
  
Global Journal of Computer Science and Technology: E 
Network, Web & Security  
Volume 14 Issue 2 Version 1.0 Year 2014 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Defensive Approaches on SQL Injection and Cross-Site Scripting 
Attacks           

By Venkatramulu Sunkari & Dr. C. V. Guru Rao                                                                                              
Kits Warangal, India 

Abstract- SQL Injection attacks are the most common attacks on the web applications. Statistical 
analysis says that so many web sites which interact with the database are prone to SQL 
Injection/XSS attacks. Different kinds of vulnerability detection system and attack detection systems 
exist, there is no efficient system for detecting these kinds of attacks. SQL Injection attacks are 
possible due to the design drawbacks of the websites which interact with back-end databases. 
Successful attacks may damage more. The state-of-art web application input validation echniques 
fails to identify the proper SQL/XSS Vulnerabilities accurately because of the systems correctness of 
sanity checking capability, proper placement of valuators on the applications. The systems fail while 
processing HTTP Parameter pollution attacks. An extensive survey on the SQL Injection attacks is 
conducted to present various detection and prevension mechanisms.                   

GJCST-E Classification :  H.2.7 

 

DefensiveApproachesonSQLInjectionandCross-SiteScriptingAttacks                                                                       
 
 

 
 

© 2014. Venkatramulu Sunkari & Dr. C. V. Guru Rao. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 

Strictly as per the compliance and regulations of:



Defensive Approaches on SQL Injection and 
Cross-Site Scripting Attacks 

Venkatramulu Sunkari α & Dr. C. V. Guru Rao σ

Abstract - SQL Injection attacks are the most common attacks 
on the web applications. Statistical analysis says that so many 
web sites which interact with the database are prone to SQL 
Injection/XSS attacks. Different kinds of vulnerability detection 
system and attack detection systems exist, there is no efficient 
system for detecting these kinds of attacks. SQL Injection 
attacks are possible due to the design drawbacks of the 
websites which interact with back-end databases. Successful 
attacks may damage more. The state-of-art web application 
input validation echniques fails to identify the proper SQL/XSS 
Vulnerabilities accurately because of the systems correctness 
of sanity checking capability, proper placement of valuators on 
the applications. The systems fail while processing HTTP 
Parameter pollution attacks. An extensive survey on the SQL 
Injection attacks is conducted to present various detection and 
prevension mechanisms. 

I. Introduction 

QL Injection attack is a web application 
vulnerability that occurs because of improper 
validations at the server side. National Vulnerability 

Database (NVD) is an International security organization 
and is organized by the U.S Government. In this, most 
of the security threats and the vulnerability (flaws) will be 
published. Each Vulnerability ( Software Flaws) is 
identified with CVE-ID. When we see the vulnerabilities 
(CVE-IDs) published to till date there are total of 60598. 
Among all these vulnerabilities 5922 are sql injection 
flaws and 8074 are cross site scripting flaws. Exploit-db 
is a security community. The site publishes vulnerability 
details possibly with Proof Of Concept(POC). 
Vulnerability research or response teams and most of 
the hackers or crackers participate for their fame and 
name. This site provides a separate category called web 
apps. In this category we can see the website hacked 
details. Currently this site is publishing 100 to 200 POC 
for every month. Famous and Open Source Intrusion 
Detection System SNORT is providing detection logics 
not more than twenty. By these logics we can detect 
upto 20-40 sql injection attacks. So many commercial 
IDS/IPS Systems  are also  providing  very few logics. By 
this analysis we can conclude that, SQL Injection 
attacks are more and there is no efficient detection 
system for detecting and for protecting web applications 
 

  
  

  
 

from SQL Injection attacks. In the most of the website 
home pages we see as the Fig. 1 text and password 
boxes to enter into the website. For example if we have 
login and password to use the web services, and login 
as admin and password as admin0123. We enter login, 
password and then we click on submit. Our browser 
sends the http GET request and these values( login, 
password) will be submitted to the appropriate program 
file, in the above example validate.jsp as an input 
parameters. In the middle of the transmission we can 
observe this request as  
”GET http://www.example.com/validate.jsp?  
username=admin&password=admin0123 HTTP/1.1 ”. 

