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Abstract- Cloud computing play an important role in data intensive application since it provide a 
consistent performance over time and it provide scalability and good fault tolerant mechanism. 
Hadoop provide a scalable data intensive map reduce architecture. Hadoop map task are executed 
on large cluster and consumes lot of energy and resources. Executing these tasks requires lot of 
resource and energy which are expensive so minimizing the cost and resource is critical for a map 
reduce application. So here in this paper we propose a new novel efficient cloud structure algorithm 
for data processing or computation on azure cloud. Here we propose an efficient BSP based 
dynamic scheduling algorithm for iterative MapReduce for data intensive application on Microsoft 
azure cloud platform. Our framework can be used on different domain application such as data 
analysis, medical research, dataminining etc… Here we analyze the performance of our system by 
using a co-located cashing on the worker role and how it is improving the performance of data 
intensive application over Hadoop map reduce data intrinsic application. The experimental result 
shows that our proposed framework properly utilizes cloud infrastructure service (management 
overheads, bandwith bottleneck) and it is high scalable, fault tolerant and efficient.   
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A New Efficient Cloud Model for Data Intensive 
Application 

Rama Satish K V α & Dr. N P Kavya σ 

Abstract- Cloud computing play an important role in data 
intensive application since it provide a consistent performance 
over time and it provide scalability and good fault tolerant 
mechanism. Hadoop provide a scalable data intensive map 
reduce architecture. Hadoop map task are executed on large 
cluster and consumes lot of energy and resources. Executing 
these tasks requires lot of resource and energy which are 
expensive so minimizing the cost and resource is critical for a 
map reduce application. So here in this paper we propose a 
new novel efficient cloud structure algorithm for data 
processing or computation on azure cloud. Here we propose 
an efficient BSP based dynamic scheduling algorithm for 
iterative MapReduce for data intensive application on 
Microsoft azure cloud platform. Our framework can be used on 
different domain application such as data analysis, medical 
research, dataminining etc… Here we analyze the 
performance of our system by using a co-located cashing on 
the worker role and how it is improving the performance of 
data intensive application over Hadoop map reduce data 
intrinsic application. The experimental result shows that our 
proposed framework properly utilizes cloud infrastructure 
service (management overheads, bandwith bottleneck) and it 
is high scalable, fault tolerant and efficient.  
Keywords: big data, scheduling, iterative mapreduce, 
microsoft azure, hadoop. 

I. Introduction 

loud computing technology is increasingly 
getting attention as a future paradigm for 
hosting, computing and delivering service over 

the internet. Cloud provides different service which are 
classified as follows and Infrastructure (Infrastructure as 
a Service: IaaS), Platform (Platform as a Service: PaaS), 
Software (Software as a service: SaaS). Cloud service 
provider provides user to access different type of service 
such as storage, software or hardware. In particular, in 
recent years IaaS have become increasingly popular for 
user to deploy his application on to the cloud for 
execution and use the cloud resource efficiently. Cloud 
computing also provides scalable resource computing 
and storage resources through the Internet [1]–[2]. It 
also allow cloud users to access services irrespective to 
where the cloud services are provided and how they are 
delivered, similar to other essential 
commodity(electricity, water)[3]. With the adaptable, 
transparent and scalable features in the service 
provisioning and resource allocation, more and more 
data-intensive   applications   are   developed   by  using  
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cloud computing environment. The data intensive 
applications spend most of their execution time in disk 
I/O operation for processing a huge volume of data, e.g. 
data mining of different enterprises transactions, satellite 
data processing, medical research computation, etc. 
Hadoop [4] is a well-known cloud computing platform 
which is used for data-intensive applications. Due to a 
large number of nodes in the cloud computing system, 
the probability of hardware failures is not a big issue 
based on the statistical analysis of hardware failures in 
[5]–[6]. Some hardware failures will damage the disk 
data of nodes. As a result, the running data-intensive 
applications may not fetch/read map data from disks 
properly. To come out of these map failures, the data 
replication technique is used in the cloud computing 
environment which provides high data availability [7]–
[8]. When data map failure occurs, the QoS requirement 
of the application cannot be supported continuously. 
The reason is explained as follows. With a large number 
of nodes in the cloud computing environment, it is 
practically not possible ask all nodes with the same 
performance and capacity in their CPUs, memory, and 
disks [9]. For example, the Amazon EC2 is a well-known 
heterogeneous cloud platform, which provides various 
infrastructure resource types to meet different user 
needs in resource computing and storage [10]. 

