
© 2015. Rama Satish K V & Dr. N P Kavya. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 15 Issue 1 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A New Efficient Cloud Model for Data Intensive Application
 By Rama Satish K V & Dr. N P Kavya

Abstract- Cloud computing play an important role in data intensive application since it provide a
consistent performance over time and it provide scalability and good fault tolerant mechanism.
Hadoop provide a scalable data intensive map reduce architecture. Hadoop map task are executed
on large cluster and consumes lot of energy and resources. Executing these tasks requires lot of
resource and energy which are expensive so minimizing the cost and resource is critical for a map
reduce application. So here in this paper we propose a new novel efficient cloud structure algorithm
for data processing or computation on azure cloud. Here we propose an efficient BSP based
dynamic scheduling algorithm for iterative MapReduce for data intensive application on Microsoft
azure cloud platform. Our framework can be used on different domain application such as data
analysis, medical research, dataminining etc… Here we analyze the performance of our system by
using a co-located cashing on the worker role and how it is improving the performance of data
intensive application over Hadoop map reduce data intrinsic application. The experimental result
shows that our proposed framework properly utilizes cloud infrastructure service (management
overheads, bandwith bottleneck) and it is high scalable, fault tolerant and efficient.

Keywords: big data, scheduling, iterative mapreduce, microsoft azure, hadoop.

GJCST-B Classification : C.2.1, E.1

ANewEfficientCloudModelforDataIntensiveApplication

 Strictly as per the compliance and regulations of:

A New Efficient Cloud Model for Data Intensive
Application

Rama Satish K V α & Dr. N P Kavya σ

Abstract- Cloud computing play an important role in data
intensive application since it provide a consistent performance
over time and it provide scalability and good fault tolerant
mechanism. Hadoop provide a scalable data intensive map
reduce architecture. Hadoop map task are executed on large
cluster and consumes lot of energy and resources. Executing
these tasks requires lot of resource and energy which are
expensive so minimizing the cost and resource is critical for a
map reduce application. So here in this paper we propose a
new novel efficient cloud structure algorithm for data
processing or computation on azure cloud. Here we propose
an efficient BSP based dynamic scheduling algorithm for
iterative MapReduce for data intensive application on
Microsoft azure cloud platform. Our framework can be used on
different domain application such as data analysis, medical
research, dataminining etc… Here we analyze the
performance of our system by using a co-located cashing on
the worker role and how it is improving the performance of
data intensive application over Hadoop map reduce data
intrinsic application. The experimental result shows that our
proposed framework properly utilizes cloud infrastructure
service (management overheads, bandwith bottleneck) and it
is high scalable, fault tolerant and efficient.
Keywords: big data, scheduling, iterative mapreduce,
microsoft azure, hadoop.

I. Introduction

loud computing technology is increasingly
getting attention as a future paradigm for
hosting, computing and delivering service over

the internet. Cloud provides different service which are
classified as follows and Infrastructure (Infrastructure as
a Service: IaaS), Platform (Platform as a Service: PaaS),
Software (Software as a service: SaaS). Cloud service
provider provides user to access different type of service
such as storage, software or hardware. In particular, in
recent years IaaS have become increasingly popular for
user to deploy his application on to the cloud for
execution and use the cloud resource efficiently. Cloud
computing also provides scalable resource computing
and storage resources through the Internet [1]–[2]. It
also allow cloud users to access services irrespective to
where the cloud services are provided and how they are
delivered, similar to other essential
commodity(electricity, water)[3]. With the adaptable,
transparent and scalable features in the service
provisioning and resource allocation, more and more
data-intensive applications are developed by using

Author α σ : e-mails: ramasatish.k.v@rnsit.ac.in, n.p.kavya@rnsit.ac.in

cloud computing environment. The data intensive
applications spend most of their execution time in disk
I/O operation for processing a huge volume of data, e.g.
data mining of different enterprises transactions, satellite
data processing, medical research computation, etc.
Hadoop [4] is a well-known cloud computing platform
which is used for data-intensive applications. Due to a
large number of nodes in the cloud computing system,
the probability of hardware failures is not a big issue
based on the statistical analysis of hardware failures in
[5]–[6]. Some hardware failures will damage the disk
data of nodes. As a result, the running data-intensive
applications may not fetch/read map data from disks
properly. To come out of these map failures, the data
replication technique is used in the cloud computing
environment which provides high data availability [7]–
[8]. When data map failure occurs, the QoS requirement
of the application cannot be supported continuously.
The reason is explained as follows. With a large number
of nodes in the cloud computing environment, it is
practically not possible ask all nodes with the same
performance and capacity in their CPUs, memory, and
disks [9]. For example, the Amazon EC2 is a well-known
heterogeneous cloud platform, which provides various
infrastructure resource types to meet different user
needs in resource computing and storage [10].

