
© 2022. Maged Abdalla Helmy Abdou, Paulo Ferreira, Eric Jul & Tuyen Trung Truong. This research/review article is distributed
under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate
credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 22 Issue 2 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Capillary X: A Software Design Pattern for Analyzing Medical
Images in Real-time using Deep Learning

By Maged Abdalla Helmy Abdou, Paulo Ferreira, Eric Jul
& Tuyen Trung Truong

University of Oslo
Abstract- Recent advances in digital imaging, e.g., increased number of pixels captured, have
meant that the volume of data to be processed and analyzed from these images has also
increased. Deep learning algorithms are state-of-the-art for analyzing such images, given their
high accuracy when trained with a large data volume of data. Nevertheless, such analysis
requires considerable computational power, making such algorithms time- and resource-
demanding. Such high demands can be met by using third-party cloud service providers.
However, analyzing medical images using such services raises several legal and privacy
challenges and do not necessarily provide real-time results. This paper provides a computing
architecture that locally and in parallel can analyze medical images in real-time using deep
learning thus avoiding the legal and privacy challenges stemming from uploading data to a third-
party cloud provider. To make local image processing efficient on modern multi-core processors,
we utilize parallel execution to offset the resourceintensive demands of deep neural networks. We
focus on a specific medical-industrial case study, namely the quantifying of blood vessels in
microcirculation images for which we have developed a working system.

GJCST-C Classification: DDC Code: 020.3 LCC Code: Z1006

CapillaryXASoftwareDesignPatternforAnalyzingMedicalImagesinRealtimeusingDeepLearning

Strictly as per the compliance and regulations of:

Capillary X: A Software Design Pattern for
Analyzing Medical Images in Real-time using

Deep Learning
Maged Abdalla Helmy Abdou α, Paulo Ferreira σ, Eric Jul ρ & Tuyen Trung Truong Ѡ

Abstract- Recent advances in digital imaging, e.g., increased
number of pixels captured, have meant that the volume of data
to be processed and analyzed from these images has also
increased. Deep learning algorithms are state-of-the-art for
analyzing such images, given their high accuracy when trained
with a large data volume of data. Nevertheless, such analysis
requires considerable computational power, making such
algorithms time- and resource-demanding. Such high
demands can be met by using third-party cloud service
providers. However, analyzing medical images using such
services raises several legal and privacy challenges and do
not necessarily provide real-time results. This paper provides a
computing architecture that locally and in parallel can analyze
medical images in real-time using deep learning thus avoiding
the legal and privacy challenges stemming from uploading
data to a third-party cloud provider. To make local image
processing efficient on modern multi-core processors, we
utilize parallel execution to offset the resourceintensive
demands of deep neural networks. We focus on a specific
medical-industrial case study, namely the quantifying of blood
vessels in microcirculation images for which we have
developed a working system. It is currently used in an
industrial, clinical research setting as part of an e-health
application. Our results show that our system is approximately
78% faster than its serial system counterpart and 12% faster
than a master-slave parallel system architecture.

I. Introduction

arly attempts to address the problem of running
demanding computational algorithms in tightly
constrained environments emerged in the 1980s

[1]. Performance limitations became apparent with the
rise of processing big data using deep learning (DL)
techniques because DL requires large amounts of
computational power [2], [3]. Such limitations included
the under-utilization of the available computing
resources to execute processes introducing undesirable
delays [4]. These limitations are still prominent when
real-time results are desired in tightly constrained
environments (i.e., clinical environments). Furthermore,
using third-party cloud services to rent computing
resources is risky due to General Data Protection
Regulation (GDPR) [5]. These regulations effectively limit
clinicians to local computing resources, such as laptops
and PCs approved for use at hospitals.

Author α σ ρ: Department of Informatics University of Oslo, Norway.
e-mail: magedaa@uio.no
Author Ѡ: Department of Mathematics University of Oslo, Norway.

This paper aims to design, implement, and
evaluate a software package that can analyze medical
images using deep learning in a local environment as to
mitigate the risk of breaching GDPR rules while still
getting results in real-time. We focus on a specific
industrial, medical case study: the quantification of
blood vessels in microcirculation images captured by
using in-clinic, hand-held cameras with microscope
lenses. The quantified value is called capillary density or
blood vessel density. This value is of high clinical
relevance because the fluctuation of this value can be
used as an early marker to indicate an organ failure, and
the severity of the change might predict the chances of
the patient surviving [6]–[12].

The requirements of our system were
established by interviewing a set of medical doctors and
surgeons who spent several years in the
microcirculation analysis field (associated with ODI
Medical AS, a MedTech company responsible for the e-
health industrial application). The main requirements for
a production-grade system for the quantification of
blood vessels analysis captured by a real-time camera
are:

1. The system must be able to analyze a
microcirculation image (1920x1080) in real-time
(one second or less);

2. The system must have low power consumption so
that it can be used in battery-powered devices in
hospitals; and

3. The system must be built on top of a popular, widely
used programming language and framework (e.g.,
Python and Tensorflow) running on standard
hardware.

