
© 2013. Hasan Fayyad-Kazan, Luc Perneel & Martin Timmerman. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Hardware & Computation
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Performance Comparison Between Enlightenment and
Emulation in Microsoft Hyper-V

 By Hasan Fayyad-Kazan, Luc Perneel & Martin Timmerman
Vrije Universiteit Brussel, Belgium

Abstract- Microsoft (MS) Hyper-V is a native hypervisor that enables platform virtualization on x86-64
systems. It is a micro-kernelized hypervisor where a host operating system provides the drivers for
the hardware. This approach leverages MS Hyper-V to support enlightenments (the Microsoft name
for Paravirtualization) in addition to the hardware emulation virtualization technique.

This paper provides a quantitative performance comparison, using different tests and
scenarios, between enlightened and emulated Virtual Machines (VMs) hosted by MS Hyper-V server
2012. The experimental results show that MS enlightenments improve performance by a factor of
more than two.

Keywords: virtualization, hyper-v, enlightenments, emulation.

GJCST-A Classification : C.1.4

APerformanceComparisonBetweenEnlightenmentandEmulationinMicrosoftHyper-V

Strictly as per

the compliance and regulations of:

A Performance Comparison Between
Enlightenment and Emulation in Microsoft

Hyper-V
Hasan Fayyad-Kazan α, Luc Perneel σ & Martin Timmerman ρ

Abstract- Microsoft (MS) Hyper-V is a native hypervisor that
enables platform virtualization on x86-64 systems. It is a micro-
kernelized hypervisor where a host operating system provides
the drivers for the hardware. This approach leverages MS
Hyper-V to support enlightenments (the Microsoft name for
Paravirtualization) in addition to the hardware emulation
virtualization technique.

This paper provides a quantitative performance
comparison, using different tests and scenarios, between
enlightened and emulated Virtual Machines (VMs) hosted by
MS Hyper-V server 2012. The experimental results show that
MS enlightenments improve performance by a factor of more
than two.
Keywords: virtualization, hyper-v, enlightenments,
emulation.

I. Introduction

irtualization has become a popular way to make
more efficient use of server resources within both
private data centers and public cloud platforms. It

refers to the creation of a Virtual Machine (VM) which
acts as a real computer with an operating system (OS)
[1]. It also allows sharing the underlying physical
machine resources with different VMs.

The software layer providing the virtualization is
called a Virtual Machine Monitor (VMM) or hypervisor
[1]. It can be either Type 1 (or native, bare metal)
running directly on the host's hardware to control the
hardware and to manage guest operating systems, or
Type 2 (or hosted) running within a conventional
operating-system environment.

Since it has direct access to the hardware
resources rather than going through an operating
system, a native hypervisor is more efficient than a
hosted architecture and delivers greater scalability,
robustness and performance [2].

Microsoft Hyper-V implements Type 1 hyperv-
isor virtualization [3]. In this approach, a hypervisor runs
directly on the hardware of the host system and is

Author α: PhD Candidate, Department of Electronics and Informatics,
Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussels, Belgium.
e-mail: hafayyad@vub.ac.be
Author σ: PhD Candidate, Department of Electronics and Informatics,
Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussels, Belgium.
e-mail: luc.perneel@vub.ac.be
Author ρ: Professor, Department of Electronics and Informatics,Vrije
Universiteit Brussel, Pleinlaan 2- 1050 Brussels, Belgium.
e-mail: martin.timmerman@vub.ac.be

responsible for sharing the physical hardware resources
with multiple virtual machines [4]. In basic terms, the
primary purpose of the hypervisor is to manage the
physical CPU(s) and memory allocation between the
various virtual machines running on the host system.

There are several ways to implement virtuali-
zation. Two leading approaches are Full virtualization
(FV)/Hardware emulation and Para-virtualization (PV) [5].
Enlightenment is the Microsoft name for Para-
virtualization.

This paper provides a quantitative performance
comparison between hardware emulation and
Enlightenments (Para-Virtualization) techniques hosted
by MS Hyper-V server 2012.

It is organized as follows: Section 2 describes
MS Hyper-V architecture and Enlightenment approach;
Section 3 shows the experimental setup used for our
evaluation; Section 4 explains the test metrics, scenarios
and results obtained; and section 5 gives a final
conclusion.