The Microsoft Azure is a cloud computing
environment which offers services on demand. It offers
on demand computing services such as Windows Azure
Compute, Storage Blob, Queue, Table service etc.
Azure Compute is a platform as a service infrastructure
which allow the users to lease hourly charged virtual
machine instances in the form of different types of Roles
such as(e.g.: Worker Role, Web Role, etc…). The Azure
storage queue is an eventual consistent, reliable,
scalable and distributed message queue service, which
is ideal for small and transient messages (short
period/impermanent). The Azure Storage Blob service
provides a shared storage service where users can
store and retrieve any type data by using web services
interface. Azure Storage Table service provides scalable
non-relational highly available structured data storage.
However Azure platform currently do not offer a
distributed computing framework, other than the simple
queue based model.

Goal of our model is to provide and process the
efficient execution of Map Reduce and iterative Map
Reduce applications in the Azure cloud environment.

C

© 2015 Global Journals Inc. (US)

19

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Our model is a distributed decentralized Map Reduce
runtime for Windows Azure cloud environment that
utilizes Azure infrastructure services. Our model
overcomes the latencies of cloud services by using
sufficiently fine grained map and reduces tasks. It
overcomes the eventual data availability of cloud
storage services through re-trying and by explicitly
designing the system to not rely on the immediate
availability of data across all distributed workers. Our
systems uses Azure Queues for map and reduce BSP
task scheduling, Azure Tables for metadata storage and
for monitoring data storage, Azure Blob storage for data
storage (input, output and intermediate) and Compute
worker roles to perform the computations. In order to
with stand the breakdown/failure of cloud infrastructures
and to avoid single point of failures, our model was
designed as a decentralized control architecture which
does not rely on a client side. It provides users with the
capability to scale up/down the number of computing
resources such virtual machines dynamically or during
runtime. The map and reduce tasks of the proposed
model runtime are dynamically scheduled using azure
global queues achieving efficient scheduling natural
load balancing of tasks. Our system models handles
BSP task failures and slower tasks through re-execution
and duplications. Map Reduce infrastructure requires
the reduce tasks to ensure guarantee of all the
intermediate data products from Map tasks before
starting the reduce phase.

Data Iterative computation generally relies on a
set of static data that remain fixed across different
iterations and a set of ephemeral dynamic data between
iterations. Here we introduces an in memory co-located
Data Cache to store the reusable static data across the
iterations, avoiding the fetching and parsing cost of
such data from Azure Blob storage for every iteration.
Each worker role will have one managed collocated
cache with a given memory limit. Since the existing
model do not have proper mechanism which can utilize
the knowledge about cached data products to assign
tasks to workers, scheduling tasks to take advantage of
caching presents a significant challenge. At the same
time, it’s important to maintain the efficient scheduling
and fault tolerance of our model in the new scheduling
mechanism. In order to address these issues, our model
utilizes a new efficient scheduling approach using a
combination of Azure Queues and Tables. The first
iteration of our model will get scheduled only through
Azure queues. Our model uses a special table for
caching, where the tasks are retrieved from second
iteration onwards. Map Workers first query this table to
identify any similarity between the data items they have
in their collocated cache vs the data items needed for
the retrieval of tasks. With this prototype the static data
for data iterative Map Reduce computations will get
reused from the second iteration onwards. Meanwhile
the newly joined or a worker who has completed

processing all the tasks for the cached data will be able
to pick up BSP tasks directly from the queue and will
use the Azure Tables and the monitoring infrastructure
to check the tasks processed or not. This also ensures
that our model retains the fault tolerance features of
efficient azure cloud structure.

II. Existing System

Over the year cloud computing is growing
enormously in various fields. Data intensive application
is one of those fields that have been one of the popular
topics. In recent research, the valuable knowledge that
can be retrieved from petabyte scale datasets is known
as Big Data. Using these analyses the researcher can
provide better provide better result. This Big

Data

analysis is used in different domain such data mining,
medical research etc… There exists a substantial body
of research on resource allocation and scheduling in
clouds and data centers that does not consider the
resource utilization efficiency (e.g., [12], [13], and [14]).
However, here in this literature review, we only discuss
briefly the studies that are directly related to resource
utilization in data centers. Kaushik and M. Bhandarkar.
[11] Proposed a technique to segregate or divide the
servers in a HDP cluster into hot zone and cold zones
based on their various performance characteristics,
where

cold zone servers are mostly idling and hot zone

are always powered on. Resource utilization/allocation
and scheduling in cloud data centers. Mahadik and
Hacker [16] proposed scheduling algorithm policy for
virtual HPC clusters. They introduced a resource
prediction cloud model for each policy to assess the
resources required within a cloud, the task queue wait
time for requests, and the size of the additional
resources required. Palanisamy et al. [15]proposed a
Map Reduce cloud model for creating

task. Here they

create cluster configurations for the Task using Map
Reduce to predict and maximize performance based on
deadline-perception, allowing the CSP to optimize its
resource allotment and reduce the cost.