To the best of our knowledge, no previous work
on microcirculation analysis reported using parallel
frameworks to calculate the capillary density in under 1
second for a frame with a resolution of 1920x1080 on a
CPU using deep learning with an accuracy of 85%. The
medical doctors proposed this accuracy value to
outperform the accuracy achievable by a trained
clinician. Previous systems in the literature that achieve

a comparable or higher accuracy needed a GPU that is
not available in typical low-power computers approved
for use in hospitals. The developed system runs in an
industrial, clinical environment on a standard low cost

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

13

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

∼

mailto:magedaa@uio.no�

computer utilizing all the available resources and meets
the requirements listed above. This paper does not
focus on developing the deep learning algorithm but
rather the deployment of the deep learning algorithm.
The algorithm used in this paper achieves an accuracy
of 85%, and is described in a previous paper [13].

In Section II, we present the work related to our
paper including a literature survey on the relevant
parallel frameworks and existing systems that were built
to analyze micro-1 circulation images. In Section III, we
present the proposed architecture for our package
along with two baseline systems that we used to
benchmark our proposed architecture against. In
Section IV, we present how we implemented our system.
In Section V, we present the evaluation criteria that have
been used to evaluate our system and benchmark our
proposed system against a baseline serial system and a
baseline parallel system with the presented criteria and
discuss our results. In Section VI, we present our
conclusion.

II. Related Work

This section presents the literature review on
current parallel frameworks and existing systems built to
calculate capillary density.

a) Parallel Frameworks
Hadoop [14] gained recognition in 2004 and

provides a framework for distributed storage and the
processing of big data. It splits large blocks of data into
a Hadoop Distributed File System (HDFS) which is
based on Google’s file system (GFS) and stores data
across clusters [15], [16]. HDFS uses data locality,
allowing clusters and nodes to manipulate data, making
it faster than conventional high-performance computing
[17].

MapReduce then processes the data stored on
HDFS [18]. MapReduce has a master job tracker and
one per cluster to schedule jobs, manage resources,
and re-execute processes when a node fails [17]. HDFS
and MapReduce are two modules built to store and
process big data reliably. However, the main drawback
of Hadoop is that it cannot deal with big data real-time
stream processing; therefore, Apache Spark was
introduced [19] was introduced in 2010.

Some benchmarks show that Spark is three
times faster than Hadoop [20]. This increase is because
Spark can load and process data using RAM instead of
the two-stage access paradigm introduced by
MapReduce [19]. Spark outshines MapReduce when it
comes to real-time processing [21], [22]. Furthermore,
the ease of programming on Spark with Scala [23], Java
[24] and Python [22] makes it relatively easy to adapt
instead of MapReduce, which can be programmed only
in Java. Spark provides a unified processing system
instead of several isolated applications that do not share
the state amongst each other [25]. Although Spark was

designed to outperform MapReduce processing, its the
fundamental limitation is the complexity involving
asynchronous execution and the compatibility issues
introduced when integrating it into the deep learning
lifecycle [26].

Dask [27] was introduced in 2014 and is a
parallel computing library that uses dynamic task
scheduling to leverage multi-core processors and High-
Performance Computing (HPC) clusters. Instead of
loading all data into RAM, Dask pulls data into RAM in
chunks and throws away intermediate values as soon as
possible, freeing more memory to process more data
[27]. While Spark can be seen as an extension to the
MapReduce paradigm, Dask is a generic task
scheduling system that handles complex dimensional
arrays [28]–[30]. Both Dask and Spark leverage acyclic
graphs, but the map stage of Dask can represent more
complex algorithms than Spark [31]. Thus, Dask can
parallelize sophisticated algorithms without excess
memory usage [29]. Moreover, Spark does not natively
support multi-dimensional arrays as Dask does [30],
[32]. This advantage makes Dask lightweight and
smaller than Spark, and Dask integrates natively with the
numeric Python ecosystem. However, Dask is not fully
compatible with TensorFlow, and deep learning
algorithms as the framework focuses on Data science
libraries like Pandas and Numpy.

Orleans [33] is an actor system that provides
highly available concurrent distributed systems. The
main drawback is how the system reacts to a data
failure event. Developers must manually create
checkpoint actor states and intermediate responses to
restore stateful actors [34]. While this does not affect the
performance, it can bring some overhead when
developing a system to handle failure events.

Tensorflow [35] is an ecosystem of machine
learning and deep learning tools that leverage CPUs
and GPUs while training. However, it provides limited
support when deploying it to serve users because it
does not fully support responses when a task is
completed or when a fault is detected. One way to
perform this activity is to wrap the Tensorflow Model in a
flask service and serve the model [36]. However, this
becomes unmanageable when scaling with different
models. Tensorflow serving [37] was introduced to
deploy models in production environments but has to be
used in conjunction with traditional web servers, which
introduces additional latency.

With the introduction of deep learning
techniques [38], which consists of several millions of
parameters to compute, wrapping deep learning models
with traditional servers is no longer sufficient. Compared
to traditional models, deep learning models are
computationally intensive and have a response time of
tens of a millisecond or greater [39]; thus, there is a
need for efficient parallelizing to reduce the response
time.