II. Microsoft Hyper-v

Microsoft Hyper-V is a hypervisor-based
virtualization technology for x64 versions of Windows
Server [6]. It exists in two variants: as a stand-alone
product called Hyper-V Server and as an installable
role/component in Windows Server [7].

There is no difference between MS Hyper-V in
each of these two variants. The hypervisor is the same
regardless of the installed edition [7].

MS Hyper-V requires a processor with
hardwareassisted virtualization functionality, enabling a
much more compact virtualization codebase and
associated performance improvements [3].

The Hyper-V architecture is based on
microkernelized hypervisors (figure 1). This is an
approach where a host operating system, referred to as
the parent partition, provides management features and
the drivers for the hardware [8].

V

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

01
3

2
A

Figure 1

:

Hyper-V Architecture [6]

With this approach, the only layer between a
guest operating system and the hardware is a
streamlined hypervisor with simple partitioning
functionality. The hypervisor has no third-party device
drivers [9]. The drivers required for hardware sharing
reside in the host operating system, which provides
access to the rich set of drivers already built for
Windows [9].

MS Hyper-V implements isolation of virtual
machines in terms of a partition (operating system and
applications). A hypervisor instance has to have at least
one parent partition, running a supported version of
Windows Server [6].The virtualization stack runs in the
parent partition and has direct access to the hardware
devices. The parent partition then creates the child
partitions which host the guest OSs [6].

Child partitions do not have direct access to
hardware resources. Hyper-V can host two categories of
operating systems in the child partitions: Enlightened
(Hyper-V Aware) and un-enlightened (Hyper-V Unaware)
operating systems [10]. Enlightened partition has a
virtual view of the resources, in terms of virtual devices.
Any request to the virtual devices is redirected via the
VMBus (figure 1) – a logical channel which enables
inter-partition communication - to the devices in the
parent partition managing the requests. Parent partitions
run a Virtualization Service Provider (VSP), which
connects to the VMBus and handles device access
requests from child partitions [6]. Enlightened child
partition virtual devices internally run a Virtualization
Service Client (VSC) (figure1), which redirect the request
to VSPs in the parent partition via the VMBus [6]. The

VSCs are the drivers of the virtual machine, which
together with other integration components are referred
to as Enlightenments that provide advanced features
and performance for a virtual machine. In contrast, the
unenlightened child partition does not have the
integration components and the VSCs; everything is
emulated.

III. Experimental Setup

Microsoft Hyper-V Server 2012 is tested here. It
is a dedicated stand-alone product that contains the
hypervisor, Windows Server driver model, virtualization
capabilities, and supporting components such as
failover clustering, but does not contain the robust set of
features and roles found in the Windows Server
operating system [11].

As MS Hyper-V supports enlightened and
emulated VMs, both VMs are created, running Linux
PREEMPTRT v3.8.4-rt2 [12]. Being open source and
configurable for usage in enlightened VM are the main
reasons for selecting it as the guest OS. This also
permits us to compare with another ongoing study of
XEN.

Both Linux versions (for enlightened and
emulated VM) are built using the buildroot [13] tool to
make sure that the enlightenment drivers are added to
the enlightened VM.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

22

(
A

)

© 2013 Global Journals Inc. (US)

Ye
ar

01
3

2
A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

The tests are done in each VM separately.
Under Test VM (UTVM) is the name used for the tested
VM, which can be either enlightened or emulated. Each
VM has one virtual CPU (vCPU).

machine (Bare-Machine) as a reference, using the same
OS of the UTVM.

i. Clock tick processing duration
The kernel clock tick processing duration is

examined here. The results of this test are extremely
important as the clock interrupt - being on a high level
interrupt on the used hardware platform - will bias all
other performed measurements. Using a tickless kernel
will not prevent this from happening as it will only lower
the number of occurrences. The kernel is not using the
tickless timer option.

Here is a description of how this test is
performed: a real-time thread with the highest priority is
created. This thread does a finite loop of the following
tasks: starting the measurement by reading the time
using RDTSC instruction, executing a “busy loop” that
does some calculations and stopping the measurement
by reading the time again using the same instruction.
Having the time before and after the “busy loop”
provides the time needed to finish its job. In case we run
this test on the bare-machine, this “busy loop” will be
delayed only by interrupt handlers. As we remove all
other interrupt sources, only the clock tick timer interrupt
can delay the “busy loop”. When the “busy loop” is
interrupted, its execution time increases.

