for defect
prediction. In addition, a novel defect prediction and fault
removal cost estimation model has been derived to evaluate
the cost effectiveness of the proposed system. The simulation
results obtained for PROMISE and NASA MDP datasets exhibit
the proposed model outperforms Levenberg Marquardt based
ANN system (LM-ANN) and other systems as well. And also
cost analysis exhibits that the proposed HENN model is
approximate 21.66% cost effective as compared to LM-ANN.
Keywords: software defect prediction, artificial neural
network, adaptive genetic algorithm, levenberg
marquardt, object oriented software metrics, cost
estimation.

I. Introduction

ith the increase in information technologies and
associated software applications, the inevitable
requirement of software reliability has alarmed

scientific societies, industries as well as academician to
develop certain optimal paradigm to ensure defect free
software applications for long run reliability.

Furthermore, the cost factor for software
products and services also suggests the defect free
software solutions, so as to eliminate probability of faults
in future and iterative maintenance. In order to
accomplish these objectives, the efficient software
defect prediction (SDP) systems are of great
significance. In order to ensure optimal software
reliability, the defect prediction has become an
inevitable part of software development life cycle (SDLC)

Author α: Research Scholar, Department of Computer Science, Sri
Krishnadevaraya University, Andhra Pradesh, India.
e-mail: suresh_sku@yahoo.com
Author σ: Professor, Department of Computer Science, Sri
Krishnadevaraya University, Andhra Pradesh, India.
e-mail: bachalasatya@yahoo.com

that intends to eliminate the probability of software
failure in run time. The earlier defect prediction can
enable software professional to identify fault-prone
modules and thus can debug the defects to ensure
quality of service provisioning. In recent years the
application of open source software has increased
tremendously and professional prefer to customize
software modules and implement as per need. Still,
these modules are prone to defect in real time
scenarios, thus demanding for fault prediction and
verification [1, 2, 3, 4] before introducing product to the
users. The SDP might be functional on the basis of
certain software metrics [3, 4, 5] like changes in source
code, earlier defect or fault etc. Typically, software
metrics do represent certain quantitative factor that
characterizes the properties of software source code,
which can be employed to predict fault proneness of
software during function. On the other hand, in recent
years majority of software applications are being
developed using Object-Oriented (OO) paradigm. The
object oriented paradigm enables certain metrics that
that can be employed to examine the quality of software
application and associated fault proneness. Some of the
predominantly proposed software metrics are MOOD
[6], QMOOD [7], Bieman and Kang [8], Briand et al. [9],
Etzkorn et al. [10], Halstead [11], Henderson-sellers
[12], L and H metrics suite [13], McCabe [14], Tegarden
et al. [15], Lorenz and Kidd [16] and CK metric suite
[17]. The implementation of object oriented metrics
enables software practitioners to examine quality of
software in terms of precision, accuracy, fault-resilience,
reliable functionality, adaptability, supportability,
usability, portability, and cost effectiveness etc. In fact, it
makes testing enhanced for large scale software
applications. This is the matter of fact that a number of
researches have been made for defect prediction. Some
of the predominantly employed SDP techniques are
based on machine learning and artificial neural network
[18, 19, 20, 21, 22], clustering techniques, statistical
method, data mining based fault identification, random
forest [23, 24, 25] approaches etc. However, the
emerging software complexities, critical software
applications, reliable service assurance, quality oriented
service provisioning, and cost effective or economical
solutions etc., motivate researchers to develop certain

W

© 2015 Global Journals Inc. (US)

29

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

cost effective defect prediction solution. In recent years,
primarily, support vector machine (SVM) and artificial
neural network (ANN) approaches are being explored
for SDP utilities. The emergence of artificial intelligence
based applications have motivated researchers to
explore ANN based defect prediction that works based
on the human brain functions, while encompassing
multiple neurons and directed edges possessing certain
weights values between input and output layers. In fact,
ANN is a complex non-linear mapping process that
employs output as the input for learning certain complex
non-linear input-output relationship between input and
output layers. In function ANN encompasses data sets
to optimize key factors such as weight parameters, risk
minimization mechanism for stopping training once the
learning error enters in expected margin level. Although,
ANN has established itself as a potential candidate for
prediction and classification applications, still its
limitations in terms of slow learning ability, local minima
and convergence can’t be ignored. In order to enhance
the performance of ANN based defect prediction some
researchers [26, 27] have suggested evolutionary
computing paradigm that could enable optimal
classification and prediction without introducing any
computational complexity and premature convergence.

Considering efficiency of evolutionary
computing techniques such as Genetic Algorithm (GA)
in this paper a robust Adaptive genetic algorithm based
ANN learning algorithm has been developed, which has
been used for software defect prediction. In addition, to
enhance the performance of GA for huge data elements
and efficient performance, the genetic parameters
(crossover and mutation probability) have been selected
dynamically that makes overall system much robust as
compared to conventional approaches. In order to
examine the performance of the proposed HENN
system, a Levenberg Marquardt based ANN (LM-ANN)
algorithm has been developed and the comparative
performance analysis with the object oriented software
metrics, CK metrics [17] has revealed that the proposed
HENN algorithm provides better fault detection as
compared to LM-ANN. Furthermore, the fault removal
cost analysis for both the algorithms has stated that the
proposed system is cost effective and can be used for
real time defect prediction utilities.

The remaining sections discusses, related work
in Section II, the research contributions and problem
definitions for the proposed software defect prediction
model are presented in III, which has been followed by
proposed HENN and LM-AMM based SDP model
discussion and implementation in Section IV. Section V
presents the results and analysis and conclusion has
been discussed in Section VI. The references used in
this paper are given at the last of the manuscript.

II. Related Work

Software reliability is of course an inevitable
need for quality service provisioning. The reliability
oriented software defect prediction (SDP) has motivated
researchers to develop optimal system for cost efficient
defect prediction. Researchers examined the
relationship between object oriented software metrics
and associated faults [28, 29, 30, 31, 32, 33] by means
of machine learning algorithms and detected fault
proneness of software. To achieve better prediction
some other approaches such as decision trees, naïve
Bayes, and 1-rule [34] based fault detection scheme
were developed, where the standard datasets such as
NASA MDP was used to examine classification accuracy
of the SDP approaches. Chug et al [35] demonstrated
fault identification using data mining and employed
conventional J48, Random Forest, and Naive Bayesian
Classifier (NBC) schemes for performance comparison
but still couldn’t employ the benefits of advanced
classification approaches. To optimize conventional
random forest based defect prediction Pushphavathi et
al [36] incorporated a hybrid random forest (RF) and
Fuzzy C Means (FCM) clustering model for software
defect prediction. Unfortunately, these approaches
could not address the issue of unbalanced datasets,
which motivated researchers to come up with Adaboost.
Nc [37] which implemented a number of class
imbalance approaches, re-sampling, threshold
variations, and ensemble algorithms. Exploring insight,
this approach can be found to be complicate and not a
cost effective solution for large scale dynamic data.
Researchers used SVM based defect prediction scheme
[38, 39] and a dynamic SVM model was proposed that
intended to detect faults in source code by means of
error data and faulty code execution. In [40, 41]an ANN
based defect prediction model was developed. A defect
severity model using conventional back-propagation
learning based ANN was developed in [42]. Similarly in
[43] a Radial Basis ANN was used for SDP. ANN based
SDP for Halstead data metrics has been done in [44]. In
[45] the Bayesian Regularization (BR) technique based
ANN model was developed for software fault detection.
Almost all ANN based defect prediction model employs
conventional learning and weight estimation techniques
that confines applicability with huge datasets with
dynamic functional environment. The conventional
learning and weight estimation approaches can’t
eliminate the key issues of local minima and
convergence issue that limit the performance of generic
ANN. The enhancement of learning scheme and further
optimization through certain evolutionary computing
approaches can make ANN robust for SDP applications.
In fact, cost feasibility is one of the key factors that
decide employability of certain SDP model, but till no
any research work has addressed the issue of cost
estimation of the defect prediction model. This paper

© 2015 Global Journals Inc. (US)1

30

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

has considered these limitations as motivation and has
developed an evolutionary computing A-GA based SDP
model which has been compared with Levenberg
Marquardt based ANN and respective fault removal cost
estimation has been done.

