
© 2013. Anupama Kaushik, A.K. Soni & Rachna Soni. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Neural & Artificial Intelligence
Volume 13 Issue 1 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Simple Neural Network Approach to Software Cost Estimation
 By Anupama Kaushik, A.K. Soni & Rachna Soni

 Sharda University Greater Noida, India

Abstract - The effort invested in a software project is one of the most challenging task and most
analyzed variables in recent years in the process of project management. Software cost estimation
predicts the amount of effort and development time required to build a software system. It is one of
the most critical tasks and it helps the software industries to effectively manage their software
development process. There are a number of cost estimation models. Each of these models have
their own pros and cons in estimating the development cost and effort. This paper investigates the
use of Back-Propagation neural networks for software cost estimation. The model is designed in
such a manner that accommodates the widely used COCOMO model and improves its performance.
It deals effectively with imprecise and uncertain input and enhances the reliability of software cost
estimates. The model is tested using three publicly available software development datasets. The
test results from the trained neural network are compared with that of the COCOMO model. From the
experimental results, it was concluded that using the proposed neural network model the accuracy of
cost estimation can be improved and the estimated cost can be very close to the actual cost.

Keywords : artificial neural networks, back-propagation networks, COCOMO model, project
management, soft computing techniques, software effort estimation.

GJCST-D Classification : B.2.m

A Simple Neural Network Approach to Software Cost Estimation

Strictly as per the compliance and regulations of:

A Simple Neural Network Approach to Software
Cost Estimation

Anupama Kaushik α, A.K. Soni σ & Rachna Soni ρ

Abstract - The effort invested in a software project is one of the
most challenging task and most analyzed variables in recent
years in the process of project management. Software cost
estimation predicts the amount of effort and development time
required to build a software system. It is one of the most
critical tasks and it helps the software industries to effectively
manage their software development process. There are a
number of cost estimation models. Each of these models have
their own pros and cons in estimating the development cost
and effort. This paper investigates the use of Back-
Propagation neural networks for software cost estimation. The
model is designed in such a manner that accommodates the
widely used COCOMO model and improves its performance. It
deals effectively with imprecise and uncertain input and
enhances the reliability of software cost estimates. The model
is tested using three publicly available software development
datasets. The test results from the trained neural network are
compared with that of the COCOMO model. From the
experimental results, it was concluded that using the proposed
neural network model the accuracy of cost estimation can be
improved and the estimated cost can be very close to the
actual cost.
Keywords : artificial neural networks, back-propagation
networks, COCOMO model, project management, soft
computing techniques, software effort estimation.

I. Introduction

oftware cost estimation is one of the most
significant activities in software project
management. It refers to the predictions of the

likely amount of effort, time and staffing levels required
to build a software system. The effort prediction aspect
of software is made at an early stage during project
development, when the costing of the project is
proposed for approval. It is concerned with the
prediction of the person hour required to accomplish the
task. However, estimates at the early stages of the
development are the most difficult to obtain because
very little is known about the project and the product at
the beginning. So, estimating software development
effort remains a complex problem and it continues to
attract research attention. There are several cost
estimation techniques proposed and they are grouped
into two major categories: (1) Parametric models or
Algorithmic models, which uses a mathematical formula

Author α : Department of IT Maharaja Surajmal Institute of Tech.
Delhi, India. E-mail : thisisanupama@gmail.com
Author σ : Department of IT Sharda University Greater Noida, India.
Author ρ : Department of C.S. and Applications DAV College for Girls
Yamuna Nagar, India.

to predict project cost based on the estimates of project
size, the number of software engineers, and other
process and product factors [1]. These models can be
built by analysing the costs and attributes of completed
projects and finding the closest fit formula to actual
experience. (2) Non Parametric models or Non
algorithmic models which are based on fuzzy logic (FL),
artificial neural networks (ANN) and evolutionary
computation (EC). In this paper, we focus on non
parametric cost estimation models based on artificial
neural networks, and particularly Back-Propagation
networks. Neural networks have learning ability and are
good at modelling complex nonlinear relationships.
They also provide more flexibility to integrate expert
knowledge into the model. There are many software
cost estimation models that have been developed using
neural networks over the years. The use of radial basis
function neural networks for software effort estimation is
well described by many researchers [2, 3 and 4]. The
clustering algorithms used in those designs are the
conventional algorithms.

