
P a g e |6 Vol. 10 Issue 8 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

GJCST Classification
I.2.1,H.3.5

Employing Artificial Intelligence to eCommerce
Web service
R. Vadivel1 Dr. K. Baskaran2

Abstract-In recent years, web services have played a major role
in computer applications. Web services are essential, as the
design model of applications are dedicated to electronic
businesses. This model aims to become one of the major
formalisms for the design of distributed and cooperative
applications in an open environment (the Internet). A main
objective of this paper is application of techniques from the
field of artificial intelligence (AI) to the field of web services
(WS). Current commercial and research-based efforts are
reviewed and positioned within these two fields. Particular
attention is given to the application of AI techniques to the
important issue of WS composition. Within the range of AI
technologies considered, we focus on the work of the Semantic
Web and Agent-based communities to provide web services
with semantic descriptions and intelligent behavior and
reasoning capabilities. Re-composition of web services is also
considered and a number of adaptive agent approaches are
introduced and implemented in publication domain and one of
the areas of work is eCommerce.
Keywords-Web Services, Semantic Web, eCommerce, Artificial
intelligence, Publication Domain, Dynamic Web

I. INTRODUCTION

urrently, Web services give place to active research and
this is due both to industrial and theoretical factors. On

one hand, Web services are essential as the design model of
applications dedicated to the electronic business. On the
other hand, this model aims to become one of the major
formalisms for the design of distributed and cooperative
applications in an open environment (the Internet). Research
in the field of semantic web / web service (WS) and
artificial intelligence (AI) communities are coming together
to develop solutions that will take us to the next and more
mature generation of the web application. The composition
of web services to create a value-chain greater than the sum
of the parts is a key part of what can be expected. The
fulfilment of the vision of the web as an information-
providing and world-altering provider of servicesis not far
away. More futuristic is the notion of serendipitous. In both
visions the services and outcomes may be the same.
However, the difference between the two visions is that the
first can be achieved through static and manual solutions
and the second requires dynamic and automated solutions.
While
helpful for the first, the addition of semantic content on the
web is essential to enable automatic discovery and

About-1Computer Science, Karpagam University Pollachi Road,
Eachanari, Coimbatore, Tamilnadu India 641 024 (e-mail-
vadivel.rangasamy@gmail.com)
About-2Asst. Professor (RD), Dept. of CSE and IT, Govt. College of
Technology, Coimbatore – 641 006

composition of multiple services. It is natural that earlier
work in the field of AI will assist in realization of the
(artificially) intelligent web. The work on the Web Services
Modelling Framework(WSMF) is an example of AI being
applied to this field. WSMF offers the combined use of
ontology, goal (problem-type) repositories, web service
descriptions and mediators to handle interoperability issues.
The agent community, which is primarily AI-based, has also
been actively conducting WS related research.
Our own distributed agent-based work and the
AgentFactory, originates from our earlier AI research
intocomplex knowledge based systems and generic task
basedconfiguration. On the one hand, our work on planning
andautomated configuration offers a way of composing
eCommercewebservices. On the other hand, WSs potentially
provide uswith components needed to achieve an
implementation ofour design. Through the addition of
techniques from theSemantic Web community, the benefits
of combining ouragent technology with WSs has been
mutual.
This paper offers a review of research that overlaps thefields
of WS and AI. In the following section we describeweb
services and the need for semantics to be added. Insection B
we look at how the Semantic Web communities, within the
field of AI, are offering semantics. In section Cwe present
AI-based research to address the discovery of
WSs. In section D we consider both commercial and
AIbasedtechniques for WS composition. In section E,
thenotion of re-composition of WS is considered and
howadaptive agent technology, including our own, can
addressthis problem. We conclude with future directions for
therole of AI in the web services field.

II. RELATED WORKS

A. Web Services
Web services are typically application programming
interfaces (API) or web APIs that can be accessed over a
network, such as the Internet, and executed on a remote
system hosting the requested services.
Web services are a new way of connecting business. Web
services are platform-neutral and vendor-independent
protocols that enable any form of distributed processing to
be performed using XML and Web-based technologies.

