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5

Abstract6

In software engineering, we have identified and described the model correspondence problem.7

To Describe system architecture and artifacts uses models and diagrams. Models contains8

series of versions. To understand how versions correspondence are difficult. So, we designed a9

framework based on Search and Ammolite algorithms, which can cardinally finds the10

correspondence software models. Models are represented as graphs whose nodes have11

attributes (name, edge, label, connections). For a given diagram pair, it performs different12

individual matches such as pair-wise match, Split-Merge Match and Drop match and then13

combine all matches together to design a ADL model. Every ADL Model has its14

correspondence score for rating quality candidates. To find best Correspondence among the15

given ADL models uses Search and Ammolite Algorithms.16

17

Index terms— Decision, Design Artifacts, Elements, Reasoning Principles, Semantic Information, Syntactic18
Information, Visual Information.19

1 Introduction20

n Architecture is defined as building for humans, and being an architect is having the spirit to build for humans. A21
framework is a collection of classes and applications, libraries of SDKs and APIs to help the different components22
all work together. In engineering discipline an essential part of quality is control of change. That dictates the23
need to review and understand changes prior to accept them. Models and Diagrams are a primary design artifacts24
in this environment, this means being able to compare diagrams to identify correspondence and discrepancies25
between them. In large-scale IT system development techniques have long existed for comparing textual artifacts,26
somewhat less work has been reported concerning comparisons of the diagrams and model that are common.27
The main problem of this paper is to correspondence between a pair of diagrams (a mapping between elements28
of one diagram and elements of the other) and introduce a Bayesian approach to solve the problem. The29
application which are in the central to modern IT systems development process includes structured representation30
of requirements, business process workflows, system overviews, architectural specifications of systems, network31
topologies, object designs, state transition diagrams, and control and data flow representation of code.32

2 a) Scenarios33

The system development life cycle has several application to find correspondence between models. A series of34
successive revisions of a model from design activity. There is a need to review and understand the nature of35
revisions as part of accepting them, rejecting them or merging them with other concurrent revisions and to36
identify correspondences and discrepancies is central to such activities. Model variants correspond is crucial for37
integration. Different collaboration may experiment with different paths of evolution of a model, resulting in a38
number of transient variants, with the intent that those branches deemed successful will be integrated back into a39
main stream. The use of multiple views of the architecture of the system by using many development approaches40
and methodologies [6]. The model we propose is made up of five main views [7]. ? The logical view, which is the41
object model of the design (when an object-oriented design method is used),42

? The process view, which captures the concurrency and synchronization aspects of the design, A43
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9 A) SEMANTICS AND DOMAIN-SPECIFIC KNOWLEDGE AS A BASIS

? The physical view, which describes the mapping (s) of the software onto the hardware and reflects its44
distributed aspect,45

? The development view, which describes the static organization of the software in its development46
environment.47

3 Traceability48

is the another important requirement for maintaining quality [10], [5]. Traceability between software artifact, such49
as requirements, design elements, code, test cases and defect reports. At finer level of granularity, traceability50
provides the ability to navigate between the elements of different artifacts such as individual software components,51
hardware nodes, requirements, non-functional requirements, and architectural decisions that reflects the design52
rationale for the system. The larger asset of reuse is the incorporation of reference architecture from a repository53
into a solution design.54

4 b) Contribution of the Paper55

In Present days, determining correspondences between models is a tedious, error-prone, timeconsuming, manual56
process. The main goal is to achieve an automated means of determining the correspondences, similar to57
techniques for automated comparison of textual artifacts. This requires us to answer several questions:58

? How do we represent models?59
? Which features of models must be represented?60
? What algorithms should be used to find correspondences? In this paper, provide answers to these questions.61

5 II.62

6 Diagram features63

We focus mainly on the problem of finding correspondences in the domain of IT architecture operational64
models [2], although the paper techniques have proven effective for other kinds of IT architecture models as65
well. Operational models are used by IBM Global Services architects as part of a development methodology66
for customized IT solutions. An operational model also includes model elements reflecting the key decisions67
constituting the rationale for the solution design.68

The main features of an operational model diagram can be abstracted to elements found in many other kinds69
of diagrams: [8] Nodes are grouped together semantically. For instance, in operational models, servers located70
in the same building may be grouped within a common region. Like nodes, groups have labels and relationship.71
For example, regions have an adjacency relationship that indicates a connection.72

