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A Performance Comparison Between 
Enlightenment and Emulation in Microsoft 

Hyper-V 
Hasan Fayyad-Kazan α, Luc Perneel σ & Martin Timmerman ρ 

Abstract-  Microsoft (MS) Hyper-V is a native hypervisor that 
enables platform virtualization on x86-64 systems. It is a micro-
kernelized hypervisor where a host operating system provides 
the drivers for the hardware. This approach leverages MS 
Hyper-V to support enlightenments (the Microsoft name for 
Paravirtualization) in addition to the hardware emulation 
virtualization technique. 

This paper provides a quantitative performance 
comparison, using different tests and scenarios, between 
enlightened and emulated Virtual Machines (VMs) hosted by 
MS Hyper-V server 2012. The experimental results show that 
MS enlightenments improve performance by a factor of more 
than two. 
Keywords: virtualization, hyper-v, enlightenments, 
emulation. 

I. Introduction 

irtualization has become a popular way to make 
more efficient use of server resources within both 
private data centers and public cloud platforms. It 

refers to the creation of a Virtual Machine (VM) which 
acts as a real computer with an operating system (OS) 
[1]. It also allows sharing the underlying physical 
machine resources with different VMs. 

The software layer providing the virtualization is 
called a Virtual Machine Monitor (VMM) or hypervisor 
[1]. It can be either Type 1 (or native, bare metal) 
running directly on the host's hardware to control the 
hardware and to manage guest operating systems, or 
Type 2 (or hosted) running within a conventional 
operating-system environment. 

Since it has direct access to the hardware 
resources rather than going through an operating 
system, a native hypervisor is more efficient than a 
hosted architecture and delivers greater scalability, 
robustness and performance [2].  

Microsoft Hyper-V implements Type 1 hyperv- 
isor virtualization [3]. In this approach, a hypervisor runs 
directly  on  the  hardware  of  the  host  system  and   is 
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responsible for sharing the physical hardware resources 
with multiple virtual machines [4]. In basic terms, the 
primary purpose of the hypervisor is to manage the 
physical CPU(s) and memory allocation between the 
various virtual machines running on the host system.  

There are several ways to implement virtuali- 
zation. Two leading approaches are Full virtualization 
(FV)/Hardware emulation and Para-virtualization (PV) [5]. 
Enlightenment is the Microsoft name for Para-
virtualization.  

This paper provides a quantitative performance 
comparison between hardware emulation and 
Enlightenments (Para-Virtualization) techniques hosted 
by MS Hyper-V server 2012. 

It is organized as follows: Section 2 describes 
MS Hyper-V architecture and Enlightenment approach; 
Section 3 shows the experimental setup used for our 
evaluation; Section 4 explains the test metrics, scenarios 
and results obtained; and section 5 gives a final 
conclusion. 

II. Microsoft Hyper-v 

Microsoft Hyper-V is a hypervisor-based 
virtualization technology for x64 versions of Windows 
Server [6]. It exists in two variants: as a stand-alone 
product called Hyper-V Server and as an installable 
role/component in Windows Server [7].  

There is no difference between MS Hyper-V in 
each of these two variants. The hypervisor is the same 
regardless of the installed edition [7].  

MS Hyper-V requires a processor with 
hardwareassisted virtualization functionality, enabling a 
much more compact virtualization codebase and 
associated performance improvements [3].  

The Hyper-V architecture is based on 
microkernelized hypervisors (figure 1). This is an 
approach where a host operating system, referred to as 
the parent partition, provides management features and 
the drivers for the hardware [8]. 
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Figure 1

 

:

  

Hyper-V Architecture [6]

 

With this approach, the only layer between a 
guest operating system and the hardware is a 
streamlined hypervisor with simple partitioning 
functionality. The hypervisor has no third-party device 
drivers [9]. The drivers required for hardware sharing 
reside in the host operating system, which provides 
access to the rich set of drivers already built for 
Windows [9].  

MS Hyper-V implements isolation of virtual 
machines in terms of a partition (operating system and 
applications). A hypervisor instance has to have at least 
one parent partition, running a supported version of 
Windows Server [6].The virtualization stack runs in the 
parent partition and has direct access to the hardware 
devices. The parent partition then creates the child 
partitions which host the guest OSs [6].  