Running the same test in a VM also shows
when it is scheduled away by the VMM, which in turn
impacts latency.

Figure 2 presents the results of this test on the
baremachine, followed by an explanation. The X-axis

indicates the time when a measurement sample is taken
with reference to the start of the test. The Yaxis indicates
the duration of the measured event; in this case the total
duration of the “busy loop”.

Figure 2

:

Clock tick processing duration of the
baremachine-zoomed

The lower values (68 s) of figure 2 present the
“busy

loop” execution durations if no clock tick
happens. In

case of clock tick interruption, its execution
is

delayed until the clock interrupt is handled, which is

76 s (top values). The difference between the two

values is the delay spent handling the tick (executing

the
handler), which is 8 s.

Note that the kernel clock is configured to run at

1000 Hz, which corresponds to a tick each 1 ms. This

is
obvious in figure 2, which is a zoomed version of

figure
3 below.

Figure 3

:

Clock tick processing duration of the
baremachine

Figure 3 represents the test results of 128000

captured samples, in a time frame of 9 seconds.

Due to
scaling reasons, the samples form a line.

As shown in
figure 3, the “busy loop” execution

time is 78 s at some
periods. Therefore, a clock

tick delays any task by 8 to
10 s.

This test is very useful as it detects all the

delays that may occur in a system during

runtime.
Therefore, we execute this test for

long duration (more
than one hour) to capture

50 million samples. The
results in the tables of

section D are comparing the
maximum results

obtained from the 50 million samples.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

23

(
)

Ye
ar

01
3

2

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

The hardware platform used for conducting the
tests has the following characteristics: Intel® Desktop
Board DH77KC, Intel® Xeon® Processor E3-1220v2
with 4 cores each running at a frequency of 3.1 GHz,
and no hyper-threading support. The cache memory
size is as follows: each core has 32 KB of L1 data
cache, 32KB of L1 instruction cache and 256 KB of L2
cache. L3 cache is 8MB accessible to all cores. The
system memory is 8 GB.

IV. Testing Procedures and Results

a) Measuring Process
The Time Stamp Counter (TSC) is used for

obtaining (tracing) the measurement values. It is a 64-bit
register present on all x86 processors since the
Pentium. The instruction RDTSC is used to return the
TSC value. This counting register provides an excellent
high-resolution, low-overhead way of getting CPU timing
information and runs at a constant rate.

b) Testing Metrics
Below is an explanation of the evaluation tests.

Note that the tests are initially done on a non-virtualized

One physical CPU is allocated for each VM,
using the “virtual machine reserve” and “virtual machine
limit” attributes in the VM settings using Hyper-V
Manager.

A

Figure 4

:

Thread switch latency between 2 threads on

the Bare-machine

Figure 4 shows that the minimum switch latency

between 2 threads is around 0.43 s; the maximum

latency is 11.45 s which is dependent on the clock

tick
processing duration.

Table 1 below shows the results of performing
this

test on the bare-machine using 2 and 1000 threads.

Table

1

:

Comparing the “Thread switch latency”

results
for the bare-machine

Both tests, “Clock tick processing duration” and

“Threads switch latency” are done on the

enlightened
and emulated VMs, using the several

scenarios
described in section D.

c) Processor Affinity in MS Hyper-V

Most virtualization solutions like Xen and
VMware

support the affinity concept where a vCPU of a
VM

can be tied to a given physical processor.

Benjamin

Armstrong, Hyper-V Program Manager, explains in the

blog “Processor Affinity and why you do not need it

on
Hyper-V” [14] that there is no need for this

concept in
Hyper-V. Instead, one can reserve a

physical CPU
(pCPU) for the VM to guarantee that it

always has a
whole processor.

Moreover, if a VM has one vCPU and the host
has

more than one core, this VM can be mapped to any
of

the available cores in a round-robin way between all

the cores [15]. The parent partition is the only VM

parked on core 0.

d) Testing scenarios

Below is a description of the scenarios used for
the

evaluation. In all the scenarios drawings, the parent

partition (VM) is not shown because it is idle.