Regions are discussed in greater detail below.73
The information represented by system diagrams can be broadly classified into three types: 1) syntactic74

information (e.g., nodes, labels, containment, and edges), 2) semantic information (e.g., types, defined semantic75
attributes), and 3) visual information (e.g., position, shape, and color of diagram elements). Leveraging all of76
these kinds of information is one of the major challenges of diagram matching.77

7 III.78

8 Model correspondence problem79

The model correspondence problem is the problem of finding the ”best” correspondence between the elements of80
two diagrams.81

9 a) Semantics and Domain-Specific Knowledge as a Basis82

The first issue is how to define ”best.” It may seem appealing to define ”best” as the correspondence that83
preserves a specific semantic relationship between the two diagrams, but this definition would be difficult to84
apply in practice, for several reasons. First, there are many possible semantic relationships between diagrams85
and it is hard to decide which applies. For example, in one case, we may have a diagram pair(??, ?? ? ), where86
?? ? is a revision of ??, with the semantic relation ”is a revision of.” In another case, ?? may be a conceptual87
description of a system and ?? ? a physical description, with the semantic relation ”realizes.”88

Second, even if the semantic relationship is known, defining it in precise detail would be difficult, and even a89
precise definition may not have sufficient information to find the best correspondence.90

Third, many diagrams found in practice have no formal semantics: They use informal notions of ”boxes” and91
”lines” to convey context-specific architectural notions.92

Either way, we conjecture that generic matching techniques can go a long way in finding ? Evidence takes93
the form of having similar or dissimilar features. For example, if two nodes have the same label, this is strong94
evidence that they match. If two nodes are at totally different positions in their respective diagrams, that is95
evidence that they do not match. ? For a node pair (n, n’) sometimes there is some evidence that n and n’ match96
and other evidence that n and n’ do not match. Practitioners will use their experience to weigh the relative97
significance of the different pieces of evidence and decide whether or not n and n’ match. ? The correspondence98
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can be filled in by identifying one-to-one matches using evidence about node pairs. Other kinds of evidence help99
suggest nonone-to-one matches when necessary. For example, if diagram D has a node n labeled ”Firewall and100
Access Control” and D’ has node n’1 labeled ”Firewall” and n’2 labeled ”Access Control,” the labels suggest that101
n matches to both n’1 and n’2. If n’1 and n’2 are both within the same container, this is further evidence that102
they may match to the same node in D.103

IV.104

10 Solution overview105

An overview of our solution, and it serves as a road map to Bayesian correspondence, which gives the mathematical106
and gives a mathematical description an algorithm.107

Our algorithm as Automated Matching of Models (AMMO). We explain the main ideas of the AMMO algorithm108
by tracing its behavior on a simple example diagram pair, HLV and LLV, as shown in Fig. 2. This diagram109
pair is highly simplified for presentation purposes, but it does exhibit some of the difficulties found in production110
models, such as non-obvious node matches and matches that are not one-to-one111

The tags B1; B2; . . . ; Q1; Q2; . . .; L1; L2; . . . ; W1; W2; . . . are only for ease of reference in this112
discussion and are not part of the actual node labels. Also, note that regions, such as ”L2: Application Zone,”113
contain nodes, such as ”B2: Application Services” and Our algorithm begins by computing a number of similarity114
values for each possible node pair consisting of a node from one diagram and a node from the other diagram,115
i.e., (??, ?? ? ) ? ?????? × ??????. A similarity value is computed for each feature from a predetermined116
set of features. For example, nodes with similar labels often match, so one of the features we work with is the117
textual label of a node, and one of the similarities we compute for a node pair is its label similarity-a value118
between 0 and 1 reflecting the string similarity between the node labels. A similarity value can be regarded as119
a ”raw similarity score” for a particular feature for a node pair. A similarity value in itself does not indicate120
whether pair of nodes match; that is, it is unclear whether a particular similarity is low or high with respect121
to the population. To transform a raw score consisting of a feature similarity value into a probability that a122
pair of nodes match. Given a probability distribution of the similarity values, based on similarities observed for123
matching and non-matching pairs in training data, Bayesian inference will convert the similarity of (??, ?? ? )124
into the probability that (??, ?? ? ) match. From Table 1 to Table 2 the probabilities resulting from Bayesian125
inference given the similarities. One can see that the probability of node B4 matching to Q6 is much higher than126
the probability of B4 matching to any other node. One can also see that B2 is approximately twice as likely127
to match to Q1 as it is to match to any other node. Finally, one can see that the probabilities of B1 and B3128
matching to any of the nodes in the second diagram are approximately equal, indicating that the label feature is129
inadequate in determining matches for these nodes. For some nodes, such as B1, label similarity does not help130
much in finding a match. In general, one evidencer is not usually enough to find the best match for a node.131
Thus, AMMO algorithm employs several evidencers. For example, it is noted previously that B2 appeared to132
correspond to Q1 based on label probabilities. However, a human expert would know intuitively that B2 should133
correspond to Q4, because both appear to be in similar positions in the two diagrams. For multiple evidencers134
need a mechanism for combining one kind of evidence with another. AMMO combines evidence using Bayesian135
inference on a joint probability distribution over all of the kinds of evidence. The results of combining the label136
and position evidence. Note that B2 now matches to Q4 with probability five times greater than any other node.137
Note as well that the possibilities concerning matches for other nodes have been narrowed down considerably.138
The evidencers combining obtained by both the label and position evidencers yielded a very probable match139
for B2. Beyond this, there is additional evidence that makes this match even more probable. B4, which is a140
neighbor of B2, matches Q6, which is a neighbor of Q4-having matching neighbors is additional evidence that141
B2 matches Q4. Our implementation includes a ”connection evidencer” that provides such evidence. Evidencers142
such as the label or position evidencers simple evidencers because they use only information about the given pair143
of nodes. In contrast, call evidencers like the connection evidencer complex evidencers because they use more144
than just information about a given pair of nodes to compute the similarity for that pair of nodes-they also use145
information about other pairs of nodes (in this case: neighboring nodes) that have already been determined to146
match. (one-to-many matches) and merges (many-to-one matches) are common in practice. Experts identify147
splits and merges by combining several pieces of evidence.148