K. Vinay Kumar et al. [5] Uses wavelet neural
networks for predicting software development cost. B.
Tirimula Rao et al. [6] provided a novel neural network
approach for software cost estimation using functional
link artificial neural network. G. Witting and G. Finnie [7]
uses back propagation learning algorithms on a
multilayer perceptron in order to predict development
effort. N. Karunanitthi et al. [8] reports the use of neural
networks for predicting software reliability including
experiments with both feed forward and Jordan
networks. N. Tadayon [9] also reports the use of neural
network with a back propagation learning algorithm.
However it was not clear how the dataset was divided
for training and validation purposes. T.M. Khoshgoftaar
et al.[10] presented a case study considering real time
software to predict the testability of each module from
source code static measures. Ch. Satyananda Reddy
and KVSVN Raju [11] proposed a cost estimation model
using multi layer feed forward neural network.
Venkatachalam [12] also investigated the application of
artificial neural network (ANN) to software cost
estimation.

Artificial neural networks are the promising
techniques to build predictive models. So, there is
always a scope for developing effort estimation models
with better predictive accuracy.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

S

II. Overview of the Models and
Techniques sed

a) COCOMO II Model
The COCOMO model, is the best known

algorithmic cost model published by Barry Boehm in
1981 [1]. It was developed from the analysis of sixty
three software projects. It is a hierarchy of software cost
estimation models, which includes Basic, Intermediate
and Detailed sub models. It was the most cited and
plausible of all the traditional cost estimation models.
COCOMO II is the revised version of the original
COCOMO and is tuned to the life cycle practices of the
21st century. It also provides a quantitative analytic
framework, and set of tools and techniques for
evaluating the effects of software technology
improvements on software life cycle costs and
schedules. It consists of three sub models and they are:

• Application Composition Model: This model is
suitable for quickly developed applications using
interoperable components like components based
on GUI builders and is based on new object point’s
estimation.

• Early Design Model: This model is used in the early
stages of a software project and can be used in
Application Generator, System Integration, or
Infrastructure Development Sector. It uses
Unadjusted Function Points (UFP) as the measure
of size.

• Post Architecture Model: This is the most detailed of
the three and is used after the overall architecture
for the project has been designed. One could use
function points or LOC as size estimates with this
model. It involves the actual development and
maintenance of a software product.

COCOMO II describes 17 cost drivers and 5
scale factors that are used in the Post Architecture
model. The cost drivers for COCOMO II are rated on a
scale from very low to extra high. Their product is used
to adjust the nominal effort. Table 1 lists COCOMO II
cost drivers along with their multipliers. Scale factor is a
particular characteristic of the software development
that has an exponential effect of increasing or
decreasing the amount of development effort and they
are Precedentness, Development flexibility,
Architecture/Risk resolution, Team cohesion and
Process maturity. These factors are rated on a six point
scale i.e., very low, low, nominal, high, very high and
extra high as given in Table 2.
COCOMO II post architecture model is given as:

PM = A × [× (1)

Where PM is the effort expressed in person
months, A is a multiplicative constant, size is the
projected size of the software project expressed in
thousands of lines of code KLOC, EMi (i=1,2....17) are

effort multipliers and SFi (i=1,2....5) are exponent scale
factors.

b) Artificial Neural Networks
An artificial neural network (ANN) is an efficient

information processing system which resembles in
characteristics with a biological neural network. ANN’s
possess large number of highly interconnected
processing elements called neurons. Each neuron is
connected with the other by a connection link. Each
connection link is associated with weights which contain
information about the input signal. This information is
used by the neuron net to solve a particular problem.
Each neuron has an internal state of its own. This
internal state is called the activation level of neuron,
which is the function of the inputs the neuron receives.
There are a number of activation functions that can be
applied over net input such as Gaussian, Linear,
Sigmoid and Tanh. It is the Sigmoid function that is the
most frequently used in neural nets. Thus, the models
of ANN are specified by the three basic entities
namely [13]:
1. The model’s synaptic interconnections;
2. The training or learning rules adopted for updating

and adjusting the connection weights;
3. Their activation functions.