The Microsoft Azure is a cloud computing 
environment which offers services on demand. It offers 
on demand computing services such as Windows Azure 
Compute, Storage Blob, Queue, Table service etc. 
Azure Compute is a platform as a service infrastructure 
which allow the users to lease hourly charged virtual 
machine instances in the form of different types of Roles 
such as(e.g.: Worker Role, Web Role, etc…). The Azure 
storage queue is an eventual consistent, reliable, 
scalable and distributed message queue service, which 
is ideal for small and transient messages (short 
period/impermanent). The Azure Storage Blob service 
provides a shared storage service where users can 
store and retrieve any type data by using web services 
interface. Azure Storage Table service provides scalable 
non-relational highly available structured data storage. 
However Azure platform currently do not offer a 
distributed computing framework, other than the simple 
queue based model. 

Goal of our model is to provide and process the 
efficient execution of Map Reduce and iterative Map 
Reduce applications in the Azure cloud environment. 

C 
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Our model is a distributed decentralized Map Reduce 
runtime for Windows Azure cloud environment that 
utilizes Azure infrastructure services. Our model 
overcomes the latencies of cloud services by using 
sufficiently fine grained map and reduces tasks. It 
overcomes the eventual data availability of cloud 
storage services through re-trying and by explicitly 
designing the system to not rely on the immediate 
availability of data across all distributed workers. Our 
systems uses Azure Queues for map and reduce BSP 
task scheduling, Azure Tables for metadata storage and 
for monitoring data storage, Azure Blob storage for data 
storage (input, output and intermediate) and Compute 
worker roles to perform the computations. In order to 
with stand the breakdown/failure of cloud infrastructures 
and to avoid single point of failures, our model was 
designed as a decentralized control architecture which 
does not rely on a client side. It provides users with the 
capability to scale up/down the number of computing 
resources such virtual machines dynamically or during 
runtime. The map and reduce tasks of the proposed 
model runtime are dynamically scheduled using azure 
global queues achieving efficient scheduling natural 
load balancing of tasks. Our system models handles 
BSP task failures and slower tasks through re-execution 
and duplications. Map Reduce infrastructure requires 
the reduce tasks to ensure guarantee of all the 
intermediate data products from Map tasks before 
starting the reduce phase.  

Data Iterative computation generally relies on a 
set of static data that remain fixed across different 
iterations and a set of ephemeral dynamic data between 
iterations. Here we introduces an in memory co-located 
Data Cache to store the reusable static data across the 
iterations, avoiding the fetching and parsing cost of 
such data from Azure Blob storage for every iteration. 
Each worker role will have one managed collocated 
cache with a given memory limit. Since the existing 
model do not have proper mechanism which can utilize 
the knowledge about cached data products to assign 
tasks to workers, scheduling tasks to take advantage of 
caching presents a significant challenge. At the same 
time, it’s important to maintain the efficient scheduling 
and fault tolerance of our model in the new scheduling 
mechanism. In order to address these issues, our model 
utilizes a new efficient scheduling approach using a 
combination of Azure Queues and Tables. The first 
iteration of our model will get scheduled only through 
Azure queues. Our model uses a special table for 
caching, where the tasks are retrieved from second 
iteration onwards. Map Workers first query this table to 
identify any similarity between the data items they have 
in their collocated cache vs the data items needed for 
the retrieval of tasks. With this prototype the static data 
for data iterative Map Reduce computations will get 
reused from the second iteration onwards. Meanwhile 
the newly joined or a worker who has completed 

processing all the tasks for the cached data will be able 
to pick up BSP tasks directly from the queue and will 
use the Azure Tables and the monitoring infrastructure 
to check the tasks processed or not. This also ensures 
that our model retains the fault tolerance features of 
efficient azure cloud structure. 