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

14

Y
e
a
r

20
22

 (

)
C

© 2022 Global Journals

∼

Frameworks such as MapReduce [17] and
Spark [40] are not suitable for models serving in real-
time because they were designed and built for batch
processing. Furthermore, they are not suitable for large
numbers of small transactions because of the
considerable time overhead that they require for
instantiation. Dask [27] and Tensorflow [35] provide a
complex and very little support for model serving [26].

It is possible to set up different parts of different
frameworks together to have a system that can serve a
deep learning model. However, the compatibility and
maintenance of these different frameworks increase the
technical complexity. Unfortunately, deploying deep

learning models into production is still not a
straightforward endeavor.

b) Existing Microcirculation Analysis Systems
This section presents the current work on

systems that calculate capillary density from
microcirculation images.

As briefly mentioned at the end of the
introduction, none of the existing works mentioned on
microcirculation analysis reported using parallel
frameworks to calculate the capillary

Fig. 1: The diagram shows the code encapsulated in a core on a computer. This code is replicated across each core
to achieve parallelism. This code calculates the capillary density from a microcirculation image. The architecture
consists of two parts: i) first determining the RoI using traditional computer vision algorithms and ii) then using deep
learning to classify if the RoI contains a capillary

density in under 1 second for a frame with a resolution
of 1920x1080 on a CPU using deep learning with an
accuracy of 85%. Those who exceeded this accuracy
used a GPU which is not readily available in a clinical
environment.

Cynthia Cheng et al. [41] takes a three-step
approach to quantify capillary density. First, they apply
an image enhancement process to darken the
capillaries and lighten the background. They then flatten
the image using 2D filters and raise the image’s
contrast. The image is then despeckled using a 7x7
filter. They then adjust the histogram of the image to a
best-fit model The second step involves manually
selecting the capillary as a target object. They then
select the background as a reference. The algorithm
then selects the rest of the capillaries and excludes the
images. A macro is then created from this process,
which can be applied to other images with similar
characteristics. As described, this involves several
steps, including the manual user intervention; therefore
cannot provide results in less than 1 second.

A. Tama et al. [42] uses binarization followed by
skeleton extraction and segmentation to quantify the
capillaries. The first step involves extracting a reference

image. The image has to be then manually cropped by
the user. The green channel is then extracted from the
image to have the highest probability of vessels in it.
They then apply a top-hat transform to remove
unevenness in the background. They then apply the
Wiener filtering, a lowpass filter followed by Gaussian
smoothing. They then apply Otsu thresholding to
segment the image from the background and apply a
skeleton extraction method to quantify the capillary. The
authors do not report the speed needed to perform
these steps.

Sherry G.Clendenon et al. [43] uses a manual
method to segment the microvascular structure. The
authors do not report the speed or accuracy of their
method.

Pavle Prentǎ sic et al. [44] used a custom
neural network to segment the foveal microvasculature.
Their neural network consists of three Convolutional
Neural Network (CNN) blocks coupled with max-pooling
and a dropout layer followed by two dense layers. They
reported accuracy of 82.4% at 2 minutes.

R Nivedha et al. [45] used a non-linear Support
Vector Machine [46] to classify images. They first started
by extracting the green channel since it contains the

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

15

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

∼

∼

relevant information to detect blood vessels. They then
performed manual cropping and used adaptive
histogram equalization to improve the image’s contrast.
They then used image enhancement to segment the
image using a Gaussian filter followed by OTSU
thresholding. They then used PrincipalComponent
Analysis(PCA) to extract the features. A Support Vector
Machine then performed the classification. They
reported accuracy of 83.3% but not the time needed for
automated analysis.

ending with results. They reported an overall accuracy of
83.3% but not the time needed for automated analysis.
In their next paper [48], they experimented with different
types of machine learning techniques, including
Random Forests Classifier, Multinomial Logistic
Regression, and CNNs. However, they do not report the
timing needed for classifying the blood vessels.

Perikumar Java et al. [49] used a custom form
of ResNet18 [50] to quantify capillaries. They used a 10-
layer architecture and resized the images to input
224x224x3. They

(a) (b)

(c)

(d)

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

16

Y
e
a
r

20
22

 (

)
C

© 2022 Global Journals

KV Suma et al. [47] used Fuzzy Logic Kernels to
classify the images. They started by Fuzzification of the
input, followed by the Application of the Fuzzy operator,
then aggregating the consequents across the rules,

 (e) (f)

Fig. 2: (a) This presents a sample of a microcirculation image that is taken as an input to the system (b) The
background image calculated using a Gaussian Segmentation Algorithm (c) The segmented area formed by
calculating the difference between the original image and the background (d) The Structural Similarity Index
calculated from the original frame and the background image (e) The modified image with the capillary area
highlighted in black encapsulated within the green bounding box (f) The original image with the capillary area
highlighted in black encapsulated within the a bounding box

applied the Adam optimizer and cross-entropy as loss
metrics. They trained the NVIDIA GeForce GTX Titan X
algorithm and used the PyTorch library. They reported
accuracy of 88%. However, such an algorithm is not
suitable for a clinical environment due to the high-end
GPU required to run it.