1) Just-in-time integration
The Web Services architecture describes the principles
behind the next generation of e-business architectures,
presenting a logical evolution from object-oriented systems
to systems of services. Web Services systems promote

C

 Global Journal of Computer Science and Technology Vol. 10 Issue 8 Ver. 1.0 September 2010 P a g e | 7

significant decoupling and dynamic binding of components:
All components in a system are services, in that they
encapsulate behavior and publish a messaging API to other
collaborating components on the network. Services are
marshaled by applications using service discovery for
dynamic binding of collaborations. Web Services reflect a
new service-oriented architectural approach, based on the
notion of building applications by discovering and
orchestrating network-available services, or just-in-time
integration of applications.

B. Semantic description of Web Services

WSDL, SOAP and UDDI are seen as steps in the right
direction but ones that will fail to achieve the goals of
improved automation and interoperability, because they rely
on a priori standardizations and require humans in the loop.
To support automated reasoning, knowledge representations
(such as markup languages) will be needed that express both
data and rules for reasoning. The ability to dynamically
locate and compose web services based on their semantic
description will rely on the richness of the description and
the robustness of the matching techniques used. Ontology
will be used to enable definition and comprehension of
meaningful content. These are the concerns of the Semantic
Web community. Additionally, agents will be needed to
interpret the content and transform user requests into
optimized delivered solutions. The Intelligent Brokering
Service for Knowledge-Component Reuse on the WWW
(IBROW)4can be seen as a forerunner of the Semantic Web.
In IBROW problem solving methods (PSMs) and ontologies
were the components being configured, the current focus is
on WS configuration. PSMs and ontologies when used
together are also capable of delivering services. The most
significant work that has been done to describe web services
has been conducted by the DAML-S coalition. The
matching of service providers and service requesters via
semantic descriptions of the services are key goals of this
work. DAML-S uses the DAML+OIL specification
language (which extends the weak semantics of RDF(S)) to
define a number of ontologies that can be specifically used
to describe web services. DAML-S is built on the AI-based
action metaphor where each service is either an
atomic/primitive or composite/complex action. Knowledge
preconditions and knowledge effects are handled via the
inputs and outputs of the web service. The DAML-S
coalitions are providing solutions to work with current WS
standards. For example, a DAML-S service grounding
definition can be mapped to a WSDL definition of the
service. A number of approaches to service discovery and
compositionthat we discuss in the following sections use or
extend the DAML-S web service ontology.

C. Discovering Web Services
Discovery involves locating and/or matchmaking against
some selection criteria. An earlier AI system, Lark, which
involved annotation of agent capabilities to enable them to
be located and brokered, clearly solved a problem similar to
the discovery of WS by a middle agent. This work has
developed into the DAML-S Matchmaker5. To support

matchmaking a number of filters may be configured by the
user to achieve the desired tradeoff between performance
and matching quality. These filters include: word frequency
comparison, ontology similarity matching, ontology
subsumption matching, and constraint matching.
Offer an alternative to sequential searching when
matchmaking an agent with a service request. They point
out that finding possible partners via matching of service
advertisements with requests is not enough. To support
runtime interactions we need smarter behavior to handle
components that are not quite what was requested and
combining several partial components to meet the original
request. The solution to overcome sequential searching is
the conversion of the concepts into number intervals and the
use inheritance hierarchies to determine subclass and
equality relations. A generalized search tree is used to
handle partial matches.
The feasibility of matchmaking largely depends on the
annotation of web services. AI can also be applied to this
problem. A number of markup tools have been developed
for document markup and these could be applied to the
semantic description of WSs. The SHOE Knowledge
Annotator [19] uses ontologies to guide knowledge
annotation. To produce RDF-based markup, COHSE or
AeroDAMLcan be used. These approaches start with
descriptions in DAML+OIL and DAML, respectively.
These approaches support automatic conversion of markup
languages but do not support information extraction or
automatic mark-up. OntoMat does support some form of
automated extraction of semantics. OntoMat combines the
resource with its DAML-S markup. The MnM approach
additionally stores the annotations in a knowledge base.
Automated markup in MnM is achieved using techniques
from knowledge engineering; machine learning and natural
language processing have developed a query language that
is used to find services.
The solution to finding services is to first describe the
service using the process ontology with the assistance of the
MIT Process Handbook. The Handbook is large and allows
reuse to assist in ontology definition. Next, the ontology is
indexed by breaking it down into its components such as
attributes, ports, dependencies, subtasks and exceptions. The
requester can form a query in the query language that will
use the index to find matches.
Clearly AI is already contributing solutions for locating,
matchmaking, querying and annotation of WS to facilitate
their discovery. Discovery of web services is an important
issue as it is a prerequisite to their use. However, the real
value of web services lies in their composition.