Here the validatation process on the server is 
validate.jsp and it accepts the parameters username 
and the password. If the above request is received by 
the www.example.com webserver, then that server 
sends the requested values to the validate.jsp with the 
argument values. Validate.jsp validates the username 
and password with its back-end database ( Say 
ORACLE Server). Before interacting with the database 
validate. Jsp script creates a dynamic SQL Query for 
validating the user inputs. Let us assume that the code 
for the validate,.jsp is designed as Fig. reffunction. If this 
validate.jsp takes admin as username and admin0123 
as password, then the dynamic query will be created at 
the runtime is var sql = ”select * from users where 
username = ’” + username + ”’ and password = ’” + 
password + ”’”. Dynamic query will be sql=select * 
from users where username=admin and 
password=admin0123. If the user or attacker enters the 
values for username, and password as ”Username : or 
1=1 –” and ”Password : xyz” In the scenario, the 
dynamic query will be created below sql=select * from 
users where username= or 1=1– and password=xyz. 
In the sql statement username= will become one 
condition which returns false and the condition 1=1 
which is tautology condition and returns always true. 
These two conditions here are joined with or. so that 
total result will be true for always. And the Statement (–) 
is used as comment statement in the most of the sql 
supported database management systems. If this 
comment statement statement appears in the middle of 
the SQL Query, then the rest of the query will be 
ignored. So that when we execute the above SQL 
Query, The result of execute query(sql) will be non-zero 
and returns all the records of the users table. And then 
attacker may gain the admin access,.( Because of the 

S 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

77

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)

Author  α: Associate Proffesor In Cse Kits, Warangal.
Author  σ: Proffessor and Head of Cse Department, SR Engineering 
College, Warangal. e-mails : venkatramulu10@gmail.com,
guru_cv_rao@hotmail.com



entered user will be treated as the result of the first 
record and most of the SQL users Tables first record 
may be the admin). Because of no validations are done 
at   the   server-side   for   the   user   inputs, an  attacker  
 

execute his own queries, instead of the developer 
expected query. And it is possible to insert another SQL 
Querries by 
 

Figure 1 : Sample Login Screen In the Web Applications

Figure 2 :
 
Sample HTML Code To Send Login Data

 

 
 
 

 
 
 

Defensive Approaches on SQL Injection and Cross-Site Scripting attacks
  

  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

78

  
 

(
DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 :  Sample Validation Function 
combining with UNION Statement. Example: If the 
attacker enters below values username: or 1=1 union 
insert into users values(sreedevi,sreedevi0123,admin) 
password: xyz Like this if any vulnerability found on the 
website parameter, an attacker can inject his own 
queries for insert,update,etc. 

The result of the SQL Injection will be very 
severe. Like this we can find more number of attack or 
hacked details in the security websites.  

II. Sql Injection Attacks 
In the most of the website home pages we see 

the text and password boxes as shown in Fig. 1 to enter 
into the website. In general this page is used to allow the 
authorized persons from the remote to use the web 
application services. For this kind of pages, most of the 
developers develop the code as Fig. 2. For example if 
we have login and password to use the web services, 
and login as admin and password as admin0123. We 
enter login, password and then we click on submit. Our 
browser sends the http GET request and these values( 
login, password) will be submitted to the appropriate 
program file, in the above example validate.jsp as an 
input parameters. In the middle of the transmission we 
can observe this request as GET/validate.jsp?username 
= admin&password = admin0123 HTTP/1.1 Here the 
validatation process on the server is validate.jsp and it 
accepts the parameters username and the password. If 
the above request is received by the www.example.com 
webserver, then that server sends the requested values 
to the validate.jsp with the argument values. Validate.jsp 
validates the username and password with its back-end 
database ( Say ORACLE Server). Before interacting with 
the database validate. Jsp script creates a dynamic SQL 
Query for validating the user inputs. Let us assume that 
the code for the validate,.jsp