III. Our Contribution

In SDLC the fault resilience and reliability is of
great significance. The implementation of efficient SDP
strengthensearly fault detection and thus it enables
software practitioner to remove faults to ensure reliability
and QoS of the software solution. The predominant
question in this paper is whether the implementation of
Adaptive Genetic Algorithm can enable efficient and
cost effective SDP solutions? In this paper, object
oriented software metrics [17] has been considered for
defect prediction and using proposed SDP models, the
fault proneness of metrics data has been retrieved,
whether the data is faulty or non-faulty. In order to
perform classification of faulty and non-faulty data,
initially the conventional ANN learning scheme with
Leven berg Marquardt (LM) algorithm [45] has been
developed and respective performance towards
software defect prediction with NASA defect datasets
has been done. This is the matter of fact that LM based
ANN performs better as compared to other approaches
such as back-propagation or feed-forward learning
based NN, still it suffers due to prime limitations of ANN,
such as local minima and weight update issues. Thus,
considering higher employability of artificial intelligence
techniques and respective limitations for critical software
applications, in this paper an evolutionary computing
based optimization scheme called Genetic Algorithm
has been used for weight estimation during ANN
learning. Further to ensure optimal performance of GA,
in this paper a novelty has been introduced in terms of
adaptive GA parameter (Crossover and Mutation
probability) selection. The proposed Adaptive Genetic
Algorithm (A-GA) performs adaptive weight estimation
and learning optimization so as to ensure optimal fault
classification and accuracy. The A-GA optimization
scheme alleviates the issue of premature convergence
and local minima. Such enhancement has lead better
classification and accuracy for fault detection in huge
datasets.

In order to examine the performance of the
proposed SDP model, the object oriented software
metrics (here, CK metrics [17]) has been considered.
The implemented metrics characterizes various software
features. In this paper, six predominant software metrics
have been considered in fault identification. The
considered metrics are WMC, NOC, DIT, CBO, RFC,
and LCOM. The individual metrics has been feed as the
input of the ANN and performing learning with the
proposed HENN model the classification for faults has
been done. The discussion of the proposed A-GA

based ANN (HENN) has been discussed in the next
section of the presented manuscript. In this paper, in
order to examine the cost effectiveness of the
developed SDP models, certain cost efficiency model
can be used [46, 47, and 48] and with certain standard
threshold the applicability of the proposed SDP model
for large scale software data can be examined. The
performance analysis of the proposed model has been
done in terms of accuracy, precision, recall, F-Measures
and fault removal cost efficiency. The discussion of the
proposed SDP models and its implementation is
discussed in the following sections.

IV. System Model

In this section, the proposed Levenberg
Marquardt learning based ANN and our proposed
HENN based software defect prediction schemes and
its algorithmic implementation have been discussed.

a) Artificial Neural Network based Software Defect
Prediction

This is the matter of fact that the Artificial Neural
networks (NN) have seen an explosion of interest over
the years, and it has been implemented across a range
of problem domains, specifically classification and
prediction. In fact, the major problems dealing with
prediction and classification, ANN is considered to be
the dominating solution. For SDP scenario, ANN can be
used with different learning schemes like Gradient
Descent (GD), Gauss Newton, and Levenberg
Marquardt (LM) etc. Unfortunately majority of existing
learning paradigm are ineffective to alleviate the key
limitations of ANN such as local minima and
convergence issue. Even though, researches have
revealed that Levenberg Marquardt (LM) can be a
potential candidate for ANN learning due to its stable
nature and flexible implementation. In this paper, in
addition to LM-ANN algorithm, an evolutionary
computing technique called Adaptive Genetic Algorithm
(A-GA) has been used for dynamic weight estimation for
prediction enhancement. In the proposed ANN model
and ultimately intended SDP system, it has been
intended to find relation between object oriented
software metrics and fault prone classes of the six CK
metrics; WMC, NOC, DIT, RFC, CBO, LCOM, which has
been considered as independent variable. The fault data
has been taken as the dependent data. Figure-1
illustrates the architecture of our proposed ANN model
comprising three layers i.e., input layer, hidden layer and
output layer. Here, 6 input nodes have been defined that
takes six CK matrix [17] having multiple classes as
individual input. Since, in the proposed ANN model, the
expected outputs are either FAULTY or NO-FAULTY,
therefore only one output node is needed. Here, we
have considered 8 hidden layers so as to avoid
unwanted computational complexity. Thus in the defined
ANN architecture, 56 weights (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +

© 2015 Global Journals Inc. (US)

31

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) ∗ ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) are required to be
estimated for fault prediction and classification. At the
input layer, the linear activation function has been used
that enables the output of the output layer same as the
input of the input layer(𝑂𝑂𝑜𝑜 = 𝐼𝐼𝑖𝑖).

Input Layer

Hidden Layer

Output Layer

WMC

NOC

DIT

CBO

RFC

LCOM

W

Wk

Figure 1 : ANN model for Defect prediction

In our model, the sigmoid function has been
used at the hidden layer𝑂𝑂ℎ and thus the output of the
hidden nodes 𝑂𝑂ℎ with input𝐼𝐼ℎ would be 𝑂𝑂ℎ = 1

1+𝑒𝑒−𝐼𝐼ℎ
. The

final output at the output node come of output nodes
Oo can be obtained as mathematically by 𝑂𝑂𝑜𝑜 = 1

1+𝑒𝑒−𝑂𝑂𝑖𝑖
.

Generally, the ANN model is defined in terms of
a function𝑌𝑌′ = 𝑓𝑓(𝑊𝑊,𝑋𝑋)where 𝑌𝑌′states for the output
vector and𝑊𝑊 and 𝑋𝑋represent the weight vector and the
input vector respectively. In learning process, the weight
factor 𝑊𝑊is updated iteratively so as to minimize the Root
Mean Square Error (RMSE), which can be estimated by:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

(3)

Where 𝑦𝑦depicts the actual output and𝑦𝑦𝑖𝑖′
represents the expected output.