Zaharia et al.

[17] have analyzed the problem of (slower node)
speculative execution in Map Reduce. Here they
developed a simple robust scheduling algorithm called
LATE (Longest Approximate Time to End), which uses
predicted

completion times to execute the job

that hurt

the response time the most. Lai and

Sandholm [18]
have developed a system for resources allocation in
shared data and compute resource clusters that
enhance

Map Reduce job scheduling. Their technique is

based on keeping apart

Map Reduce clusters in VMs

with a dynamically modifiable performance. Wang et al.
[19] proposed a new job scheduling technique for Map
Reduce

that improves the overall throughput in job-

intensive application without considering the resource
consumption. Ren et al. [20] proposed a task
scheduling algorithm that boost the completion time of

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

20

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

small Map Reduce jobs. Their system is based on task
priorities to make sure the fast response for small tasks.
Chang et al. [21] proposed numerous offline and online
system for the Map Reduce scheduling complication to
minimize the overall task finishing times. Their system is
based on resolving a linear program (LP) relaxation.
Changjian Wang et al. [22], here they have presented an
optimal scheduling algorithm for data map reduce
application. Here they have divided algorithm into two
stages which are as follows firstly to estimate the node
execution time and then to produce proper or optimal
task assignment time. Here they only considered map
status that is idle or busy for scheduling job to mappers.
This approach leads to few problems like long tail and
very high scheduling overhead. Qi Chenwe et al.
[23]here they provide an analysis of the downfall of
existing or recent speculative execution strategies in
Map Reduce. Here they present model which affect the
overall performance of those technique: jobs that start
asynchronously, improper configuration of phase
percentage, data skew and abrupt resource
competiveness. Based on these terms, here they
developed a new speculative execution model called
MCP to handle these scenarios. It takes the task cost
performance of cluster computing resources into
account, aiming at not only reducing the task execution
time but also improving the overall cluster throughput.
Yang Wang et al. [24] here they have analyzed two
general constraints on budget and deadline for the
scheduling of a group of Map Reduce tasks as a
workflow on a set of vm’sin the cloud. Here first, they
focused on the scheduling-length under budget
constraints. Then they designed a new algorithm by
combining greedy algorithm with dynamic programming
techniques for budget allocation on per-stage basis,
which was also shown to be balanced. Then, with this
result, here they designed two new heuristic algorithms,
GGB and GR, which are based on greedy strategies to
reduce the time complexity to reduce the scheduling
lengths of the workflows without affecting the budget.
Our research reveal that both the algorithms exhibiting a
unique or significant advantage over the other, are very
close to the optimal algorithm in terms of the scheduling
time but obtain much lower time overhead. Amrit Pal et
al. [25] here they shows the behavior of the hdp cluster
with increasing number nodes. The criterion for which
the performance is analyzed is the memory parameters.
This research will be useful for the developing a
hdpcluster. The number of interaction increases as the
size of the cluster size increases. If the data size
increases and there may be a chance of out of disk then
the normal copy script should be used for increasing
virtual disks size. Fan Yuanquan et al.[26] here they
shows that the existing Map Reduce platform performs
poorly on heterogeneous clusters due to skew loads
among the reduce jobs. Here they analyze the downfall
of current task distribution method in heterogeneous

systems. Here they identify two key reasons for the skew
loads: and the heterogeneity of worker nodes and the
native hash partitioning. Based on these facts they
proposed a performance based prediction model which
is based on support vector machine called PM-SVM.
Here they also proposed a HAP (heterogeneity- aware
partitioning) algorithm based on PM-SVM. They
implemented the proposed load balance approaches in
the HDP. The hadoop load balancer can improve the
performance of reduce jobs, and can also improve the
resource utilization of hdpclusters.

III. Proposed System

A Map Reduce job divides the input data into
individual chunks which are processed by the map jobs
in a completely parallel synchronization manner. The
output of the maps are fed as the input to the reduce
tasks. Thus, the whole framework is involved in
scheduling jobs, monitoring them and re-executes the
failed jobss.

A cluster is composed of multiple engines. The
number of map and reduce tasks is compromised as
Map Reduce job which is executed on cluster.Every
worker node applies the map function to the local data,
and writes the output result to intermediateblob storage.
Worker nodes distribute or schedulemap data based on
the output keys (produced by the map function), such
that all map data belonging to one key is located on the
same azure worker node. The worker nodes now
process each and every group of output map data, per
key, in parallel.