Figure

5

:

One-to-All scenario

Figure 6

:

Clock tick duration test for Enlightened VM in

scenario 1

Figure 7

: Zoomed version of the red sport in figure 6

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

24

(
A

)

© 2013 Global Journals Inc. (US)

Ye
ar

01
3

2
A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

i. Scenario 1: One-to-All
As shown in figure 5, this scenario has only one

VM, the UTVM with one vCPU. This vCPU can run on
any core (physical CPU) during runtime. The aim of this
scenario is to detect the pure hypervisor overhead (as
there is no contention).

ii. Thread switch latency between threads of same

priority
This test measures the time needed to switch

between threads having the same priority. Although real-
time threads should be on different priority levels to be
capable of applying rate monotonic scheduling theory
[16], this test is executed with threads on the same
priority level in order to easily measure thread switch
latency without interference of something else.

For this test, threads must voluntarily yield the
processor for other threads, so the SCHED_FIFO
scheduling policy is used. If we didn’t use the FIFO
policy, a round-robin clock event could occur between
the yield and the trace, and then the thread activation
would not be seen in the test trace. The test looks for
worst-case behavior and therefore it is done with an
increasing number of threads, starting with 2 and going
up to 1000. As we increase the number of active
threads, the caching effect becomes visible as the
thread context will no longer be able to reside in the
cache.

Table

3

:

Comparison between the “Thread switch

latency” test results

Note that the “maximum switch latency” in all
the

scenarios depends on the processing durations of

clock tick and other interrupts that may occur in the

system during the testing time.

ii. Scenario2: One-to-One

As mentioned before, Hyper-V does not support

affinity. It sends the workload of a VM to the first

physical

CPU that is available.

In this scenario, there is only one physical CPU

available, while the

other three are disabled from the

BIOS. There is only the UTVM, together with the

parent

partition which is always parked on CPU-0 but

idle.

Therefore, UTVM is also pinned to CPU-0.The

aim of this

scenario is to clarify if the affinity

technique removes the

periodic high measurements.

Figure 8

:

One-to-One scenario

Figure 9 shows that the periodic high values are
still

detected.

Figure 9

:

Clock tick duration test for Enlightened VM in

scenario 2

Tables 4 and 5 compares the results of the two
tests:

“Clock Tick processing duration” and “Thread
switch

latency”.

Table

4

:

Comparison between the “clock-tick

processing duration” test results

Table

5

:

Comparison between the “Thread switch

latency” test results

iii. Scenario3: Contention with 1 CPU-Load VM

This scenario has 2 VMs, UTVM and CPU-Load
VM,

both running on the same physical CPU as shown
in

figure 10. The CPU-Load VM is running a CPU-stress

program which is an infinite loop of mathematical

calculations. The aim of this scenario is to explore

the
scheduling mechanism of the hypervisor between

competing VMs.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

25

(
)

Ye
ar

01
3

2
Each of the two VMs has its “virtual machine

reserve” and “virtual machine limit” attributes set to 50%.

Figure 10 : Contention with 1 CPU-Load VM scenario

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

Figure 6 shows that every second, the
hypervisor is doing some tasks/scheduling decisions
which causes the VM to be suspended/scheduled-away
resulting in such high values periodically.

Note that our policy is black-box testing which
makes it difficult to understand the internal behavior of
an out-of-the-box product.

The emulated VM behaves exactly the same
except with higher values. Table 2 is a comparison
between the “clock tick processing duration” test results
for both VMs, while table 3 is a comparison for the
“thread switch latency” test results.

Table 2 : Comparison between the “clock-tick
processing duration” test results

A

iv. Scenario4: Contention with 1 Memory-Load

VM

This scenario is exactly the same as scenario 3
except

using Memory-Load VM instead of CPU-Load
VM. This

VM is running an infinite loop of memcpy()
function

that copies 9 MB (a value that is larger than the

whole caches) from one object to another. The other

goal of this scenario using such a VM is to detect the

cache effects on the performance of the UTVM.

Figure 11

:

Contention with 1 Memory-Load VM
scenario

Tables 8 and 9 compare the results of the two
tests:

“Clock Tick processing duration” and “Thread
switch

latency”.

Table

8

: Comparison between the “clock-tick

processing duration” test results

Table 8 shows that measurements of this
scenario are

greater than the

ones of the previous
scenario

(scenario 3) by almost 3 ms.

