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Seismic Data Compression using Wave Atom 
Transform

Subba Reddy Borra α, G. Jagadeeswar Reddy σ& E.Sreenivasa Reddy ρ

Abstract- Seismic data compression (SDC) is crucially, 
confronted in the oil Industry with large data volumes and 
Incomplete data measurements. In this research, we present a 
comprehensive method of exploiting wave packets to perform 
seismic data compression .Wave atoms are the modern 
addition to the collection of mathematical transforms for 
harmonic computational analysis. Wave atoms are variant of 
2D wavelet packets that keep an isotropic aspect ratio. Wave 
atoms have a spiky frequency localization that cannot be 
attained using  a filter bank based on wavelet packets and 
offer a significantly sparser expansion for oscillatory functions 
than wavelets ,curvelets and Gabor atoms .Wave atoms 
capture the coherence of patterns across and along 
oscillations where as curvelets capture coherence along 
oscillations only. Wave atoms precisely interpolate between 
Gabor atoms and (constant support) and directional wavelets 
(wavelength ~ diameter) in the sense that the period of 
oscillations of each wave packet (wavelength) is related to the 
size of essential support by parabolic scaling law. Wave atom 
transform achieves the best result by some numerical 
examples.
Keywords: seismic data compression (SDC), curvelets, 
wavelets, wave atom. 

I. Introduction

odern seismic surveys with higher accuracy 
memorization that led to ever increasing 
amounts of seismic data [1and 2]. Management 

of these large datasets becomes important for 
transmission, storage processing and Interpretation. To 
make the storage more efficient and to reduce the 
broadcast and cost, many seismic data compression 
(SDC) algorithms have been developed. During the oil 
and gas exploration process, the main strategy used by 
the companies is the construction of sub surface 
images, which are used both to identify the reservoirs 
and also to plan the hydrocarbons distillation .The 
construction of those images begins with seismic survey 
that produces a huge amount of seismic data. Then,  
obtained data is transmitted to the processing center
generate the subsurface image.

A typical seismic survey can produce hundreds 
of   terabytes  of   data. Compression   algorithms are
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subsequently desirable to make the storage more 
effective, and to reduce time and costs related to 
network and satellite broadcast. Multi-resolution 
methods are genuinely associated to image processing, 
biological, computer Vision and systematic computing. 
The curvelet transform is a multiscale directional 
transform that permits almost best non-adaptive sparse 
representation of objects with edges. It has generated 
enhancing importance in the community of applied 
mathematics and signal processing over the years. A 
review on the curvelet transform includes its history 
beginning from wavelets, its logical relationship to other 
multi resolution multidirectional methods like contourlets 
and shearlets, its basic theory and discrete algorithm. 
Further, we agree recent applications in video/image 
processing, seismic exploration, fluid mechanics, 
imitation of partial different equations, and compressed 
sensing [3].
                For seismic data compression(SDC) ,the most 
important consideration is how to represent seismic 
signals efficiently ,that is  to say ,using few coefficients 
to faith fully represent the signals ,and therefore 
preserve the useful information after maximally possible 
compression .It is easy to comprehend that 
compression effectiveness is used for different 
expansion bases. Many orthogonal transforms have 
been used for data compression .Discrete Fourier 
Transform (DCT) was the first generation orthogonal 
transform used in Data compression. Haar Transform 
use of rectangular basis functions .Slant Transform is an 
attempt to match basis vectors to the areas stable 
luminance slope. It has better decor relation efficiency 
.Discrete cosine Transform is one of the extensive 
families of sinusoidal transforms.  The mainly efficient 
transform for decor relating input data is the Karhunen 
loeve Transform also known as Hotelling transform and 
Eigenvector transform [4].

Curvelets as a multi-scale, anisotropic multi-
dimensional transform were introduced, very quickly to 
be used for seismic data processing and migration 
using a mapping migration method .Curvelets can build 
the local slopes information into the representation of 
the seismic data, and which was proved to be effective 
in the sparse decomposition of seismic data.

For example, wavelet [5 and 6] based 
compression algorithm can represent seismic data 
using only a fraction of the original data size. In this 
paper, Wave atom transform presents its advantage 
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over wavelets, curve lets[7] for conventional image 
compression .Their features are well suited to seismic 
data properties and have led to better results in terms of 
signal –to –noise ratio. Wave atoms come from the 
property that they also provide an optimally sparse 
representation of wave propagators, a mathematical 
effect of autonomous interest, with applications to fast 
numerical solvers for wave equations.

II. Image Compression – Transforms

a) Wavelets
During the last decade the appearance of many 

transforms called Geometric wavelets have paying 
attention of researchers working on image analysis. 
These novel transforms propose a new representation 
comfortable than the traditional wavelets multi-scale 
representation .We are responsive that  for a particular 
type of images ,we can do better by choosing for this 
kind of specific images, a more suitable tool than 
classical wavelets[8,9 and10].  