 

is designed as Fig. 
reffunction.

 
a)

 

Validate.jsp

 

If this validate.jsp takes

 

admin as username and 
admin0123

 

as password, then the dynamic query will 
be created at the

 

runtime is

 
varsql = ”select _ fromuserswhereusername =0 ” +

 
username+”0andpassword =0 ”+password+”0”;

 
Dynamic

 

query will be sql = select _ 
fromuserswhereusername =

 

adminandpassword = 
admin0123;

 

If the user or attacker

 

enters the values for 
username, and password as below

 
Username : or 1=1 - - 
Password : xyz

 
In the above scenario, the dynamic query will be 

created

 

below

 
sql = select _ fromuserswhereusername = or1 =

 

1 −

 
−andpassword = xyz;

 

in the above sql statement

 
username= will become one condition which returns 
false

 

and the condition 1=1 which is tautology 
condition and

 

returns always true. These two conditions 
here are joined

 

with or. so that total result will be true for 
always. And the

 

Statement ( – ) is used as comment 
statement in the most

 

of the sql supported database 
management systems. If this

 

comment statement 
statement appears in the middle of the

 

SQL Query, then 
the rest of the query will be ignored. So that when we 
execute the above SQL Query, The result of

 

execute 
query(sql)will be non-zero and returns all the records

 

of 
the users table. And then attacker may gain the admin

 
access,.( Because of the entered user will be treated as 
the

 

result of the first record and most of the SQL users 
Tables

 

first record may be the admin). Because of no 
validations

 

are done at the server-side for the user 
inputs, an attacker

 

execute his own queries, instead of 
the developer expected

 

query. And it is possible to 
insert another SQL Querries by

 

combining with UNION 
Statement. Example: If the attacker enters below values

 
username: ’ or 1=1 union insert into users 
values(venkat,venkat0123,admin) - - 
password: xyz

 
Like this if any vulnerability found on the website 

parameter, an attacker can inject his own queries for 
insert,update,etc,.

 
The result of the SQL Injection will be very 

severe. Like this we can find more number of attack or 
hacked details in the security websites.

 III.

 

Sql Injection Defence Schemes

 a)
 

PaulE et al Scheme
 In [1] the authors developed a white-box tool to 

verify software security. In general software requirement 
specifications, source code, designs and executable 
code to be analysed by tools. In this work, the authors 
developed a security scanner tool. It can

 
analyse the 

functional bevaior. Due to the widespread use of the 

Defensive Approaches on SQL Injection and Cross-Site Scripting attacks

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

79

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)

World Wide Web and proliferation of web application 



World Wide Web and proliferation of web application 
vulnerabilities, application level web security and 
assurance requires major attention. This specification 
defines a minimum capability to help software 
professionals understand how a tool will meet their 
software assurance needs. The tool can be used as 
software assurance tool and it can scan the software for 
security vulnerability for some extent. 

b) Muthuprasanna et.at Method 
In [2] the authors developed a model of hybrid 

approach, which combines static code verification and 
runtime analysis. Webservice protection became 
necessary because of the use of webapplications is 
increasing in the internet. Deployments of 
Webapplication firewalls, next generation firewalls, 
application detection systems and intrusion detection 
and prevention systems are increasing to protect web 
servers. 

c) Hossain et.at Method 
In [3] the authors developed a mutation based 

testing tool to verify the web application resistance 
against SQL Injection vulnerabilities. The authors stated 
that the current scenario of testing web application 
cannot eliminate web application vulnerabilities. The 
proposed that injecting attack pattern into the source 
code of the web application, by that mutations based 
test cases can be generated. The generated test cases 
can potentially find the SQL Injection vulnerabilities. The 
authors named the tool as MUSIC. The tool is evaluated 
on open source web applications written in JSP. The 
tool is further impleted for PHP and other known 
languages. 

