
© 2012 Arulanand Natarajan, Subramanian S, Premalatha K. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 1 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - Bloom Filter (BF) is a simple but powerful data structure that can check membership to a static set.

The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can

be made very low if the hash bitmap is sufficiently large. Spam is an irrelevant or inappropriate message sent

on the internet to a large number of newsgroups or users. A spam word is a list of well-known words that often

appear in spam mails. The proposed system of Bin Bloom Filter (BBF) groups the words into number of bins

with different false positive rates based on the weights of the spam words. An Enhanced Cuckoo Search

(ECS) algorithm is employed to minimize the total membership invalidation cost of the BFs by finding the

optimal false positive rates and number of elements stored in every bin. The experimental results have

demonstrated for CS and ECS for various numbers of bins.

Keywords : Bin Bloom Filter, Bloom Filter, Cuckoo Search, Enhanced Cuckoo Search, False positive rate,

Hash function, Spam word.

GJCST Classification: D.3.4 , G.1.6, B.1.4

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering

Strictly as per the compliance and regulations of:

An Enhanced Cuckoo Search for Optimization
of Bloom Filter in Spam Filtering

Arulanand Natarajan α, Subramanian S
Ω
, Premalatha K

β

Abstract - Bloom Filter (BF) is a simple but powerful data
structure that can check membership to a static set. The trade-
off to use Bloom filter is a certain configurable risk of false
positives. The odds of a false positive can be made very low if
the hash bitmap is sufficiently large. Spam is an irrelevant or
inappropriate message sent on the internet to a large number
of newsgroups or users. A spam word is a list of well-known
words that often appear in spam mails. The proposed system
of Bin Bloom Filter (BBF) groups the words into number of
bins with different false positive rates based on the weights of
the spam words. An Enhanced Cuckoo Search (ECS)
algorithm is employed to minimize the total membership
invalidation cost of the BFs by finding the optimal false positive
rates and number of elements stored in every bin. The
experimental results have demonstrated for CS and ECS for
various numbers of bins.
Keywords : Bin Bloom Filter, Bloom Filter, Cuckoo
Search, Enhanced Cuckoo Search, False positive rate,
Hash function, Spam word.

I. INTRODUCTION

spam filter is a program that is used to detect
unsolicited and unwanted email and prevent
those messages from getting into user's inbox. A

spam filter looks for certain criteria on which it stands
decisions. For example, it can be set to look for
particular words in the subject line of messages and to
exclude these from the user's inbox. This method is not
effective, because often it is omitting perfectly legitimate
messages and letting actual spam through. The
strategies used to block spam are diverse and includes
many promising techniques. Some of the strategies like
black list filter, white list /verification filters rule based
ranking and naïve bayesian filtering are used to identify
the spam.

A BF presents a very attractive option for string
matching (Bloom 1970). It is a space efficient
randomized data structure that stores a set of
signatures efficiently by computing multiple hash
functions on each member of the set.

Author : Anna University of Technology, Coimbatore.

E-mail

: arulnat@yahoo.com

Author : Sri Krishna College of Engineering and Technology,
Coimbatore. E-mail

: dsraju49@gmail.com

Author : Bannari Amman Institute of Technology, Erode.

E-mail

: kpl_barath@yahoo.co.in

It queries a database of strings to verify for the
membership of a particular string. The answer to this
query can be a false positive but never be a false
negative. The computation time required for performing

the query is independent of the number of signatures in
the database and the amount of memory required by a
BF for each signature is independent of its length (Feng
et al 2002).

This paper presents a BBF which allocates
different false positive rates to different strings
depending on the significance of spam words and gives
a solution to make the total membership invalidation
cost minimum. BBF groups strings into different bins via
smoothing by bin means technique. The number of
strings to be grouped and false positive rate of each bin
is identified through GA which minimizes the total
membership invalidation cost. This paper examines
different number of bins for given set of strings, their
false positive rates and number of strings in every bin to
minimize the total membership invalidation cost.

The organization of this paper is as follows.
Section 2 deals with the standard BF. Section 3 presents
the CS technique. Section 4 reports optimized BBF
using ECS. Performance evaluation of CS and ECS for
the BBF is discussed in section 5.1

II.

BLOOM FILTER

Bloom filters (Bloom 1970) are compact data
structures for probabilistic representation of a set in
order to support membership queries. This compact
representation is the payoff for allowing a small rate of
false positives in membership queries which might
incorrectly recognize an element as member of the set.