The orthogonal transforms have been broadly 
studied and used in image analysis and processing. To 
defeat the limitations of Fourier analysis many extra 
orthogonal transforms have been developed .The most 
important criteria to be fulfilled by the basis functions are 
localization in equally space and spatially frequency and 
orthogonality. Various efficient and sophisticated 
wavelet-based schemes have been developed. In Image 
compression, the use of orthogonal transform is dual. 
Primary, it décorrelates the image components and 
allows to identify the redundancy .Subsequent, it offers a 
high level of compression of the energy in the spatial 
frequency domain .These two properties permit to select 
the most related components of the signal in order to 
accomplish competent compression. Many orthogonal 
transforms possess these three characteristics and have 
been used for data compression.

Figure 1 : Comparison between wavelet and adapted 
transform

b) Ridgelets and Curvelets
Ridgelet transform [13 and 14] have been 

developed to analyze objects whose significant 
information is concentrated approximately linear 
discontinuities such as lines. Ridgelet coefficients are 
obtained by a One Dimensional wavelet transform of all 
projections of the image resulting from Radon Transform 
.Ridgelet transform is that wavelet analysis on One 
Dimensional slices of the Radon Transform, where the 
angle is fixed.

Continuous Ridgelet Transform is defined as

1, 2 , , 1 2 1 2( , , ) ( ) ( , )a bRf a b f x x x x dx dxθθ ψ= ∫∫               (1) 

Where 1/2
, , 1 2(( cos( ) sin( ) ) / 2)a b a x x bθψ ψ θ θ−= ∗ + ∗ −

is a One Dimensional Wavelet.

Ridgelets are expressed through Radon Transform as:

     ( , , ) ( , ) ( ) /Rf a b Rf r a t b aθ θ ψ= −∫
-1 / 2 dt                (2)

Where R f is Radon transform defined by

         1 2 1 2 1 2
( , ) ( , ) ( sin cos )Rf t f x x x x t dx dxθ δ θ θ= − + −∫   (3)

              A curvelet is defined as function  

1 2( , )x f x x= at the scale 2 j− , orientation lθ and 

position ( , ) 1 / 2

, 1 2( 2 , 2 )j l j j

k lx R k kθ

− − −= by:

                   
(4)

Curve let computation steps:

Step 1: Decomposition into sub bands
Step 2: Partitioning
Step: Ridgelet analysis(Radon Transform + Wavelet 
transform 1D)
Block size can change from a sub band to another one; 
the following algorithm will be applied 
Step 1: Apply a wavelet transform (J sub bands).

   , ,2
( , , ) , , , ( ) ( )

j i l kR
c j l k f l k f x x dθ ϕ= = ∫      

x

Wavelets are much modified to isotropic 
structure; they are not modified for anisotropic structure. 
This transform cannot effectively represent textures and 
exceptional details in images for lacking of directionality.
2D wavelet transforms produce high energy coefficients 
along the contours[11 and 12]. To overcome this 
limitation, a few solutions have been proposed . A first 
solution consists in using directional filter banks tuned at 
fixed scales, orientations and positions. Another solution 
is exploit an adaptive directional filtering based on a 
numerical model. So, two important approaches fixed 
and adaptive have been developed. Figure. 1. shows 
difficulties of wavelet transform to represent regularity of 
a contour compared to new multi-scale transformed 
where geometric anisotropy and rotations are taken into 
description.
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Step 2: Initialize the block size: 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 =𝐵𝐵𝑗𝑗 .

Step 3: For j=1, -----, J do
Step 4: Partition the sub bands 𝑊𝑊𝑗𝑗 in blocks 𝐵𝐵𝑗𝑗 .
Step 5: if (J modulo 2=1) then 𝐵𝐵𝑗𝑗+1 = 2𝐵𝐵𝑗𝑗   otherwise  
𝐵𝐵𝑗𝑗+1 = 𝐵𝐵𝑗𝑗   
Step 6: Apply Ridgelet transform to each block. 