II. Existing System 

Over the year cloud computing is growing 
enormously in various fields.  Data intensive application 
is one of those fields that have been one of the popular 
topics. In recent research, the valuable knowledge that 
can be retrieved from petabyte scale datasets is known 
as Big Data. Using these analyses the researcher can 
provide better provide better result. This Big

 
Data 

analysis is used in different domain such data mining, 
medical research etc… There exists a substantial body 
of research on resource allocation and scheduling in 
clouds and data centers that does not consider the 
resource utilization efficiency (e.g., [12], [13], and [14]). 
However, here in this literature review, we only discuss 
briefly the studies that are directly related to resource 
utilization in data centers. Kaushik and M. Bhandarkar. 
[11] Proposed a technique to segregate or divide the 
servers in a HDP cluster into hot zone and cold zones 
based on their various performance characteristics, 
where

 
cold zone servers are mostly idling and hot zone 

are always powered on. Resource utilization/allocation 
and scheduling in cloud data centers. Mahadik and 
Hacker [16] proposed scheduling algorithm policy for 
virtual HPC clusters. They introduced a resource 
prediction cloud model for each policy to assess the 
resources required within a cloud, the task queue wait 
time for requests, and the size of the additional 
resources required. Palanisamy et al. [15]proposed a 
Map Reduce cloud model for creating

 
task. Here they 

create cluster configurations for the Task using Map 
Reduce to predict and maximize performance based on 
deadline-perception, allowing the CSP to optimize its 
resource allotment and reduce the cost.

 
Zaharia et al. 

[17] have analyzed the problem of (slower node) 
speculative execution in Map Reduce. Here they 
developed a simple robust scheduling algorithm called 
LATE (Longest Approximate Time to End), which uses 
predicted

 
completion times to execute the job

 
that hurt 

the response time the most. Lai and
 

Sandholm [18] 
have developed a system for resources allocation in 
shared data and compute resource clusters that 
enhance

 
Map Reduce job scheduling. Their technique is 

based on keeping apart
 
Map Reduce clusters in VMs 

with a dynamically modifiable performance. Wang et al. 
[19] proposed a new job scheduling technique for Map 
Reduce

 
that improves the overall throughput in job-

intensive application without considering the resource 
consumption. Ren et al. [20] proposed a task 
scheduling algorithm that boost the completion time of 
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small Map Reduce jobs. Their system is based on task 
priorities to make sure the fast response for small tasks. 
Chang et al. [21] proposed numerous offline and online 
system for the Map Reduce scheduling complication to 
minimize the overall task finishing times. Their system is 
based on resolving a linear program (LP) relaxation. 
Changjian Wang et al. [22], here they have presented an 
optimal scheduling algorithm for data map reduce 
application. Here they have divided algorithm into two 
stages which are as follows firstly to estimate the node 
execution time and then to produce proper or optimal 
task assignment time. Here they only considered map 
status that is idle or busy for scheduling job to mappers. 
This approach leads to few problems like long tail and 
very high scheduling overhead. Qi Chenwe et al. 
[23]here they provide an analysis of the downfall of 
existing or recent speculative execution strategies in 
Map Reduce. Here they present model which affect the 
overall performance of those technique: jobs that start 
asynchronously, improper configuration of phase 
percentage, data skew and abrupt resource 
competiveness. Based on these terms, here they 
developed a new speculative execution model called 
MCP to handle these scenarios. It takes the task cost 
performance of cluster computing resources into 
account, aiming at not only reducing the task execution 
time but also improving the overall cluster throughput. 
Yang Wang et al. [24] here they have analyzed two 
general constraints on budget and deadline for the 
scheduling of a group of Map Reduce tasks as a 
workflow on a set of vm’sin the cloud. Here first, they 
focused on the scheduling-length under budget 
constraints. Then they designed a new algorithm by 
combining greedy algorithm with dynamic programming 
techniques for budget allocation on per-stage basis, 
which was also shown to be balanced. Then, with this 
result, here they designed two new heuristic algorithms, 
GGB and GR, which are based on greedy strategies to 
reduce the time complexity to reduce the scheduling 
lengths of the workflows without affecting the budget. 
Our research reveal that both the algorithms exhibiting a 
unique or significant advantage over the other, are very 
close to the optimal algorithm in terms of the scheduling 
time but obtain much lower time overhead. Amrit Pal et 
al. [25] here they shows the behavior of the hdp cluster 
with increasing number nodes. The criterion for which 
the performance is analyzed is the memory parameters. 
This research will be useful for the developing a 
hdpcluster. The number of interaction increases as the 
size of the cluster size increases. If the data size 
increases and there may be a chance of out of disk then 
the normal copy script should be used for increasing 
virtual disks size. Fan Yuanquan et al.[26] here they 
shows that the existing Map Reduce platform performs 
poorly on heterogeneous clusters due to skew loads 
among the reduce jobs. Here they analyze the downfall 
of current task distribution method in heterogeneous 

