
© 2013. Anupama Kaushik, A.K. Soni  & Rachna Soni. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 
 

  
Global Journal of Computer Science and Technology 
Neural & Artificial Intelligence  
Volume 13 Issue 1 Version 1.0 Year 2013 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

A Simple Neural Network Approach to Software Cost Estimation 
                  By Anupama Kaushik, A.K. Soni  & Rachna Soni 

                                                      Sharda University  Greater Noida, India 

Abstract - The effort invested in a software project is one of the most challenging task and most 
analyzed variables in recent years in the process of project management. Software cost estimation 
predicts the amount of effort and development time required to build a software system. It is one of 
the most critical tasks and it helps the software industries to effectively manage their software 
development process. There are a number of cost estimation models. Each of these models have 
their own pros and cons in estimating the development cost and effort. This paper investigates the 
use of Back-Propagation neural networks for software cost estimation. The model is designed in 
such a manner that accommodates the widely used COCOMO model and improves its performance. 
It deals effectively with imprecise and uncertain input and enhances the reliability of software cost 
estimates. The model is tested using three publicly available software development datasets.  The 
test results from the trained neural network are compared with that of the COCOMO model. From the 
experimental results, it was concluded that using the proposed neural network model the accuracy of 
cost estimation can be improved and the estimated cost can be very close to the actual cost. 

Keywords : artificial neural networks, back-propagation networks, COCOMO model, project 
management, soft computing techniques, software effort estimation. 

GJCST-D Classification :  B.2.m 

 

A Simple Neural Network Approach to Software Cost Estimation 
 

 
 

 

Strictly as per the compliance and regulations of:



 

A Simple Neural Network Approach to Software 
Cost Estimation 

Anupama Kaushik α, A.K. Soni σ & Rachna Soni ρ

Abstract - The effort invested in a software project is one of the 
most challenging task and most analyzed variables in recent 
years in the process of project management. Software cost 
estimation predicts the amount of effort and development time 
required to build a software system. It is one of the most 
critical tasks and it helps the software industries to effectively 
manage their software development process. There are a 
number of cost estimation models. Each of these models have 
their own pros and cons in estimating the development cost 
and effort. This paper investigates the use of Back-
Propagation neural networks for software cost estimation. The 
model is designed in such a manner that accommodates the 
widely used COCOMO model and improves its performance. It 
deals effectively with imprecise and uncertain input and 
enhances the reliability of software cost estimates. The model 
is tested using three publicly available software development 
datasets.  The test results from the trained neural network are 
compared with that of the COCOMO model. From the 
experimental results, it was concluded that using the proposed 
neural network model the accuracy of cost estimation can be 
improved and the estimated cost can be very close to the 
actual cost. 
Keywords : artificial neural networks, back-propagation 
networks, COCOMO model, project management, soft 
computing techniques, software effort estimation. 

I. Introduction 

oftware cost estimation is one of the most 
significant activities in software project 
management. It refers to the predictions of the 

likely amount of effort, time and staffing levels required 
to build a software system. The effort prediction aspect 
of software is made at an early stage during project 
development, when the costing of the project is 
proposed for approval. It is concerned with the 
prediction of the person hour required to accomplish the 
task. However, estimates at the early stages of the 
development are the most difficult to obtain because 
very little is known about the project and the product at 
the beginning. So, estimating software development 
effort remains a complex problem and it continues to 
attract research attention. There are several cost 
estimation techniques proposed and they are grouped 
into two major categories: (1) Parametric models or 
Algorithmic models, which uses a  mathematical formula  
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to predict project cost based on the estimates of project 
size, the number of software engineers, and other 
process and product factors [1]. These models can be 
built by analysing the costs and attributes of completed 
projects and finding the closest fit formula to actual 
experience. (2) Non Parametric models or Non 
algorithmic models which are based on fuzzy logic (FL), 
artificial neural networks (ANN) and evolutionary 
computation (EC). In this paper, we focus on non 
parametric cost estimation models based on artificial 
neural networks, and particularly Back-Propagation 
networks. Neural networks have learning ability and are 
good at modelling complex nonlinear relationships.  
They also provide more flexibility to integrate expert 
knowledge into the model. There are many software 
cost estimation models that have been developed using 
neural networks over the years.  The use of radial basis 
function neural networks for software effort estimation is 
well described by many researchers [2, 3 and 4]. The 
clustering algorithms used in those designs are the 
conventional algorithms. 