For example, an expert might note the following characteristics of HLV and LLV: o C1 is close in position149
to each of P1, P2, and P3. o P1, P2, and P3 are interconnected. o The combination of P1, P2, and P3 taken150
together has connections to P4 and to P5, and these connections appear to match the connections from C1 to151
C2 and to C3.152

These characteristics, when taken together, indicate that C1 is likely to have split into P1, P2, and P3, i.e.,153
that C1 matches P1, P2, and P3.154

11 f) Drops155

It is also possible that a node in one diagram does not match any node in the other diagram. The probability156
that a node is dropped as the drop probability, denoted as P_DROP. This probability is determined empirically157
based on training data.158
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16 D) SINGULAR CORRESPONDENCE PROBABILITY MODEL

12 g) Correspondence Score159

The entire correspondence between the two diagrams from individuals matches between nodes. A Naïve approach160
to find ”best” correspondence between two diagrams would be to include the node pairs with the highest pair161
probabilities. Table ?? below shows the results of combining all evidence about pairs for above example. If162
only to consider the pair probabilities shown in Table ?? determine the ”best” correspondence to be Corr1 =163
{(B1, Q2), (B2, Q4), (B3, Q5), (B4, Q6)}. However, this approach fails to yield the optimal correspondence for164
several reasons. First, although it might result in dropped nodes (when none of the chosen pairs involve a given165
node), it does not take into consideration the probability of those drops. For example, correspondence Corr1166
does not include a match for Q1, and thus, Q1 is a dropped node (as we have defined that above). However, if167
the probability of a node being dropped is extremely low, it might have been better for Corr1 to include a split168
(as that was defined above) involving Q1, resulting in a correspondence which is more likely overall. Second,169
although it might result in splits and merges (when more than one of the chosen pairs involves a given node),170
this approach does not take into account the probability of these splits and merges. Third, greedily choosing the171
best pairs, one after the other, does not take into account the fact that choosing a particular pair match can raise172
or lower the probability of other pair matches, due to complex evidencers such as the connection evidencer.173

13 h) Complexity174

A correspondence using only simple node pair evidencers such as label and position, and restrict ourselves to175
correspondences in which all node matches are one-to-one, then need to find the maximum score correspondence176
using a polynomial-time algorithm based on maximum-weight bipartite matching. Using complex evidencers and177
allowing correspondences that are not one-to-one, the problem of identifying the maximum score correspondence178
is NP-hard.179