Map Reduce allows for parallel distributed
processing of the maps and reduction operation.
Provided that each and every mapping operation is self-
reliant of the others, all maps can be performed in
parallel – though in real scenario this is limited by the
number of self-reliant data sources and/or the number of
VM’s near each source. Similarly, a set of 'reducers' can
perform the reduction phase, provided that all data
outputs of the map data operation that share the same
key are presented to the same reducer at the same
time, or we could say that the reduction function is
associative. While this method can often appear to be
inefficient compared to model that are more sequential,
Map Reduce can be applied to significantly larger
volume of data than normal servers can handle – a large
server farm can use Map Reduce to sort a petabyte of
data in only a few hours. The parallelism also provide
some possibility of recovering from partial failure of blob
storage or server during the operation: if any one
mapper or reducer fails, the work can be rescheduled –
assuming the input data is still available.

Let us consider a large data application
consisting of map and reduce tasks. The Map Reduce
job is executed on a cluster.

The Map and Reduce

functions of Map Reduce are defined with respect to

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)

21

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

data pattern/structured in (key, value) pairs. Map takes
one pair of data with a type in one data format, and
returns a list of pairs in a different format. Then it is
processed in the reduce phase by the reduce task with
the key-value pair along with the same key. Thus, the
reduce phase can only begin only after the map phase
ends. This large data application must be completed by
deadline𝕋𝕋. 𝕏𝕏 and 𝕐𝕐 represents the set of tasks of map
and reduce of the application. The set of slots available
for executing these map and reduce tasks are indicated
by 𝑆𝑆1 and 𝑆𝑆2 respectively. The resource utilization is
symbolized by ℝ𝑠𝑠𝑠𝑠 , where 𝑠𝑠 is the slot ∈ (𝑆𝑆1, 𝑆𝑆2) and 𝑠𝑠 is
the task ∈ (𝕏𝕏,𝕐𝕐) executed on the respective slot. The
processing time of the task 𝑠𝑠 when executed on the slot
𝑠𝑠 is represented as 𝜏𝜏𝑠𝑠𝑠𝑠 . The dependencies of the map
and reduce tasks are characterized by the variable
Ψ𝑣𝑣𝑠𝑠 ,∀𝑣𝑣, 𝑠𝑠 ∈ (𝕏𝕏 ∪ 𝕐𝕐), where Ψ𝑣𝑣𝑠𝑠 will possess the value 1
if 𝑠𝑠 is assigned after the task 𝑣𝑣 else 0.

The main objective is to minimize the resource
utilization when executing the Map Reduce application
based on the dependencies of reduce tasks on the map

tasks. The resource utilization Map Reduce scheduling
problem is given as:

��ℝ𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏𝑠𝑠∈𝑆𝑆1

+ �� � Ψ𝑣𝑣𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑣𝑣∈(𝕏𝕏 ∪ 𝕐𝕐)𝑠𝑠∈ 𝕐𝕐𝑠𝑠∈𝑆𝑆2

 (1)

The above equation has to be minimized. Each

map task is assigned to a slot for execution. This is
given by:

�𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝑆𝑆1

= 1,∀𝑠𝑠 ∈ 𝕏𝕏

(2)

The each reduce task is assigned to a task

which is represented by:

� � Ψ𝑣𝑣𝑠𝑠 ,𝑄𝑄𝑠𝑠𝑠𝑠 = 1 ∀𝑠𝑠 ∈ (𝕐𝕐)
𝑣𝑣∈(𝕏𝕏

∪

𝕐𝕐)𝑠𝑠∈𝑆𝑆2

(3)

The processing time of the application should
not exceed the deadline. Without exceeding the
deadline, the scheduler will assign to the reduce tasks
only after finishing the map tasks. This is established as:

�𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

 +� � Ψ𝑣𝑣𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠 ′ 𝑃𝑃𝑠𝑠𝑠𝑠 ′

𝑣𝑣∈(𝕏𝕏

∪

𝕐𝕐)𝑠𝑠∈

𝕐𝕐

≤ 𝕋𝕋 ,∀𝑠𝑠 ∈ 𝑆𝑆1,∀𝑠𝑠′ ∈ 𝑆𝑆2

(4)

Thus, it is interpreted as:

𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠∈𝑆𝑆1 �𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

 + 𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠′ ∈𝑆𝑆2
�𝜏𝜏𝑠𝑠𝑠𝑠′ 𝑄𝑄𝑠𝑠𝑠𝑠 ′
𝑠𝑠∈𝕐𝕐

 ≤ 𝕋𝕋

(5)

As a result, all reducetasks can be assigned after time:

𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠∈𝑆𝑆1 �𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

(6)

The integrity requirements for the decision variables are
given by:
 𝑃𝑃𝑠𝑠𝑠𝑠 = {0,1},∀𝑠𝑠 ∈ 𝕏𝕏,∀𝑠𝑠 ∈ 𝑆𝑆1 (7)

 𝑄𝑄𝑠𝑠𝑠𝑠 = {0,1},∀𝑠𝑠 ∈ 𝕐𝕐,∀𝑠𝑠 ∈ 𝑆𝑆2 (8)