systems. Here they identify two key reasons for the skew 
loads: and the heterogeneity of worker nodes and the 
native hash partitioning. Based on these facts they 
proposed a performance based prediction model which 
is based on support vector machine called PM-SVM. 
Here they also proposed a HAP (heterogeneity- aware 
partitioning) algorithm based on PM-SVM. They 
implemented the proposed load balance approaches in 
the HDP. The hadoop load balancer can improve the 
performance of reduce jobs, and can also improve the 
resource utilization of hdpclusters. 

III. Proposed System 

A Map Reduce job divides the input data into 
individual chunks which are processed by the map jobs 
in a completely parallel synchronization manner. The 
output of the maps are fed as the input to the reduce 
tasks. Thus, the whole framework is involved in 
scheduling jobs, monitoring them and re-executes the 
failed jobss. 

A cluster is composed of multiple engines. The 
number of map and reduce tasks is compromised as 
Map Reduce job which is executed on cluster.Every 
worker node applies the map function to the local data, 
and writes the output result to intermediateblob storage. 
Worker nodes distribute or schedulemap data based on 
the output keys (produced by the map function), such 
that all map data belonging to one key is located on the 
same azure worker node. The worker nodes now 
process each and every group of output map data, per 
key, in parallel. 

Map Reduce allows for parallel distributed 
processing of the maps and reduction operation. 
Provided that each and every mapping operation is self-
reliant of the others, all maps can be performed in 
parallel – though in real scenario this is limited by the 
number of self-reliant data sources and/or the number of 
VM’s near each source. Similarly, a set of 'reducers' can 
perform the reduction phase, provided that all data 
outputs of the map data operation that share the same 
key are presented to the same reducer at the same 
time, or we could say that the reduction function is 
associative. While this method can often appear to be 
inefficient compared to model that are more sequential, 
Map Reduce can be applied to significantly larger 
volume of data than normal servers can handle – a large 
server farm can use Map Reduce to sort a petabyte of 
data in only a few hours. The parallelism also provide 
some possibility of recovering from partial failure of blob 
storage or server during the operation: if any one 
mapper or reducer fails, the work can be rescheduled – 
assuming the input data is still available. 

Let us consider a large data application 
consisting of map and reduce tasks. The Map Reduce 
job is executed on a cluster.

 
The Map and Reduce 

functions of Map Reduce are defined with respect to 
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data pattern/structured in (key, value) pairs. Map takes 
one pair of data with a type in one data format, and 
returns a list of pairs in a different format. Then it is 
processed in the reduce phase by the reduce task with 
the key-value pair along with the same key. Thus, the 
reduce phase can only begin only after the map phase 
ends. This large data application must be completed by 
deadline𝕋𝕋. 𝕏𝕏 and 𝕐𝕐 represents the set of tasks of map 
and reduce of the application. The set of slots available 
for executing these map and reduce tasks are indicated 
by 𝑆𝑆1  and 𝑆𝑆2  respectively. The resource utilization is 
symbolized by ℝ𝑠𝑠𝑠𝑠 , where 𝑠𝑠 is the slot ∈ (𝑆𝑆1, 𝑆𝑆2) and 𝑠𝑠 is 
the task ∈ (𝕏𝕏,𝕐𝕐) executed on the respective slot. The 
processing time of the task 𝑠𝑠 when executed on the slot 
𝑠𝑠 is represented as 𝜏𝜏𝑠𝑠𝑠𝑠 . The dependencies of the map 
and reduce tasks are characterized by the variable 
Ψ𝑣𝑣𝑠𝑠 ,∀𝑣𝑣, 𝑠𝑠 ∈ (𝕏𝕏 ∪  𝕐𝕐), where Ψ𝑣𝑣𝑠𝑠  will possess the value 1 
if 𝑠𝑠 is assigned after the task 𝑣𝑣 else 0. 