V.180

14 Bayesian correspondence model a) Correspondences and181

Matches182

Let ?? and ?? ? be diagrams whose nodes are sets ?? and ?? ? , respectively. Our core notion is the diagram183
correspondence, which equates sets of nodes in ?? with sets of nodes in ?? ? , but also allows nodes to be left184
out. Formally, Q is a ?????????????? ?????????????????? of a set ?? iff ?? = {??1, ??2, . . }, where each ??185
?? ? ?? and ?? ?? ? ?? ?? = ? ; for all ?? ? ??. A diagram correspondence for nodes ?? and ?? ? of two186
diagrams is a tuple ?? = (??, ?? ? , ð�??”ð�??”), where ?? is a partial partition of ??; ?? ? is a partial partition187
of ?? ? ; ð�??”ð�??” ? ?? ? ?? ? is one to one: b) Evidencers Evidencers provide the basis for determining the188
probability that a pair of nodes match, based on one kind of evidence. Informally, an evidencer consists of three189
parts: 1) a definition of a node feature (e.g., a node’s label), 2) a function that measures the similarity of two190
nodes based on that feature, and 3) a probability distribution of node pair similarity values in cases where the191
two nodes match, and a probability distribution of node pair similarity values in cases where the two nodes do192
not match.193

Formally, an evidencer consists of a similarity function ?? ?? and probability functions ?? ?? and ?? ?? .194
The similarity function is a function? ? (?, ? ? ), where (?, ? ? ) is a node pair from (?, ? ? ), where ? ? is a195
diagram derived from E by an unspecified procedure ?. We model ? by asserting that ? ? (?, ? ? ) is a random196
variable. The range of ? ? is arbitrary: The set of values used to measure similarity can be chosen to suit the197
evidencer. For example, the label evidence similarity function ? ? ?, ? ? = ???????(????? ? , ????? ? ) returns198
a real number in the interval [0,1] (??????? is a function199

15 c) Correspondence Probability200

In order to use the evidence to find the best correspondence, model the best correspondence as a random variable201
? that can take any diagram correspondence as its value. Estimation of the best correspondence is the one that202
has the highest probability given in the evidence. ? = arg max ? ?(?|?).203

16 d) Singular Correspondence Probability Model204

The singular correspondence probability model defines the probability of a singular correspondence conditional205
on the observed evidence.206

Let (?, ? ? , ð�??”) be a singular correspondence for diagrams containing nodes n and n0. We will use ?(?) to207
refer to the set of nodes in the partial partition ?.We use the notation (?, ?) to mean that the node ? in the first208
diagram does not match any node in the second diagram, and similarly for (?, ? ? ). Then,????? ? ? ?, ð�??” ?209
? ? ? ? ? ?, ? ? ? ?\? ? ? ?, ? ? |? ? ? ? ? \? ?210

Conditional independence allows us to define the correspondence probability as the product of the probability211
of the pairs:? ? ? = ?( ?, ? ? |? ?, ? ? ) (?,? ? )?????? (?)212

One-to-none match probability. We assume simply that a node maps to nothing with fixed probability ? ?,213
? = ? ?, ? = ? 0 . Choose the numerical value of ? 0 based on the empirical frequency of one-to-none214
pairs observed in training data. It may improve accuracy to develop a model of the probability that n maps to215

4



nothing based on the features of ?. However, in this paper have not implemented such models. One-to-one match216
probability model. By adopting a Bayesian model of the probability that one node matches another conditional217
on the evidence:? ?, ? ? |?(?, ? ? ) = ? ?, ? ? ?(?(?, ? ? )| ?, ? ? ) ?(? ?, ? ? )218

Because ?, ? ? and ?, ? ? are mutually exclusive events and exhaustive of the space of all possible outcomes219
with respect to (?, ? ? ), the denominator can be rewritten using a standard normalization technique to get:220
The factor ? ?, ? ? is referred to as a prior. ? ? and ? ? the prior by decomposing the match event into simpler221
events, and then, applying commonly used principles of prior selection. First, In this paper notice that the event222
?, ? ? decomposes into two events: ?, the event that ? matches to some node (i.e., ? is not dropped), and ?, the223
event that ? matches specifically to ? ? . Thus, ? ?, ? ? = ? ? ?(?|?). For ?(?), we use a simple empirical prior:224
? ? ? 1 ? ? 0 , where ? 0 is the Probability that a node is dropped, as observed in training. For ?(?|?), we use225
an indifference prior: Knowing only that ? matches to some node in ? ? , we assume that all nodes are equally226
likely, so ? ? ? = 1/|? ? |. This gives us our complete prior: ? ?, ? ? = (1 ? ? 0 )/|? ? |.? ?, ? ? |?(?, ? ? ) =227
? ?, ? ? ?(?(?, ? ? )| ?, ? ? ) ? ?, ? ? ? ? ? ?, ? ? ?, ? ? + ?( ?, ? ? ) ? ?(?(?, ? ? )| ?, ? ? )228