In order to make computation efficient and to
process multidimensional data with ANN, it is inevitable
to perform the normalization. In the proposed ANN
based SDP models; the data normalization has been
done using Min-Max approach, which is discussed as
follows:
i. Data normalization

In this paper, normalization has been performed
on the defect datasets that strengthens the proposed
ANN based software detect prediction systems for
better readability and classification. In the proposed
SDP model, the data normalization has been done over
the range of [0, 1] so as to adjust the defined range of
input feature value and avoid the saturation of neurons.
There a number of normalization approaches such as

Min-Max normalization, Z-Score normalization and
decimal scaling etc. We have normalized the defect
data using Min-Max normalization scheme that performs
a linear transformation on the original data and then
maps individual data 𝑥𝑥𝑖𝑖 of attribute 𝑋𝑋 to the normalized
value 𝑥𝑥′𝑖𝑖 in the range of [0, 1]. The normalization using
Min-Max approach has been done using following
equation:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖" =
𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋) −𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋)
 (4)

where 𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋) are the maximum and
minimum values of the attribute 𝑋𝑋 respectively. In the
proposed SDP model, performing data normalization
the ANN model has been implemented for fault
classification.

In ANN based systems, the efficient weight
estimation and learning approach is of great
significance. Till a number of approaches have been
developed for learning optimization in ANN based
artificial intelligence applications. Some of the
predominant approaches are: Gauss Newton, Gradient
descent, Levenberg Marquardt (LM) etc. Interestingly
LM can work as both gradient descent as well as gauss
Newton. Some researchers also have advocated that
LM can outperform other existing learning schemes in
ANN. Thus considering significance of LM for effective
learning for SDP, in this paper initially LM based ANN
(LMANN) has been developed for SDP model. The
discussion of the proposed LMANN model for SDP
application is given as follows:

b) Levenberg Marquardt (LM) Learning based ANN for
Software Defect Prediction

The prime scope for ANN optimization is the
enhancement of its weight estimation and respective
learning optimization. Therefore, considering these
factors, a number of algorithms have been proposed for
weight update in ANN learning (Table-1). In this paper,
considering the higher efficiency of Levenberg
Marquardt (LM) algorithm, we have used this algorithm
for weight update (W) during ANN training for defect
prediction.

© 2015 Global Journals Inc. (US)1

32

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Table 1 : Specifications of varied Weight Update algorithms

Algorithm Weight Update Rules Convergence Computation Complexity

EBP Algorithm 𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − 𝛼𝛼𝑔𝑔𝑘𝑘 Stable, Low Gradient

Newton Algorithm 𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − 𝐻𝐻𝑘𝑘−1𝑔𝑔𝑘𝑘 Unstable, Fast Gradient and Hessian

Gauss-Newton
Algorithm 𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − �𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘�

−1𝐽𝐽𝑘𝑘𝑒𝑒𝑘𝑘
Unstable, Fast Jacobian

Levenberg-Marquardt
Algorithm

𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − �𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜇𝜇𝜇𝜇�−1𝐽𝐽𝑘𝑘𝑒𝑒𝑘𝑘 Stable, Fast Jacobian

NBN Algorithm 𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − 𝑄𝑄𝑘𝑘−1𝑔𝑔𝑘𝑘 Stable, Fast Quasi Hessian

Levenberg Marquardt (M) algorithm performs
localization of the bare minimum value of multivariate
function in a repetitive manner, which is expressed as
the sum of squares of non-linear real-valued functions.
Similar to GD algorithm, in HENN, LM algorithm updates
the weights during NN learning process. Considering
the performance novelty, the proposed LM algorithm
comprises the functional ability of Steepest Descent and
Gauss Newton method. The proposed LM algorithm can
update the weight vector by following expression:

𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 − (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜇𝜇𝜇𝜇)−1𝐽𝐽𝑘𝑘𝑒𝑒𝑘𝑘 (1)

Where Wk+1 is the updated weights, Wk is the
current weights, I represents the identity or unit matrix, 𝐽𝐽
is the Jacobian matrix andµ, the combination coefficient
is always positive. With µ as very small, it functions as

Gauss Newton method while making µ as very large
makes it functional as Gradient descent method. The
Jacobian matrix derived as given as:

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑑𝑑
𝑑𝑑𝑑𝑑1

(𝐸𝐸1,1)
𝑑𝑑
𝑑𝑑𝑑𝑑2

(𝐸𝐸1,1) ⋯
𝑑𝑑

𝑑𝑑𝑑𝑑𝑁𝑁
(𝐸𝐸1,1)

𝑑𝑑
𝑑𝑑𝑑𝑑1

(𝐸𝐸1,2)
𝑑𝑑
𝑑𝑑𝑑𝑑2

(𝐸𝐸1,2) ⋯
𝑑𝑑

𝑑𝑑𝑑𝑑𝑁𝑁
(𝐸𝐸1,2)

⋮ ⋮ ⋮ ⋮
𝑑𝑑
𝑑𝑑𝑑𝑑1

(𝐸𝐸𝑃𝑃,𝑀𝑀)
𝑑𝑑
𝑑𝑑𝑑𝑑2

(𝐸𝐸𝑃𝑃,𝑀𝑀) ⋯
𝑑𝑑

𝑑𝑑𝑑𝑑𝑁𝑁
(𝐸𝐸𝑃𝑃,𝑀𝑀)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2)

Where 𝑁𝑁

refers the weight counts and the input

patterns

are P. The output patterns are indicated by 𝑀𝑀.

The overall training function by the proposed LM
algorithm is presented in the following figure.

Wk,m=1

Ek

Jacobian matrix
computation

Ek+1

Ek+1 <Emax

Ek+1 <EkEk+1>Ek

m<5
m>5

End

Error evaluation

Error evaluation restore Ek

10+= µµ
Wk = wk+1

kk
T
kkk eJIJww 1

1)(−
+ += µ

Wk = wk+1 m=m+1

10+= µµ

Figure 2 :

Levenberg–Marquardt algorithm based HENN training: 𝑊𝑊𝑘𝑘

is

the current weight, 𝑊𝑊𝑘𝑘+1is the next weight,

𝐸𝐸𝑘𝑘+1

is the current total error, and 𝐸𝐸𝑘𝑘 is the final error

© 2015 Global Journals Inc. (US)

33

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

In the proposed SDP model, in the initial phase
the LM algorithm has been used to estimate the weights
for the learning scheme. Figure 3 represents the
adaptive weight estimation approach using LM
algorithm. The weights are updated dynamically so as to
reduce RMSE and satisfying the stopping criteria, the
classification has been done for fault prediction. On the
basis of fault classification, the confusion matrix has
been obtained which has been employed further to
examine performance of the proposed SDP model.

This is the matter of fact that LM-ANN has been
employed for varied classification utilities but
considering the specific requirements of fault prediction
and robust function with huge data sets in real time
software utilities, the local minima problem and
convergence issues of ANN can’t be ignored. Thus,
considering these limitations, in this paper, the
evolutionary algorithm Adaptive-Genetic Algorithm (A-
GA) has been used for parameter optimization that can
strengthen the function of the proposed system to yield
more precise, accurate and efficient outputs. The
implementation of A-GA for ANN based SDP utility has
been discussed in the following section

c) HENN: Hybrid Evolutionary Computing Based Neural
Network for Software Defect Prediction

In recent years a number of optimization
schemes have been developed on the basis of the
concept of human evolution and Genetic Algorithm (GA)
is one of the predominant one. GA is an adaptive search
approach based on the evolutionary concepts of natural
selection that intends to find certain optimal or near
optimal solutions. In fact, the basic concept of GA is
based on the philosophy of natural selection and Darwin
principle of the survival of fittest. In function, GA at first
performs random population generation, where
population represents certain set of solutions. In fact,
these solutions are nothing else but a chromosome
possessing a form of binary strings where all the
comprising parameters are supposed to be encoded.
Performing population generation, GA calculates the
fitness value, also known as fitness function for the
individual chromosome. The fitness value represents a
user-defined function that provides the estimation
results for individual chromosome, and thus a higher
fitness value signifies the chromosome to be the
dominant one. On the basis of retrieved fitness values,
the offspring are generated by means of genetic
operators called crossover and mutation. Implementing
genetic operators the population generation continues
until the stopping criteria is achieved. Here, it must be
noted that after every generation, chromosomes having
fitness value more than defined threshold are
considered for next generation otherwise are mutated
out of competition.