Child partitions do not have direct access to 
hardware resources. Hyper-V can host two categories of 
operating systems in the child partitions: Enlightened 
(Hyper-V Aware) and un-enlightened (Hyper-V Unaware) 
operating systems [10]. Enlightened partition has a 
virtual view of the resources, in terms of virtual devices. 
Any request to the virtual devices is redirected via the 
VMBus (figure 1) – a logical channel which enables 
inter-partition communication - to the devices in the 
parent partition managing the requests. Parent partitions 
run a Virtualization Service Provider (VSP), which 
connects to the VMBus and handles device access 
requests from child partitions [6]. Enlightened child 
partition virtual devices internally run a Virtualization 
Service Client (VSC) (figure1), which redirect the request 
to VSPs in the parent partition via the VMBus [6]. The 

VSCs are the drivers of the virtual machine, which 
together with other integration components are referred 
to as Enlightenments that provide advanced features 
and performance for a virtual machine. In contrast, the 
unenlightened child partition does not have the 
integration components and the VSCs; everything is 
emulated. 

III. Experimental Setup 

Microsoft Hyper-V Server 2012 is tested here. It 
is a dedicated stand-alone product that contains the 
hypervisor, Windows Server driver model, virtualization 
capabilities, and supporting components such as 
failover clustering, but does not contain the robust set of 
features and roles found in the Windows Server 
operating system [11].  

As MS Hyper-V supports enlightened and 
emulated VMs, both VMs are created, running Linux 
PREEMPTRT v3.8.4-rt2 [12]. Being open source and 
configurable for usage in enlightened VM are the main 
reasons for selecting it as the guest OS. This also 
permits us to compare with another ongoing study of 
XEN.  

Both Linux versions (for enlightened and 
emulated VM) are built using the buildroot [13] tool to 
make sure that the enlightenment drivers are added to 
the enlightened VM.  
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The tests are done in each VM separately. 
Under Test VM (UTVM) is the name used for the tested 
VM, which can be either enlightened or emulated. Each 
VM has one virtual CPU (vCPU).  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

machine (Bare-Machine) as a reference, using the same 
OS of the UTVM. 

i. Clock tick processing duration 
The kernel clock tick processing duration is 

examined here. The results of this test are extremely 
important as the clock interrupt - being on a high level 
interrupt on the used hardware platform - will bias all 
other performed measurements. Using a tickless kernel 
will not prevent this from happening as it will only lower 
the number of occurrences. The kernel is not using the 
tickless timer option.  

Here is a description of how this test is 
performed: a real-time thread with the highest priority is 
created. This thread does a finite loop of the following 
tasks: starting the measurement by reading the time 
using RDTSC instruction, executing a “busy loop” that 
does some calculations and stopping the measurement 
by reading the time again using the same instruction. 
Having the time before and after the “busy loop” 
provides the time needed to finish its job. In case we run 
this test on the bare-machine, this “busy loop” will be 
delayed only by interrupt handlers. As we remove all 
other interrupt sources, only the clock tick timer interrupt 
can delay the “busy loop”. When the “busy loop” is 
interrupted, its execution time increases.  

Running the same test in a VM also shows 
when it is scheduled away by the VMM, which in turn 
impacts latency.  

Figure 2 presents the results of this test on the 
baremachine, followed by an explanation. The X-axis 

indicates the time when a measurement sample is taken 
with reference to the start of the test. The Yaxis indicates 
the duration of the measured event; in this case the total 
duration of the “busy loop”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2

 

:

 

Clock tick processing duration of the 
baremachine-zoomed

 

The lower values (68 s) of figure 2 present the 
“busy

 

loop” execution durations if no clock tick 
happens. In

 

case of clock tick interruption, its execution 
is

 

delayed until the clock interrupt is handled, which is

 

76 s (top values). The difference between the two

 

values is the delay spent handling the tick (executing

 

the 
handler), which is 8 s.

Note that the kernel clock is configured to run at

 

1000 Hz, which corresponds to a tick each 1 ms. This

 

is 
obvious in figure 2, which is a zoomed version of

 

figure 
3 below.

 

 

 

 

 

 

 

 

 

Figure 3

 

:

 

Clock tick processing duration of the 
baremachine

 

Figure 3 represents the test results of 128000

 

captured samples, in a time frame of 9 seconds.

 

Due to 
scaling reasons, the samples form a line.

 

As shown in 
figure 3, the “busy loop” execution

 

time is 78 s at some 
periods. Therefore, a clock

 

tick delays any task by 8 to 
10 s.

This test is very useful as it detects all the

 

delays that may occur in a system during

 

runtime. 
Therefore, we execute this test for

 

long duration (more 
than one hour) to capture

 

50 million samples. The 
results in the tables of

 

section D are comparing the 
maximum results

 

obtained from the 50 million samples.
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The hardware platform used for conducting the 
tests has the following characteristics: Intel® Desktop 
Board DH77KC, Intel® Xeon® Processor E3-1220v2 
with 4 cores each running at a frequency of 3.1 GHz, 
and no hyper-threading support. The cache memory 
size is as follows: each core has 32 KB of L1 data 
cache, 32KB of L1 instruction cache and 256 KB of L2 
cache. L3 cache is 8MB accessible to all cores. The 
system memory is 8 GB. 