F Ye et al. [51] utilized the concept of transfer
learning and used the Inception Single Shot Multibox
Detector (SSD) [52] to build their neural network. They
build their system using Python and Tensorflow with an
image resolution of 744 × 482 pixels. They applied data
augmentation to the image to increase the number of
datasets. The SSD architecture requires GPU to
produce results in real-time, making it unsuitable to be
used in a clinical requirement with only CPUs available.

YS Hariyani et al. [53] used U-net architecture
combined with a dual attention module. They introduced
a new method called DA-CapNet, which can analyze
microcirculation images. It consists of the encoder and
decoder parts. The encoder downsamples the
dimension of the information in an image while
increasing the number of channels. This step increases
the spatial information dimension. They then combine it
with a dual attention module which increases the
accuracy. The dual attention uses the squeeze and
excitation process to extract the blood vessels in the
image. The authors resized the image to 256×256 to
reduce the processing time and used a Gaussian
threshold method with a median blurring filter of kernel
size five. The authors reported accuracy of 64% but not
the time taken for analyses.

G Dai et al. [54] used a custom neural network
similar to Pavle Prentǎsic et al. for segmentation.
However, G Dai et al. used five CNN blocks instead of
three. Hang-Chan Jo et al. [55] used a Attention-UNet
architecture [56]. Their method starts by using the

CLAHE method and computes several histograms. They
then apply the Gamma correction and pass it to the
deep neural network. The reported accuracy was
73.20%, but not the time is taken for analysis.

III. Proposed System

This section presents the system’s architecture
to analyze medical images in parallel, specifically, to
calculate the capillary density in a microcirculation
image. We start by presenting the DL part (which is
based on OpenCV [57] and Tensorflow [35]) and the
architecture of our system’s parallel part (which is based
on Ray [58]).

a) The Deep Learning Algorithm part of the Proposed
System

The outline of the deep learning architecture is
shown in Figure 1. It consists of two main parts: i)
determining the regions of interest (RoIs) where
capillaries might exist, and ii) using a CNN for predicting
whether these RoIs contain a capillary or not.

The original frame is shown in Figure 2a. The
position of the capillaries is determined by first removing
the background from the original frame using a
Gaussian Mixture-based Background/Foreground
Segmentation Algorithm [59]. The background removed
is shown in Figure 2b. The structural similarity index
measure (SSIM) [60], [61] is applied between the
original frame shown in Figure 2a and background
image shown in Figure 2b resulting in Figure 2c and
Figure 2d. Bounding boxes are formed around the red
areas using OpenCV contour method [62]. These
bounding boxes are then passed to the CNN for
prediction. The RoIs that have been predicted as
capillaries have a green bounding box around each one
of them along with a black line to highlight the shape of

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

17

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

the capillary. This is shown in Figure 2e and the original
image in Figure 2f. The number of pixels within the
encapsulated black contour line is summed up and
divided by the total number of pixels resulting in the
value of the capillary density.

Bounding boxes are formed around the
predicted bounding boxes using the OpenCV contour
method [62]. These bounding boxes are then passed to
the CNN for prediction. The RoIs predicted as capillaries
have a green bounding box around them and a black
line to highlight the capillary shape. This is shown in
Figure 2c and Figure 2d. The number of pixels within the
encapsulated black contour line is summed

Fig. 3: A Breakdown of the Building Blocks Used to Built

the Proposed System

Fig. 4: The data flow view of how the driver process
coordinates with the driver process and the workers

up and divided by the total number of pixels resulting in
the value of the capillary density.

The CNN consisted of three blocks of Conv2D.
The first Conv2D consisted of 32 filters, the second
Conv2D consisted of 64 filters, and the third Conv2D
consisted of 128 filters with a block of Maxpooling2D. All
the Conv2D blocks have a filter of 3x3 shape. Two
dense layers of 128 neurons follow the Conv2D blocks,
64 neurons, and two neurons. The Rectified Linear Unit
(ReLu) [63] activation function is used for the whole
network except the last neuron layer, which used a
softmax activation function [64]. This network has been

trained on 11,000 images of capillaries captured by
trained professionals in a clinical setting1

b) The Parallel System part of the Proposed System

1. The details
and the specificity of the algorithms and data used to
train the algorithm can be found in a previous paper by
the same authors [13].

This architecture has two types of nodes: the
worker nodes and a head node. A worker node consists
of the worker process(es), the scheduler, and the
object-store. A worker node and a head node anatomy
are shown in Figure 3 and the data flow within the
components is shown in Figure 4.