The resource utilization solution consists of P and Q ̂
where,

𝑄𝑄�𝑠𝑠𝑠𝑠 = � Ψ𝑣𝑣𝑠𝑠𝑄𝑄𝑠𝑠𝑠𝑠
𝑣𝑣∈(𝕏𝕏 ∪ 𝕐𝕐)

, 𝑠𝑠 ∈ 𝕐𝕐 𝑚𝑚𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆2

(9)

Here we develop the algorithm for resource

utilization which is very efficient for scheduling Map
Reduce jobs. The deadline T is specified for the
completion of the large data application. However, the
user here will specify only the deadline of the job but not
the map or reduce phase. Reduce tasks are performed
only after the completion of map tasks, thus reduce
tasks are completely dependent on the map tasks.
Therefore, the data centre should define the deadline for
map tasks based on the availability of map slots so that
further tasks are carried out by reduce tasks in order to

utilize the resource efficiently. Once the map tasks are
done with its tasks based on the map slots, the
assignments of the reduce tasks are performed based
on its reduce slots meeting its deadline. Thus, the
design of this proposed algorithm characterizes the
resource utilization. Therefore, the resource utilization
rate of the slot s is given by:

 ∁𝑠𝑠𝕩𝕩
 =
∑ ℝ𝑠𝑠𝑠𝑠

𝜏𝜏𝑠𝑠𝑠𝑠
𝕏𝕏
𝑠𝑠

𝕏𝕏
� ,∀𝑠𝑠 ∈ 𝑆𝑆1

 (10)

 ∁𝑠𝑠
𝕪𝕪 =

∑ ℝ𝑠𝑠𝑠𝑠
𝜏𝜏𝑠𝑠𝑠𝑠

𝕐𝕐
𝑠𝑠

𝕐𝕐
� ,∀𝑠𝑠 ∈ 𝑆𝑆2 (11)

where, it represents the resource utilization rate of map
slot 𝑠𝑠 and reduce slot 𝑠𝑠 respectively. The lower ∁𝑠𝑠𝕩𝕩
represents a higher priority for the slot 𝑠𝑠 to which a task
is assigned. There exists two priority queues 𝕌𝕌𝕩𝕩,𝕌𝕌𝕪𝕪 to
keepthe order of the map and reduce slots based on
their energyconsumption rates. Our proposed algorithm
initializes the deadline for map tasks (𝕋𝕋𝕏𝕏) and reduce
tasks (𝕋𝕋𝕐𝕐) to infinity.
The complete algorithm is given below.

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

22

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Start

For Each 𝑠𝑠 ∈ 𝑆𝑆1

Yes
No

Priority Queues 𝕌𝕌𝕩𝕩 and 𝕌𝕌𝕪𝕪 are created

Compute ∁𝑠𝑠𝕩𝕩 =
∑ ℝ𝑠𝑠𝑠𝑠

𝜏𝜏𝑠𝑠𝑠𝑠
𝕏𝕏
𝑠𝑠

𝕏𝕏
� ,∀𝑠𝑠 ∈ 𝑆𝑆1

𝕌𝕌𝕩𝕩.𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑠𝑠,∁𝑠𝑠𝕩𝕩)

For Each 𝑠𝑠 ∈ 𝑆𝑆2

Yes
No

Compute ∁𝑠𝑠
𝕪𝕪 =

∑ ℝ𝑠𝑠𝑠𝑠
𝜏𝜏𝑠𝑠𝑠𝑠

𝕐𝕐
𝑠𝑠

𝕐𝕐
� ,∀𝑠𝑠 ∈ 𝑆𝑆2

𝕌𝕌𝕪𝕪. 𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �𝑠𝑠,∁𝑠𝑠𝕪𝕪 �

Assign infinity to map tasks (𝕋𝕋𝕏𝕏) and reduce tasks (𝕋𝕋𝕐𝕐)
deadline

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)

23

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

While the queues 𝕌𝕌𝕩𝕩 and
𝕌𝕌𝕪𝕪 are not empty

Compute 𝑠𝑠𝕩𝕩 = 𝕌𝕌𝕩𝕩.𝐸𝐸𝑚𝑚𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑎𝑎()

Yes

No

Compute 𝑠𝑠𝕪𝕪 = 𝕌𝕌𝕪𝕪. 𝐸𝐸𝑚𝑚𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑎𝑎()

Compute 𝒪𝒪 = ∑ 𝜏𝜏𝑠𝑠𝑠𝑠𝕏𝕏𝕏𝕏
𝑠𝑠

∑ 𝜏𝜏𝑠𝑠𝑠𝑠 𝕐𝕐𝕐𝕐
𝑠𝑠

�

If 𝜆𝜆𝕩𝕩 𝑚𝑚𝑎𝑎𝑎𝑎 𝜆𝜆𝕪𝕪 is ≠ 0

Break

No

Yes

Compute 𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕩𝕩 𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏

Compute 𝑠𝑠𝕪𝕪 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕪𝕪 𝜏𝜏𝑣𝑣𝑠𝑠𝕪𝕪

Assign𝜏𝜏𝕏𝕏 and 𝜏𝜏𝕪𝕪 to 0

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

24

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)

25

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Compute 𝜏𝜏𝕩𝕩 = 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩

While
𝜏𝜏𝕩𝕩+𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕪𝕪

𝜏𝜏𝕪𝕪
 ≤ 𝒪𝒪

and 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝕪𝕪 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 ≤ 𝕋𝕋

and 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 ≤ 𝕋𝕋𝕩𝕩and𝜏𝜏𝕪𝕪 +
𝜏𝜏𝑠𝑠𝕪𝕪𝑠𝑠𝕪𝕪 ≤ 𝕋𝕋𝕪𝕪 and 𝜆𝜆𝕩𝕩0

Compute 𝜆𝜆𝕩𝕩 = 𝜆𝜆𝕩𝕩 \(𝑠𝑠𝕩𝕩)

Yes

No

Compute 𝑃𝑃𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 = 1

Compute 𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕩𝕩 𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏

Else

Compute 𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑒𝑒𝑎𝑎𝑣𝑣∈𝜆𝜆𝕩𝕩 𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

26

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Compute 𝜏𝜏𝕩𝕩 = 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩

While 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝕪𝕪 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩 ≤ 𝕋𝕋 and
𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩 ≤ 𝕋𝕋𝕩𝕩 and 𝜆𝜆𝕩𝕩 ≠ 0

Compute 𝜆𝜆𝕩𝕩 = 𝜆𝜆𝕩𝕩 \(𝑠𝑠𝕩𝕩)

Yes

No

Compute 𝑃𝑃𝑠𝑠 𝑠𝑠𝕩𝕩 = 1

Compute 𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑒𝑒𝑎𝑎𝑣𝑣∈𝜆𝜆𝕩𝕩 𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏

If 𝕋𝕋𝕩𝕩 = ∞

𝕋𝕋𝕩𝕩 = 𝕋𝕋 − 𝜏𝜏𝕪𝕪 𝕋𝕋𝕪𝕪 = 𝕋𝕋 − 𝕋𝕋𝕩𝕩

Yes

No

𝜆𝜆𝕩𝕩 ,𝜆𝜆𝕪𝕪 ≠ 0
If

No feasible schedule

Yes

No

Output (𝑃𝑃,𝑄𝑄)

Stop

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)

27

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

In every iteration, the algorithm chooses the
slots with lowest utilization of resource from the priority
queues. For these slots, the ratio of processing timeof
map tasks to that of the reduce tasks, denoted by 𝒪𝒪, is
calculated. This ratio is used in the task
assignmentprocess in each iteration of the algorithm.
Then, algorithm sorts the unassigned map and reduce
tasks based on theirprocessing time on the selected
slots. It selectsthe longest map task𝑠𝑠𝕩𝕩 and reduce task
𝑠𝑠𝕪𝕪 from the sortedsets 𝜆𝜆𝕩𝕩 and 𝜆𝜆𝕪𝕪 respectively. Then it
checksthe feasibility of allocating map task𝑠𝑠𝕩𝕩 to slot𝑠𝑠𝕩𝕩
andreduce task 𝑠𝑠𝕪𝕪 to slot 𝑠𝑠𝕪𝕪 by checking the total
processingtime of the tasks against the deadline𝕋𝕋. If
theassignment of map task 𝑠𝑠𝕩𝕩 and reduce task 𝑠𝑠𝕪𝕪 is
feasible, the algorithm continues to select tasks
from𝜆𝜆𝕩𝕩and𝜆𝜆𝕪𝕪, and updates the variables accordingly. To
keep the assignments of the tasks in alignment withthe
ratio of processing time 𝒪𝒪 , the algorithm balances
theassignment. In doing so, if𝒪𝒪 > 1 (i.e., the load of
processingtime of map tasks is greater than that of
reduce tasks) andthe ratio of the current assignment is
less than 𝒪𝒪, then thealgorithm assigns more map tasks
to balance the allocatedprocessing time close to 𝒪𝒪. If
the ratio of thecurrent assignment is greater than 𝒪𝒪, the
algorithm assignsmore reduce tasks to balance the
allocated processing time. After allocating the map and
reduce tasks withthe largest processing time, the
algorithm assigns small mapand reduce tasks while
satisfying the deadline. At the end of the first iteration,
the algorithm sets the mapand reduce deadlines based
on the allocated tasks. The time complexity of our
algorithm is polynomial in thenumber of map slots, the
number of reduce slots, the numberof map tasks, and
the number of reduce tasks, respectively.