D. Composing Web Services
Web service composition can be simply defined as: ―the
problem of composing autonomous services to achieve
newfunctionality‖. WS composition is not just analternative
to application development but a means ofreducing the
application backlog problem because: manyservices are
moving online; integration is easier since WSsconform to
the HTTP protocol and many independentproviders have
related services that need to be combined tosatisfy user

P a g e |8 Vol. 10 Issue 8 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

requirements. The rigidity and lack ofintelligence of current
solutions has spawned a number ofresearch projects from a
number of other research fields.
The work by has arisen from experience in thedistributed
systems and networking fields. They havedeveloped the
Infrastructure for Composability at Runtimeof Internet
Services (ICARIS). They have extended WSDLto develop
the Web Services Offerings Language (WSOL).They offer
flexibility and adaptability but their approach isvery
alternative. Instead of trying to solve the problem ofhow to
find services dynamically and combine them, theyfocus on
the situation where providers and requestors arealready
matched but will at times either make changes totheir
services or requests. A service is seen to havenumerous
offerings. The functionality will be the same butthe
constraints will differ such as authorization rights andQoS.
They suggest that a limited number of classes ofservices be
offered and described. Then using WSOL they are able to
specialize the classes into offerings. Theirsolution offers
dynamic switching between offerings. Froma commercial
point of view the notion of offerings makessense as
customers probably prefer to do business withcompanies
they already know and businesses want tomaintain their
existing client base.
The work at Hewlett Packard laboratories on eFlowis
similar in that dynamiccomposition involves
automaticadaptation of the configuration at runtime
according to therequests of the individual customer. The
approach is drivenby the view that composition adds value
but to staycompetitive, composition needs to be dynamic as
servicesoffered need to adapt to stay competitive. Their goal
is toallow dynamic change in service processes with no
orminimal human intervention. While they take a
businessprocess perspective they point out that web services
are less static, predictable or repetitive compared to
―traditional‖business processes. Similar to most current
commercialsolutions, dynamic composition is made possible
due to theuse of a central repository that has clients and
providersalready attached to it.
The notion of generic solutions that are
customizedaccording to user constraints is a recurring theme
in much of the literature. Also look at composition as
theselection of possible services based on user
specifiedcriteria. They offer a centralized, pipes and
filtersarchitecture with two main components: a composer
(userinterface) and an inference engine (IE) component
(whichincludes a knowledge base of known services).
Theinference engine is an OWL reasoner and includes
axiomsto find all relevant entailments, such as the
inheritancerelation between two classes which may not
have beenmade explicit. The user identifies some criteria
that theservice must satisfy. The matchmaker (IE) selects
servicesthat might be suitable based on those criteria and
thecomposer shows them to the user. Suitable services
forcomposition are ones whose output can be an input to
aselected service. While execution of WS may be
performedautomatically, the actual task of composition is
performedby a human using the services suggested by the
system.

Model-based reasoning is a common techniqueemployed in
AI approaches. In SWORD entity relationshipmodelling of
services is performed by ―baseservice modellers‖ to produce
a ―world model‖. Afterbuilding a world model for each
service, a compositionmodel is developed that models each
service as an action.An expert system is used to
automatically determine if thecomposite service can be
created with existing services and if so aplan of execution is
generated.
In summary, a number of solutions are offered to provide
webservice composition. The approaches described in this
sectionshow that composition can be assisted through the
use of classdefinitions, inheritance hierarchies and model
and rule-basedreasoning. In many cases, decision making is
left to humans. Theonly automated composition offered is in
limited situations wherea central repository is used and the
requestor and provider are partof the same system.
However, the web is distributed in nature.Intelligent
reasoning and collaboration between services is neededto
handle this complexity. Agents are capable of both.

E. Agents and Web Services
The autonomous and reasoning capabilities of agents make
them well suited for handling cross-organizational decision
making. For example, agents can be used to (re)negotiate
contracts which would then require: determination of which
processes are needed to fulfil the contract; creation of new
business processes; and adaptation of existing business
processes. Two main agent-oriented approaches exist: use
wrappers to make WS behave like agents and; using agents
to orchestrate WS.