A worker process encapsulates the code to be
executed and is responsible for task submission and
execution of tasks. In our system, the worker node
encapsulates the deep learning algorithms. It receives
the image to be analyzed and replies whether this image
contains a capillary (blood vessel) or not. The scheduler
is the resource manager of the worker node. The object
store stores and transfers object larger than 100KB. The
head node has a Global Control Store (GCS) and a
driver process. The GCS is a key-value server that
contains objects, actors, and tasks. The driver process
submits tasks to the scheduler and keeps track of the
objects created with all the nodes. When the code is
initiated, an instance of a head node is created. The
maximum number of worker processes within this head
node is based on the number of parallel modules in the
architecture instantiated and the maximum number of
cores. Each worker performs both stages: suggesting
RoIs and detecting capillaries using the CNN loaded.
Each worker returns a single object that contains the
frame’s density value and is stored in the object-store.
The code execution of this architecture is scheduled
using the scheduler, and the tasks are performed over a
general-purpose Remote Procedure call to the worker
processes on top of the Python interpreter. The
scheduler then communicates the results via an object
transfer protocol. For error handling and fault tolerance,
the scheduler retries executing it on the worker
processor, if a task fails due to a worker process ending
unexpectedly.

Thus, one of the main differences between the
proposed system and the baseline parallel system is
that the former uses a driver process to manage the
workers while the latter uses a controller and a router to
manage the worker’s tasks. A baseline parallel system
uses some controller and router to prevent the worker’s
potential overloading with tasks, which can cause it to
fail. However, these two components (controller and
router) can occupy up to two cores for the management
of the workers without performing any code execution.

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

18

Y
e
a
r

20
22

 (

)
C

© 2022 Global Journals

1 The sponsoring company provided a device that was used to capture
this data.

∼

While the proposed system does not reserve any cores
to manage the drivers but rather re-executes the code if
a worker fails [65].

When the code is instantiated in our proposed
system, the worker node loads the CNN as a Tensorflow
model. Each worker occupies a logical processor,
thread, or core, depending on the CPU architecture; we
assume it is a core and instantiate a worker per core. As
the number of cores increased, the number of images
processed in parallel increased with the number of
cores.

We have shown that by combining the deep
neural network part with the parallel part, we can
process several images at the same time, suggest RoIs
and predict whether the bounding boxes have a
capillary or not. Furthermore, the number of frames
processed in parallel is determined by the maximum
number of cores available or the pre-defined the value
inserted by the user (assuming it does exceed the
number of cores available).

IV. Implementation

Many programming languages can implement a
parallel processing framework. Python is the fastest-
growing programming language [66], [67] and the
preferred programming language for deep learning with
Tensorflow [68], [69]. This popularity stems from its
design philosophy, where it emphasizes readability and
simplicity [66]. Moreover, the number of libraries,
various tools, and speedily expanding the industrial
community supporting Python made the language
attractive [70].

Thus, the proposed package was built on top of
Python 3.7 [22], OpenCV 4.5.2[57], Scikit-learn 0.18[71],
Ray 1.2[26] and Tensorflow 2.3[35]. The coding and
evaluation were done in Pycharm Professional 2021.1
on a Windows 10 operating system. The system can be
installed, modified, and used by following the
instructions in the readme file on the Github repository
(www.github.com/magedhelmy1/CCGRID 2022 parallel
system for image analysis).

To use the system, the user can clone the
package from the Github repository and import it in their
Python environment.

V. Evaluation and Discussion

In this section, we compare the baseline serial
architecture, the baseline parallel architecture, and the
proposed system with each other using the following
three metrics: execution time, speedup, and CPU
usage. We show that the proposed Python system is
78% faster than the serial system and 12% faster than
the baseline parallel architecture. These three metrics
are standardized markers to quantify a system
performance [72]. We use these three metrics to
compare our proposed approach to a serial and parallel

system with the same deep neural network. We show
that the proposed system meets the requirements
mentioned in Section I and supersedes both the
baseline serial system and the baseline parallel system
in execution time, speedup, and CPU usage. The
proposed system, serial counterpart, and parallel
counterpart had the same CNN model and
microcirculation images. We evaluated the three
systems by taking the average time to calculate capillary
density per image for a set of 100 images, which is an
arbitrary number we chose to reduce the margin of error
and ensure our calculations’ accuracy.

a) Execution Time
To calculate how much one architecture was

faster compared to the other, we used Equation 1,
where ET denotes execution time.

 (1)

1.

Baseline serial architecture — one second per
frame;

2.

Baseline parallel architecture — 0.25s per frame;
and

3.

The proposed system — 0.22s per frame. The
average

SlowerET − FasterET

SlowerET
= %Faster

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

19

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

Fig. 5: The execution time of the proposed system
against the baseline serial system and the baseline
parallel system

The execution time metric measures the
average time needed to calculate a single image’s
capillary density. We used 100 images in each
architecture to reduce the measurement error margin.
The execution time of each architecture is the following:

values were calculated by measuring the time to
process a frame in a set of 100 microcirculation images.
The execution time of the three architectures is
presented in Figure 5.

In short, our results show that our proposed
system is 12% faster than the baseline parallel
architecture and 78% faster than its baseline serial
architecture.

b) Speedup
This metric calculates the speed gain by the

system as the number of cores increases. For the
baseline serial architecture, the execution time is one
second regardless of the number of cores available
(indicating that the system is not scalable). The average
execution time of processing one frame for the baseline
parallel system and the proposed system is shown in
Figure 6.

Fig. 7: This graph shows the number of cores used by
each architecture to process a frame. The more used at
any instance the better since this shows how efficient
the system is at utilizing all the resources available to it.