K. Vinay Kumar et al.  [5] Uses wavelet neural 
networks for predicting software development cost.  B. 
Tirimula   Rao et al. [6] provided a novel neural network 
approach for software cost estimation using functional 
link artificial neural network.  G. Witting and G. Finnie [7] 
uses back propagation learning algorithms on a 
multilayer perceptron in order to predict development 
effort.  N. Karunanitthi et al. [8] reports the use of neural 
networks for predicting software reliability including 
experiments with both feed forward and Jordan 
networks. N. Tadayon [9] also reports the use of neural 
network with a back propagation learning algorithm.  
However it was not clear how the dataset was divided 
for training and validation purposes.  T.M. Khoshgoftaar 
et al.[10] presented a case study considering real time 
software to predict the testability of each module from 
source code static measures. Ch. Satyananda Reddy 
and KVSVN Raju [11] proposed a cost estimation model 
using multi layer feed forward neural network. 
Venkatachalam [12] also investigated the application of 
artificial neural network (ANN) to software cost 
estimation. 

Artificial neural networks are the promising 
techniques to build predictive models.  So, there is 
always a scope for developing effort estimation models 
with better predictive accuracy. 
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II. Overview of the Models and 
Techniques    sed 

a) COCOMO II Model 
The COCOMO model, is the best known 

algorithmic cost model published by Barry Boehm in 
1981 [1]. It was developed from the analysis of sixty 
three software projects.  It is a hierarchy of software cost 
estimation models, which includes Basic, Intermediate 
and Detailed sub models. It was the most cited and 
plausible of all the traditional cost estimation models. 
COCOMO II is the revised version of the original 
COCOMO and is tuned to the life cycle practices of the 
21st century. It also provides a quantitative analytic 
framework, and set of tools and techniques for 
evaluating the effects of software technology 
improvements on software life cycle costs and 
schedules. It consists of three sub models and they are: 

• Application Composition Model: This model is 
suitable for quickly developed applications using 
interoperable components like components based 
on GUI builders and is based on new object point’s 
estimation. 

• Early Design Model: This model is used in the early 
stages of a software project and can be used in 
Application Generator, System Integration, or 
Infrastructure Development Sector. It uses 
Unadjusted Function Points (UFP) as the measure 
of size. 

• Post Architecture Model: This is the most detailed of 
the three and is used after the overall architecture 
for the project has been designed. One could use 
function points or LOC as size estimates with this 
model. It involves the actual development and 
maintenance of a software product. 

COCOMO II describes 17 cost drivers and 5 
scale factors that are used in the Post Architecture 
model. The cost drivers for COCOMO II are rated on a 
scale from very low to extra high. Their product is used 
to adjust the nominal effort. Table 1 lists COCOMO II 
cost drivers along with their multipliers. Scale factor is a 
particular characteristic of the software development 
that has an exponential effect of increasing or 
decreasing the amount of development effort and they 
are Precedentness, Development flexibility, 
Architecture/Risk resolution, Team cohesion and 
Process maturity. These factors are rated on a six point 
scale i.e., very low, low, nominal, high, very high and 
extra high as given in Table 2.  
COCOMO II post architecture model is given as: 

PM = A × [    ×          (1) 

Where PM is the effort expressed in person 
months, A is a multiplicative constant, size is the 
projected size of   the software project expressed in 
thousands of lines of code KLOC, EMi (i=1,2....17) are 

effort multipliers and SFi (i=1,2....5) are exponent scale 
factors.   

b) Artificial Neural Networks 
An artificial neural network (ANN) is an efficient 

information processing system which resembles in 
characteristics with a biological neural network. ANN’s 
possess large number of highly interconnected 
processing elements called neurons. Each neuron is 
connected with the other by a connection link. Each 
connection link is associated with weights which contain 
information about the input signal. This information is 
used by the neuron net to solve a particular problem. 
Each neuron has an internal state of its own. This 
internal state is called the activation level of neuron, 
which is the function of the inputs the neuron receives. 
There are a number of activation functions that can be 
applied over net input such as Gaussian, Linear, 
Sigmoid and Tanh. It is the Sigmoid function that is the 
most frequently used in neural nets.  Thus, the models 
of   ANN   are   specified   by   the   three   basic entities 
namely [13]: 
1. The model’s synaptic interconnections; 
2. The training or learning rules adopted for updating 

and adjusting the connection weights; 
3. Their activation functions. 