1) Adding Behaviour to WS via Agents Wrappers
WS are componential, independent, software applications
similar to agents. However, agents are also reactive, social
and capable of reasoning. If we wish web services to work
together, we need to give them social and reasoning
capabilities. This can be achieved by wrapping a service in
an agent. In the work of, a composition language is used to
create an agent wrapper which allows services to
collaborate. The created agent has first–order reasoning
abilities that have been derived from the DAML-S
description of the service. This then allows one agent
wrapped service to know what other agent-wrapped services
are capable of doing and whether they can assist in the
service/agent meeting its goals. Also offer an agent-based
wrapper approach to web services. They have developed a
tool for creating wrappers so that web sources can be
queried in a similar manner to databases. They then use an
interactive, hierarchical constraint propagation system to
perform integration. As in, the end user interacts via a GUI
to manage the orchestration. The Racing project6 offers
amediator architecture also using agent wrappers that are
structured into a hierarchy. A number of different agent
wrappers are supported: user, query translation, query
planning, resource wrapper, ontology, matchmaking, and
cloning and coordination agents. The use of agent wrappers
is a way of allowing multi-agent system technology to be
applied to web services

 Global Journal of Computer Science and Technology Vol. 10 Issue 8 Ver. 1.0 September 2010 P a g e | 9

2) Composing Web Services using Agents

The work of combines ideas from the Semantic Web,
Knowledge Representation and Agent communities to allow
WSs to be composed. Their goal is to ―construct reusable,
high-level generic procedures, and to archive them in
shareable (DAML-S) generic-procedures ontologies so that
multiple users can access them‖. In the approach, WSs and
user constraints are marked up in DAML-S. A generic task
procedure is selected by the user and given to the DAML(-
S) enabled agent, who customizes the procedure according
to the user specific constraints. The generic procedures are
written in an extended version of ConGolog, a situation
calculus agent programming language, and executed using a
Prolog inference engine. Others provide agent-oriented
languages for web service description. Propose an Agent
Service Description Language (ASDL) and Agent Service
Composition Language (ASCL). ASDL is an extension to
WSDL and captures external behaviour via a finite state
machine. Their work is based on the argument that
composition requires more than description of the data, but
also requires a strong representation of actions and
processes. A number of approaches are focused on the
design of agent systems with web services as the
components have developed WARP (Workflow Automation
through Agent-based Reflective Processes) that uses the
XML and WSDL standards. The goal is automatic
configuration and management of low-level services
(components). The software engineering development
process that has been developed is semi-automatic involving
multiple software agents and a human workflow designer.
They support visualization of the process based on activity
diagrams in UML.

3) (Re-)composition and Adaptable Agents
The ability of agents to adapt according to changes in
system requirements and the environment is important to
enable dynamic and reactive behaviour.
Agents may be adapted in a number of different ways. The
knowledge and facts that an agent uses may be adapted for
example the agent may use a client profile that changes
according to the clients activities (e.g. this type of adaptation
typically involves machine learning, e.g. An agent may also
adapt its interface according to the platform on which it is
being used (e.g.[brand]. A third type of adaptation, and the
type of adaptation we are concerned with, is adaptation of
the agent‘s functionality. There is limited work in this area.
Semi-automatic agent creation tools such as
AGENTBUILDER, D‘AGENTS/ AGENT/TCL, ZEUS and
PARADE could possibly be extended to support agent
adaptation.
Following the use of compositionality in the major
softwareengineering paradigms (e.g. functional
programming, object-orientedprogramming, component-
based programmingand the Factory design pattern, we have
developed an AgentFactory. The approach is based on the
use of components, thegeneral agent model (GAM) and the
DESIRE formal knowledge levelmodelling and specification
frameworkfor multi-agentsystems. Our agent (re-