Figure 2 : Curvelet tiling in space and frequency 
domains.

c) Wave atoms
In the standard wavelet transform, only the 

estimate is decomposed, when, we pass from phase to 
another. While in the wavelet packets, the 
decomposition could be pursued into the other sets, 
which is not optimal .The optimality is linked to the 
greatest energy of decomposition. The notion is then to 
fetch for the way yielding to the maximum energy 
through the different sub bands.
     Wave atom [15] is a novel member in the family 
of oriented, multiscale transforms for image processing 
and also numerical analysis. For the sake of 
completeness, we remember here some fundamentals 
notations following

                 f̂(ω)=∫ e−ixωf(x)dx                      (5)

                                (6)

Figure 3 : (α β) diagram

Wave atoms are noted as, with subscript. The 
indexes are integer -valued related to a point in the 
phase-space defined as follows. xμ= 2−jn, , 
C12j ≤ maxi=1,2|mi| ≤ C22j, they suggest two 
parameters are enough to index a lot of known wave 
packet architectures. The index indicates whether the 
decomposition is multi scale (α=1) or not (α=0); and β
indicates whether basis elements are localized and 
poorly directional (β=1) or, on the opposite side 
extended and fully directional (β=0)[16,17 and18].

ωμ =π2jm

In order to introduce the wave atom, let us first 
consider the 1D case .In practice, wave atoms are 
constructed from tensor products of adequately chosen 
1D wavelet packets. A one-dimensional family of real -
valued wave packets ,
centered in frequency around , with  
C12j ≤ maxi=1,2|mi| ≤ C22j and centered in space 
around xj,n = 2−jn., is constructed. The one 
dimensional version of the parabolic scaling inform that 

ψ
m,n
j  x , j ≥ 0, m ≥ 0, n ∈ Z

±ωj,m = ±π2jm

   f(x)=
1

(2π)2  ∫ eixω f̂(ω)dω

the support of    be of length O (22j), while 
. The desired corresponding tiling of 

wavelet packets is considered as a potential definition of 
an orthonormal   basis satisfying these localization 
properties. The wavelet packet tree, defining the 
partitioning of the frequency axis in 1D, depth j when the 

ψ
m,n
j (ω)

ωj,m = O(22j)
frequency is illustrated at Figure. 4. Filter bank-based 

frequency is  22𝑗𝑗 , as shown in Figure. 4.
Figure. 4.Presents the wavelet packet tree 

corresponding to wave atoms. The bottom graph 
depicts Villemoes wavelet packets [20 and 21] on the 
positive frequency axis. The dot below the axis indicates 
a frequency where a change of scale occurs .The labels 
"LH" and "RH" indicates that left-handed and right-
handed window respectively

Figure. 2. Shows the curve let tiling in space and 
frequency domains

We think that the description in terms of α and 
β will clarify the connections between various transforms 
of modern harmonic analysis. Wavelets correspond to 
α=β=1, for ridge lets α=1, β=0[19 and 20], Gabor 
transform α=β=0 and curvelets correspond to 
α=1,β=1/2. Wave atoms are defined for α=β=1/2. 
Figure. 3. Illustrates this classification 
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Figure 4 : Wavelet packet tree corresponding to wave 
atoms

In 2D domain the construction presented above 
can be modified to certain applications in image 
processing or numerical analysis: The orthobasis 
variant. [22,23 and24]. A two-dimensional orthonormal 
basis function in frequency plane with four bumps is 
formed by individually taking products of 1D  wave 
packets .Mathematical formulation and implementations 
for 1D case are detailed in the earlier section.2D wave 
atoms are indexed by µ=(j,m,n), where m=(m1,m2) and 
n=(n1,n2). creation is not a simple tensor product since 
there is only one scale subscript j .This is similar to the 
non-standard or multi-resolution analysis wavelet bases 
where the point is to enforce same scale in both 
directions in order to retain an isotropic aspect ratio.

φµ
+ (x1, x2) =ψm1

j (x1−2−j n1) ψm2
j (x2−2−jn2).    (7)

The Fourier transform of (7) is separable and its 
dual orthonormal basis is defined by Hilbert transformed 
[25] wavelet packets in (9)

φ�µ+(ω1, ω2) = ψ� m1
j (ω1)e−i2−j n1ω1 ψ� m2

j (ω2)e−i2−j n2ω2    (8)

φµ
−(x1, x2) = Hψm1

j (x1−2−j n1) Hψm2
j (x2−2−jn2).  (9)

Combination of (8) and (9) provides basis 
functions with two bumps in the frequency plane, 
symmetric with respect to the origin and thus directional 
wave packets oscillating in a single direction are 
generated.

φµ
(1) =

φµ++φµ−

2
, φµ

(2) =
φµ+−φµ−

2
                     (10)

 

Figure 5 :  Wave atom tiling of the frequency plane

frequency plane. The size of the squares doubles when 
the scale j increases by one .At a given scale j, squares 
are indexed by m1, m2 opening from zero near the axis.

In practice, the algorithm for wave atoms [26, 
27, 28 and 29] is based on the obvious generalization of 
the 1D wrapping strategy to two -dimensions -except for 
slight complication. The admissible tiling’s of the 
frequency plane at scale j are restricted by 

|mi| =i=1.2
max 4nj + 1                     (11)

III. Results and Discussion

This section demonstrates some numerical 
examples to explain the properties and potential of the 
wave atom frame and its ortho basis variation. 