17 e) Split-Merge Correspondence Probability Model229

The split-merge correspondence probability model is like the singular correspondence probability model, except230
that paper deal with pairs of sets of nodes rather than pairs of individual nodes decompose a split-merge231
correspondence ? = (?, ? ? , ð�??”) into set pairs as follows:?????? ? ? ?, ð�??” ? |? ? ? ? ? , ? |? ?232
?\?(?) ? ?, {? ? } |? ? ? ? ? \?(? ? ) ,233

One-to-many match probability model. For the one-to many case can use a Bayesian model similar to that234
for the one-to-one case: Several issues in computing the factor ?(? ? (?, ? 1 ? , ? 2 ? )| ?, ? 1 ? , ? 2 ? ), which235
is the probability according to one kind of evidence (? ? ) that the node ? matches the set consisting of nodes ?236
1 ? and ? 2 ? , i.e., that ”? splits into ? 1 ? and ? 2 ? ”, or conversely that ”? 1 ? and ? 2 ? merge into ?.”237

One way that we address these two issues is to define a new kind of evidence based on the evidence about the238
merge node matching each of the split nodes individually. That is, consider evidence about pairs of nodes, each239
pair consisting of the merge node and one of the split nodes. It define? ? ? ?, ? 1 ? , ? 2 ? , ? , ? ? ? ?, ? 1 ? ,240
? 2 ? , ? , ? ? ? ? ? ? ? ?, ? ? ? ?, ? ? ? ,241

Where ? = ??ð�??” min ?=1?? (? ? ?, ? ? ? ),242
This define the prior for the one-to-many case as follows: We notice that the event ?, ? 1 ? , ? , ? ? ?243

decomposes into two events: ?, the event that ? matches a set of ? nodes, and the event ? that ? matches244
specifically to? 1 ? , ? , ? ? ? . Thus, ? ?, ? 1 ? , ? , ? ? ? = ? ? |?(?|?).245

For ?(?), we use the fixed empirical prior, ? ? , the observed probability that a node ? will match exactly ?246
nodes. For ?(?|?), we use an indifference prior: Knowing only that n matches to a set of ? nodes in ? ? , we247
assume that any of the ? nodes is equally likely. This yield:? ?, ? 1 ? , ? , ? ? ? = ? ? |? ? | ? .248

f) The Maximization Problem249
The previous sections showed how to compute ?(?|?) for a given correspondence ? and evidence ?. To complete250

the algorithm, one should describe how to find the ? with maximal ?(?|?).251
Computing the score of such correspondences using only simple evidencers can be done in polynomial time252

(ideally constant time per node pair, quadratic overall).253
To find the maximum probability correspondence in this case, construct a graph which has as its nodes the254

union of the nodes in the two diagrams, ? ? ? ? . Place an edge from every node ? in ? to every node ? ? in255
? ? with edge weight ? ?, ? ? = ?( ?, ? ? |? ?, ? ? ). Now find the maximum probability correspondence in256
polynomial time using maximumweight bipartite matching [4].257

i.258

18 Greedy Search259

The simplest search algorithm is greedy search. In greedy search, we keep track of only one piece of information,260
the current state. On each step, we examine all states reachable by a single transition from the current state,261
and move to the state with the greatest probability. And there is no backtracking-In this paper, only consider262
transitions that add a node pair to the correspondence, not those that remove a pair. If there is no next state with263
greater probability than the current state, the search stops. Fig. ?? : Greedy Search Fig. ?? gives a high-level264
description of the greedy search algorithm for our problem. We assume that, before this algorithm is called, for265
any nodes ? and ? ? in the two diagrams, we have already computed ?( ?, ? ? |? ?, ? ? ), the probability that266
they match, based upon the various simple evidencers.267

ii.268

19 Complexity Analysis269

Let’s assume that the total number of nodes in the diagrams is ?(?). Then, the naive implementation of the270
greedy search algorithm has complexity ?(? 4 ). The outer while loop will be executed at most ?(?) times since271
each iteration removes at least one node of the diagrams from future consideration. The for loop is executed ?(?272
2 ), as there are at most ? 2 pairs to consider. the naïve implementation, computing Score(newCorr) at line ”*”273
costs ?(?) time due to the connection evidencer, which requires ? ?, ? ? |?(?, ? ? ) to be recomputed for each274
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21 B) COMPLEX EVIDENCER

pair hm;m0i in the correspondence. The connection evidencer will return different values for the probability of275
?, ? ? . Hence, the total complexity of the algorithm is ?(? 4 ).276