IV. Result

Cloud provide data iterative map reduce as a
infrastructure as a service which is modified and
executed here. The modified data iterative protocol is
used to compute data in azure cloud, which provides
the better resources utilization and more importantly
provides better scheduling and efficiency. The system
model presented has been developed on Visual Studio
2010 framework 4.0 with C#. The overall system has
been developed and implemented with Microsoft Azure
platform. We have used virtual machine type small with
collocated caching. The virtual machine configurations
are as follow it uses windows 2008 r2 server, 2.72 GHz
with 4 cores with 1.5GB memory.

The developed system has been analyzed for
different performance parameters like map resource
utilization, Resource utilization based on our proposed
model scheme compared with the existing Hadoop
model. The relative study for these all factors has been
performed. This system or model performance has been
verified for various map size, file size with dynamic
scheduling as well as performance parameters have
been checked for its fault tolerant, robustness
justification. The following are the performance analysis
of our proposed model over Hadoop.

a) Map Resource Utilization
The map resource utilization of Hadoop and our

proposed model is been plotted in the above graph. We
have considered a maximum of 8 maps.Here we have
taken the execution time by varying the map size and
the analytical result proves that the proposed resource
utilization time is reduced by35 secfrom 56
secapproximately over Hadoop.

Figure 1 : Map resource utilization

0

20000

40000

60000

80000

100000

2 4 6 8E x
ec

ut
io

n
Ti

m
e

in
 m

ill
i s

ec
on

ds

Map size

Map Reource utilization

Proposed

Hadoop

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

28

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

b) Resource utilization

Figure 2 : Map resource utilization

The resource utilization of Hadoop and our
proposed model is been plotted in the above graph. We
have considered a maximum of 200MB file.Here we
have taken the execution time by varying the file size
(50, 100, 150, and 200 respectively) and the analytical
result proves that the proposed resource utilization time
is reduced by33 secfrom 55 secapproximately over
Hadoop.

V. Conclusion

Our efficient cloud model provides Map Reduce
data intensive computing runtimes for the Microsoft
windows azure cloud environment. Our model provides
a decentralized iterative expansion to Map Reduce
computing environment, enabling the users to easily
and efficiently perform task for large scale iterative data
analysis/computations on Azure cloud environment. Our
model utilizes a BSP scheduling mechanism based on
Azure Tables and Queues to provide the caching of
static data across iterations in data iterative
computations. Our model cloud infrastructure services
effectively to deliver robust and efficient applications.
Here we compared the resource utilization and
execution time of our proposed model over Hadoop
2.4.0.2.1.3.0-1981. He we analyzed the performance of
our model over Hadoop by increasing map size (varying
2, 4, 6, 8 respectively), file size (varying 50Mb, 100Mb,
150Mb, 200Mb respectively) and reduce size by (1, 2, 3,
4) and found that our proposed model is robust and
efficient. We also found that by increasing the instance
or the number of cores the performance is getting
better. We also found how usage collocated caching
improves the task execution time.

In future we would like to test this model on
different domain type such as data mining, medical

research etc… We would also further like to enhance the
model by creating a dedicated cache for cache worker
which will further improve the performance of our
system.

References Références Referencias

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,”
Dept. EECS, California Univ., Berkeley, Tech. Rep.
UCB/EECS-2009-28, Feb. 2009.

2. M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis,
and A. Vakali, “Cloud Computing: Distributed
Internet Computing for IT and Scientific Research,”
IEEE Internet Comput. vol. 13, no. 5, pp. 10–13,
Sep. 2009.

3. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic, “Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering
Computing as the 5th Utility,” Future Gener.
Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun.
2009.

4. (2013) Apache Hadoop Project. [Online]. Available:
http://hadoop.apache.org

5. K. V. Vishwanath and N. Nagappan, “Characterizing
Cloud Computing Hardware Reliability,” in Proc.
ACM Symp. Cloud Computing, Jun. 2010, pp. 193–
204.

6. B. Schroeder and G. A. Gibson, “Disk Failures in the
Real World: What Does an MTTF of 1,000,000 Hours
Mean to You?” in Proc. 5th USENIX Conf. File and
Storage Technologies, Feb. 2007, pp. 1–16.

7. F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li,
“Hadoop High Availability through Metadata

0 40000 80000

50

100

150

200

Execution Time is seconds

Fi
le

 si
ze

 in
 M

B

Resource Utilization

Hadoop

Proposed

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)

29

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Replication,” in Proc. 1st Int. Workshop Cloud Data
Manage., 2009, pp. 37–44.

8. W. Li, Y. Yang, J. Chen, and D. Yuan, “A Cost-
Effective Mechanism for Cloud Data Reliability
Management Based on Proactive Replica
Checking,” in Proc. 2012 12th IEEE/ACM Int. Symp.
Cluster, Cloud and Grid Computing (CCGrid), May
2012, pp. 564–571.