As depicted in Figure-1, the developed HENN
model [59] encompasses 𝑖𝑖 − ℎ − 𝑜𝑜 network

configuration having𝑖𝑖 input layer, ℎ hidden layer and 𝑂𝑂
output layer or nodes. In the proposed ANN model, all
the six CK metrics under consideration have been fed as
input to the individual input nodes, where the individual
metrics can have multiple classes depending on the
size of software and dimensions. As already discussed
with the considered 6-8-1 ANN configuration, the total
number of weights, N to be calculated are:

𝑁𝑁 = (𝑖𝑖 + 𝑂𝑂) ∗ ℎ (5)

In the proposed model the individual weight is
considered as a gene in the chromosomes and is a real
number. Consider𝑙𝑙, the gene length or the number of
digits be𝑙𝑙, then the length of the chromosome
𝐿𝐿𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟 can be obtained using following equation:

𝐿𝐿𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑁𝑁 ∗ 𝑙𝑙 = (𝑖𝑖 + 𝑂𝑂) ∗ ℎ ∗ 𝑙𝑙 (6)

In the proposed A-GA based scheme all
chromosomes are considered as the population and for
each chromosomes the fitness values and weights are
estimated. In our proposed model, the weights (𝑊𝑊𝑘𝑘) has
been obtained using following equation:

𝑊𝑊𝑘𝑘

=

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥𝑘𝑘𝑘𝑘+1 < 5

−
𝑥𝑥𝑘𝑘𝑘𝑘+2∗10𝑙𝑙−2 + 𝑥𝑥𝑘𝑘𝑘𝑘+3∗10𝑙𝑙−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑙𝑙

10𝑙𝑙−2

𝑖𝑖𝑖𝑖 5 <= 𝑥𝑥𝑘𝑘𝑘𝑘+𝑙𝑙 <= 9

+
𝑥𝑥𝑘𝑘𝑘𝑘+2∗10𝑙𝑙−2 + 𝑥𝑥𝑘𝑘𝑘𝑘+3∗10𝑙𝑙−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑙𝑙

10𝑙𝑙−2

�

(7)

To perform A-GA based weight estimation in
ANN, the fitness values for individual chromoseomes
are needed to be obtained. The algorithm developed for
fitness value estimation is given in the following figure
(Figure-3).

© 2015 Global Journals Inc. (US)1

34

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Algorithm for Fitness Estimation
Input:𝐼𝐼𝑖̅𝑖 = (𝐼𝐼1𝑖𝑖 , 𝐼𝐼2𝑖𝑖 , 𝐼𝐼3𝑖𝑖 ,⋯ , 𝐼𝐼𝑙𝑙𝑙𝑙)
Output:𝑇𝑇�𝑖𝑖 = (𝑇𝑇1𝑖𝑖 ,𝑇𝑇2𝑖𝑖 ,𝑇𝑇3𝑖𝑖 ,⋯ ,𝑇𝑇𝑛𝑛𝑛𝑛)
Where 𝐼𝐼𝑖̅𝑖 ,𝑇𝑇�𝑖𝑖state the input and output pairs of the 𝑖𝑖 − ℎ − 𝑜𝑜
configuration of neural network.
Phase-1 :Calculate weights 𝑊𝑊�𝑖𝑖 for𝐶𝐶𝑖𝑖by:

𝑊𝑊𝑘𝑘 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥𝑘𝑘𝑘𝑘+1 < 5

−
𝑥𝑥𝑘𝑘𝑘𝑘+2∗10𝑑𝑑−2 + 𝑥𝑥𝑘𝑘𝑘𝑘+3∗10𝑑𝑑−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑑𝑑

10𝑑𝑑−2

𝑖𝑖𝑖𝑖 5 <= 𝑥𝑥𝑘𝑘𝑘𝑘+𝑑𝑑 <= 9

+
𝑥𝑥𝑘𝑘𝑘𝑘+2∗10𝑑𝑑−2 + 𝑥𝑥𝑘𝑘𝑘𝑘+3∗10𝑑𝑑−3 + ⋯+ 𝑥𝑥(𝑘𝑘+1)𝑑𝑑

10𝑑𝑑−2

�

Phase-2:Assuming𝑊𝑊�𝑖𝑖be a constant weight, perform
trainingof 𝑁𝑁 input instances and calculate output 𝑂𝑂𝑖𝑖
Phase-3:CalculateMSE 𝐸𝐸𝑗𝑗 for all input instance 𝑗𝑗, 𝐸𝐸𝑗𝑗 =
(𝑇𝑇𝑗𝑗𝑗𝑗 − 𝑂𝑂𝑗𝑗𝑗𝑗)
Phase-4: Calculate RMSE of chromosome𝐶𝐶𝑖𝑖

𝐸𝐸𝑖𝑖 = �∑ 𝐸𝐸𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1

𝑁𝑁

Where 𝑁𝑁 is the number of training data
Phase-5: Calculate the fitness value for chromosome𝐶𝐶𝑖𝑖

𝐹𝐹𝑖𝑖 =
1
𝐸𝐸𝑖𝑖

=
1

�∑ 𝐸𝐸𝑗𝑗
𝑗𝑗=𝑁𝑁
𝑗𝑗=1
𝑁𝑁

Figure 3 : Fitness generation using A-GA
Genetic algorithm (GA) has been considered as

a potential global optimization approach for major
applications; still this approach can be further optimized
to alleviate issues of premature convergence. In this
paper, in order to alleviate these issues, the genetic
parameters, cross over probability (𝑃𝑃𝑐𝑐) and mutation
probability (𝑃𝑃𝑚𝑚) has been selected dynamically so as to
get optimal or sub-optimal solution efficiently without
converging. To update 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑚𝑚 the following
mathematical equations has been used:

(𝑃𝑃𝑐𝑐)𝑘𝑘+1 = (𝑃𝑃𝑐𝑐)𝑘𝑘 −
𝐶𝐶1 ∗ 𝑛𝑛

5

(𝑃𝑃𝑚𝑚)𝑘𝑘+1 = (𝑃𝑃𝑚𝑚)𝑘𝑘 −
𝐶𝐶2 ∗ 𝑛𝑛

5

(8)

where (𝑃𝑃𝑐𝑐)𝑘𝑘+1 and (𝑃𝑃𝑚𝑚)𝑘𝑘+1denote the updated
crossover probability and mutation probability
respectively. The other variables (𝑃𝑃𝑐𝑐)𝑘𝑘 and (𝑃𝑃𝑚𝑚)𝑘𝑘are the
current crossover and mutation probability, 𝐶𝐶1 and 𝐶𝐶2
can be any positive constant and𝑛𝑛represents the
number of chromosome having similar fitness value. In
the proposed HENN model, the A-GA continues
functioning till 95% of chromosomes are having similar
fitness value. Once the stopping criterion is achieved the
A-GA terminates and the final output at output layerOo is
obtained.If the final estimated output is more than 0.5, it
signifies class as FAULTY otherwise NON-FAULTY. On
the basis of retrieved FAULTY and NON-FAULTY data, a

confusion matrix is obtained, which is further used for
performance assessment. Figure-4 represents the flow
diagram of the proposed HENN based SDP model.