The neural network process starts by 
developing the structure of the network and establishing 
the technique used to train the network using an existing 
data set. Neural network architectures are divided into 
two groups: 
1. Feed forward networks where no loops in the 

network path occur. 
2. Feedback networks that have recursive loops. 
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Table 1 : COCOMO II cost drivers with multipliers 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

Table 2 : COCOMO II Scaling Factors 
  
  
                               
 
 
 
 
 

The most common architecture of neural 
networks which is used in software cost estimation is the 
Back-Propagation trained Feed Forward networks [14, 
15]. The training algorithm of back propagation involves 
four stages:

 

1.
 

Initialization of weights
 

2.
 

Feed forward
 

3.
 

Back Propagation of errors
 

4.
 

Updation of the weights and biases
 

III.
 

Proposed Work
 

The performance of a neural network depends 
on its architecture and their parameter settings.  There 
are many parameters governing the architecture of the 
neural network including the number of layers, the 
number of nodes in each layer, the transfer function in 
each node, learning algorithm parameters and the 
weights which determine the connectivity between 
nodes.  There is no rule which determines the ideal 
parameter settings but even a slight parameter changes 
can cause major variations in the results of almost

 
all 

networks.  This property of the neural network is 
captured in the present work for predicting the software 
costs. The neural network model proposed is based on 
multi layer feed forward neural network and it uses the 
architecture  

 
given   by  

 
Ch.   Satyananda   Reddy   and

  

 
 
 
 
 
 
 
 

KVSVN Raju [11].  The model accommodates the 
COCOMO II model. 

 
 
The aim of this work is to evaluate the results of 

software cost estimation using COCOMO II by varying 
the activation functions at the input, hidden and the 
output layers. The model proposed uses the identity 
function at the input layer which is defined by 

 

The hidden and the output layer uses unipolar sigmoid 
function defined by 

 
.
  

This function is especially advantageous to use 
in neural networks trained by back-propagation 
algorithms. Because it is easy to distinguish, and this 
can interestingly minimize the computation capacity for 
training.

  

a)
 

Architecture of the Neural Network Model
 

The proposed structure of the neural network 
accommodates the COCOMO II post architecture model 
given by Eq. 1. The use of neural network to estimate 
PM (person months) in Eq. 1 requires twenty four input 
nodes in the input layer which corresponds to seventeen 
EM’s, five SF’s and two bias values. The COCOMO 
model which is a non linear model is transformed into a 
linear model using natural logarithms as shown in Eq. 2.

 

S.No Cost 
Driver 

Very 
Low 

Low Nominal High Very 
High 

Extra 
High 

1 RELY 0.75 0.88 1.00 1.15 1.39 -- 
2 DATA -- 0.93 1.00 1.09 1.19 -- 
3 CPLX 0.75 0.88 1.00 1.15 1.30 1.66 
4 RUSE  0.91 1.00 1.14 1.29 1.49 
5 DOCU 0.89 0.95 1.00 1.06 1.13  
6 TIME -- -- 1.00 1.11 1.31 1.67 
7 STOR -- -- 1.00 1.06 1.21 1.57 
8 PVOL -- 0.87 1.00 1.15 1.30 -- 
9 ACAP 1.50 1.22 1.00 0.83 0.67 -- 

10 PCAP 1.37 1.16 1.00 0.87 0.74 -- 
11 PCON 1.24 1.10 1.00 0.92 0.84 -- 
12 AEXP 1.22 1.10 1.00 0.89 0.81 -- 
13 PEXP 1.25 1.12 1.00 0.88 0.81 -- 
14 LTEX 1.22 1.10 1.00 0.91 0.84 -- 
15 TOOL 1.24 1.12 1.00 0.86 0.72 -- 
16 SITE 1.25 1.10 1.00 0.92 0.84 0.78 
17 SCED 1.29 1.10 1.00 1.00 1.00 -- 

Scaling Factors Very 
Low 

Low Nominal High Very 
High 

Extra 
High 

Precedentness 6.20 4.96 3.72 2.48 1.24 0.00 
Development Flexibility 5.07 4.05 3.04 2.03 1.01 0.00 
Architecture/Risk 
Resolution 

7.07 5.65 4.24 2.83 1.41 0.00 

Team Cohesion 5.48 4.38 3.29 2.19 1.10 0.00 
Process Maturity 7.80 6.24 4.68 3.12 1.56 0.00 
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Ln (PM)=ln(A)+ln(EM1)+ln(EM2)+……+ln(EM17)+[1.01+SF1+……+SF5]*ln(size)                                (2)

The above equation becomes : 

CPM = [b1+x1*z1+x2*z2+……+x17*z17]+  [b2+z18+……..+z22]*[yi+ln(size)]                                                            (3) 

Where,  
CPM=ln(PM); 
z1=ln(EM1); z2=ln(EM2);……;z17=ln(EM17); 
z18=SF1;……..;z22=SF5; 
b1 and b2 are the biases and the coefficients xi and yi are  
the additional terms used in the model which act as the 
weights from the input layer to the hidden layer. 