d) Russell et.at Method 
In [4] the authors developed a low-level 

approach to find the runtime applicability of sql 
statement which are prepared at runtime. The authors 
achieved this using call level interface (CLI) by 
interacting ODBC or JDBC. Using this approach, the 
authors evaluated the runtime SQL statement with SQL 
DOM approach. CLI can be used for to verify the 
correctness, but SQL DOM is can be used to identify the 
SQL statement applicability such as user permissions. 
SQL DOM can be prepared automatically by interacting 
with the database schema. The authors evaoluated the 
system for performance. The approach is a offline 
approach. The posed SQL statements should be given 
as an input the tool. So, it cannot be directly applied for 
dynamic query evoluation. The authors are extending 
the work with XPATH query language for dynamic 
queries verification. 

e) Tania et.at Method 
Software systems are complex for verification 

and validation. Software faults causes security 
vulnerabilities and causes for security breaches. Several 
methods such as SQL attack tree models and fault 

injection models are best comparable to this work [5]. 
The tool injects the critical attack patterns onto the 
system and verifies the result for vulnerability existence. 
The validation methods provided with this tool avoids 
false positives. The tool reports accurate report, each 
vulnerability reported by the tool will be based on the 
behavior of the application at the time of attack injection. 
As a future work, the authors targeted to generate 
injection methods based on attack tree models. 

f) Huajun et.al Method 
Phishing attack is an identity theft attack, mostly 

on banking, online-transactions etc,. The attackers uses 
socail sites to steal the user’s sensitive information such 
as credit-card details, account details etc,. Phishing also 
includes social engineering schemes. Social 
engineering schemes can be using emails, phone calls 
claiming that the callers are from valid authorities. 
Phishing attacks are typically cross-site scripting 
attacks. The authors [6] proposed few strategies to 
avoid phishing attacks. 

Anti-phishing are classified into three categories 
by the authors. Server-side anti-phishing strategies, 
browser-side antiphishing strategies, and online training 
anti-phishing strategies. 
1. Server-side anti-phishing strategies: This approach 

will be applied the server side. It works similar to 
anti-spam systems. It verifies the content delivered 
to the server. If anything which is very closely related 
to phishing, the detection system prevents it at the 
server and not to reached to the victim. 

2. Browser-side anti-phishing strategies: This 
approach is brower based approach with plug-in. 
The plug-in monitors the application behavior at the 
user-side. If it behaves as cheating or phishing it 
avoids the attack. The browser based approaches 
can be categorised as Blacklist approach, visual-
clue-based approaches or capta based approach, 
webpage-feature-based approaches and 
information flow approaches. 

3. Online training anti-phishing strategies: The last 
strategy suggests that the internet users should 
have proper training on phishing attacks, how to 
avoid them. This approaches clears the anti-
phishing philosophies. The strategy is to create 
awareness on phishing attacks. The authors 
suggest to have a technology called webpage 
watermarking to fight against phishing attacks. 

g) Anderson Morais et al Method 
Attack Injection model [7] for security protocol 

testing suggests to have attack injection to find the web 
application vulnerabilities. The approaches includes 
attack tree model to generate testcases. The attack tree 
model prepares all possible cases. fault injector injects 
attack patterns onto the server system. The fault injects 
prepares executes scripts that are collected from the 
internet. The approach can be used as blackbox model. 

Defensive Approaches on SQL Injection and Cross-Site Scripting attacks
  

  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

80

  
 

(
DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)



The authors created a framework which executes the 
given scripts. The authors are focusing on UML based 
representation to generate attack scenarios in future. 

h) Sushila Madan et al Method 
Web applications are most vulnerable to 

popular attacks and risks. SQL Injections and cross-site 
scripting attacks are more popular attacks on web 
applications. Threat modeling provides a complete 
assessment on the web application. With techniques 
such as attack possible entry point, attack trees, privilise 
escalation chances the tester or security assessment 
team can indentify the threats on the system. In [8] the 
authors aimed to create attack risk model called 
ADMIRE. The system is consise, structured. The 
approach is step wise approach. The steps includes : 
(i)Analyze the security objectives (ii) Divide the 
application (iii) Mark the vulnerabilities (iv) Identify the 
threats (v) Rank the threat (vi) Eliminate the threat. The 
model is white-box model. It verifies the application 
code. 
It is specific to a programming language. 