© 2015 Global Journals Inc. (US)

35

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Generate Random Population of
‘n=50’ genes or Chrosomes

Extract the Weight of each
chromosomes

Fed the Weight values for
training in HENN model

Estimate the Fitness value for
each chrosomesPerform Crossover

Replace the Minimum Fitness
value Chromosome by Maximum

fitness value Chromosome

Is threshold meet? (If
Stop Criteria is
accomplished.

Implement the Model for
Software Defect Prediction

No

Yes

Figure 4 : Proposed HENN Scheme for Software Defect Prediction

The overall discussion of the proposed HENN
model is given as follows:

• HENN-SDP Simulation
Since, the proposed HENN model operates on

the basis of genetic algorithm principle; it also
encompasses processes such as, population
generation, selection, crossover, fitness estimation, and
mutation. A brief discussion of the implemented HENN
simulation model is given as follows:

Step-1 Population Initialization: In our model randomly 50
chromosomes are selected randomly to perform
competition. These randomly selected chromosomes
perform crossover with defined crossover and mutation
probability.

Step-2 Weight Estimation: HENN estimates weight 𝑊𝑊𝑘𝑘

for each selected chromosomes as input to the hidden
layer and hidden layer to the output layer using equation
(7).

Step-3 Fitness Estimation: On the basis of weight
estimated, the fitness value is obtained for individual
chromosome with an intention to minimize the root
mean square error (RMSE) obtained at the output node
of ANN.

Step-4 Chromosome Ranking and Mutation: On the
basis of fitness values for the individual chromosomes,
the ranking is performed which is followed by mutation
of the chromosomes having lower fitness values and
chromosomes with higher ranking replaces
chromosomes with lower fitness.

Step-5 Crossover: In the proposed HENN model, the
two point crossover is performed with the selected
chromosomes. Here to enhance computational
efficiency the GA parameters, 𝑃𝑃𝑐𝑐and 𝑃𝑃𝑚𝑚are varied
adaptively, as per equation(6). Initially, 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑚𝑚have
been assigned as 0.6 and 0.1 respectively and 𝑛𝑛refers
the number of chromosome having similar fitness value.

• Stopping Criteria: The process of weight estimation
using HENN algorithm continues till the stopping
criteria is not achieved and the 95% chromosomes
in gene pool achieves unique fitness value, as
beyond it the fitness level of chromosomes get
saturated.

Step 6 Fault Classification: Considering step-3, and
stopping criteria, with the optimal RMSE, the final output
at output layer of ANN is obtained that more than 0.5
signifies towards FAULTY class otherwise NON-
FAULTY.

© 2015 Global Journals Inc. (US)1

36

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Step 7 Confusion Matrix: On the basis of FAULTY and
NON-FAULTY label of comprising classes, a Confusion
Matrix is derived that is used for performance evaluation.

Thus, implementing the above mentioned
approaches, the proposed HENN model performs
Software Defect Prediction.

This is the matter of fact that a number of SDP
systems have been developed but only prediction
accuracy and precision can’t be the justification for a
system to be employable in real time scenarios.
Industries demands for certain cost effective and
efficient system for defect prediction. A system with
higher computational efficiency with minimal cost of fault
detection and removal can be of great significance and
can be suggested to be used in real time SDP
applications.

Thus, considering the need of a novel cost
analysis mechanism, in this paper a novel cost
estimation approach has been developed which has
been used to assess the computational (Fault detection
and removal) cost analysis for both our proposed HENN
based SDP as well as reference, LM-ANN based SDP
model. The discussion of the proposed cost estimation
model is given as follows:

d) Software Fault Estimation and Removal Cost analysis
In this paper, a novel cost estimation approach

has been developed that estimates the cost of fault

detection and removal, as the efficiency to be
considered as a criterion that decides whether the
system should be used or not in real time applications.
The proposed cost estimation model has been derived
from [46]. In the developed cost estimation approach,
certain constraints have been assumed such as, varied
testing phases might take different cost for certain fault
removal as different softwares are developed in varied
software platform and with varied development
standards, and it is impractical to perform comprising
unit testing on all the associated modules [47]. In the
proposed cost estimation model, the identification
efficiency model proposed in [48] has been
incorporated that suggests following efficiencies to be
used for cost estimation model.

Table 2 : Cost Estimation for different testing
approaches (Staff hour per faults)

Testing Min Max Median
Unit 1.5 6 2.5

System 2.82 8.37 6.2
Field 3.9 27.24 27

In this paper, the following notations have been
used to formulate mathematical model for fault
estimation and removal cost.

Table 3 : Cost Estimation Metrics

CostEstm _SDP Estimated fault removal cost of the
software when fault prediction is
performed

CostEstm _WSDP Estimated fault removal cost of the
software without using fault prediction
approach

CostNorm Normalized Estimated fault removal cost
of the software when fault prediction is
utilized

Ci Initial setup cost of used fault-prediction
technique

Cu Normalized fault removal cost in unit
testing

CS Normalized fault removal cost in system
testing

Cf Normalized fault removal cost in testing

Mp percentage of classes unit tested

FP Number of false positive

FN Number of false negative

TP Number of true positive

TN Number of true negative

TC Total number of classes

FC Total number of faulty classes

δu Fault identification efficiency of unit testing
δs Fault identification efficiency of system

testing

© 2015 Global Journals Inc. (US)

37

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

The derived cost estimation expressions are
given as follows:

CostEstm _SDP = 𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑢𝑢 ∗ (𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇) + 𝛿𝛿𝑠𝑠
∗ 𝐶𝐶𝑠𝑠
∗ (𝐹𝐹𝐹𝐹 + (1 − 𝛿𝛿𝑢𝑢) ∗ 𝑇𝑇𝑇𝑇)
+ (1 − 𝛿𝛿𝑠𝑠) ∗ 𝐶𝐶𝑓𝑓
∗ (𝐹𝐹𝐹𝐹 + (1 − 𝛿𝛿𝑢𝑢) ∗ 𝑇𝑇𝑇𝑇)

 (9)

CostEstm _WSDP =

𝑀𝑀𝑝𝑝 ∗ 𝐶𝐶𝑢𝑢 ∗ 𝑇𝑇𝑇𝑇 + 𝛿𝛿𝑠𝑠 ∗ 𝐶𝐶𝑠𝑠
∗ (1 − 𝛿𝛿𝑠𝑠) ∗ 𝐹𝐹𝐹𝐹 + (1 − 𝛿𝛿𝑠𝑠)
∗ 𝐶𝐶𝑓𝑓 ∗ (1 − 𝛿𝛿𝑢𝑢) ∗ 𝐹𝐹𝐹𝐹

 (10)

CostNorm =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 _𝑆𝑆𝑆𝑆𝑆𝑆

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 _𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

= �< 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

≥ 1

Not

Suitable
�

 (11)

Here, Cost

Estm SDP

represents the estimated fault
removal cost for software with fault prediction scheme,
CostEstm _WSDP is the fault removal cost without using any
SDP system. The variable CostNorm refers the normalized
cost with the SDP models. As illustrated in above
expression, the minimal normalized cost signifies better
employability of a defect prediction system. In this

paper, the cost analysis for both the proposed HENN as
well as Levenberg Marquardt based ANN (LMANN) has
been done. The results obtained are given in Table 7.