IV. Testing Procedures and Results

a) Measuring Process
The Time Stamp Counter (TSC) is used for 

obtaining (tracing) the measurement values. It is a 64-bit
register present on all x86 processors since the
Pentium. The instruction RDTSC is used to return the
TSC value. This counting register provides an excellent 
high-resolution, low-overhead way of getting CPU timing 
information and runs at a constant rate.

b) Testing Metrics
Below is an explanation of the evaluation tests. 

Note that the tests are initially done on a non-virtualized

One physical CPU is allocated for each VM, 
using the “virtual machine reserve” and “virtual machine 
limit” attributes in the VM settings using Hyper-V 
Manager.  

A



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

Figure 4

 

:

  

Thread switch latency between 2 threads on

 

the Bare-machine

 

Figure 4 shows that the minimum switch latency

 

between 2 threads is around 0.43 s; the maximum

 

latency is 11.45 s which is dependent on the clock

 

tick 
processing duration.

 

Table 1 below shows the results of performing 
this

 

test on the bare-machine using 2 and 1000 threads.

 

Table

 

1

 

:

 

Comparing the “Thread switch latency”

 

results 
for the bare-machine

 

 
 
 
 
 
 

Both tests, “Clock tick processing duration” and

 

“Threads switch latency” are done on the

 

enlightened 
and emulated VMs, using the several

 

scenarios 
described in section D.

 

c) Processor Affinity in MS Hyper-V

 

Most virtualization solutions like Xen and 
VMware

 

support the affinity concept where a vCPU of a 
VM

 

can be tied to a given physical processor.

 

Benjamin

 

Armstrong, Hyper-V Program Manager, explains in the

 

blog “Processor Affinity and why you do not need it

 

on 
Hyper-V” [14] that there is no need for this

 

concept in 
Hyper-V. Instead, one can reserve a

 

physical CPU 
(pCPU) for the VM to guarantee that it

 

always has a 
whole processor.

  

Moreover, if a VM has one vCPU and the host 
has

 

more than one core, this VM can be mapped to any 
of

 

the available cores in a round-robin way between all

 

the cores [15]. The parent partition is the only VM

 

parked on core 0.

 

d) Testing scenarios

 

Below is a description of the scenarios used for 
the

 

evaluation. In all the scenarios drawings, the parent

 

partition (VM) is not shown because it is idle.

 

 

 

  

 
 

 

 

 

 

 

 

 

 

Figure

 

5

 

:

 

One-to-All scenario

 

 

 

 

 

 

 

 

Figure 6

 

:

  

Clock tick duration test for Enlightened VM in

 

scenario 1

 

 

 

 

 

 

 

 

 

Figure 7

 

: Zoomed version of the red sport in figure 6
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i. Scenario 1: One-to-All
As shown in figure 5, this scenario has only one 

VM, the UTVM with one vCPU. This vCPU can run on 
any core (physical CPU) during runtime. The aim of this
scenario is to detect the pure hypervisor overhead (as
there is no contention).

  
ii. Thread switch latency between threads of same 

priority
This test measures the time needed to switch

between threads having the same priority. Although real-
time threads should be on different priority levels to be 
capable of applying rate monotonic scheduling theory 
[16], this test is executed with threads on the same 
priority level in order to easily measure thread switch 
latency without interference of something else.

  

For this test, threads must voluntarily yield the
processor for other threads, so the SCHED_FIFO
scheduling policy is used. If we didn’t use the FIFO
policy, a round-robin clock event could occur between 
the yield and the trace, and then the thread activation 
would not be seen in the test trace. The test looks for 
worst-case behavior and therefore it is done with an 
increasing number of threads, starting with 2 and going 
up to 1000. As we increase the number of active 
threads, the caching effect becomes visible as the 
thread context will no longer be able to reside in the 
cache.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

    

 

 
 
 
 
 
 
 
 

Table

 

3

 

:

  

Comparison between the “Thread switch

 

latency” test results

 

 
 
 
 
 
 
 
 
 
 

Note that the “maximum switch latency” in all 
the

 

scenarios depends on the processing durations of

 

clock tick and other interrupts that may occur in the

 

system during the testing time.

 

 

 

ii. Scenario2: One-to-One 

As mentioned before, Hyper-V does not support
 

affinity. It sends the workload of a VM to the first
 
physical 

CPU that is available.
 