The baseline parallel system processed a frame
on average in 0.56 seconds with four cores, while the
proposed system processed a frame in 0.32 seconds.
The proposed system processes a frame 68% faster
than the baseline serial architecture and 43% faster
than the baseline parallel architecture. As the number of
cores doubles, the proposed system gains an additional

31% during the baseline parallel architecture gains an

additional 55%. In both cases, the proposed system
outperforms the baseline parallel architecture. One of
the main reasons the proposed system outperformed a
baseline parallel system with a master-slave architecture
is that a masterslave architecture can reserve up to two
cores to manage the other parallel cores. In contrast,
the proposed system does not reserve any cores
beforehand. In this way, we free up the computer cores
to focus on processing images rather than purely
handling requests. Thus, the proposed system gains
more speedup than the baseline parallel system. We
can conclude that the proposed system has the
recommended architecture for running deep neural
networks on a single machine.

c) System Resource Utilization - CPU Usage
This metric measures the number of cores used

to process the medical images using deep learning.
With the baseline serial architecture, only one

cores is utilized per frame due to the Python Global
Interpreter Lock’s limitation. With the baseline parallel
architecture, it is always two less than the available
number of cores because it always reserves these two
for the management of the parallel workers. Each cores
in the proposed system is allocated a task where each
task processes a frame. Thus, the proposed system is
most efficient on a single machine with a multi-core. A
graph showing the number of cores used by each
architecture is shown in Figure 7.

d) System Generalization
Our system functions and classes were built

using modular design patterns. This design philosophy
means that the user can replace the DL part of our
system with their algorithm by simply pointing the
function in our code to their algorithm. The details of this
are highlighted in the README file in the GitHub
repository. Thus, our package can be generalized to
analyze images using a DL model of the user’s choice in
parallel. The system will automatically scale to the
number of cores available without the user having to
worry about experiencing issues with dependency,
integration, resource utilization, and speedup.

VI. Conclusion
This paper presented a software package that

can analyze medical images using DL locally. Our
proposed system can efficiently use all local resources
because it utilizes parallel execution to offset the
resource-intensive demands of using a deep neural
network. The proposed system is of high clinical
relevance because monitoring changes in capillary
density can be used to locate early markers indicating
organ failure. The severity of the change in capillary
density might predict whether or not the patient survives.
Furthermore, clinical researchers do not risk uploading
patient data to a third-party cloud provider to use a deep
neural network to automatically analyze their images.

∼

∼

∼

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

20

Y
e
a
r

20
22

 (

)
C

© 2022 Global Journals

Fig. 6: This graph shows the speedup of the baseline
parallel system and the proposed system as the number
of cores increases

Our experiments show that our system provides
an optimal design for using deep learning models
running on a multicore single machine for image
analysis. We benchmarked our system with a baseline
serial architecture and a baseline parallel architecture
using standardized evaluation metrics: execution time,
speedup, and CPU usage. These metrics are used to
calculate the performance of a system. Our results
indicate that the proposed system is approximately 78%
faster than its baseline serial system counterpart and
12% faster than a baseline parallel system.

As demonstrated by our evaluation criteria, our
system exhibits an acceptable industrial performance
compared to the other two presented baseline systems.
This argument is further strengthened because our
system is currently used as a product in an industrial
setting to calculate and track capillary changes in
patients with pancreatitis, COVID-19, and acute heart
diseases. The clinical researchers welcomed using this
system to analyze their medical images locally. This
acceptance was mainly due to the system reducing
analysis time and removing the risks of uploading the
data to a thirdparty cloud provider.

Our code has been made public as an open-
source project in a GitHub repository for testing and
usage by other clinical users. The users can import the
package into their Python environment and immediately
start using it. Moreover, users who can clone the code
from GitHub can swap our algorithm with theirs,
showing that our architecture can be generalized and
utilized in the context of other use cases that require
image analysis running on a CPU in near real-time.
Thus, the generality of our approach can be justified by
several other use cases that require image analysis.

Acknowledgment

The authors would like to thank the Research
Council of Norway for providing the necessary funds for
this project. The research carried out was funded under
these two projects; Industrial Ph.D. project nr: 305716
and BIA project nr: 282213. We would also like to thank
ODI Medical AS for providing the requirements, testing
the system, and integrating it as part of their e-health
application.

References Références Referencias

1. R. Duncan, “A survey of parallel computer
architectures, ”Computer, vol. 23, no. 2, pp. 5–16,
1990.

2. Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey
on deep learning for big data,” Information Fusion,
vol. 42, pp. 146–157, 2018.

3. N. C. Thompson, K. Greenewald, K. Lee, and G. F.
Manso, “The computational limits of deep learning,”
arXiv preprint arXiv:2007.05558, 2020.

4. S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Parallel
i/o optimizations for scalable deep learning,” in 2017
IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), IEEE, 2017, pp. 720–
729.

5. J. M. M. Rumbold and B. Pierscionek, “The effect of
the general data protection regulation on medical
research,” Journal of medical Internet research, vol.
19, no. 2, e47, 2017.