The neural network process starts by
developing the structure of the network and establishing
the technique used to train the network using an existing
data set. Neural network architectures are divided into
two groups:
1. Feed forward networks where no loops in the

network path occur.
2. Feedback networks that have recursive loops.

A Simple Neural Network Approach to Software Cost Estimation

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

24

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

U

Table 1 : COCOMO II cost drivers with multipliers

Table 2 : COCOMO II Scaling Factors

The most common architecture of neural
networks which is used in software cost estimation is the
Back-Propagation trained Feed Forward networks [14,
15]. The training algorithm of back propagation involves
four stages:

1.

Initialization of weights

2.

Feed forward

3.

Back Propagation of errors

4.

Updation of the weights and biases

III.

Proposed Work

The performance of a neural network depends
on its architecture and their parameter settings. There
are many parameters governing the architecture of the
neural network including the number of layers, the
number of nodes in each layer, the transfer function in
each node, learning algorithm parameters and the
weights which determine the connectivity between
nodes. There is no rule which determines the ideal
parameter settings but even a slight parameter changes
can cause major variations in the results of almost

all

networks. This property of the neural network is
captured in the present work for predicting the software
costs. The neural network model proposed is based on
multi layer feed forward neural network and it uses the
architecture

given by

Ch. Satyananda Reddy and

KVSVN Raju [11]. The model accommodates the
COCOMO II model.

The aim of this work is to evaluate the results of

software cost estimation using COCOMO II by varying
the activation functions at the input, hidden and the
output layers. The model proposed uses the identity
function at the input layer which is defined by

The hidden and the output layer uses unipolar sigmoid
function defined by

.

This function is especially advantageous to use
in neural networks trained by back-propagation
algorithms. Because it is easy to distinguish, and this
can interestingly minimize the computation capacity for
training.

a)

Architecture of the Neural Network Model

The proposed structure of the neural network
accommodates the COCOMO II post architecture model
given by Eq. 1. The use of neural network to estimate
PM (person months) in Eq. 1 requires twenty four input
nodes in the input layer which corresponds to seventeen
EM’s, five SF’s and two bias values. The COCOMO
model which is a non linear model is transformed into a
linear model using natural logarithms as shown in Eq. 2.

S.No Cost
Driver

Very
Low

Low Nominal High Very
High

Extra
High

1 RELY 0.75 0.88 1.00 1.15 1.39 --
2 DATA -- 0.93 1.00 1.09 1.19 --
3 CPLX 0.75 0.88 1.00 1.15 1.30 1.66
4 RUSE 0.91 1.00 1.14 1.29 1.49
5 DOCU 0.89 0.95 1.00 1.06 1.13
6 TIME -- -- 1.00 1.11 1.31 1.67
7 STOR -- -- 1.00 1.06 1.21 1.57
8 PVOL -- 0.87 1.00 1.15 1.30 --
9 ACAP 1.50 1.22 1.00 0.83 0.67 --

10 PCAP 1.37 1.16 1.00 0.87 0.74 --
11 PCON 1.24 1.10 1.00 0.92 0.84 --
12 AEXP 1.22 1.10 1.00 0.89 0.81 --
13 PEXP 1.25 1.12 1.00 0.88 0.81 --
14 LTEX 1.22 1.10 1.00 0.91 0.84 --
15 TOOL 1.24 1.12 1.00 0.86 0.72 --
16 SITE 1.25 1.10 1.00 0.92 0.84 0.78
17 SCED 1.29 1.10 1.00 1.00 1.00 --

Scaling Factors Very
Low

Low Nominal High Very
High

Extra
High

Precedentness 6.20 4.96 3.72 2.48 1.24 0.00
Development Flexibility 5.07 4.05 3.04 2.03 1.01 0.00
Architecture/Risk
Resolution

7.07 5.65 4.24 2.83 1.41 0.00

Team Cohesion 5.48 4.38 3.29 2.19 1.10 0.00
Process Maturity 7.80 6.24 4.68 3.12 1.56 0.00