The main objective is to minimize the resource 
utilization when executing the Map Reduce application 
based on the dependencies of reduce tasks on the map 

tasks. The resource utilization Map Reduce scheduling 
problem is given as: 

 

��ℝ𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏𝑠𝑠∈𝑆𝑆1

+ �� � Ψ𝑣𝑣𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑣𝑣∈(𝕏𝕏 ∪ 𝕐𝕐)𝑠𝑠∈ 𝕐𝕐𝑠𝑠∈𝑆𝑆2

 (1)

                             
The above equation has to be minimized. Each 

map task is assigned to a slot for execution. This is 
given by:  

�𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝑆𝑆1

= 1,∀𝑠𝑠 ∈ 𝕏𝕏 

                                                                            

(2)

 
The each reduce task is assigned to a task 

which is represented by: 

� � Ψ𝑣𝑣𝑠𝑠 ,𝑄𝑄𝑠𝑠𝑠𝑠 = 1 ∀𝑠𝑠 ∈ (𝕐𝕐)
𝑣𝑣∈(𝕏𝕏

 
∪

 
𝕐𝕐)𝑠𝑠∈𝑆𝑆2

 

                 
                                                          

(3) 

The processing time of the application should 
not exceed the deadline. Without exceeding the 
deadline, the scheduler will assign to the reduce tasks 
only after finishing the map tasks. This is established as: 

�𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

 +� � Ψ𝑣𝑣𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠 ′ 𝑃𝑃𝑠𝑠𝑠𝑠 ′
 
𝑣𝑣∈(𝕏𝕏

 
∪

 
𝕐𝕐)𝑠𝑠∈

 
𝕐𝕐

≤ 𝕋𝕋 ,∀𝑠𝑠 ∈ 𝑆𝑆1,∀𝑠𝑠′ ∈ 𝑆𝑆2
 

(4) 

Thus, it is interpreted as: 

𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠∈𝑆𝑆1 �𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

 + 𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠′ ∈𝑆𝑆2
�𝜏𝜏𝑠𝑠𝑠𝑠′ 𝑄𝑄𝑠𝑠𝑠𝑠 ′
𝑠𝑠∈𝕐𝕐

 ≤  𝕋𝕋  

                                                                    
(5)
 

As a result, all reducetasks can be assigned after time: 
 

𝑚𝑚𝑚𝑚𝑚𝑚∀𝑠𝑠∈𝑆𝑆1 �𝜏𝜏𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠∈𝕏𝕏

 

                                                                              

(6)

 
The integrity requirements for the decision variables are 
given by: 
                    𝑃𝑃𝑠𝑠𝑠𝑠 = {0,1},∀𝑠𝑠 ∈ 𝕏𝕏,∀𝑠𝑠 ∈ 𝑆𝑆1                      (7) 

 
                    𝑄𝑄𝑠𝑠𝑠𝑠 = {0,1},∀𝑠𝑠 ∈ 𝕐𝕐,∀𝑠𝑠 ∈ 𝑆𝑆2                     (8) 

The resource utilization solution consists of P and Q ̂ 
where, 

𝑄𝑄�𝑠𝑠𝑠𝑠 = � Ψ𝑣𝑣𝑠𝑠𝑄𝑄𝑠𝑠𝑠𝑠
𝑣𝑣∈(𝕏𝕏 ∪ 𝕐𝕐)

, 𝑠𝑠 ∈  𝕐𝕐 𝑚𝑚𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆2
 

(9)

 
Here we develop the algorithm for resource 

utilization which is very efficient for scheduling Map 
Reduce jobs. The deadline T is specified for the 
completion of the large data application. However, the 
user here will specify only the deadline of the job but not 
the map or reduce phase. Reduce tasks are performed 
only after the completion of map tasks, thus reduce 
tasks are completely dependent on the map tasks. 
Therefore, the data centre should define the deadline for 
map tasks based on the availability of map slots so that 
further tasks are carried out by reduce tasks in order to 

utilize the resource efficiently. Once the map tasks are 
done with its tasks based on the map slots, the 
assignments of the reduce tasks are performed based 
on its reduce slots meeting its deadline. Thus, the 
design of this proposed algorithm characterizes the 
resource utilization. Therefore, the resource utilization 
rate of the slot s is given by:  