i) Parvaiz et al Method 
In [9], the authors suggests that the attack tree 

model is not possible in all cases and is difficult to build 
the security model. Applications operates in different 
modes, capturing every aspect becomes difficult to 
design the security model with attack tree models. 
Hence the authors proposed a new approach which 
provides syntax and graphical security models. The new 
model includes nodes such as PAND node, k/n node, 
SEQ node, CSUB node, and Housing node. The system 
provides syntax and graphical represntation for every 
node. The model allows the developer to understand the 
system affectively. The system is fault resistant and 
avoid vulnerabilities during development phase. In most 
of the cases the tree includes AND/OR models to 
represent the system structure. As a future plan, the 
authors are working on to define calculation rules for the 
new nodes to distingush the node values for different 
security attributes up to the root node of the tree. 

j) Nenad et al Method 
[10] Along with web applications even 

vulnerabilities have grown. Since reviews of manual 
code are costly, timeconsuming and even error-prone, 
the need for solutions has become evident. This 
addresses the problem of web applications which is 
vulnerable by means of static source code analysis. 
Many analysis like flow-sensitive, interprocedural, 
context-sensitive data flow and even literal analysis are 
used to discover vulnerable points in a program and 
also to improve the correctness and precision of the 
results. Pixy, the open source prototype implementation 
of our concepts, is targeted at detecting cross-site 
scripting vulnerabilities in PHP scripts. 

The system is capable to cover huge number of 
vulnerabilities. The system can scan the application 
code dynamically. 

k) Kaarina Karppinen et al Method 
These days the big problem is Hidden 

functionality whereas we cannot be sure that the 
software does not contain malicious code. Due to 
architecture violations many security vulnerabilities 
arises and architecture analysis tools will assist in 
detecting these vulnerabilities.Such visual images can 
be used to detect vulnerabilities and ultimately help to 
design software architectures that meet their security 
requirements.SAVE [11] is one approach used to detect 
the violation and what effects the violation had on the 
system. This kind of analysis with SAVE is new and 
proving to be advantageous as it adds more details to 
the evaluation. The SAVE downside is that it is more 
complex compared to static analysis. The future plans 
will include developing the SAVE tool further by adding 
more features, such as automatic comparison of 
dynamic views and encoding of correct visual images 
that visual images that together could be used to 
identify malicious behaviour. 

IV. Cross-Site Scripting Attacks 

This attack can be done on the vulnerable web 
application to inject the attacker code. Using this attack, 
an attacker can inject his own code such as javascript 
into the web application. Some of the results of the 
Cross Site Scripting attacks are website hacking or web 
site defacement,. Whenever user requests the hacked 
website, then the attacker page will be returned. For 
example NOKIA website is hacked using cross site 
scripting, In the Hacked time if any user access the 
NOKIA website, users will get the hackers page,. By this 
attack an attacker can gain the sensitive information of 
the website,. And he can disrupt the webservices. 

Example 1 
In most of the websites, we can see the login 

and password information. If there are no validations for 
the user inputs, then the attacker can inject his HTML or 
SCRIPT code as inputs to the vulnerable pages. By this 
attacker executes his own script on the server side or 
the client side. 

Example 2 
If the web page is like FIGURE 1.0, and the user 

has username and the password like 
username:venkat 
Password :venkat0123 

And The Result of the submission of the user 
inputs is like Here Web Server is returning a dynamic 
web page with the user inputs. Attacker can send an 
attack below 
Username : venkat < script > alert(SiteisHacked);< 
/script > 

Defensive Approaches on SQL Injection and Cross-Site Scripting attacks

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

  
  
 

  

81

  
 

(
DDDD DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)

a)

b)



Password : venkat0123 
The above script tag is executed in the web 

server and the result will be submitted to the 
validate.jsp. if the above script is written for attackers 
purpose then that will be very dangerous. 