6. M. J.S. Parker and N. W. McGill, “The established
and evolving role of nailfold capillaroscopy in
Connective-Tissue disease,” in Connective Tissue
Disease – Current State of the Art [Working Title],
IntechOpen, 2019.

7. V. Nama, J. Onwude, I. T. Manyonda, and T. F.
Antonios, “Is capillary rarefaction an independent
risk marker for cardiovascular disease in south
asians?” en, J. Hum. Hypertens., vol. 25, no. 7, pp.
465–466, Jul. 2011.

8. B. Fagrell and M. Intaglietta, “Microcirculation: Its
significance in clinical and molecular medicine,”
Journal of internal medicine, vol. 241, no. 5, pp.
349–362, 1997.

9. A. J. H. M. Houben, R. J. H. Martens, and C. D. A.
Stehouwer, “Assessing microvascular function in
humans from a chronic disease perspective,” en, J.
Am. Soc. Nephrol., vol. 28, no. 12, pp. 3461–3472,
Dec. 2017.

10. T. Wester, Z. A. Awan, T. S. Kvernebo, G. Salerud,
and K. Kvernebo, “Skin microvascular morphology
and hemodynamics during treatment with
venoarterial extra-corporeal membrane oxygen-
nation,” en, Clin. Hemorheol. Microcirc., vol. 56, no.
2, pp. 119–131, 2014.

11. A. L´opez et al., “Effects of early hemodynamic
resuscitation on left ventricular performance and
microcirculatory function during endotoxic shock,”
en, Intensive Care Med Exp, vol. 3, no. 1, p. 49,
Dec. 2015.

12. G. Hernandez, A. Bruhn, and C. Ince,
“Microcirculation in sepsis: New perspectives,”
Current vascular pharmacology, vol. 11, no. 2, pp.
161–169, 2013.

13. M. Helmy, A. Dykyy, T. T. Truong, P. Ferreira, and E.
Jul, “Capillarynet: An automated system to analyze
microcirculation videos from handheld vital
microscopy,” arXiv preprint arXiv: 2104.11574, 2021.

14. A. Holmes, Hadoop in practice. Manning New York;
2012, vol. 3.

15. D. Borthakur et al., “Hdfs architecture guide,”
Hadoop Apache Project, vol. 53, no. 1-13, p. 2,
2008.

16. K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
“The hadoop distributed file system,” in 2010 IEEE
26th symposium on mass storage systems and
technologies (MSST), Ieee, 2010, pp. 1–10.

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

21

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

17. J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

18. ——, “Mapreduce: A flexible data processing tool,
”Communications of the ACM, vol. 53, no. 1, pp.
72–77, 2010.

19. M. Saouabi and A. Ezzati, “A comparative between
hadoop mapreduce and apache spark on hdfs,” in
Proceedings of the 1st International Conference on
Internet of Things and Machine Learning, 2017, pp.
1–4.

20. S. Gopalani and R. Arora, “Comparing apache
spark and map reduce with performance analysis
using kmeans,” International journal of computer
applications, vol. 113, no. 1, 2015.

21. K. Aziz, D. Zaidouni, and M. Bellafkih, “Real-time
data analysis using spark and hadoop,” in 2018 4th
international conference on optimization and
applications (ICOA), IEEE, 2018, pp. 1–6.

22. G. Van Rossum et al., “Python programming
language.,” in USENIX annual technical conference,
vol. 41, 2007, p. 36.

23. M. Odersky et al., “An overview of the scala
programming language,” 2004.

24. K. Arnold, J. Gosling, and D. Holmes, The Java
programming language. Addison Wesley
Professional, 2005.

25. A. Spark, “Apache spark,” Retrieved January, vol.
17, p. 2018, 2018.

26. P. Moritz et al., “Ray: A distributed framework for
emerging ai applications,” in Symposium on
Operating Systems Design and Implementation,
2018, pp. 561– 577.

27. M. Rocklin, “Dask: Parallel computation with
blocked algorithms and task scheduling,” in
Proceedings of the 14th python in science
conference, Citeseer, vol. 126, 2015.

28. M. Dugr´e, V. Hayot-Sasson, and T. Glatard, “A
performance comparison of dask and apache spark
for dataintensive neuroimaging pipelines,” in 2019
IEEE/ACM Workflows in Support of Large-Scale
Science (WORKS), IEEE, 2019, pp. 40–49.

29. P. Mehta et al., “Comparative evaluation of big-data
systems on scientific image analytics workloads,”
arXiv preprint arXiv:1612.02485, 2016.

30. D. O. W. .-. D. S. analytics in Python. “Dask
document-tation - comparison to spark.” (Mar.
2021), [Online]. Available: https://docs.dask.org
/en/latest/spark.html.

31. R. Nishihara et al., “Real-time machine learning: The
missing pieces,” in Proceedings of the 16th
Workshop on Hot Topics in Operating Systems,
2017, pp. 106–110.

32. H. Li, G. Fox, and J. Qiu, “Performance model for
parallel matrix multiplication with dryad: Dataflow
graph runtime,” in 2012 Second International

Conference on Cloud and Green Computing, IEEE,
2012, pp. 675–683.