)structuring approach allows an agentto automatically adapt
by reusing existing components. Ourapproach is a
combination of process-oriented and object-
orientedapproaches by treating processes as the 'active' parts
of our agent,which are our agent components and classes as
the 'passive' partof our agent, which are the data types used
in the agentcomponents. We are currently exploring whether
DAML-Sdescriptions of web services are adequate for
automatedconfiguration of web services by the Agent
Factory.the Agent Factory andbased on the notion of design
patterns, assists human designers infunctional design, and
the configuration of software componentsto fulfil the
conceptual design specified by the designers,depending on
the agent platform that is to be used. Our approachdoes
more: it automates the creation and redesign of both
theconceptual and operational design based on the
requirements onfunction, behavior and state of an agent. Our
use of web servicesas components is a further distinguishing
feature.
While not currently working in the WS area, the Adapt
agent approach, bring together adaptive workflow and
agentresearch. They consider how agents can be used to
collaborate toperform a workflow and make workflow more
intelligent andhow workflow can be used to organize a set
of agents andcoordinate interaction between people and
agents.
The reuse of knowledge has also been a widely
researchedtopic and the creation of libraries of problem
solving methodsand generic task modelsoffer a similar idea
to the functionalcomponents in our agent factory. The
IBROW project, mentionedearlier, has even more in
common with our approach by semi
automaticallyconfiguring intelligent problem solvers
usingproblem solving methods as building blocks. They use
mappingsto act as glue between the components which are
modelled asCORBA objects. Unlike our approach, their
architecture isrestricted to specific languages and
architectures, they onlysupport semi-automation and they do
not distinguish betweenconceptual and implementation level
designs.

III. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
artificial intelligence to eCommerce web service agent. We
have created common web service application to integrate
the all web and windows application who want to integrate
eCommerce application to their application. Refer Fig 1 – 4
work flow of AI based eCommerce web service.

A. Application Overview
The Order Management System (eCommerce) has been
written to provide a common means to create simple orders
and process credit card transactions. The first version works
only with PayPal's PayFlowProw service but can be updated
to work with other online merchant services (e.g.
Authorize). When the need to use an alternative provide
comes up we'll code the core library accordingly. Any
changes here will not affect the way you use the service.

P a g e |10 Vol. 10 Issue 8 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

1) Not a User Management System
The system doesn't offer any user management capabilities
like sign in. It assumes the calling application knows who
the user is let's it take care of any user authentication
required. When you're coding your shopping carts you need

to handle all of this. The Order Management System simply
provides the relevant methods to create Processing Sessions,
Shopping Carts etc you just need to implement them.
The Order Management System does keep track of "users"
(customers) through the use of an email address. This is the

primary means of identification and is required before you
can process any payments.

2) Typical Lifecycle / Process Flow
It's important to understand how the Order Management
System (OMS) works so you can make use of the methods
in the most efficient way.
The first thing you'll need to do is to create a Processing
Session in the OMS. This is done by calling the
GetSessionForKnownUser() method and passing in the
email address of the current user. The OMS will create a
session and a shopping cart for the user. It's recommended
that you store the ID of the session in your application
cookie or in your database so it can be reused. It's not
efficient to create a session every time!
To retrieve the shopping cart you simply call the
GetShoppingCart() method. To add an item to the
shopping cart simply call the AddItemToShoppingCart()
method passing in a properly constructed ShoppingCartItem
object. To remove an item from the shopping cart simply
call the RemoveItemFromShoppingCart() method passing
in the item to remove. You can also empty the shopping cart
by calling the EmptyShoppingCart() method.

3) Ready to Checkout
Once you've populated the shopping cart, authenticated your
user you're ready to process the transaction and turn the
Shopping Cart into an Order. To do this you must create a
PaymentProcessingKey. Think of this is a temporary key
allowing you to make a credit card transaction. To create
one you call the GeneratePaymentProcessingKet() method
passing in the session. It will configure it with the session
and the associated shopping cart ready for processing.

4) Payment Information Page
This page is the one responsible for taking the credit card
information and processing the payment through the online
payment gateway (e.g. PayFlowPro). The Order summary is
displayed at the top of the page so the user can make sure
they're purchasing the correct item(s). The next section
prompts for the credit card information including the CVV2
security code location on the credit card.

The last section prompts the user for the billing address
that's associated with the credit card they're using. If the user
is purchasing physical goods they should also populate a
shipping address. If the order consists of only electronic
items the shipping address can be left blank.

5) Processing the Payment
Once the user is happy that all the information has been
entered correctly they should click the "Purchase Now"
button to initiate the payment transaction. Processing
payments is actually using a two step process:
1. The first step is to authorize the payment. The reason we
do this is to basically test to see if the payment information
is correct and that the payment card will accept the new
payment being attempted without actually taking the funds.
The reason we do this is to make sure the transaction will
succeed. If this step fails we send the user back to the
payment information page and display them the error. It
basically means that we'll never process an order unless the
payment succeeds.
2. The second step is to then retrieve the actual funds
allocated during the first authorization step. At this point
we're 99.9% confident that the transaction will succeed
because the authorization was successful.
After a successful transaction the system performs some
cleanup routines and processes the order:

1. Updates the status of the order to Complete
2. Constructs an invoice and sends this to the user
3. Constructs a notification email and sends this to the
 person setup in the installation configuration
4. Calls the Call-back page defined int the installation

configuration. This page is located on calling application
and is generally responsible for firing any triggers based on
the products that were just purchased. For example it might
need to perform an upgrade of a profile or add a new
feature.
Once all this is complete the user is sent to the Order
Confirmation Page where a summary of the order is
presented.