V. Result and Analysis

This section discusses the experimental setup,
benchmark fault data, results and performance analysis.

In this paper, the overall algorithms for artificial
neural network, Levenberg Marquardt based ANN,
Adaptive Genetic Algorithm and its implementation with
ANN for defect prediction, etc have been developed
using MATLAB2012b software model. In addition, the
toolboxes of machine learning and artificial neural
network have been considered to perform simulation. In
order to examine the performance of the proposed
HENN model, object oriented software metrics suite, CK
Metrics [17] has been considered, which has been
derived from the fault data taken from PROMISE [49]
and NASA MDP [50] fault data repository. The software
metrics from the fault datasets (JEdit, Ant, Camel and
IVY)have been derived using Chidamber and Kemerer
Java Metrics tool (CKJM) tool that extracts software
metrics by executing byte code of compiled Java cases
and assigns a definite weight of the comprising classes
having feature vectors. In this paper, six predominant
CK metrics have been considered as depicted in the
Table-4.

Table

4

:

Object Oriented Software Metrics (CK Metrics [17])

WMC

Overall complexities of the methods in comprising classes

NOC

Number of sub-classes subordinate to a class in the class hierarchy

DIT

Maximum height of the class hierarchy

CBO

Number of other classes to which it is

allied with

RFC

A set of approaches that can be executed in response to a message received by an object of that
class

LCOM

Dissimilarity measurement of varied methods in a class using instanced attributes/variables

 In our work, the six software metrics have been
considered as the independent data while the fault data
has been taken as dependent variable.

 The considered data JEdit, Ant, Camel

and IVY

 comprise static code measures along with varied
modules sizes, defective modules and defect rates. In
the proposed SDP models the respective extracted
weights and features of the data classes have been
taken as input to the ANN as illustrated in Figure-1. On
the basis of final outcome of the both SDP models, LM-
ANN as well as HENN for individual datasets, the
confusion matrix has been obtained. A confusion matrix
comprises two rows and columns representingtrue
positive (TP), false negatives (FN), false positive (FP)
and true Negative variables. The variables in confusion
matrix represent the faulty and non-faulty data and its
severity. As depicted in Table-5, TP depicts modules

which are classified as FAULTY, FN represents the
modules which are FAULTY but are classified incorrectly
as NON-FAULTY. Similarly, FP represents the modules
which are non-faulty but are classified as faulty.

 Table 5

:

Confusion Matrix

In this paper, the performance of the proposed
HENN as well as LM-ANN SDP models has been
examined in terms of fault prediction accuracy,
precision, F-measure, recall, specification and fault
detection and removal cost. The mathematical

Predicted
Defective

Predicted
Defect Free

FAULTY

True Positive

False Negative

NON-FAULTY

False Positive

True Negative

expression for considered performance parameters are
given in Table-6.

© 2015 Global Journals Inc. (US)1

38

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Table 6

:

Performance Parameters

Construct

Mathematical Expression

Recall

𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Precision

𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Specification

𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

F-measure

2.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Accuracy

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇)

 a)

Result Analysis

 The following section represents the results
obtained from the proposed HENN based SDP model
and a reference model based on Leven

berg Marquardt
based ANN. Here, from the results obtained it can be
found that the proposed HENN based SDP model
performs better than Leven

berg Marquardt algorithm
based ANN (LMANN). Here, it can be found that the
average fault prediction accuracy of the proposed

HENN model is 87.23%, on contrary, the LM-ANN based
SDP models delivers

75.48% and hence the proposed
system outperforms the existing and till most efficient
ANN model, LMANN. In addition, the analysis results
states that the proposed system provides 98.2%
precision, 92.74% F-measure, 88.55% of recall, which is
87.7% 85.7%, and 85.4% for LMANN based SDP
system, respectively.

The following figures (Figure 5-8)
represent the average performance of the proposed
system with four benchmark datasets (JEdit, Ant, Camel

and IVY). The performance results for the developed
SDP models with individual datasets are given in Table-
7. Considering cost effectiveness of HENN and LMANN
based SDP models, Figure 9 depicts that the proposed
HENN based system is most cost efficient as compared
to LMAMM, and hence it can be implemented for real
time applications intending software defect prediction
and removal.

Figure 5 : Accuracy analysis of software defect
prediction

Figure-6 : Precision analysis of Software defect
prediction precision

Figure-7 : F-Measure analysis of software defect
prediction

Figure-8 : Recall Analysis of Software defect prediction

© 2015 Global Journals Inc. (US)

39

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

-

 Table 7

:

Performance analysis of the proposed HENN model and LM-ANN based SDP system

Table 7 depicts that the proposed defect

prediction approach is highly robust and efficient as
compared to Levenberg-Marquardt based ANN system,
which is supposed to be the most effective ANN system
till. The proposed HENN model has exhibited better cost
effectiveness for the fault detection and removal than

LMANN. Further to explore effectiveness of the
proposed HENN model as compared to other existing
systems, a comparison has been done (Table-8) and
results revealed that the proposed system can be the
best optimal solution for defect prediction for object
oriented software applications.

Table 8 : Performance comparison for different SDP schemes

SDP Techniques Accuracy
(%)

Precision
(%)

F-Measure
(%)

LLE-SVM[51] 81.1 82.5 80.4
SVM [51] 69.4 68.1 69.7
SVM [52] 55.3 88.0 83.2

Natural Gas [57] 94.2 - -
Symbolic

Regression [57]
89.50 - -

RBP-NN [57] 80.0 - -
LP [52] 86.6 86.6 87.4

Naive Based [52] 85.6 83.1 83.9
CPSO[53] 69.2 67.6 -
T-SVM [54] 75.8 84.1 80.9
GANN[53] 73.4 81.6 -

AdaBoost [53] 79.1 82.3 -
Random Forest [58] 91.4 - -

k-NN [56] 91.8 - -
C4.5 [56] 88.3 - -

Figure -9 : Fault detection and removal cost analysis

The cost analysis results depict that the
proposed HENN based SDP model is approximately

21.66% cost efficient as compared to LMANN based
SDP system.