Given a string S the BF computes k hash
functions on it producing k hash values and sets k bits
in an m-bit long vector at the addresses corresponding
to the k hash values. The value of k ranges from 1 to m.
The same procedure is repeated for all the members of
the set. This process is called programming of the filter.
The query process is similar to programming, where a
string whose membership is to be verified is input to the
filter. The bits in the m-bit long vector at the locations
corresponding to the k hash values are looked up. If at
least one of these k bits is not found in the set then the
string is declared to be a nonmember of the set. If all the
bits are found to be set then the string is

said to belong
to the set with a certain probability. This uncertainty in
the membership comes from the fact that those k bits in

A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

75

 Ja

nu
a r
y

 2
01

2

α

Ω

β

the m-bit vector can be set by any other n-1 members.
Thus finding a bit set does not necessarily imply that it
was set by the particular string being queried. However,
finding a bit not set certainly implies that the string does

Fig.1

:

Bloom Filter

One important feature of BF is that there is a
clear tradeoff between the size of the filter and the rate
of false positives.

The false positive rate of BF is

()))eln(1exp(ke1

f kn/mkkn/m −− −=−= (1)

Let)eln(1kg kn/m−−= . Minimizing the false
positive probability f is equivalent to minimizing with
respect to k.

mkn

mkn
m
kn

e1
e

m
kne1ln

dk
dg

−

−−

−
+










−=

(2)

The derivative equals 0

when kmin=(1n2)(m/n).

In this case the false positive probability f is:

f(kmin) = (1 − p)kmin =

(1
2
)kmin = (0.6185)m/n

(3)

of course k should be an integer, so k is ⌈ln 2

. (m n)⁄ ⌉

The BF has been widely used in many database
applications (Mullin 1990; Mackert and Lohman, 1986).
It is applied in networking literature (Brooder and
Mitzenmacher, 2005). A BF can be used as a
summarizing technique to aid global collaboration in
peer-to-peer networks (Kubiatowicz et al., 2000 ; Li et al,
2002 ; Cuena-Acuna et al, 2003). It supports
probabilistic algorithms for routing and locating
resources (Rhea and Kubiatowicz 2004; Hodes et
al,2002 ; Reynolds and Vahdat, 2003; Bauer et al, 2004)
and

share Web cache information (Fan et al,2000). BFs
have great potential for representing a set in main
memory (Peter and Panagiotis, 2004) in stand-alone
applications. BFs have been used to provide a

probabilistic approach for explicit state model checking

of finite-state transition systems (Peter and Panagiotis,
2004). It is used to summarize the contents of stream
data in memory (Jin et al,2004; Deng and Rafiei,2006),
to store the states of flows in the on-chip memory at
networking devices (Bonomi et al,2006), and to store
the statistical values of tokens to speed up the
statistical-based Bayesian filters (Li and Zhong,2006).
The variations of BFs are compressed Bloom filters
(Mitzenmacher,2002),counting Bloom filters (Fan et
al,2000), distance-sensitive Bloom filters (Kirsch and
Mitzenmacher,2006), Bloom filters with two hash
functions (Kirsch and Mitzenmacher,2006), spacecode
Bloom filters (Kumar et al,2004), spectral Bloom filters
(Cohen and Matias,2003), generalized Bloom filters
(Laufer et al,2005),

Bloomier filters (Chazelle et al,2004),
and Bloom filters based on partitioned hashing (Hao et
al,2007).

III.

CUCKOO SEARCH

Cuckoo search is an optimization algorithm
inspired by the brood parasitism of cuckoo species by
laying their eggs in the nests of other

host birds

proposed by Yang and Deb (2009). If a host bird
discovers the eggs are not their own, it will either throw
these foreign eggs away or simply abandon its nest and
build a new nest elsewhere. Each egg in a nest
represents a solution, and a cuckoo

egg represents a
new solution. The better new solution (cuckoo) is
replaced with a solution which is not so good in the
nest. In the simplest form, each nest has one egg.
When generating a new solution Levy flight is
performed. The rules for CS are described as follows:

•

Each cuckoo lays one egg at a time, and dumps it
in a randomly chosen nest

•

The best nests with high quality of eggs will carry
over to the next generations;

•

The number of available host nests is fixed, and a
host can discover an foreign egg with a
probability pa∈[0, 1]. In this case, the host bird
can either throw the egg away or abandon the
nest so as to build a completely new nest in a new
location

The algorithm for CS is given below:

Generate an initial population of n host nests;

while (t<MaxGeneration) or (stop criterion)

Get a cuckoo randomly (say, i) and replace
its solution by performing Levy flights;

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

76

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

not belong to the set. In order to store a given element
into the bit array, each hash function must be applied to
it and, based on the return value r of each function (r1,
r2, … , rk), the bit with the offset r is set to 1. Since there
are k hash functions, up to k bits in the bit array are set
to 1 (it might be less because several hash functions
might return the same value). Figure 1 is an example
where m=16, k=4 and e is the element to be stored in
the bit array.