                        ∁𝑠𝑠𝕩𝕩
 =
∑ ℝ𝑠𝑠𝑠𝑠

𝜏𝜏𝑠𝑠𝑠𝑠
𝕏𝕏
𝑠𝑠

𝕏𝕏
�  ,∀𝑠𝑠 ∈ 𝑆𝑆1

                      (10) 

 

                            ∁𝑠𝑠
𝕪𝕪 =

∑ ℝ𝑠𝑠𝑠𝑠
𝜏𝜏𝑠𝑠𝑠𝑠

𝕐𝕐
𝑠𝑠

𝕐𝕐
�  ,∀𝑠𝑠 ∈ 𝑆𝑆2                    (11) 

where, it represents the resource utilization rate of map 
slot 𝑠𝑠  and reduce slot 𝑠𝑠  respectively. The lower ∁𝑠𝑠𝕩𝕩 
represents a higher priority for the slot 𝑠𝑠 to which a task 
is assigned. There exists two priority queues 𝕌𝕌𝕩𝕩,𝕌𝕌𝕪𝕪 to 
keepthe order of the map and reduce slots based on 
their energyconsumption rates. Our proposed algorithm 
initializes the deadline for map tasks (𝕋𝕋𝕏𝕏) and reduce 
tasks (𝕋𝕋𝕐𝕐) to infinity. 
The complete algorithm is given below. 
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Start 

For Each 𝑠𝑠 ∈ 𝑆𝑆1 

Yes 
No 

Priority Queues 𝕌𝕌𝕩𝕩 and 𝕌𝕌𝕪𝕪 are created 

Compute  ∁𝑠𝑠𝕩𝕩 =
∑ ℝ𝑠𝑠𝑠𝑠

𝜏𝜏𝑠𝑠𝑠𝑠
𝕏𝕏
𝑠𝑠

𝕏𝕏
�  ,∀𝑠𝑠 ∈ 𝑆𝑆1 

𝕌𝕌𝕩𝕩.𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑠𝑠,∁𝑠𝑠𝕩𝕩) 

For Each 𝑠𝑠 ∈ 𝑆𝑆2 

Yes 
No 

Compute  ∁𝑠𝑠
𝕪𝕪 =

∑ ℝ𝑠𝑠𝑠𝑠
𝜏𝜏𝑠𝑠𝑠𝑠

𝕐𝕐
𝑠𝑠

𝕐𝕐
�  ,∀𝑠𝑠 ∈ 𝑆𝑆2 

𝕌𝕌𝕪𝕪.  𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �𝑠𝑠,∁𝑠𝑠𝕪𝕪 � 

Assign infinity to map tasks (𝕋𝕋𝕏𝕏) and reduce tasks (𝕋𝕋𝕐𝕐) 
deadline 
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While the queues 𝕌𝕌𝕩𝕩 and 
𝕌𝕌𝕪𝕪 are not empty 

Compute  𝑠𝑠𝕩𝕩  = 𝕌𝕌𝕩𝕩.𝐸𝐸𝑚𝑚𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑎𝑎() 

Yes 

No 

Compute  𝑠𝑠𝕪𝕪 =  𝕌𝕌𝕪𝕪. 𝐸𝐸𝑚𝑚𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑎𝑎() 

Compute  𝒪𝒪 = ∑ 𝜏𝜏𝑠𝑠𝑠𝑠𝕏𝕏𝕏𝕏
𝑠𝑠

∑ 𝜏𝜏𝑠𝑠𝑠𝑠 𝕐𝕐𝕐𝕐
𝑠𝑠

�  

If 𝜆𝜆𝕩𝕩 𝑚𝑚𝑎𝑎𝑎𝑎 𝜆𝜆𝕪𝕪 is ≠ 0 

Break  

No 

Yes 

Compute  𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕩𝕩  𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏 

Compute  𝑠𝑠𝕪𝕪 =  𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕪𝕪  𝜏𝜏𝑣𝑣𝑠𝑠𝕪𝕪 

Assign𝜏𝜏𝕏𝕏 and 𝜏𝜏𝕪𝕪 to 0 
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Compute  𝜏𝜏𝕩𝕩 = 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩  