© 2015 Global Journals Inc. (US)1

40

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Data Modules Tech. Accuracy Precision F-Measure Recall Specification Norm. Fault
Removal Cost

(Norm.)
JEDIT 492 HENN 0.9799 1 0.9897 1 0.9756 0.2406

LMANN 0.8394 0.8503 0.9119 0.9832 0.0526 0.2927
ANT 744 HENN 0.8145 0.9343 0.8867 0.8438 0.6346 0.9149

LMANN 0.7675 0.9879 0.8684 0.7748 0 0.9763
IVY 352 HENN 0.8835 0.9936 0.9380 0.8883 0.3333 0.7115

LMANN 0.6278 0.6955 0.7681 0.8577 0.0404 0.8936
CAMEL 965 HENN 0.8114 1 0.8952 0.8102 1 0.8771

LMANN 0.7845 0.9743 0.8792 0.8011 0 1.3401

J 48 [56] 90.9
Levenberg-

Marquardt-NN [56]
88.0 - -

NNEP-Evolutionary
[53]

88.8 81.2 -

PSO [55] 78.7 - -
PSO-NN [57] 97.7 - -

HENN SDP 97.9 1 98.9

VI. Conclusion

In order to ensure optimal software reliability
and quality of service the earlier prediction of faults and
its removal is of great significance. In addition, the cost
effective solution for defect prediction and fault removal
has motivated industries as well as academician to
develop a novel SDP solution that could ensure cost
effective and optimal defect prediction solutions. In this
paper, an object oriented software matrix based defect
prediction model has been developed.

Considering the limitations of artificial
intelligence techniques such as artificial neural network,
in this paper an evolutionary computing technique
named Adaptive Genetic Algorithm (A-GA) has been
developed for ANN dynamic weight estimation and
learning optimization. The proposed Hybrid Evolutionary
computing based Neural Network (HENN) based
system has been employed for SDP system.
Furthermore, Levenberg Marquardt algorithm based
ANN algorithm (LMANN) has been developed for defect
prediction. Considering cost effectiveness of the defect
prediction systems, a novel mathematical model has
been derived and the cost analysis results confirms that
the proposed HENN model is cost effective as well as
performs better as compared to other existing systems.
The simulation results obtained with PROMISE and
NASA MDP datasets exhibits that the proposed model
performs on average 87.23% accuracy and the best
classification accuracy obtained is 97.99% with 100%
precision. The proposed model delivers 98.97% of F-
measure. The cost analysis exhibits that the proposed
HENN model is approximate 21.66% cost effective as
compared to LMANN. The comparative analysis in this
paper reveals that the proposed HENN model performs
better as compared to other existing techniques. This
paper could perform cost analysis of only HENN and
LMANN, hence in future other defect prediction models
can also be examined for their cost effectiveness for real
time applications.

References Références Referencias

1. Zuse H., “A Framework of Software Measurement,
Walter de Grutger Publish” 1998.

2. University of Texas, Software Quality Institute
Report, May 2002.

3. Rosenberg, L., S. B., Sheppard, “Metrics in Software
Process Assessment, Quality Assurance and Risk

Assessment”, 2nd International Symposium on
Software Metrics, London, October, 1994.

4. Boehm, B. W., Software Engineering Economics,
Prentice-Hall, 1981.

5. L.C. Briand, W.L. Melo, J. Wu st, “Assessing the
Applicability of Fault-Proneness Models Across
Object-Oriented Software Projects,” IEEE Trans.
Software Eng., vol. 28, no. 7, pp. 706-720, July
2002.

6. F. B. E. Abreu, R. Carapuca, “Object-Oriented
software engineering: Measuring and controlling the
development process,” in Proceedings of the 4th
International Conference on Software Quality, vol.
186, 1994.

7. J. Bansiya, C. G. Davis, “A hierarchical model for
Object-Oriented design quality assessment,” ACM
Transactions on Programming Languages and
Systems., vol. 128, pp. 4–17, August 2002.

8. B. K. Kang and J. M. Bieman, “Cohesion and reuse
in an Object-Oriented system,” in Proceedings of
the ACM SIGSOFT Symposium on software
reusability, pp. 259–262, Seattle, March 1995.

9. L. C. Briand, J. Wust, J. W. Daly, D. V. Porter,
“Exploring the relationships between design
measures and software quality in Object-Oriented
systems,” The Journal of Systems and Software, vol.
51, pp. 245–273, May 2000.

10. L. Etzkorn, J. Bansiya, and C. Davis, “Design and
code complexity metrics for Object-Oriented
classes,” Object-Oriented Programming, vol. 12, no.
10, pp. 35–40, 1999.

11. M. Halstead, Elements of Software Sciencel. New
York, USA: Elsevier Science, 1977.

12. B. Henderson-Sellers, Software Metrics. UK:
Prentice-Hall, 1996.

13. W. Li and S. Henry, “Maintenance metrics for the
Object-Oriented paradigm,” in Proceedings of First
International Software Metrics Symposium, pp. 52–
60, 1993.

14. T. J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, vol. 2, pp.
308–320, December 1976.

15. D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, “A
software complexity model of Object-Oriented
systems,” Decision Support Systems, vol. 13, no. 3,
pp. 241–262, 1995.

16. M. Lorenz and J. Kidd, Object-Oriented Software
Metrics. NJ, Englewood: Prentice-Hall, 1994.

© 2015 Global Journals Inc. (US)

41

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

17. S. R. Chidamber and C. F. Kemerer, “A metrics
suite for Object-Oriented design,” IEEE
Transactions on Software Engineering on June
1994, vol. 20, pp. 476–493.

18. Kutlubay O., A. Bener, “A Machine Learning Based
Model for Software Defect Prediction,” working paer,
Boaziçi University, Computer Engineering
Department 2005.

19. Bo. Yang, Xiang Li, “A study on software reliability
prediction based on support vector machines”, The
Annual IEEE International Conference on Industrial
Engineering and Engineering Management, pp.
1176-1180, 2-4 Dec. 2007.

20. Sandhu, Parvinder Singh, Sunil Kumar, Hardeep
Singh, “Intelligence System for Software
Maintenance Severity Prediction”, Journal of
Computer Science, Vol. 3 (5), pp. 281-288, 2007.

21. Gondra, "Applying machine learning to software
fault-proneness prediction," Journal of Systems and
Software, vol. 81, no. 2, pp. 186-195, Feb. 2008.

22. Q. P Hu, Y. S. Dai, M. Xie, S. H. Ng., “Early software
reliability prediction with extended ANN model,”
Proceedings of the 30th Annual International
Computer Software and Applications Conference
(COMPSAC’06), Vol. 2, pp. 234-239, September
2006.

23. Chug, A., Dhall, S., "Software defect prediction
using supervised learning algorithm and
unsupervised learning algorithm, "Confluence 2013:
The Next Generation Information Technology
Summit, pp.173-179, 26-27 Sept. 2013.

24. Armah, G.K., Guangchun Luo, Ke Qin, "Multilevel
data preprocessing for software defect
prediction," Information Management, Innovation
Management and Industrial Engineering (ICIII), 2013
6th International Conference, vol.2, pp.170-174, 23-
24 Nov. 2013.

25. Mohamad Mahdi Askari, Vahid Khatibi Bardsiri,
“Software Defect Prediction using a High
Performance Neural Network”, International Journal
of Software Engineering and Its Applications, Vol. 8,
No. 12, pp. 177-188, 2014.

26. M. Harman, “Why the Virtual Nature of Software
makes it Ideal for Search Based Optimization”,
Fundamental Approaches to Software Engineering,
2010.

27. C. Grosan, and A. Abraham, “Hybrid Evolutionary
Algorithms: Methodologies, Architectures, and
Reviews”, Studies in Computational Intelligence, vol.
75, pp. 1-17, 2011.