V. Conclusion 

The state-of-art web application input validation 
techniques fails to identify the proper SQL/XSS 
Vulnerabilities accurately because of the systems 
correctness of sanity checking capability, proper 
placement of valuators on the applications. The systems 
fail while processing HTTP Parameter pollution attacks. 
Hence the paper proposes a novel technique called 
Input PArameter Analysis System (IPAAS). The 
proposed system works in three phases as Input 
Parameter Extraction, Parameter Type Learning, and 
Runtime detection with the learned Parameter Types. 
Because the system operates on self learning approach, 
and applies on the HTTP traffic, it reduces the 
developers or security analysts efforts and increases the 
chances of attack detection accuracy. 

References  Références Referencias 

1. P. E. et al. (2008, Feb) Software assurance tools: 
Web application security scanner. Functional 
Specification Version 1.0. 

2. M. Muthuprasanna, K. Wei, and S. Kothari, 
“Eliminating SQL Injection Attacks - A Transparent 
Defense Mechanism,” in International Workshop on 
Web Site Evolution, 2006, pp. 22–32. 

3. H. Shahriar and M. Zulkernine, “MUSIC: Mutation-
based SQL Injection Vulnerability Checking,” in 
International Conference on Quality Software, 2008, 
pp. 77–86. 

4. R. A. McClure and I. H. Krger, “SQL DOM: compile 
time checking of dynamic SQL statements,” in 
International Conference on Software Engineering, 
2005, pp. 88–96. 

5. T. Basso, P. C. S. Fernandes, M. Jino, and R. 
Moraes, “Analysis of the effect of Java software 
faults on security vulnerabilities and their detection 
by commercial web vulnerability scanner tool,” in 
International Conference on Dependable Systems 
and Networks Workshops, 2010. 

6. H. Huang, J. Tan, and L. Liu, “Countermeasure 
Techniques for Deceptive Phishing Attack,” in 
International Conference on New Trends in 
Information and Service Science, 2009. 

7. A. N. P. Morais, E. Martins, A. R. Cavalli, and W. 
Jimenez, “Security Protocol Testing Using Attack 
Trees,” in IEEE International Conference on 
Computational Science and Engineering, 2009, pp. 
690–697. 

8. S. Madan and S. Madan, “Shielding against SQL 
Injection Attacks Using ADMIRE Model,” in 

International Conference on Computational 
Intelligence, Communication Systems and 
Networks, 2009. 

9. P. A. Khand, “System level security modeling using 
attack trees,” in International Conference on 
Computer, Control and Communication, 2009. 

10. N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A 
Static Analysis Tool for Detecting Web Application 
Vulnerabilities (Short Paper),” in IEEE Symposium 
on Security and Privacy, 2006, pp. 258–263. 

11. K. Karppinen, M. Lindvall, and L. Yonkwa, 
“Detecting Security Vulnerabilities with Software 
Architecture Analysis Tools,” in International 
Conference on Software Testing, Verification, and 
Validation, 2008. 

Defensive Approaches on SQL Injection and Cross-Site Scripting attacks
  

  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
II 

 V
er
sio

n 
I 

82

  
 

(
DDDD

)
Y
e
a
r

20
14

E

© 2014   Global Journals Inc.  (US)


	Defensive Approaches on SQL Injection and Cross-Site Scripting Attacks
	Authors
	I. Introduction
	II. Sql Injection Attacks
	a) Validate.jsp

	III. Sql Injection Defence Schemes
	a) PaulE et al Scheme
	b) Muthuprasanna et.at Method
	c) Hossain et.at Method
	d) Russell et.at Method
	e) Tania et.at Method
	f) Huajun et.al Method
	g) Anderson Morais et al Method
	h) Sushila Madan et al Method
	i) Parvaiz et al Method
	j) Nenad et al Method
	k) Kaarina Karppinen et al Method

	IV. Cross-Site Scripting Attacks
	a) Example 1
	b) Example 2

	V. Conclusion
	References Références Referencias