Table

9

:

Comparison between the “Thread switch

latency” test results

Figure 12

:

All-to-All with 3 CPU-Load VMs scenario

Again, the periodic peaks are captured as
shown in

figure 13 below.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

26

(
)

© 2013 Global Journals Inc. (US)

Ye
ar

01
3

2

Figure 13 : Clock tick duration test for Enlightened VM
in scenario 5

Tables 10 and 11 compare the results of the
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

Table 10 : Comparison between the “clock-tick
processing duration” test results

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

Tables 6 and 7 compares the results of the two
tests: “Clock Tick processing duration” and “Thread
switch latency”.

Table 6 : Comparison between the “clock-tick
processing duration” test results

Table 7 : Comparison between the “Thread switch
latency” test results

A

Table 11 : Comparison between the “Thread switch
latency” test results

Table

12

:

Comparison between the “clock-tick

processing duration” test results

Table

13

:

Comparison between the “Thread switch

latency” test results

The resulting values of this scenario are around
three

times greater than the ones of the previous
scenario

(scenario 5) even though the same number of
VMs is

running. This difference in the results is due to
the

concept explained in the following section (System

bus bottleneck in SMP systems).

System bus bottleneck in SMP systems.

The hardware

platform used for

this evaluation
is a

Symmetric

Multiprocessing

(SMP) system with

four
identical

processors

connected to a

single shared main
memory using a system bus. They

have full access to all
I/O devices and are treatedequally.

The system memory bus or system bus can be
used by

only one core at a time. If two processors are

executing tasks that need to use the system bus at

the
same time, then one of them will use the bus

while the
other will be blocked for some time.

As the processor
used has 4 cores, when all of these

are running at the
same time, system bus contention

occurs.
Scenario 5 is not causing high overheads

because the

CPU stress program is quite small and fits

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

27

(
)

Ye
ar

01
3

2

in the core cache together with its data. Therefore, the
three CPU-Loading VMs are not intensively loading the
system bus which in turn will not highly affect the UTVM.

Referring back to scenario 6, the three Memory-
Load VMs are intensively using the system bus. The
UTVM is also running and requires the usage of system
bus from time to time. Therefore, the system bus is
shared most of the time between four VMs (UTVM and 3
Memory-Load VMs), which causes extra contention.
Thus, the more cores in the system that are accessing
the system bus simultaneously, the more contention will
occur and thus the overhead increases.

To explicitly show this effect, we created
another additional scenario (scenario 7 below) where
only one Memory-Load VM is sharing the resources with
the UTVM. The following demonstrates our observation.

vii. Scenario7: TWO-to-ALL with 1 Memory-Load VM

Figure

15 : Two-to-All with 1 Memory-Load VM scenario

A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

Tables 15 and 16 compare the results of the
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

vi. Scenario6: All-to-All with 3 Memory-Load VMs
This scenario is exactly the same as the

previous scenario (scenario 5) except using Memory-
Load VMs instead of CPU-Load VMs as shown in
figure 14.

Figure 14 : All-to-All with 3 Memory-Load VMs scenario

Tables 12 and 13 compare the results of the
two tests: “Clock Tick processing duration” and “Thread
switch latency”.

Table 15 : Comparison between the “clock-tick
processing duration” test results

A

advanced features

and performance) and hardware-
emulated VMs.

This work compares the performance between
the

two types of VM. For this purpose, different tests and

several scenarios are used. The results show that the

enlightened VM performs on average twice as good as

the hardware-emulated VM. This performance

enhancement may increase/decrease depending on

the
scenario in question.

Even with this improvement, Enlightened VM

performance is low compared with bare-machine

(non-
virtualized) performance.

A shared-memory symmetric multiprocessor
hardware

with four physical cores is used for conducting
the

tests. The results also show that the synchronous

usage of all the available cores causes an intensive

overload in the system bus which in turn increases

latencies by a factor of 3 when compared with a

system
with only one active core.

References Références Referencias

1. M. Lee, A. S. krishnakumar, P. Krishnan, S. Nayjot

and Y. Shalini, “Supporting Sofy Real-Time Tasks in

the Xen Hypervisor,” in the 6th ACM
SIGPLAN/SIGOPS

international conference on
Virtual execution

enviroments, 2010.