 Global Journal of Computer Science and Technology Vol. 10 Issue 8 Ver. 1.0 September 2010 P a g e | 11

Fig – 1 Product select and Checkout page

Fig – 2 Credit card and Billing address page

P a g e |12 Vol. 10 Issue 8 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

Fig – 3 Order confirmation page

Fig – 4 Order confirmation email

 Global Journal of Computer Science and Technology Vol. 10 Issue 8 Ver. 1.0 September 2010 P a g e | 13

IV. CONCLUSION

The work of the Semantic Web community to provide
semantic description of web services will play a key role in
enabling agents to automatically compose web services. In
this eCommerce application has implemented in embedded
windows and web applications with cross-platforms and it‘s
successfully interoperability of applications. A standard
communication between the agents is clearly defined and
very less amount of data loss.
Existing agent platforms may need to be adapted to handle
the specific requirements of web services. But in this system
with no trouble to adaptable all kind of computer
applications and tested in real world applications. The
RETSINA functional architecture includes four basic types
of agents: interface, task, information and middle agents
who communicate via a special agent communication
language. Each of these agents includes four reusable
modules: communication and coordination, planning,
scheduling and monitoring. The middle agent plays a critical
role in matching providers with requesters and is offered as
a solution to the heterogeneous nature of agents over the
web.
In future work will continue on artificial intelligence to
natural language technology research will assist discovery of
web services and agents will play an important role in using
web services to satisfy user requests.

V. REFERENCE

1) Boutrous Saab, C.; Coulibaly, D.; Haddad, S.; Melliti,
T.; Moreaux, P.; Rampacek, S. ―An Integrated
Framework for Web Services Orchestration‖, Idea
Group Publishing, 2009

2) Raymond Y. K. Lau, "Towards a web services and
intelligent agents-based negotiation system for B2B
eCommerce", Elsevier Science Publishers B.
V.,October 2007

3) Sabou, M., Richards, D. and van splunter, S. An
experience report on using DAML-S , Workshop on E-
Services and the Semantic Web, Budapest, Hungary,
May, 2003

4) B.Y. Wu and K.M. Chao. Spanning Trees and
Optimization Problems. CRC Press, New York, USA,
2009.

5) Xia Yang Zhang Qiang Xu Zhao Zhang Ling,
"Research on Distributed E-Commerce System
Architecture", IEEE ,August 2007

6) Lixiao Geng Zhenxiang Zeng Yajing Jiang,
"Research on E-Commerce personalized service based
on intelligent agent technology", IEEE, November
2008

7) T. Finin, J. Mayeld, C. Fink, A. Joshi, and R. S. Cost.
Information retrieval and the semantic web,January
2004.

8) Scott Short, "Building XML Web Services for the
Microsoft .NET Platform", Microsoft Press, 2002

9) James Murty, "Programming Amazon Web Services",
O'Reilly Media, March 2008

10) http://www.daml.org/ontologies/, daml ontology
library, by daml.

11) http://www.schemaweb.info/, schema web.
12) http://www.semwebcentral.org/, semwebcentral, by

infoether and bbn.
13) http://www.w3.org/2004/ontaria/, ontaria, by w3c.
14) https://subversion.365media.com/mediawiki/index.php

/ECommerce

	Employing Artificial Intelligence to eCommerce Web service
	Authors
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	A. Web Services
	1) Just-in-time integration

	B. Semantic description of Web Services
	C. Discovering Web Services
	D. Composing Web Services
	E. Agents and Web Services
	1) Adding Behaviour to WS via Agents Wrappers
	2) Composing Web Services using Agents
	3) (Re-)composition and Adaptable Agents

	III. EXPERIMENTAL RESULTS
	A. Application Overview
	1) Not a User Management System
	2) Typical Lifecycle / Process Flow
	3) Ready to Checkout
	4) Payment Information Page
	5) Processing the Payment

	IV. CONCLUSION
	V. REFERENCE