A Simple Neural Network Approach to Software Cost Estimation

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

25

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

Ln (PM)=ln(A)+ln(EM1)+ln(EM2)+……+ln(EM17)+[1.01+SF1+……+SF5]*ln(size) (2)

The above equation becomes :

CPM = [b1+x1*z1+x2*z2+……+x17*z17]+ [b2+z18+……..+z22]*[yi+ln(size)] (3)

Where,
CPM=ln(PM);
z1=ln(EM1); z2=ln(EM2);……;z17=ln(EM17);
z18=SF1;……..;z22=SF5;
b1 and b2 are the biases and the coefficients xi and yi are
the additional terms used in the model which act as the
weights from the input layer to the hidden layer.

The COCOMO II model as given by Eq. 3 is
shown in Fig.1. This network consists of two hidden
layer nodes CEM and CSF that take into account the
contribution of effort multipliers and scale factors. CPM is
the node of the output layer where we get the value of
ln(PM) which is the desired output of the model. In the
above network all the original EMi and SFi values of

COCOMO II are pre processed to ln(EMi) and ln(SFi)
and used as input nodes. The two bias values are
denoted by b1 and b2, which are ln(A) and 1.01
respectively. The size of the product is not considered
as one of the inputs to the network but as a cofactor for
the initial weights for scale factors (SF). The weights
associated to the input nodes connected to the hidden
layer are denoted by xi for for each input
ln(EMi) and b1. On the other hand, the weights
associated to the hidden layer for each ln (SFi) input
nodes and b2 are yi+ln (size) for . These
weights are initialized as xi=1and yi=0. The weights
from the hidden layer to the output layer are denoted by
p and q and initialized as p=q=1.

Figure 1 : Neural Network Architecture

b) Training Algorithm
The feed forward back propagation procedure

is used to train the network by iteratively processing a
set of training samples and comparing the network’s
prediction with the actual value. For each training
sample, the weights are modified so as to minimize the
error between the networks predicted value and the
actual value. The following algorithm is used for training
the proposed network and for calculating the new set of
weights:

 Step

2: Perform steps 3-10 when stopping
condition is false.

 Step 3: Perform steps 4-9 for each training pair.

 Step 4: Each input unit receives input signal and
sends it to the hidden unit.

 Step

5: Each hidden unit CEM

and CSF sums its
weighted input signals to calculate net input given by:

 CEM

= b1+ zi*xi for i=1 to 17

CSF

= b2+ zi*(yi

+ ln(size)) for i=18 to 22

b1

z1

z17

b2

z18

z22

CEM

CSF

CPM

xi

yi+ln(size)

p

q

A Simple Neural Network Approach to Software Cost Estimation

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

26

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

Step 1: Initialize the weights and learning rate α
(

Apply sigmoidal activation function over CEM
and CSF and send the output signal from the hidden unit
to the input of output layer units.

Step 6: The output unit CPM, calculates the net
input given by:

CPM =CEM*p+CSF*q

Apply sigmoidal activation function over CPM to
compute the output signal Eest.

Step 7: Calculate the error correction term as:
δ=Eact-Eest, where Eact is the actual effort from the
dataset and Eest is the estimated effort from step 6.
Step 8: Update the weights between hidden and the
output layer as:

p(new)=p(old)+ α* δ* CEM

q(new)=q(old)+ α* δ* CSF

Step 9: Update the weights and bias between
input and hidden layers as:

 xi(new)=xi(old)+ α* δEM*zi for i=1 to 17
 yi(new)=yi(old)+ α* δSF*zi for i=18 to 22
 b1(new)=b1(old)+ α* δEM
 b2(new)=b2(old)+ α* δSF

The error is calculated as

δEM= δ*p; δSF= δ*q ;

Step 10: Check for the stopping condition. The
stopping condition may be certain number of epochs
reached or if the error is smaller than a specific
tolerance.