20 Incremental Algorithm277

It is possible to implement the Score() function so that it takes time proportional to the number of neighbors of278
the added nodes-probability is only recomputed for pairs that might possibly be affected by a newly added pair.279
Assuming bounded degree graphs, this incremental version takes complexity ?(? 3 ).280

It Describes the set of evidencers that was designed and implemented as part of prototype implementation of281
the AMMO algorithm. The prototype evidencers can calculate a) Simple Evidencer Label Evidencer measures the282
similarity between text labels of a node pair. Python standard library function difflib.Sequence-Matcher.ratio().283

Region Evidencer, A region may have a name, a set of neighboring regions, and a set of nodes that are located284
within it.285

Type Evidencer. Some diagrams have nodes typed as being hardware components or infrastructure software286
components or application software components (or EJBs or ManagedComponents), while other diagrams have287
nodes typed as being actors or information flows or use cases or systems.288

Position Evidencer Similarity values returned by position evidencer and expect the euclidean distance between289
matching nodes to be small.290

21 b) Complex Evidencer291

A complex evidencer to be an evidence which requires information from more than just the node pair for which292
it is finding a similarity value. In addition to that node pair, it also takes as input a partial correspondence293
between the two diagrams.294

Connection evidencer. The Connection evidencer is based on the connections, or edges, that each node has to295
its immediate neighbors.296

Fig. ?? illustrates connection similarity computation for the pair (B2, Q4) in our sample diagram pair. In297
this figure, the solid curved line indicates that at this point in the search, the match ?4, ?6 is already part of298
the correspondence. The dotted curved line indicates that we are considering the node pair (B2, Q4). By virtue299
of the facts that B2 has two neighbors (B1 and B4), Q4 has two neighbors (Q3 and Q6), and one of B2’s two300
neighbors (B4) matches one of Q4’s two neighbors (Q6), as indicated by the dashed line, the connection similarity301
for (B2, Q4) is ??ð�??” Ultimately, connections turn out to be strong evidence that B2 and Q4 match. c) Split302
Evidencer A Split-Merge Model which defined the probability of a split-merge correspondence conditional on303
the observed evidence. Recall that a split-merge correspondence is one containing split-merge matches-matches304
between one node and a set of nodes. Further, recall that, to evaluate the probability of such correspondences,305
two types of evidencers are used: simple (pair) evidencers and split evidencers. The simple evidencers that were306
implemented as part of our prototype, and this section describes the split evidencers of our prototype. It uses307
the probabilities of the pairs to determine the order in which pairs should be added to the correspondence. This308
is done as follows:309

As in the case of AMMO, the first thing that the algorithm does is to precompute probabilities of all possible310
node pairs, using the simple evidencers. It then creates a sorted list Potential Pairs, which contains the node311
pairs sorted in descending order by probability.312

The main loop of AMMO-LITE goes through Potential-Pairs, adding the highest probability pair (the one at313
the head of the list) to the correspondence, provided that it is permissible to add that pair. It is not permissible to314
add a pair. It is not permissible to add a The motivation for creating special-purpose split evidencers arose out of315
the observation that split-merge correspondences exhibited different characteristics than singular correspondences316
and that these characteristics were not taken into account by the simple evidencers.317

Label Sim evidencer. The similarity determined by the Label Sim evidencer is the minimum similarity among318
the labels of the nodes.319

Label Intersect evidencer. The similarity determined by the Label Intersect evidencer is the similarity between320
the label of ? and the longest suffix or prefix commonto the labels of the ? ? ? nodes. Label Concat evidencer. The321
Label Concat Evidencer similarity function uses the Label Evidencer similarity function to obtain the similarity322
between the label of ? and the concatenation of the labels of the ? ? ? nodes.323

Inner Connect evidencer. This is a discrete measure of similarity based on whether or not all of the ? ?324
? nodes are connected to each other. Outer Connect evidencer. This is a continuous measure of connection325
similarity between ? and the cluster of ? ? ? nodes taken as a whole.326

Although the greedy search algorithm described performed well for diagrams with dozens of nodes, it was327
not practical for diagrams with hundreds of nodes. the major scalability problem with AMMO is that every328
time it has to decide which node pair to add next, it must compute an exact probability for each possible329
correspondence that would result from adding one more node pair. Our incremental version of greedy search330
helps avoid some of this recomputation, but not enough to be practical for larger-scale diagrams. To solve331
this problem, we designed a new algorithm, AMMO-LITE, which approximates AMMO’s behavior but uses a332
simpler search that is driven by pair probabilities rather than correspondence probabilities. This approach avoids333
repeated calculation of correspondence probabilities and, in practice, achieves much better performance with only334
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a small loss of precision. The values in the table were obtained by averaging the Recall, Precision, and Time335
metrics for each algorithm across all of our model pairs.336