In this scenario, there is only one physical CPU
 

available, while the
 
other three are disabled from the

 

BIOS. There is only the UTVM, together with the
 
parent 

partition which is always parked on CPU-0 but
 
idle. 

Therefore, UTVM is also pinned to CPU-0.The
 
aim of this 

scenario is to clarify if the affinity
 
technique removes the 

periodic high measurements.
 

 

 

 

 

 

 

 

 

 

Figure 8

 

:

  

One-to-One scenario

 

Figure 9 shows that the periodic high values are 
still

 

detected.

 

 

 

 

 

 

 

 

 

 

 

Figure 9

 

:

  

Clock tick duration test for Enlightened VM in

 

scenario 2

 

Tables 4 and 5 compares the results of the two 
tests:

 

“Clock Tick processing duration” and “Thread 
switch

 

latency”.

 

Table

 

4

 

:

  

Comparison between the “clock-tick

 

processing duration” test results

 

 
 
 
 
 

Table

 

5

 

:

 

Comparison between the “Thread switch

 

latency” test results

 

 
 
 
 
 
 
 
 
 
 

iii. Scenario3: Contention with 1 CPU-Load VM

 

This scenario has 2 VMs, UTVM and CPU-Load 
VM,

 

both running on the same physical CPU as shown 
in

 

figure 10. The CPU-Load VM is running a CPU-stress

 

program which is an infinite loop of mathematical

 

calculations. The aim of this scenario is to explore

 

the 
scheduling mechanism of the hypervisor between

 

competing VMs.
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Each of the two VMs has its “virtual machine 

reserve” and “virtual machine limit” attributes set to 50%.

Figure 10 : Contention with 1 CPU-Load VM scenario

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

  

Figure 6 shows that every second, the 
hypervisor is doing some tasks/scheduling decisions 
which causes the VM to be suspended/scheduled-away 
resulting in such high values periodically.

  

Note that our policy is black-box testing which 
makes it difficult to understand the internal behavior of 
an out-of-the-box product.

The emulated VM behaves exactly the same 
except with higher values. Table 2 is a comparison 
between the “clock tick processing duration” test results 
for both VMs, while table 3 is a comparison for the
“thread switch latency” test results.

Table 2 : Comparison between the “clock-tick
processing duration” test results

A



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

   

 
  

     

 

 
 
 
 
 
 

     

 

 
 
 
 
 

iv. Scenario4: Contention with 1 Memory-Load

 

VM

 

This scenario is exactly the same as scenario 3 
except

 

using Memory-Load VM instead of CPU-Load 
VM. This

 

VM is running an infinite loop of memcpy() 
function

 

that copies 9 MB (a value that is larger than the

 

whole caches) from one object to another. The other

 

goal of this scenario using such a VM is to detect the

 

cache effects on the performance of the UTVM.

 

 

 

 

 

 

 

 

 

Figure 11

 

:

  

Contention with 1 Memory-Load VM 
scenario

 

Tables 8 and 9 compare the results of the two 
tests:

 

“Clock Tick processing duration” and “Thread 
switch

 

latency”.

 

Table

 

8

 

: Comparison between the “clock-tick

 

processing duration” test results

 

 
 
 
 
 
 
 

Table 8 shows that measurements of this 
scenario are

 

greater than the

 

ones of the previous 
scenario

 

(scenario 3) by almost 3 ms.

 

Table

 

9

 

:

 

Comparison between the “Thread switch

 

latency” test results

 

 
 
 
 
 
 
 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 12

 

:

  

All-to-All with 3 CPU-Load VMs scenario

Again, the periodic peaks are captured as 
shown in

 

figure 13 below.
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Figure 13 : Clock tick duration test for Enlightened VM 
in scenario 5

Tables 10 and 11 compare the results of the 
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

Table 10 : Comparison between the “clock-tick
processing duration” test results

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

Tables 6 and 7 compares the results of the two 
tests: “Clock Tick processing duration” and “Thread 
switch latency”.

Table 6 : Comparison between the “clock-tick
processing duration” test results

Table 7 : Comparison between the “Thread switch
latency” test results

A

Table 11 : Comparison between the “Thread switch
latency” test results



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

  

  

   

 

     

 

 
 
 
 
 
 
 

     

 

 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

Table

 

12

 

: 

 

Comparison between the “clock-tick

 

processing duration” test results

 

 
 
 
 
 
 
 
 
 

Table

 

13

 

:

  

Comparison between the “Thread switch

 

latency” test results

 

 
 
 
 
 
 
 
 
 

The resulting values of this scenario are around 
three

 

times greater than the ones of the previous 
scenario

 

(scenario 5) even though the same number of 
VMs is

 

running. This difference in the results is due to 
the

 

concept explained in the following section (System

 

bus bottleneck in SMP systems).