Using this approach, we iterate forward and
backward until the terminating condition is satisfied. The
variable α used in the above formula is the learning rate,
a constant, typically having a value between 0 and 1.
The learning rate can be increased or decreased by the
expert judgment indicating their opinion of the input
effect. In other words the error should have more effect
on the expert’s indication that a certain input had more
contribution to the error propagation or vice versa. For
each project, the expert estimator can identify the
importance of the input value to the error in the
estimation. If none selected by the expert, the changes
in the weights are as specified by the learning algorithm.
The network should also be trained according to correct
inputs. For example, if during estimation ACAP (Analyst
Capability) is set as high but after the end of the project,
the management realizes that it was nominal or low,
then the system should not consider this as a network
error and before training the system, the better values of
cost factors should be used to identify the estimated
cost.

IV. Datasets and Evaluation Criteria

The data sets used in the present study comes
from PROMISE Software Engineering Repository data

set [16] made publicly available for research purpose.
The three datasets used are COCOMO 81 dataset,
NASA 93 dataset and COCOMO_SDR.

The COCOMO 81 dataset consists of 63
projects which uses COCOMO model as described in
section 2.1. Each project is described by its 17 cost
drivers, 5 scale factors, the software size measured in
KDSI (Kilo Delivered Source Instructions), the actual
effort, total defects and the development time in months.
The NASA 93 dataset consists of 93 NASA projects from
different centres for various years. It consists of 26
attributes: 17 standard COCOMO-II cost drivers and 5
scale factors in the range Very_Low to Extra_High, lines
of code measure (KLOC), the actual effort in person
months, total defects and the development time in
months.

The COCOMO_SDR dataset is from Turkish
Software Industry. It consists of data from 12 projects
and 5 different software companies in various domains.
It has 24 attributes: 22 attributes from COCOMO II
model, one being KLOC and the last being actual effort
in man months.

The entire dataset is divided into two sets,
training set and validation set in the ratio of 80:20 to get
more accuracy of prediction. The proposed model is
trained with the training data and tested with the test
data.

The evaluation consists in comparing the
accuracy of the estimated effort with the actual
effort. A common criterion for the evaluation of cost
estimation model is the Magnitude of Relative Error
(MRE) and is defined as in Eq. 4.

 MRE = (4)

The MRE values are calculated for each project
in the validation set, while mean magnitude of relative
error (MMRE) computes the average of MRE over N
projects.

 (5)

Another evaluation criterion is MdMRE, which
measures the median of all MRE’s. MdMRE is less
sensitive to extreme values. It exhibits a similar pattern
to MMRE but it is more likely to select the true model if
the underestimation is served.

Since MRE, MMRE and MdMRE are the most
common evaluation criteria, they are adopted as the
performance evaluators in the present paper.

V. Results and Discussion

This section presents and discusses the results
obtained when applying the proposed neural network
model to the COCOMO 81, NASA 93 and
COCOMO_SDR datasets. The model is implemented in
Matlab. The MRE, MMRE and MdMRE values are

A Simple Neural Network Approach to Software Cost Estimation

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

27

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

calculated for the projects in the validation set for all the
three datasets. These values are then compared with
the COCOMO model.

Table 3 shows the results and comparison on
COCOMO dataset. It also contain results given by Ch.
Satyananda Reddy and KVSVN Raju [11] for the
corresponding projects. For example, in the case of
Project ID 5 it is 7.44 for COCOMO model, 5.08 for the
model proposed by Ch. Satyananda Reddy and KVSVN
Raju and 4.012 for the proposed model. The Mean
Magnitude of Relative Error (MMRE) for the entire
validation set is 15.938 for the COCOMO model, 8.745
for the model proposed by Ch. Satyananda Reddy and
KVSN Raju and 3.546 for the proposed model. The
Median of MRE (MdMRE) for the entire validation set is
12.4 % for the COCOMO model, 9.73% for the model
proposed by Ch. Satyananda Reddy and KVSN Raju
and 3.67% for the proposed model. Fig. 2 shows the
graphical representation of MRE values for the three
models for COCOMO 81 dataset. There is a decrement
in the relative error using the proposed model. The
results obtained thus suggest that the proposed
architecture can be applied for accurately predicting the
software costs.