While 
𝜏𝜏𝕩𝕩+𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕪𝕪

𝜏𝜏𝕪𝕪
 ≤  𝒪𝒪 

and 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝕪𝕪 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 ≤ 𝕋𝕋 

and 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 ≤  𝕋𝕋𝕩𝕩and𝜏𝜏𝕪𝕪 +
𝜏𝜏𝑠𝑠𝕪𝕪𝑠𝑠𝕪𝕪 ≤  𝕋𝕋𝕪𝕪 and 𝜆𝜆𝕩𝕩0 

Compute 𝜆𝜆𝕩𝕩 = 𝜆𝜆𝕩𝕩 \(𝑠𝑠𝕩𝕩) 

Yes 

No 

Compute  𝑃𝑃𝑠𝑠𝕩𝕩𝑠𝑠𝕩𝕩 = 1 

Compute  𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣∈𝜆𝜆𝕩𝕩  𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏 

 

Else  

Compute  𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑒𝑒𝑎𝑎𝑣𝑣∈𝜆𝜆𝕩𝕩  𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏 
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Compute  𝜏𝜏𝕩𝕩 = 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩  

While 𝜏𝜏𝕩𝕩 + 𝜏𝜏𝕪𝕪 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩 ≤  𝕋𝕋 and 
𝜏𝜏𝕩𝕩 + 𝜏𝜏𝑠𝑠 𝑠𝑠𝕩𝕩 ≤  𝕋𝕋𝕩𝕩 and 𝜆𝜆𝕩𝕩 ≠ 0 

Compute 𝜆𝜆𝕩𝕩 = 𝜆𝜆𝕩𝕩 \(𝑠𝑠𝕩𝕩) 

Yes 

No 

Compute  𝑃𝑃𝑠𝑠 𝑠𝑠𝕩𝕩 = 1 

Compute  𝑠𝑠𝕩𝕩 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑒𝑒𝑎𝑎𝑣𝑣∈𝜆𝜆𝕩𝕩  𝜏𝜏𝑣𝑣𝑠𝑠𝕏𝕏 

  

  

If  𝕋𝕋𝕩𝕩 = ∞ 

𝕋𝕋𝕩𝕩 = 𝕋𝕋 − 𝜏𝜏𝕪𝕪 𝕋𝕋𝕪𝕪 = 𝕋𝕋 − 𝕋𝕋𝕩𝕩 

Yes 

No 

𝜆𝜆𝕩𝕩 ,𝜆𝜆𝕪𝕪  ≠ 0 
If   

No feasible schedule 

Yes 

No 

Output (𝑃𝑃,𝑄𝑄) 

Stop 
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In every iteration, the algorithm chooses the 
slots with lowest utilization of resource from the priority 
queues. For these slots, the ratio of processing timeof 
map tasks to that of the reduce tasks, denoted by 𝒪𝒪, is 
calculated. This ratio is used in the task 
assignmentprocess in each iteration of the algorithm. 
Then, algorithm sorts the unassigned map and reduce 
tasks based on theirprocessing time on the selected 
slots. It selectsthe longest map task𝑠𝑠𝕩𝕩 and reduce task 
𝑠𝑠𝕪𝕪 from the sortedsets 𝜆𝜆𝕩𝕩  and 𝜆𝜆𝕪𝕪  respectively. Then it 
checksthe feasibility of allocating map task𝑠𝑠𝕩𝕩 to slot𝑠𝑠𝕩𝕩 
andreduce task 𝑠𝑠𝕪𝕪 to slot 𝑠𝑠𝕪𝕪  by checking the total 
processingtime of the tasks against the deadline𝕋𝕋. If 
theassignment of map task 𝑠𝑠𝕩𝕩  and reduce task 𝑠𝑠𝕪𝕪  is 
feasible, the algorithm continues to select tasks 
from𝜆𝜆𝕩𝕩and𝜆𝜆𝕪𝕪, and updates the variables accordingly. To 
keep the assignments of the tasks in alignment withthe 
ratio of processing time 𝒪𝒪 , the algorithm balances 
theassignment. In doing so, if𝒪𝒪 > 1 (i.e., the load of 
processingtime of map tasks is greater than that of 
reduce tasks) andthe ratio of the current assignment is 
less than 𝒪𝒪, then thealgorithm assigns more map tasks 
to balance the allocatedprocessing time close to 𝒪𝒪. If 
the ratio of thecurrent assignment is greater than 𝒪𝒪, the 
algorithm assignsmore reduce tasks to balance the 
allocated processing time. After allocating the map and 
reduce tasks withthe largest processing time, the 
algorithm assigns small mapand reduce tasks while 
satisfying the deadline. At the end of the first iteration, 
the algorithm sets the mapand reduce deadlines based 
on the allocated tasks. The time complexity of our 
algorithm is polynomial in thenumber of map slots, the 
number of reduce slots, the numberof map tasks, and 
the number of reduce tasks, respectively. 