9. C. N. Reddy, “A CIM (Common Information Model)
Based Management Model for Clouds,” in Proc.
2012 IEEE Int. Conf. Cloud Computing in Emerging
Markets (CCEM), Oct. 2012, pp. 1–5.

10. (2013) Amazon EC2. [Online]. Available:
http://aws.amazon.com/ec2

11. R. T. Kaushik, M. Bhandarkar, and K. Nahrstedt,
“Evaluation and analysis of greenhdfs: A self-
adaptive, energy-conserving variant of the Hadoop
distributed file system,” in Proc. of the 2nd IEEE
International Conf. on Cloud Computing Technology
and Science, 2010, pp. 274–287.

12. B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos,
“On scheduling in map-reduce and flow-shops,” in
Proc. Of the 23rd Annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2011,
pp. 289–298.

13. L. Mashayekhy, M. M. Nejad, and D. Grosu, “A
truthful approximation mechanism for autonomic
virtual machine provisioning and allocation in
clouds,” in Proc. of the ACM Cloud and Autonomic
Computing Conf., 2013, pp. 1–10.

14. M. M. Nejad, L. Mashayekhy, and D. Grosu, “A
family of truthful greedy mechanisms for dynamic
virtual machine provisioning and allocation in
clouds,” in Proc. of the 6th IEEE Intl. Conf. on Cloud
Computing, 2013, pp. 188–195.

15. B. Palanisamy, A. Singh, and L. Liu, “Cost-effective
resource provisioning for mapreduce in a cloud,”
IEEE Transactions on Parallel and Distributed
Systems (forthcoming), 2014.

16. T. J. Hacker and K. Mahadik, “Flexible resource
allocation for reliable virtual cluster computing
systems,” in Proc. ACM Conf. High Perf. Comp.,
Networking, Storage and Analysis, 2011, p. 48.

17. T. Sandholm and K. Lai, “Mapreduce optimization
using regulated dynamic prioritization,” in Proc. 11th
ACM Int’l Conf. on Measurement and Modeling of
Computer Syst., 2009, pp. 299–310.

18. X. Wang, D. Shen, G. Yu, T. Nie, and Y. Kou, “A
throughput driven task scheduler for improving
mapreduce performance in job-intensive
environments,” in Proc. of the 2nd IEEE International

19. Congress on Big Data, 2013, pp. 211–218.
20. Z. Ren, X. Xu, M. Zhou, J. Wan, and W. Shi,

“Workload analysis, implications and optimization
on a production hadoop cluster: A case study on
taobao,” IEEE Transactions on Services Computing,
vol. 7, no. 2, pp. 307–321, 2014.

21. M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell’ Amico,
and P. Michiardi, “Hfsp: size-based scheduling for
Hadoop,” in Proc. of IEEE International Conference
on Big Data, 2013, pp. 51–59.

22. H. Chang, M. S. Kodialam, R. R. Kompella, T. V.
Lakshman, M. Lee, and S. Mukherjee, “Scheduling
in mapreduce-like systems for fast completion
time,” in Proc. of the 30th IEEE International
Conference on Computer Communications, 2011,
pp. 3074–3082.

23. Changjian Wang; Yuxing Peng; Junyi Liu; Mingxing
Tang; Guangming Liu; Jinghua Feng; Pengfei You,
"Optimal Task Scheduling in Map Reduce,"
Networking, Architecture, and Storage (NAS), 2014
9th IEEE International Conference on , vol., no.,
pp.118,122, 6-8 Aug. 2014

24. Qi Chen; Cheng Liu; Zhen Xiao, "Improving Map
Reduce Performance Using Smart Speculative
Execution Strategy," Computers, IEEE Transactions
on, vol.63, no.4, pp.954,967, April 2014doi:
10.1109/TC.2013.15

25. Yang Wang; Wei Shi, "Budget-Driven Scheduling
Algorithms for Batches of Map Reduce Jobs in
Heterogeneous Clouds," Cloud Computing, IEEE
Transactions on , vol.2, no.3, pp.306,319, July-Sept.
1 2014doi: 10.1109/TCC.2014.2316812

26. Amrit Pal, Sanjay Agrawal, “An Experimental
Approach Towards Big Data for Analyzing Memory
Utilization on a Hadoop cluster using HDFS and
MapReduce”.

27. Fan Yuanquan, WU Weiguo, XU Yunlong, CHEN
Heng “Improving Map Reduce Performance by
Balancing Skewed Loads”.

A New Efficient Cloud Model for Data Intensive Application

© 2015 Global Journals Inc. (US)1

30

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
 V

er
sio

n
I

Ye
ar

 (

)
20

15
B

Global Journals Inc. (US)

Guidelines Handbook 2015

www.GlobalJournals.org

	A New Efficient Cloud Model for Data Intensive Application
	Author
	Keywords
	I. Introduction
	II. Existing System
	III. Proposed System
	IV. Result
	V. Conclusion
	References Références Referencias