Evaluate its fitness Fi

Choose a nest among n (say, j) randomly;

if (Fi > Fj),[for maximization]

Replace j by the new solution;
end if

A fraction (pa) of the worse nests is
abandoned and new ones are built;

Keep the best solutions/nests;

Rank the solutions/nests and find the current best;

Pass the current best to the next generation;

end while

IV.

ENHANCED CUCKOO SEARCH FOR
BLOOM FILTER OPTIMIZATION

a)

Bin Bloom Filter (BBF)

A BBF is a date structure considering weight for
spam word. It groups spam words into different bins
depending on their weight. It incorporates the
information on the spam word weights and the
membership likelihood of the spam words into its
optimal design. In BBF a high cost bin lower false
positive probability and a low cost bin has higher false
positive probability. The false positive rate and number
of strings to be stored is identified through optimization
technique GA which minimize the total membership
invalidation cost. Figure 2 shows Bin BF with its tuple
<n,f,w> configuration.

Fig.2

:

Bin Bloom Filter

b)

Problem Definition

Consider a standard supervised learning
problem with a set of training data D = {<Y1,Z1 >,...,
<Yi, Zi>, … ,< Yr ,Zr >} ,

where Yi

is an instance
represented as a single feature vector, Zi = C(Yi)

is the
target value of Yi , where C

is the target function. Where
Y1, Y2, … , Yr

set of text document collection C

is a
class label to classify into spam or legitimate (non-
spam). The collection is represented into feature vector
by the text documents are converted to normalized
case, and tokenized them, splitting on non-letters. The
stop words are eliminated. The spam weights for words
are calculated from the set. This weight value indicates
its probable belongings to spam or legitimate. The
weight values are discretized and assigned for different
Bins. The tuple to describe the Bin BF

is, {{n1, n2,, …,
nL}, {w1, w2,…, wL}, m, {k1, k2, …, kL}, {f1, f2, …,
fL}}.

It is an optimization problem to find the value of n
and f that to minimize the total membership invalidation
cost. For membership testing the total cost of the set
is the sum of the invalidation cost of each subset. The

total membership invalidation cost (Xie et al., 2005) is
given as,

F= n1f1w1 + n2f2w2 +……+ nLfLwL

The total membership invalidation cost

F(L) =

∑ ni
L
i=1 wifi

(4)

to be minimized.

Where
Nn

L

1i
i =∑

=

N-

Total number of Strings in a spam set.














× ∑







= =

j

i

1j
ji rnmrln2

i 2
1f

()ii flnr =

(1 ≤ i ≤L)

The objective function f(L)

taken as standard
for the problem of minimization is





≥
<−

=
max

maxmax

CF(L)if0
CF(L)ifF(L)C

f(L)

(5)

where Cmax is a large constant.

c)

ECS for Optimization of BF

The CS is extended to an ECS in which each
nest has multiple eggs representing a set of solutions.

Generate an initial population of n host nests with m
eggs;

while (t<MaxGeneration) or (stop criterion)

Get a cuckoo randomly (say, i) by Levy flights
using the best egg in the chosen nest;

Evaluate its fitness Fi

Choose a nest among n and choose an egg
with the worst solution in the nest (say, j);

if (Fi > Fj),[for maximization]

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

77

 Ja

nu
a r
y

 2
01

2

Replace j by the new solution i;

end if

Find the best solution (among m) in each nest;
Rank the nests based on the best solution;

Abandon a fraction (pa) of the nests which have
worse solutions and built new ones;

Keep the best solutions/nests;

Rank the solutions/nests and find the current best;

end while

The symbol ⊕

is an entry-wise multiplication.
Basically Levy flights provide a random walk while their
random steps are drawn from a Levy distribution for
large steps

Levy~u = t-λ

 (7)

which has an infinite variance with an infinite
mean. Here the consecutive jumps of a cuckoo
essentially form a random walk process which obeys a
power-law step-

length distribution with a heavy tail. The
representation of egg (solution) is given in figure 3.

where nij, fij and wij refer respectively the
number of words, false positive rate of and the weight
of the jth bin of ith egg. The triplet <n,f,w> encodes a
single bin. The false positive rate fij can be obtained
from equation (1) where nij is drawn from the ith egg in
the nest, m is known in advance and k is calculated
from equation (3). One egg in the nest represents one
possible solution for assigning the triples <n, f, w>. At
the initial stage, each egg randomly chooses different
<n, f, w> for L Bins based on

the given constraints. The
fitness function for each egg can be calculated based
on the equation (5).