The COCOMO II model as given by Eq. 3 is 
shown in Fig.1. This network consists of two hidden 
layer nodes CEM and CSF that take into account the 
contribution of effort multipliers and scale factors. CPM is 
the node of the output layer where we get the value of 
ln(PM) which is the desired output of the model. In the 
above network all the original EMi and SFi values of 

COCOMO II are pre processed to ln(EMi) and ln(SFi) 
and used as input nodes. The two bias values are 
denoted by b1 and b2, which are ln(A) and 1.01 
respectively. The size of the product is not considered 
as one of the inputs to the network but as a cofactor for 
the initial weights for scale factors (SF). The weights 
associated to the input nodes connected to the hidden 
layer are denoted by xi for for each input 
ln(EMi) and b1. On the other hand, the weights 
associated to the hidden layer for each ln (SFi) input 
nodes and b2 are yi+ln (size) for   . These 
weights are initialized as xi=1and yi=0. The weights 
from the hidden layer to the output layer are denoted by 
p and q and initialized as p=q=1. 

 

 

Figure 1 : Neural Network Architecture 

b) Training Algorithm 
The feed forward back propagation procedure 

is used to train the network by iteratively processing a 
set of training samples and comparing the network’s 
prediction with the actual value. For each training 
sample, the weights are modified so as to minimize the 
error between the networks predicted value and the 
actual value. The following algorithm is used for training 
the proposed network and for calculating the new set of 
weights: 

 
 Step

 

2: Perform steps 3-10 when stopping 
condition is false.

 Step 3: Perform steps 4-9 for each training pair.

 Step 4: Each input unit receives input signal and 
sends it to the hidden unit.

 Step

 

5: Each hidden unit CEM

 

and CSF sums its 
weighted input signals to calculate net input given by:

 CEM

 

= b1+ zi*xi                      for i=1 to 17

 
CSF

 
= b2+ zi*(yi

 
+ ln(size))   for i=18 to 22

 

b1 

z1 

z17 

b2 

z18 

z22 

CEM 

CSF 

CPM 

xi 

yi+ln(size) 

 

p 

q 
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Step 1: Initialize the weights and learning rate α
(



 

Apply sigmoidal activation function over CEM 
and CSF and send the output signal from the hidden unit 
to the input of output layer units. 

Step 6:  The output unit CPM, calculates the net 
input given by: 

CPM =CEM*p+CSF*q 

Apply sigmoidal activation function over CPM to 
compute the output signal Eest. 

Step 7:  Calculate the error correction term as: 
δ=Eact-Eest, where Eact is the actual effort from the 
dataset and Eest is the estimated effort from step 6. 
Step 8: Update the weights between hidden and the 
output layer as:  

p(new)=p(old)+ α* δ* CEM 

q(new)=q(old)+ α* δ* CSF 

Step 9:  Update the weights and bias between 
input and hidden layers as: 

              xi(new)=xi(old)+ α* δEM*zi for i=1 to 17 
              yi(new)=yi(old)+ α* δSF*zi for i=18 to 22 
              b1(new)=b1(old)+ α* δEM 
              b2(new)=b2(old)+ α* δSF 

The error is calculated as 

δEM= δ*p;    δSF= δ*q ; 

Step 10: Check for the stopping condition. The 
stopping condition may be certain number of epochs 
reached or if the error is smaller than a specific 
tolerance.  

Using this approach, we iterate forward and 
backward until the terminating condition is satisfied. The 
variable α used in the above formula is the learning rate, 
a constant, typically having a value between 0 and 1. 
The learning rate can be increased or decreased by the 
expert judgment indicating their opinion of the input 
effect. In other words the error should have more effect 
on the expert’s indication that a certain input had more 
contribution to the error propagation or vice versa. For 
each project, the expert estimator can identify the 
importance of the input value to the error in the 
estimation. If none selected by the expert, the changes 
in the weights are as specified by the learning algorithm. 
The network should also be trained according to correct 
inputs. For example, if during estimation ACAP (Analyst 
Capability) is set as high but after the end of the project, 
the management realizes that it was nominal or low, 
then the system should not consider this as a network 
error and before training the system, the better values of 
cost factors should be used to identify the estimated 
cost. 