22 Global337

The AMMO-LITE algorithm did not do quite as well as AMMO in terms of both Recall and Precision, but338
it still did significantly better than the non-Bayesian approach. Furthermore, if one examines the cases where339
AMMO-LITE did poorly in comparison to AMMO, most of these cases involved complex correspondences with340
a number of challenging matches and multiple split/merges. VIII.341

23 Results342

24 Conclusion343

We have identified and described the model correspondence problem, an important problem in software344
engineering. We have designed a Bayesian framework that supports the reasoning needed to solve the model345
correspondence problem. And we have implemented and tested a matching algorithm based on our framework,346
finding that it achieved high accuracy on a set of test diagram pairs. We believe that this work holds great347
promise for the future. 1

1

Figure 1: Fig. 1 :
348

1© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)
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1

Q1 Q2 Q3 Q4 Q5 Q6
B1 0.118 0.125 0.083 0.211 0.316 0.095
B2 0.385 0.240 0.061 0.143 0.143 0.200
B3 0.190 0.200 0.286 0.348 0.174 0.240
B4 0.316 0.111 0.231 0.095 0.095 0.435

[Note: b) Match Probability from Feature Similarity]

Figure 7: Table 1 :

2

Similarity
Q1 Q2 Q3 Q4 Q5 Q6

[Note: B1 0.100 0.100 0.104 0.108 0.155 0.102 B2 0.225 0.116 0.108 0.108 0.100 0.105 B3 0.104 0.105 0.135
0.182 0.102 0.116 B4 0.155 0.101 0.113 0.102 0.102 0.308 c) Multiple Evidencer]

Figure 8: Table 2 :

3

Q1 Q2 Q3 Q4 Q5 Q6
B1 0.728 0.844 0.255 0.003 0.009 0.000
B2 0.010 0.001 0.313 0.913 0.022 0.407
B3 0.002 0.015 0.275 0.022 0.917 0.238
B4 0.000 0.000 0.087 0.659 0.033 0.741

[Note: d) Simple Evidencer and Complex Evidencer]

Figure 9: Table 3 :

4

Similarity
Q1 Q2 Q3 Q4 Q5 Q6
B1 0.230 0.375 0.038 0.000 0.002 0.000
B2 0.003 0.000 0.053 0.561 0.003 0.075
B3 0.000 0.002 0.056 0.005 0.555 0.039
B4 0.000 0.000 0.012 0.181 0.00 0.560

[Note: e) Splits and MergesHLV has four nodes and LLV has six, clearly not every node of LLV can participate
in a one-to-one match. It is possible that a node from one diagram]

Figure 10: Table 4 :
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3

6 : Pair-wise Match Probabilities based on all
evidence

P1 P2 P3 P4 P5 P6
C1 104.4 189.6 5.371 0.000 0.001 0.000
C2 0.415 0.019 30.82 787.0 2.787 0.037
C3 0.082 0.642 79.93 5.572 783.0 0.019
C4 0.000 0.000 1.021 0.100 0.002 786.3

Figure 11: Table 3 .

? ?, ? ? |?(?, ? ? ) = ?(1) ? 1 + ?(0)
,

Where
? 1 = ? ?, ? ? ? ? ? ?, ? ? ?, ? ?

?
? 0 = ? ?, ? ? ? ? ? ?, ? ? ?, ? ?

?
The factors ? ? ? ?,

Figure 12:

8

Pair Nodes Edges AMMO- AMMO Ratio
LITE

Pair 1 9 13 0.83 2.74 3.3
Pair 2 12 12 0.96 3.68 3.8
Pair 3 15 24 2.63 12.19 4.6
Pair 4 22 41 5.11 41.49 8.1
Pair 5 35 31 11.30 98.66 8.7
Pair 6 41 68 15.51 257.27 16.6
Pair 7 637 968 6175.00 - -

Figure 13: Table 8 :
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.1 b) Complexity Analysis

pair to the correspondence if that would result in a many-to-many match. Each time a new pair ???, ??? is349
added to the correspondence, the algorithm goes through the list again, in order to determine if the precomputed350
probability of any remaining pair ?????, ????? has been affected. The probability of pair ?????, ????? in351
PotentialPairs will be affected in two different circumstances:352