VII.

EXPERIMENTAL RESULTS

Cuckoo Search employs Levy flight for finding
new solutions from equation (7). CS and ECS consider
10 nests and 50 iterations. The parameters pa,α

and λ

are set as 0.3, 1 and 1.5 respectively. The total number
of strings taken for testing is 250, 500, and 1000. The
string weights are varying from 0.0005 to 5. The size of
the BF is 1024. This experimental setup is applied for
number of bins from 4 to 7.

Figures 4a, 4b, 4c and 4d correspondingly
show the total membership invalidation cost obtained
from BBF for bin sizes from 4 to 7 for 1000

strings using
CS and ECS

algorithm. In this experimental setup

the
ECS performs better than CS. Figures 5a, 5b, 5c and
5d show the total membership invalidation cost obtained
from BBF for bin sizes from 4 to 7 respectively for 500
strings. Figures 6a, 6b, 6c and 6d show the cost of BBF
from bin sizes 4 to 7 for 250

strings. For all the string
sizes the ECS outperforms CS.

In CS, 10 nests which equals to number of
nests in ECS and 40 nests which equals to number of
eggs in ECS are taken to find the total membership
invalidation cost

for 1000 strings. Figure 7

shows the
total membership invalidation

cost obtained from BBF
for the bin sizes ranging from 4 to 10 using CS and ECS.
It shows that the cost is decreased when the numbers of
bins are increased. The results obtained from ECS
outperform CS for all bin sizes from 4 to 10.

(A)

(B)

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

78

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Fig.3 : Egg representations for Bin Bloom Filter

(C)

()λLevyαxx (t)
i

1)(t
i ⊕+=+

 (6)

When generating new solutions x(t+1) for a
cuckoo i, a Levy flight is performed using the following
equation (6)

(D)

Fig.4

:

Values obtained for

1000 Strings

(A)

(B)

(C)

(D)

Fig.5

:

Values obtained for 500 Strings

(A)

(B)

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

79

 Ja

nu
a r
y

 2
01

2

(C)

(D)

Fig.6

:

Values obtained for 250 Strings

Fig.7

:

Total Membership invalidation cost for CS and
ECS

VIII.

CONCLUSION

BFs are simple randomized data structures that
are useful in practice. The BBF is an extension of BF,
and inherits the best feature of BF such as time and
space saving. The BBF treats strings in a set in a
different way depending on their significance, groups
the strings into bins and allocates different false positive
rate to different bins. Important spam words have lower
false positive rate than less significant words. In this
work, we have applied CS and ECS for optimization of
BF. The proposed system ECS outperforms CS.

REFERENCES

REFERENCES

REFERENCIAS

1.

Bloom B, Space/time tradeoffs in hash coding with
allowable errors, Communications of the ACM, 13,
1970, 422–426.

2.

Feng W,.Shin K.G, Kandlur D.D. & D.Saha, "The
BLUE active queue management algorithms",

IEEE/ACM Transactions on

Networking, 10, 2002,

513 –

528.

3.

Mullin J.K, Optimal Semijoins for Distributed
Database Systems, IEEE Trans. Software Eng., 16,
1990, 558-560.

4.

Mackert L.F. and Lohman G.M., Optimizer
Validation and Performance Evaluation for
Distributed Queries, Proc. 12th Int’l Conf. Very
Large Data Bases (VLDB), 1986, 149-159.

5.

Broder A and Mitzenmacher M. Network
Applications of Bloom Filters: A Survey, Internet
Math., 1(4), 2005, 485-509.

6.

Kubiatowicz J Bindel D, Chen, Y Czerwinski S,
Eaton P, and Geels D, Oceanstore: An Architecture
for Global-Scale Persistent Storage,” ACM SIGPLAN
Notices, 35(11), 2000, 190-201.

7.

Li J, Taylor J, Serban L, and Seltzer M, Self-
Organization in Peer-to-Peer System, Proc. ACM
SIGOPS, 2002.

8.

Cuena-Acuna F.M, Peery C,Martin R.P, and Nguyen
T.D, PlantP: Using Gossiping to Build Content
Addressable Peer-to-Peer Information Sharing
Communities, Proc. 12th IEEE Int’lSymp. High
Performance Distributed Computing, 2003, 236-249

9.

Rhea S.C and Kubiatowicz J, Probabilistic Location
and Routing, Proc. IEEE INFOCOM, 2004, 1248-
1257.

10.