2. VMWare, “Understanding Full virtualization,

Paravirtualization and hardware Assist,” 2007.

[Online]. Available:

http://www.vmware.com/files/

pdf/VMware_pa

ravirtualization.pdf.

3. Z. H. Shah, Windows Server 2012 Hyper-V:

Deploying Hyper-V Enterprise Server Virtualization

Platform, Packt Publishing, 2013.

4. Virtuatopia, “An Overview of the Hyper-V

Architect-

ure,” [Online]. Available:http://www.virtuatopia.com/

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

28

(
)

© 2013 Global Journals Inc. (US)

Ye
ar

01
3

2

index.php/An_Overview_of_the_HyperV_Architecture.
5. T. Abels, P. Dhawam and B. Chandrasekaran, “An

overview of Xen Virtualization,” [Online]. Available:
http://www.dell.com/downloads/global/power/ps3q0
5-2 0050191-abels.pdf.

6. Microsoft, “Hyper-V Architecture,” [Online].
Available: http://msdn.microsoft.com/enus/library/cc
768520%28v=bts.10%29.aspx.

7. M. T. Blogs, “Hyper-V: Microkernelized or Monoli-
thic,” [Online]. Available: http://blogs.technet.com/b
/chenley/archive/2011/02/23/hyper-v-microkernelize
d-or-monolithic.aspx.

8. Finn and P. Lownds, Mastering Hyper-V
Deployment, Wiley Publishing Inc.

9. M. Corporation, “Windows Server 2008 Hyper-V
Technical Overview,” [Online]. Available:

http://download.microsoft.com.
10. G. Knuth, “Microsoft Windows Server 2008 – Hyper-

V solution overview,” 2008. [Online]. Available:http://
www.brianmadden.com/blogs/gabeknuth/archive/2
008/03/11/microsoft-windows-server-2008-hyper-v-
solution-overview.aspx.

11. Microsoft, “Microsoft Hyper-V Server 2012,”
[Online]. Available: http://www.microsoft.com/enus
/server-cloud/hyper-v-server/.

12. “CONFIG PREEMPT RT Patch-RT wiki,” [Online].
Available:https://rt.wiki.kernel.org/index.php/CONFI
G_PREEMPT_RT_Patch.

13. T. B. developers, “Buildroot: Making Embedded
Linux easy,” [Online]. Available: http://buildroot.
uclibc.org/.

14. B. Armstrong, “Hyper-V CPU Scheduling-Part 1,”
2011. [Online]. Available: http://blogs.msdn.com/b/
virtual_pc_guy/archive/2011/02/14/hyper-v-cpu-
scheduling-part-1.aspx.

15. M. T. Wiki, “Hyper-V Concepts - vCPU (Virtual
Processor),” [Online]. Available: http://social
.technet.microsoft.com/wiki/contents/articles/1234.h
yper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsi
gnin1.0.

16. M. H. Klein, T. Ralya, B. Pollak, R. Obenza and M.
G. Harbour, A practitioner's Handbook for Real-
Time Analysis, USA: Kumer Academic Publishers,
1994. ISBN 0-7923-9361-9.

Table 16 : Comparison between the “Thread switch
latency” test results

V. Conclusion

Microsoft recent Hyper-V technology is a
"Microkernalized Type 1" hypervisor which leverages
paravirtualization (called Enlightenment by Microsoft) in
addition to the traditional hardware emulation technique.
It exists in two variants: as a stand-alone product called
Hyper-V Server and as an installable role in Windows
Server.

There is no difference between MS Hyper-V in
each of these two variants. The hypervisor is the same
regardless of the installed edition.

In this paper, MS Hyper-V Server 2012 is
undergoing testing. It installs a very minimal set of
Windows Server components to optimize the
virtualization environment. It supports Enlightened
(special drivers are added to the VM to provide

 A Performance Comparison between Enlightenment and Emulation in Microsoft Hyper-V

A

Global Journals Inc. (US)

Guidelines Handbook

www.GlobalJournals.org

	A Performance Comparison Between Enlightenment andEmulation in Microsoft Hyper-V
	Authors
	Keywords
	I. Introduction
	II. Microsoft Hyper-v
	III. Experimental Setup
	IV. Testing Procedures and Results
	V. Conclusion
	References Références Referencias