IV. Datasets and Evaluation Criteria 

The data sets used in the present study comes 
from PROMISE Software Engineering Repository data 

set [16] made publicly available for research purpose. 
The three datasets used are COCOMO 81 dataset, 
NASA 93 dataset and COCOMO_SDR. 

The COCOMO 81 dataset consists of 63 
projects which uses COCOMO model as described in 
section 2.1. Each project is described by its 17 cost 
drivers, 5 scale factors, the software size measured in 
KDSI (Kilo Delivered Source Instructions), the actual 
effort, total defects and the development time in months. 
The NASA 93 dataset consists of 93 NASA projects from 
different centres for various years. It consists of 26 
attributes: 17 standard COCOMO-II   cost drivers and 5 
scale factors in the range Very_Low to Extra_High, lines 
of code measure (KLOC), the actual effort in person 
months, total defects and the development time in 
months. 

The COCOMO_SDR dataset is from Turkish 
Software Industry. It consists of data from 12 projects 
and 5 different software companies in various domains. 
It has 24 attributes: 22 attributes from COCOMO II 
model, one being KLOC and the last being actual effort 
in man months.  

The entire dataset is divided into two sets, 
training set and validation set in the ratio of 80:20 to get 
more accuracy of prediction. The proposed model is 
trained with the training data and tested with the test 
data. 

The evaluation consists in comparing the 
accuracy of the estimated effort with the actual 
effort. A common criterion for the evaluation of cost 
estimation model is the Magnitude of Relative Error 
(MRE) and is defined as in Eq. 4. 

             MRE =               (4) 

The MRE values are calculated for each project 
in the validation set, while mean magnitude of relative 
error (MMRE) computes the average of MRE over N 
projects. 

                                                  (5) 

Another evaluation criterion is MdMRE, which 
measures the median of all MRE’s. MdMRE is less 
sensitive to extreme values. It exhibits a similar pattern 
to MMRE but it is more likely to select the true model if 
the underestimation is served. 

Since MRE, MMRE and MdMRE are the most 
common evaluation criteria, they are adopted as the 
performance evaluators in the present paper. 

V. Results and Discussion 

This section presents and discusses the results 
obtained when applying the proposed neural network 
model to the COCOMO 81, NASA 93 and 
COCOMO_SDR datasets. The model is implemented in 
Matlab. The MRE, MMRE and MdMRE values are 

A Simple Neural Network Approach to Software Cost Estimation
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calculated for the projects in the validation set for all the 
three datasets. These values are then compared with 
the COCOMO model.  

Table 3 shows the results and comparison on 
COCOMO dataset. It also contain results given by Ch. 
Satyananda Reddy and KVSVN Raju [11] for the 
corresponding projects. For example, in the case of 
Project ID 5 it is 7.44 for COCOMO model, 5.08 for the 
model proposed by Ch. Satyananda Reddy and KVSVN 
Raju and 4.012 for the proposed model. The Mean 
Magnitude of Relative Error (MMRE) for the entire 
validation set is 15.938 for the COCOMO model, 8.745 
for the model proposed by Ch. Satyananda Reddy and 
KVSN Raju and 3.546 for the proposed model. The 
Median of MRE (MdMRE) for the entire validation set is 
12.4 % for the COCOMO model, 9.73% for the model 
proposed by Ch. Satyananda Reddy and KVSN Raju 
and 3.67% for the proposed model. Fig. 2 shows the 
graphical representation of MRE values for the three 
models for COCOMO 81 dataset. There is a decrement 
in the relative error using the proposed model. The 
results obtained thus suggest that the proposed 
architecture can be applied for accurately predicting the 
software costs.  

Table 4 shows the results and comparison on 
NASA 93 dataset.  Here also, there is a decrease in the 
relative error using the proposed model.  For example, 
the relative error calculated for Project ID 30 is 8.81 for 
COCOMO model, and 3.34 for our proposed model.  
The relative error calculated for Project ID 62 is 13.2 for 

COCOMO model, and 5.00 for our proposed model.  
The Mean

 

Magnitude of Relative Error (MMRE) for the 
entire validation set is 12.746 and 4.349 for the 
COCOMO model and our proposed model

 

respectively. 
The MdMRE for the entire validation set is 13.43% for the 
COCOMO model and 4.46% for our proposed model. 
Fig. 3 shows the graphical representation of MRE values 
for the two models.