28. Saida Benlarbi, Khaled El Emam, Nishith Geol
(1999), “Issues in Validating Object-Oriented Metrics
for Early Risk Prediction”, by Cistel Technology 210
Colonnade Road Suite 204 Nepean, Ontario
Canada K2E 7L5.

29. Lanubile F., Lonigro A., Visaggio G. “Comparing
Models for Identifying Fault-Prone Software

Components”, Proceedings of Seventh International
Conference on Software Engineering and
Knowledge Engineering, pp. 12-19, June 1995.

30. Fenton, N. E. and Neil, M., “A Critique of Software
Defect Prediction Models”, Bellini, I. Bruno, P. Nesi,
D. Rogai, University of Florence, IEEE Trans. Softw.
Engineering, vol. 25, Issue no. 5, pp. 675-689, 1999.

31. Giovanni Denaro, ”Estimating Software Fault-
Proneness for Tuning Testing Activities”
Proceedings of the 22nd International Conference
on Software Engineering, Limerick, Ireland, June
2000.

32. Manasi Deodhar, “Prediction Model and the Size
Factor for Fault-proneness of Object Oriented
Systems”, MS Thesis, Michigan Tech. University,
Dec. 2002.

33. Bellini, P., “Comparing Fault-Proneness Estimation
Models”, 10th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS'05), pp. 205-214, 2005

34. Khoshgoftaar, T.M., K. Gao and R. M. Szabo, “An
Application of Zero-Inflated Poisson Regression for
Software Fault Prediction. Software Reliability
Engineering”, ISSRE 2001. Proceedings of 12th
International Symposium, pp: 66 -73, 27-30 Nov.
2001.

35.

Chug, A., Dhall, S., "Software defect prediction
using supervised learning algorithm and
unsupervised learning algorithm," Confluence 2013:
The Next Generation Information Technology
Summit, pp.173-179, 26-27 Sept. 2013.

36.

Pushphavathi, T.P.; Suma, V.; Ramaswamy, V., "A
novel method for software defect prediction: Hybrid
of FCM and random forest," Electronics and
Communication Systems (ICECS), 2014
International Conference, vol., no., pp.1,5, 13-14
Feb. 2014.

37.

Wang, S.; Yao, X., "Using Class Imbalance

Learning

for Software Defect Prediction," Reliability, IEEE
Transactions, vol.62, no.2, pp.434-443, June 2013.

38.

Brun, Y. and D. E. Michael, “Finding Latent Code
Errors via Machine Learning over Program
Executions”, Proceedings of the 26th International
Conference on Software Engineering, May, 2004.

39.

F. Xing, P. Guo, M. R. Lyu, “A novel method for early
software quality prediction based on support vector
machine,” Software Reliability Engineering,
International Symposium, pp. 213–222, 2005.

40.

Cai K Y, 0n the Neura1 Network Approach in
Software Reliability Modeling, Journal of Systems
and Software, pp 47-62, 2001.

41.

S.A. Rojas and D. Fernandez-Reyes, “Adapting
multiple kernel parameters for support vector
machines using genetic algorithms,” The 2005 IEEE

Congress on Evolutionary Computation, vol. 1, pp.
626-631, September, 2005.

© 2015 Global Journals Inc. (US)1

42

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

42. Jianhong, Z., Sandhu, P.S., Rani, S., "A Neural
network based approach for modeling of severity of
defects in function based software
systems," International Conference on Electronics
and information Engineering, vol.2, pp.568- 575, 1-3
Aug. 2010.

43. Jindal, R., Malhotra, R. and Jain, A., "Software
defect prediction using neural networks," in 3rd
International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO), pp.1-6, 8-
10 Oct, 2014.

44. Yousef A.H., “Extracting software static defect
models using data mining”, Ain Shams Engineering
Journal, Vol. 6, pp. 133–144, 2015.

45. Mahajan R., Gupta S., Bedi R.K., “Design Of
Software Fault Prediction Model Using BR
Technique”, Procedia Computer Science, Vol. 46,
pp. 849 – 858, 2015.

46. W. S, “A literature survey of the quality economics of
defect-detection techniques,” in Proceedings of the
ACM/IEEE International Symposium on Empirical
Software Engineering (ISESE), pp. 194–203, 2006.

47. R. Huitt and N. Wilde, “Maintenance support for
object-oriented programs,” IEEE Transactions on
Software Engineering, vol. 18, no. 12, pp. 1038–
1044, 1992.

48. J. C, “Software quality in 2010: a survey of the state
of the art,” in Founder and Chief Scientist Emeritus,
2010.

49. http://mdp.ivv.nasa.gov/.
50. http://promisedata.googlecode.com/svn/trunk/defec

t/
51. Shan C., Chen B., Hu C., Xue J., Li N., “SOFTWARE

DEFECT PREDICTION MODEL BASED ON LLE
AND SVM” Communications Security Conference;
pp 1-5, 22-24 May 2014.

52. Xia Y., Yan G., Jiang X., Yang Y., "A new metrics
selection method for software defect
prediction," Progress in Informatics and Computing
(PIC), International Conference, pp.433-436, 16-18
May 2014.

53. Malhotra, R., Pritam, N., Singh, Y., "On the
applicability of evolutionary computation for
software defect prediction," Advances in
Computing, Communications and Informatics
(ICACCI, 2014 International Conference, pp.2249-
2257, 24-27 Sept. 2014.

54. Chug, A., Dhall, S., "Software defect prediction
using supervised learning algorithm and
unsupervised learning algorithm, "Confluence 2013:
The Next Generation Information Technology
Summit, pp.173-179, 26-27 Sept. 2013.

55. Verma, R., Gupta, A., "Software defect prediction
using two level data pre-processing," Recent
Advances in Computing and Software Systems
(RACSS), International Conference, pp.311-317, 25-
27 April 2012.

56. Singh M., Salaria D.S., “Software Defect Prediction
Tool based on Neural Network”, International
Journal of Computer Applications, Volume 70–
No.22, pp-0975 – 8887, May 2013.

57. Shrivastava A., Shrivastava V., “A Hybrid Model of
Soft Computing Technique for Software Fault
Prediction”, International Journal of Current
Engineering and Tech. Vol. 4, No. 4, Aug 2014.

58. Askari, M.M, Bardsiri, V.K., “Software Defect
Prediction using a High Performance Neural
Network”, International Journal of Software
Engineering and Its Applications, Vol. 8, No. 12, pp.
177-188, 2014.

59. Racharla Suresh Kumar, Bachala Satyanarayana,
“Adaptive Genetic Algorithm Based Artificial Neural
Network for Software Defect Prediction”, Global
Journal of Computer Science and Technology : D,
Vol. 15, Issue No. 1,Version 1.0, pp. 23-32, 2015.

© 2015 Global Journals Inc. (US)

43

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
G

20
15

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

http://mdp.ivv.nasa.gov/�

	Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Our Contribution
	IV. System Model
	a) Artificial Neural Network based Software Defect Prediction
	i. Data normalization

	b) Levenberg Marquardt (LM) Learning based ANN for Software Defect Prediction
	c) HENN: Hybrid Evolutionary Computing Based Neural Network for Software Defect Prediction

	V. Result and Analysis
	a)Result Analysis

	VI. Conclusion
	References Références Referencias