? If ???? or ???? is one of the nodes in the pair we just added, then adding ?????, ????? would result in353
a split/merge. Thus, we change the precomputed probability stored for ?????, ????? to be the probability of354
the split/merge that would result from adding ?????, ????? to the correspondence. ? If ???? and ???? are355
neighbors of ?? and ??, respectively, then adding ???, ??? to the correspondence will affect the similarity of356
?????, ?????. Thus, ??(?????, ?????) must be recomputed, this time using the connection evidencer as well as357
the simple evidencers.358

After going through PotentialPairs, if any probabilities have been recomputed, the list is resorted. The359
algorithm then continues with another iteration of the main loop to add another pair to the correspondence. The360
algorithm terminates when either the list is empty or the probability of the pair at the head of the list is less361
than some threshold value. This value is determined by experimentation with training data, and can be easily362
changed. In our implementation, this threshold is ?? 0 , the empirically determined probability that a node does363
not correspond to any node in the other diagram.364

.1 b) Complexity Analysis365

Let the total number of nodes in a diagram be ??(??), as in the analysis of AMMO. Depending on the value of366
threshold, the outer while loop could be executed ??(?? 2 ) times, once for every possible node pair. However, the367
outer if statement (immediately within the while loop) will only be true ??(??) times since each pair added must368
add at least one new node to the correspondence, due to the many-to-many restriction, and hence, add at most369
??(??) pairs. Thus, the nested for loop will be reached on only ??(??) iterations of the while loop. Each time370
the for loop is reached, it will execute ??(|????????????????????????????|) = ??(?? 2 ) iterations. The resulting371
total complexity is ??(?? 3 ). Similarly, like the nested for loop, the statement resort(PotentialPairs) will be372
reached at most ??(??) times. Sorting being ??(??????????), each sort of the ??(?? 2 ) items in PotentialPairs373
will have complexity ??(?? 2 ????????). Thus, the resulting total complexity of the algorithm due to all sorting374
is ??(?? 3 ????????). That dominates the ??(?? 3 ) of the nested for loop, and therefore, the overall worst-case375
total complexity of the AMMO-LITE algorithm is ??(?? 3 ????????). To see why AMMO-LITE performs better376
than AMMO in practice, consider the following: In AMMO-LITE, each timewe add a pair ???, ??? and make a377
pass through the list PotentialPairs. Although this list can be ??(?? 2 ), it is a ”quick” pass over the list-most of378
the pairs are just skipped. ”Real” computation only takes place if ?????, ????? meets certain criteria in which379
case, we recompute its associated probability. So, in practice, our performance is better than ??(?? 3 ????????)380
would suggest.381

In fact, employing a priority queue along with an incremental approach to updating pair probabilities, and382
assuming a bounded-degree graph, we could achieve an overall total complexity of ??(?? 2 ????????) as follows:383
This can implement PotentialPairs as a priority queue in which pairs are ordered according to their probability,384
there by obviating the need for separate explicit sorts. Initially, we construct PotentialPairs by inserting all of385
the ??(?? 2 ) pairs into it. With a priority queue implementation for which insert, get_max, and delete are386
??(????????), the complexity of constructing PotentialPairs is ??(?? 2 ????????).387

In that way, we avoid having to reexamine all of the ??(?? 2 ) remaining pairs in PotentialPairs. Assuming388
bounded-degree graphs, with the number of neighbors of a pair ???, ??? being bounded by a constant ??, the389
number of pairs whose probability must be recomputed due to connectivity is ??. Whenever we recomputed390
the probability of a pair and delete it from Potential-Pairs and reinsert it with its new probability (or we391
could simply do a change_priority operation). With delete and insert being ??(????????), the total complexity392
due to recomputing probabilities of neighbors of all of the ??(??) added pairs is ??(?? * ?? * ????????) =393
??(??????????). Similarly, when a pair ???, ??? is added to the correspondence, the number of pairs ?????.394
????? whose probability must be recomputed because they would now result in splits or merges is at most ??(??)395
because there are at most ??(??) pairs for which ?? = ???? or ?? = ????. Hence, the total complexity due to396
recomputing probabilities due to split/ merge considerations is ??(?? * ?? * ????????) = ??(?? 2 ????????).397
Thus, the overall total complexity of the algorithm would be ??(?? 2 ????????).398

.2 c) AMMO-LITE Experiments399
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