 

System bus bottleneck in SMP systems.

 

 
 
 
 
 
 
 
 
 
 

The hardware

 

platform used for

 

this evaluation 
is a

 

Symmetric

 

Multiprocessing

 

(SMP) system with

 

four 
identical

 

processors

 

connected to a

 

single shared main 
memory using a system bus. They

 

have full access to all 
I/O devices and are treatedequally.

 

The system memory bus or system bus can be 
used by

 

only one core at a time. If two processors are

 

executing tasks that need to use the system bus at

 

the 
same time, then one of them will use the bus

 

while the 
other will be blocked for some time.

 

As the processor 
used has 4 cores, when all of these

 

are running at the 
same time, system bus contention

 

occurs.
Scenario 5 is not causing high overheads 

because the

 

CPU stress program is quite small and fits 
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in the core cache together with its data. Therefore, the 
three CPU-Loading VMs are not intensively loading the
system bus which in turn will not highly affect the UTVM.

Referring back to scenario 6, the three Memory-
Load VMs are intensively using the system bus. The 
UTVM is also running and requires the usage of system 
bus from time to time. Therefore, the system bus is
shared most of the time between four VMs (UTVM and 3 
Memory-Load VMs), which causes extra contention.
Thus, the more cores in the system that are accessing
the system bus simultaneously, the more contention will 
occur and thus the overhead increases.

To explicitly show this effect, we created 
another additional scenario (scenario 7 below) where 
only one Memory-Load VM is sharing the resources with 
the UTVM. The following demonstrates our observation.

vii. Scenario7: TWO-to-ALL with 1 Memory-Load VM

Figure

 

15 : Two-to-All with 1 Memory-Load VM scenario

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

Tables 15 and 16 compare the results of the 
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

  

  

vi. Scenario6: All-to-All with 3 Memory-Load VMs
This scenario is exactly the same as the 

previous scenario (scenario 5) except using Memory-
Load VMs instead of CPU-Load VMs as shown in     
figure 14.

Figure 14 : All-to-All with 3 Memory-Load VMs scenario

Tables 12 and 13 compare the results of the 
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

Table 15 : Comparison between the “clock-tick
processing duration” test results

A



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

  

 
 

  

 
 
 

 
  

 
 

  

  

 

 

 

 

 

 

 

 

  

  

 
 
 
 

    

 
 

 

 

 

 

 

 

  

 

  

 

 
 
 
 
 
 

 
 
 
 

 

  

 
 

 
 

  

  

  

 
 

 
 

advanced features

 

and performance) and hardware-
emulated VMs.

  

This work compares the performance between 
the

 

two types of VM. For this purpose, different tests and

 

several scenarios are used. The results show that the

 

enlightened VM performs on average twice as good as

 

the hardware-emulated VM. This performance

 

enhancement may increase/decrease depending on

 

the 
scenario in question.

  

Even with this improvement, Enlightened VM

 

performance is low compared with bare-machine

 

(non-
virtualized) performance.

  

A shared-memory symmetric multiprocessor 
hardware

 

with four physical cores is used for conducting 
the

 

tests. The results also show that the synchronous

 

usage of all the available cores causes an intensive

 

overload in the system bus which in turn increases

 

latencies by a factor of 3 when compared with a

 

system 
with only one active core.
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Table 16 : Comparison between the “Thread switch
latency” test results

V. Conclusion

Microsoft recent Hyper-V technology is a 
"Microkernalized Type 1" hypervisor which leverages
paravirtualization (called Enlightenment by Microsoft) in 
addition to the traditional hardware emulation technique. 
It exists in two variants: as a stand-alone product called 
Hyper-V Server and as an installable role in Windows 
Server.

There is no difference between MS Hyper-V in 
each of these two variants. The hypervisor is the same
regardless of the installed edition.

In this paper, MS Hyper-V Server 2012 is 
undergoing testing. It installs a very minimal set of 
Windows Server components to optimize the 
virtualization environment. It supports Enlightened 
(special drivers are added to the VM to provide 

     A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

  

A



 
   

  

 
 

Global Journals Inc. (US)

 

Guidelines Handbook

  

www.GlobalJournals.org

 


	A Performance Comparison Between Enlightenment andEmulation in Microsoft Hyper-V
	Authors
	Keywords
	I. Introduction
	II. Microsoft Hyper-v
	III. Experimental Setup
	IV. Testing Procedures and Results
	V. Conclusion
	References Références Referencias