 

For COCOMO_SDR dataset, COCOMO II 
model performs very poorly. For Project ID 1, it has 
estimated effort as 2241.4 whereas the actual effort is 1 
and with our proposed model it is 1.24. Similarly, for 
Project ID 2 COCOMO II effort is 901.6; its actual effort 
is 2 and the estimated is 1.95.  Table 5 shows the 
estimated effort and their MRE values using the 
proposed model on COCOMO_SDR dataset. MMRE 
value for the estimated effort is 6.34. The

 

MdMRE for the 
entire validation set is 4.62% for the proposed model. 
Fig. 4 shows the bar graph representation of actual 
effort values and estimated effort values with the 
proposed model for COCOMO_SDR. The bar graph 
shows that the estimated effort is very close to the 
actual effort.

 

The results obtained thus, suggest that the 
proposed model outperformed the COCOMO model 
and the model given by Ch. Satyananda Reddy and 
KVSN

 

Raju in terms of all the discussed evaluation 
criteria i.e, MRE, MMRE and MdMRE. It can be applied 
for accurately predicting the software costs. 

 

Table 3

 

:

 

Comparison of MRE for the three models on COCOMO 81

 

 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 

S.No

 

Project ID

 

MRE(%) using

 

COCOMO model

 

MRE(%) using

 

Model proposed by 
Satyananda Reddy

 

MRE(%) using 
proposed model

 
 

1

 

5

 

7.44

 

5.08

 

4.012

 

2

 

12

 

19.83

 

6.8

 

3.98

 

3

 

30

 

6.49

 

3.24

 

1.77

 

4

 

38

 

50.98

 

15.34

 

3.59

 

5

 

40

 

12.4

 

11.1

 

4.16

 

6

 

45

 

5.35

 

4.59

 

4.01

 

7

 

47

 

16.4

 

10.06

 

3.46

 

8

 

59

 

8.66

 

4.92

 

3.67

 

9

 

61

 

13.1

 

12.5

 

3.86

 

10

 

62

 

6.22

 

9.73

 

2.97

 

11

 

63

 

19.95

 

12.84

 

3.53
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Table 4  : Comparison of MRE on NASA93                          
         Table 5 : Comparison of effort on COCOMO_SDR 
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Figure 3 : Comparison of the Models on NASA93 

dataset 

 
 
                                  
                                   
 

 Figure 4 :
 
Comparison of Actual vs. Estimated effort on COCOMO_SDR dataset

 

S.No.  Project 
ID  

Actual 
Effort  

Estimated 
Effort  

MRE  (%)  

1  1  1  1.24  24  
2  2  2  1.95  2.5  
3  3  4.5  4.33  3.77  
4  4  3  2.90  3.33  
5  5  4  3.83  4.25  
6  6  22  20.37  7.4  
7  7  2  1.90  5  
8  8  5  4.8  4  
9  9  18  16.77  6.8  

10  10  4  3.8  5  
11  11  1  1.06  6  
12  12  2.1  2.03  3.33  

S.No 
Project 

ID 

MRE(%) using
 COCOMO 

model
 

MRE(%) using
 proposed 

model
 1.

 
1
 

9.33
 

3.90
 2.

 
5
 

8.84
 

3.39
 3.

 
15
 

16.75
 

4.25
 4.

 
25
 

14.09
 

4.11
 5.

 
30
 

8.81
 

3.34
 6.

 
42
 

13.9
 

5.00
 7.

 
54
 

13.67
 

4.89
 8.

 
60
 

11.78
 

4.93
 9.

 
62
 

13.2
 

5.00
 10.

 
75
 

17.09
 

4.68
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VI. Conclusion 

Software development cost estimation is a 
challenging task for both the industrial as well as 
academic communities. The accurate predictions during 
the early stages of development of a software project 
can greatly benefit the development team.  There are 
several effort estimation models that can be used in 
forecasting software development effort. 

In the paper, Feed Forward Back Propagation 
model of neural network is used which maps the 
COCOMO model. The model used identity function at 
the input layer and sigmoidal function at the hidden and 
output layer. The model incorporates COCOMO dataset 
and COCOMO NASA 2 dataset to train and to test the 
network. Based on the experiments performed, it is 
observed that the proposed model outscored COCOMO 
model and the model proposed by Ch. Satyananda 
Reddy and KVSN Raju. Future research can replicate 
and confirm this estimation technique with other 
datasets for software cost estimation. Furthermore, the 
utilization of other neural networks architecture can also 
be applied for estimating software costs.  This work can 
also be extended using Neuro Fuzzy approach.  
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