IV. Result 

Cloud provide data iterative map reduce as a 
infrastructure as a service which is modified and 
executed here. The modified data iterative protocol is 
used to compute data in azure cloud, which provides 
the better resources utilization and more importantly 
provides better scheduling and efficiency. The system 
model presented has been developed on Visual Studio 
2010 framework 4.0 with C#. The overall system has 
been developed and implemented with Microsoft Azure 
platform. We have used virtual machine type small with 
collocated caching. The virtual machine configurations 
are as follow it uses windows 2008 r2 server, 2.72 GHz 
with 4 cores with 1.5GB memory. 

The developed system has been analyzed for 
different performance parameters like map resource 
utilization, Resource utilization based on our proposed 
model scheme compared with the existing Hadoop 
model. The relative study for these all factors has been 
performed. This system or model performance has been 
verified for various map size, file size with dynamic 
scheduling as well as performance parameters have 
been checked for its fault tolerant, robustness 
justification. The following are the performance analysis 
of our proposed model over Hadoop. 

a) Map Resource Utilization 
The map resource utilization of Hadoop and our 

proposed model is been plotted in the above graph. We 
have considered a maximum of 8 maps.Here we have 
taken the execution time by varying the map size and 
the analytical result proves that the proposed resource 
utilization time is reduced by35 secfrom 56 
secapproximately over Hadoop. 

 

Figure 1 :  Map resource utilization 

 

 

0

20000

40000

60000

80000

100000

2 4 6 8E x
ec

ut
io

n 
Ti

m
e 

in
 m

ill
i s

ec
on

ds

Map size

Map Reource utilization

Proposed

Hadoop

A New Efficient Cloud Model for Data Intensive Application

© 2015   Global Journals Inc.  (US)1

28

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
 V

er
sio

n 
I

Ye
ar

  
 (

)
20

15
B



b) Resource utilization 

 
Figure 2  :  Map resource utilization 

The resource utilization of Hadoop and our 
proposed model is been plotted in the above graph. We 
have considered a maximum of 200MB file.Here we 
have taken the execution time by varying the file size 
(50, 100, 150, and 200 respectively) and the analytical 
result proves that the proposed resource utilization time 
is reduced by33 secfrom 55 secapproximately over 
Hadoop. 

V. Conclusion 

Our efficient cloud model provides Map Reduce 
data intensive computing runtimes for the Microsoft 
windows azure cloud environment. Our model provides 
a decentralized iterative expansion to Map Reduce 
computing environment, enabling the users to easily 
and efficiently perform task for large scale iterative data 
analysis/computations on Azure cloud environment. Our 
model utilizes a BSP scheduling mechanism based on 
Azure Tables and Queues to provide the caching of 
static data across iterations in data iterative 
computations. Our model cloud infrastructure services 
effectively to deliver robust and efficient applications.  
Here we compared the resource utilization and 
execution time of our proposed model over Hadoop 
2.4.0.2.1.3.0-1981. He we analyzed the performance of 
our model over Hadoop by increasing map size (varying 
2, 4, 6, 8 respectively), file size (varying 50Mb, 100Mb, 
150Mb, 200Mb respectively) and reduce size by (1, 2, 3, 
4) and found that our proposed model is robust and 
efficient. We also found that by increasing the instance 
or the number of cores the performance is getting 
better. We also found how usage collocated caching 
improves the task execution time. 

In future we would like to test this model on 
different domain type such as data mining, medical 

research etc… We would also further like to enhance the 
model by creating a dedicated cache for cache worker 
which will further improve the performance of our 
system. 
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