Table 4 shows the results and comparison on
NASA 93 dataset. Here also, there is a decrease in the
relative error using the proposed model. For example,
the relative error calculated for Project ID 30 is 8.81 for
COCOMO model, and 3.34 for our proposed model.
The relative error calculated for Project ID 62 is 13.2 for

COCOMO model, and 5.00 for our proposed model.
The Mean

Magnitude of Relative Error (MMRE) for the
entire validation set is 12.746 and 4.349 for the
COCOMO model and our proposed model

respectively.
The MdMRE for the entire validation set is 13.43% for the
COCOMO model and 4.46% for our proposed model.
Fig. 3 shows the graphical representation of MRE values
for the two models.

For COCOMO_SDR dataset, COCOMO II
model performs very poorly. For Project ID 1, it has
estimated effort as 2241.4 whereas the actual effort is 1
and with our proposed model it is 1.24. Similarly, for
Project ID 2 COCOMO II effort is 901.6; its actual effort
is 2 and the estimated is 1.95. Table 5 shows the
estimated effort and their MRE values using the
proposed model on COCOMO_SDR dataset. MMRE
value for the estimated effort is 6.34. The

MdMRE for the
entire validation set is 4.62% for the proposed model.
Fig. 4 shows the bar graph representation of actual
effort values and estimated effort values with the
proposed model for COCOMO_SDR. The bar graph
shows that the estimated effort is very close to the
actual effort.

The results obtained thus, suggest that the
proposed model outperformed the COCOMO model
and the model given by Ch. Satyananda Reddy and
KVSN

Raju in terms of all the discussed evaluation
criteria i.e, MRE, MMRE and MdMRE. It can be applied
for accurately predicting the software costs.

Table 3

:

Comparison of MRE for the three models on COCOMO 81

S.No

Project ID

MRE(%) using

COCOMO model

MRE(%) using

Model proposed by
Satyananda Reddy

MRE(%) using
proposed model

1

5

7.44

5.08

4.012

2

12

19.83

6.8

3.98

3

30

6.49

3.24

1.77

4

38

50.98

15.34

3.59

5

40

12.4

11.1

4.16

6

45

5.35

4.59

4.01

7

47

16.4

10.06

3.46

8

59

8.66

4.92

3.67

9

61

13.1

12.5

3.86

10

62

6.22

9.73

2.97

11

63

19.95

12.84

3.53

A Simple Neural Network Approach to Software Cost Estimation

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

28

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

Table 4 : Comparison of MRE on NASA93
 Table 5 : Comparison of effort on COCOMO_SDR

0

10

20

30

40

50

60

5 30 40 47 61 63

M
RE

 %

Validation Set Projects

Comparison of the Three Models

COCOMO
Model

Model
proposed
by
Satyanad
a Reddy

 Figure 2 :

Comparison of the Models on COCOMO
dataset

Figure 3 : Comparison of the Models on NASA93

dataset

 Figure 4 :

Comparison of Actual vs. Estimated effort on COCOMO_SDR dataset

S.No. Project
ID

Actual
Effort

Estimated
Effort

MRE (%)

1 1 1 1.24 24
2 2 2 1.95 2.5
3 3 4.5 4.33 3.77
4 4 3 2.90 3.33
5 5 4 3.83 4.25
6 6 22 20.37 7.4
7 7 2 1.90 5
8 8 5 4.8 4
9 9 18 16.77 6.8

10 10 4 3.8 5
11 11 1 1.06 6
12 12 2.1 2.03 3.33

S.No
Project

ID

MRE(%) using
 COCOMO

model

MRE(%) using
 proposed

model
 1.

1

9.33

3.90
 2.

5

8.84

3.39
 3.

15

16.75

4.25
 4.

25

14.09

4.11
 5.

30

8.81

3.34
 6.

42

13.9

5.00
 7.

54

13.67

4.89
 8.

60

11.78

4.93
 9.

62

13.2

5.00
 10.

75

17.09

4.68

A Simple Neural Network Approach to Software Cost Estimation

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

29

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

VI. Conclusion

Software development cost estimation is a
challenging task for both the industrial as well as
academic communities. The accurate predictions during
the early stages of development of a software project
can greatly benefit the development team. There are
several effort estimation models that can be used in
forecasting software development effort.