Now we illustrate the potential of the wave 
atoms with example. In the example, we consider the 
compression properties, i.e the decay rate of the 
coefficients of images under the wave atom bases. 
Besides the wave atom orthobasis and the wave atom 
frame, we include other two bases for comparison: the 
daubechies db5 wavelet, and a wavelet packet that 
uses db5 filter and shares the same wavelet packet tree 
with our wave atom or thobasis.

The quality of reconstructed image is usually 
specified in terms of peak signal to noise ratio (PSNR). 

 

Together form the wave atom frame and are 
jointly denoted by φµ . Wave atom algorithm is based 
on the apparent generalization and  its  complexity is 
O (N2 LogN).

In practice, one may want to work with the 
original orthonormal basis      instead of tight frame. 
Since        each basis function
oscillates in two distinct directions, instead of one. This 
is called the orthobasis variant.

φ
µ
+ x 

φ
µ
+(x) =φ

µ
1(x) +φ

µ
+2(x)     φ

µ
+ x 

For some integer   depends on j. we check 
that this property holds with n0 = 0, n1 = 1 and n2 = 2.
The rationale for this restriction is that a window needs 
to be right-handed in both directions near a scale 
doubling ,and that this parity needs to match with the 
rest of the lattice .The rule is that is right -handed 
for m odd and left-handed for m even, so for instance 

        would not be admissible window near a 
scale doubling, where as         is admissible

ψ 
m,+

j

ψ 
2

2
(ω1) ψ 

2

2
(ω2)

ψ
3
2(x1) ψ

3
2(x2)

nj

(by a dot  in Figure. 5.).

Figure. 5. Represents the wave atom tiling 
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The PSNR values were calculated using the following 
expression:

  

1 2

1 2

' 2

1 1

max( ( , ))20log10
[ ( , ) ( , )]

M M

i j

M M f i jpsnr dB
f i j f i j

= =

× ×
=

−∑∑
  (12)

Here M1 and M2 are the size of the image. f (i,j) 
is the Original image, f′(i,j) is the decompressed  image. 

Table 1 : PSNR of wavelet, curvelet and wave atom

S.no. No. of coefficients used for 
decompression

PSNR of decompressed image in dB

wavelet curvelet waveatom
1 5536 38.6992 38.0497 42.9066
2 6536 39.2739 38.5499 43.5110
3 7536 39.8192 39.0153 44.0314
4 8536 40.3407 39.4428 44.4903
5 9536 40.8406 39.8336 44.9026

Table 2 : Compression Ratio comparison of wavelet, curvelet and wave atom

S.no. No. of coefficients used 
for decompression

Compression ratio

wavelet curvelet waveatom
1 5536 47 342 94
2 6536 43 311 86
3 7536 39 285 78
4 8536 36 262 72
5 9536 33 242 67

Table 3 : Execution time comparison of wavelet, curvelet and wave atom

S.no. No. of coefficients used for 
decompression

Execution time in seconds

wavelet curvelet waveatom
1 5536 0.484 4.902 0.929
2 6536 0.491 8.334 3.260
3 7536 0.756 9.612 3.384
4 8536 0.178 2.907 1.413
5 9536 0.272 3.174 0.930

From Table 1, we note that PSNR of waveatom  
Decompressed image is high for any no of coefficients 
used for reconstruction. From Table 2, it is observed 
that, curvelet representation has more redundant data 
compared to waveatoms and wavelets. Table 3 shows 
that, execution time required is less in case of wavelets 
compared to waveatoms and curvelets. Hence 
waveatom is the best alternative of the other two 
techniques.  

Figure 6 : Input Image

Figure. 6, 7, 8 and 9 show input image ,wavelet  
reconstruction, curvelet  reconstruction and wave atom 
reconstruction respectively and Figure . 10 and 11 show 
graphical representation of PSNR vs. No. of coefficients 
used for reconstruction and PSNR vs. compression ratio 
respectively for the three considered compression 
techniques. It is observed from the below figures, that 
waveatom compression technique outperforms than 
wavelet and curvelet techniques. 
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Figure 7 : Wavelet reconstruction

Figure  8 : Curvelet reconstruction

Figure 9 : Wave atom reconstruction

Figure 10 : PSNR vs. No. of coefficients used for 
reconstruction

Figure 11 : PSNR vs. Compression Ratio

IV. Conclusions

We have shown that for a seismic data images, 
we can find a transform that is more appropriate than 
Curvelets and wavelets. Using Wave atom transform we 
obtained better PSNR and Compression Ratio than 
other transforms.
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