Hodes T.D, Czerwinski S.E, and Zhao B.Y, An
Architecture for Secure Wide Area Service
Discovery, Wireless Networks, vol. 8, nos. 2/3, 2002,
213-230.

11.

Reynolds P and Vahdat A, Efficient Peer-to-Peer
Keyword Searching, Proc. ACM Int’l Middleware
Conf., 2003, 21-40.

12.

Bauer D, Hurley P, Pletka R, and Waldvogel M,
Bringing Efficient Advanced Queries to Distributed
Hash Tables, Proc. IEEE Conf. Local Computer
Networks, 2004, 6-14

13.

Fan L, Cao P, Almeida J, and Broder A, Summary
Cache: A Scalable Wide Area Web Cache Sharing
Protocol, IEEE/ACM Trans. Networking, 8(3), 2000,
281-293.

14.

Peter C.D and Panagiotis M, Bloom Filters in

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

80

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Probabilistic Verification, Proc. Fifth Int’l Conf.
Formal Methods in Computer- Aided Design, 2004,
367-381.

15. Jin C, Qian W, and Zhou A, Analysis and
Management of Streaming Data: A Survey, J.
Software, 15(8), 2004, 1172-1181.

16. Deng F and Rafiei D, “Approximately Detecting
Duplicates for Streaming Data Using Stable Bloom
Filters,” Proc. 25th ACMSIGMOD, 2006, 25-36.

17. Bonomi F, Mitzenmacher M, Panigrahy R, Singh S,
andVarghese G, Beyond Bloom Filters: From
Approximate Membership Checks to Approximate
State Machines, Proc. ACM SIGCOMM, 2006 , 315-
326.

18. Li K and Zhong Z, Fast Statistical Spam Filter by

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90�

Approximate Classifications, Proc. Joint Int’l Conf.
Measurement and Modeling of Computer Systems,
SIGMETRICS/Performance, 2006, 347-358.

19.

Mitzenmacher M, Compressed Bloom Filters,
IEEE/ACM Trans.Networking, 10(5) 2002, 604-612.

20.

Kirsch A and Mitzenmacher M, Building a Better
Bloom Filter, Technical Report tr-02-05.pdf, Dept. of
Computer Science, Harvard Univ,2006.

21.

Kirsch A and Mitzenmacher M, Distance-Sensitive
Bloom Filters, Proc. Eighth Workshop Algorithm
Eng. and Experiments (ALENEX ’06), 2006.

22.

Kumar A, Xu J, Wang J, Spatschek O, and Li L,
Space-Code Bloom Filter for Efficient Per-Flow
Traffic Measurement, Proc. 23rd IEEE INFOCOM,
2004, 1762-1773.

23.

Cohen S

and Matias Y, Spectral Bloom Filters,
Proc. 22nd ACM SIGMOD, 2003, 241-252.

24.

Laufer R.P, Velloso P.B, and Duarte O.C.M.B,
GeneralizedBloom Filters, Technical Report
Research Report GTA-05-43, Univ. of California, Los
Angeles (UCLA), 2005.

25.

Chazelle B, Kilian J, Rubinfeld R, and Tal A, The
Bloomier Filter: An Efficient Data Structure for Static
Support Lookup Tables, Proc. Fifth Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA), 2004, 30-39.

26.

Hao F, Kodialam M, and Lakshman T.V, Building
High Accuracy Bloom Filters Using Partitioned
Hashing, Proc. SIGMETRICS/Performance, 2007,
277-287.

27.

Yang X.S., Deb S. "Cuckoo search via Lévy flights".
World Congress on Nature & Biologically Inspired
Computing (NaBIC 2009). IEEE Publications. 2009,

210–214.

28.

Xie K., Min

Y.,

Zhang D.,

Wen J.,

Xie G. &

Wen J,
Basket Bloom Filters for Membership Queries,
Proceedings of IEEE Tencon’05,2005, 1-6.

An Enhanced Cuckoo Search for Optimization of Bloom Filter in Spam Filtering

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

81

 Ja

nu
a r
y

 2
01

2

Global Journals Inc. (US)

Guidelines Handbook

2012

www.GlobalJournals.org

	An Enhanced Cuckoo Search for Optimizationof Bloom Filter in Spam Filtering
	Author's
	Keywords :
	I. INTRODUCTION
	II. BLOOM FILTER
	III. CUCKOO SEARCH
	IV. ENHANCED CUCKOO SEARCH FORBLOOM FILTER OPTIMIZATION
	a) Bin Bloom Filter (BBF)
	b) Problem Definition

	VII. EXPERIMENTAL RESULTS
	VIII. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