In the paper, Feed Forward Back Propagation
model of neural network is used which maps the
COCOMO model. The model used identity function at
the input layer and sigmoidal function at the hidden and
output layer. The model incorporates COCOMO dataset
and COCOMO NASA 2 dataset to train and to test the
network. Based on the experiments performed, it is
observed that the proposed model outscored COCOMO
model and the model proposed by Ch. Satyananda
Reddy and KVSN Raju. Future research can replicate
and confirm this estimation technique with other
datasets for software cost estimation. Furthermore, the
utilization of other neural networks architecture can also
be applied for estimating software costs. This work can
also be extended using Neuro Fuzzy approach.

References références referencias

1. Boehm, B.W., (1981) Software Engineering
Economics, Prentice Hall, Englewood Cliffs, NJ.

2. Idri A.; Zakrani A.; Zahi A., (2010), Design of radial
basis function neural networks for software effort
estimation, IJCSI International Journal of Computer
Science 7(4), 11-17.

3. Idri A.; Zahi A.; Mendes E.; Zakrani A., (2007),
Software Cost Estimation Models using Radial Basis
Function Neural Networks, International Conference
on Software process and product measurements,
21-31.

4. Prasad Reddy P.V.G.D; Sudha K.R; Rama Sree P;
Ramesh S.N.S.V.S.C, (2010) Software Effort
Estimation using Radial Basis and Generalized
Regression Neural Networks, Journal of computing
2(5), 87-92.

5. Vinay Kumar K.; Ravi V.; Mahil Carr; Raj Kiran N.,
(2008). Software development cost estimation using
wavelet neural networks, The Journal of Systems
and Software 81(11), 1853-1867.

6. Tirimula Rao B.; Sameet B.; Kiran Swathi G.; Vikram
Gupta K.; Ravi Teja;Ch, Sumana S., (2009), A Novel
Neural Network Approach for Software Cost
Estimation using Functional Link Artificial Neural
Network (FLANN), International Journal of Computer
Science and Network Society 9(6), 126-131.

7. Witting G.; Finnie G.,(1994), Using Artificial Neural
Networks and Function Points to estimate 4GL
Software Development Effort, Journal of Information
Systems,1(2), 87-94.

8. Karunanitthi N.; Whitely D.; and Malaiya Y.K., (1992),
Using Neural Networks in Reliability Prediction. IEEE
Software Engineering, 9(4), 53-59.

10. Khoshgoftaar T.M.; Allen E.B.; and Xu Z., (2000).
Predicting testability of program modules using a
neural network. Proceedings of 3rd IEEE
Symposium on Application Specific Systems and
Software Engineering Technology, 57-62.

11. Reddy C.S.; Raju KVSN, (2009). An Improved Fuzzy
Approach for COCOMO’s Effort Estimation using
Gaussian Membership Function. Journal of software
4(5), 452-459.

12. Venkatachalam A.R., (1993). Software Cost
Estimation using artificial neural networks.
Proceedings of the International Joint Conference
on Neural Networks, 987-990.

13. Sivanandam S.N.; Deepa S.N., (2007). Principles of
Soft Computing, Wiley, India.

14. Molokken K.; Jorgensen M., 2003. A review of
software surveys on software effort estimation,
Proceedings of IEEE International Symposium on
Empirical Software Engineering ISESE, 223-230.

15. Huang S.; Chiu N., (2009). Applying fuzzy neural
network to estimate software development effort,
Proceedings of Applied Intelligence Journal 30(2),
73-83.

16. www.promisedata.org

A Simple Neural Network Approach to Software Cost Estimation

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

30

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

9. Tadayon N., (2005). Neural Network Approach for
Software Cost Estimation. Proceedings of the
International Conference on Information Techno-
logy: Coding and Computing (ITCC’05) 2(2),
815-818.

Global Journals Inc. (US)

Guidelines Handbook

www.GlobalJournals.org

	A Simple Neural Network Approach to Software Cost Estimation
	Author's
	Keywords
	I. Introduction
	II. Overview of the Models and Techniques Used
	a) COCOMO II Model
	b) Artificial Neural Networks

	III.Proposed Work
	a)Architecture of the Neural Network Model
	b) Training Algorithm

	IV. Datasets and Evaluation Criteria
	V. Results and Discussion
	VI. Conclusion
	References références referencias