33. S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin, “Orleans: Cloud computing for
everyone,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing, 2011, pp. 1–14.

34. P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J.
Thelin, “Orleans: Distributed virtual actors for
programmability and scalability,” MSR-TR-2014–41,
2014.

35. T. O. Webpage. “Tensorflow.” (Dec. 2021), [Online].
Available: https://www.tensorflow.org/.

36. F. A. Aslam, H. N. Mohammed, and P. Lokhande,
“Efficient way of web development using python and
flask,” International Journal of Advanced Research
in Computer Science, vol. 6, no. 2, pp. 54–57, 2015.

37. C. Olston et al., “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:
1712.06139, 2017.

38. G. Litjens et al., “A survey on deep learning in
medical image analysis,” Medical image analysis,
vol. 42, pp. 60–88, 2017.

39. S. Han, “Efficient methods and hardware for deep
learning,” Ph.D. dissertation, Stanford University,
2017.

40. M. Zaharia et al., “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing,” in 9th Symposium on Networked
Systems Design and Implementation 12), 2012, pp.
15–28.

41. C. Cheng, C. W. Lee, and C. Daskalakis, “A
reproducible computerized method for quantitation
of capillary density using nailfold capillaroscopy,”
Journal of visualized experiments: JoVE, no. 104,
2015.

42. A. Tama, T. R. Mengko, and H. Zakaria, “Nailfold
capillaroscopy image processing for morphological
parameters measurement,” in 2015 4th International
Conference on Instrumentation, Communications,
Information Technology, and Biomedical
Engineering (ICICI-BME), IEEE, 2015, pp. 175–179.

43. [43] S. G. Clendenon et al., “A simple automated
method for continuous fieldwise measurement of
microvascular hemodynamics,” Microvascular
research, vol. 123, pp. 7–13, 2019.

44. P. Prentǎ si´c et al., “Segmentation of the foveal
microvasculature using deep learning networks,”
Journal of biomedical optics, vol. 21, no. 7, p. 075
008, 2016.

45. R. Nivedha, M. Brinda, K. Suma, and B. Rao,
“Classification of nailfold capillary images in patients
with hypertension using non-linear svm,” in 2016
International Conference on Circuits, Controls,
Communications and Computing (I4C), IEEE, 2016,
pp. 1–5.

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

22

Y
e
a
r

20
22

 (

)
C

© 2022 Global Journals

46. W. S. Noble, “What is a support vector machine?”
Nature biotechnology, vol. 24, no. 12, pp. 1565–
1567, 2006.

47. K. Suma, K. Indira, and B. Rao, “Fuzzy logic based
classification of nailfold capillary images in healthy,
hypertensive and diabetic subjects,” in 2017
International Conference on Computer
Communication and Informatics (ICCCI), IEEE,
2017, pp. 1–5.

48. K. Suma, V. Sasi, and B. Rao, “A novel approach to
classify nailfold capillary images in indian population
using usb digital microscope,” International Journal
of Biomedical and Clinical Engineering (IJBCE), vol.
7, no. 1, pp. 25–39, 2018.

49. P. Javia, A. Rana, N. Shapiro, and P. Shah,
“Machine learning algorithms for classification of
microcirculation images from septic and non-septic
patients, ”in 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA), IEEE, 2018, pp. 607–611.

50. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

51. F. Ye, S. Yin, M. Li, Y. Li, and J. Zhong, “In-vivo
fullfield measurement of microcirculatory blood flow
velocity based on intelligent object identification,”
Journal of biomedical optics, vol. 25, no. 1, p. 016
003, 2020.

52. C. Ning, H. Zhou, Y. Song, and J. Tang, “Inception
single shot multibox detector for object detection,”
in 2017 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), 2017, pp.
549–554. DOI: 10.1109/ICMEW.2017.8026312.

53. Y. S. Hariyani, H. Eom, and C. Park, “Da-capnet:
Dual attention deep learning based on u-net for
nailfold capillary segmentation,” IEEE Access, vol.
8, pp. 10 543–10 553, 2020.

54. G. Dai et al., “Exploring the effect of hypertension on
retinal microvasculature using deep learning on east
asian population,” PloS one, vol. 15, no. 3,
e0230111, 2020.

55. H.-C. Jo, H. Jeong, J. Lee, K.-S. Na, and D.-Y. Kim,
“Quantification of blood flow velocity in the human
conjunctival microvessels using deep learning-
based stabilization algorithm,” Sensors, vol. 21, no.
9, p. 3224, 2021.

56. O. Oktay et al., “Attention u-net: Learning where to
look for the pancreas,” arXiv preprint
arXiv:1804.03999, 2018.

57. G. Bradski and A. Kaehler, “Opencv,” Dr. Dobb’s
journal of software tools, vol. 3, 2000.

58. R. Nishihara and P. Moritz, Ray v2.0.0.dev0.
[Online]. Available: https : / /docs .ray. io/en /master
/whitepaper. html.

59. P. KaewTraKulPong and R. Bowden, “An improved
adaptive background mixture model for real-time

tracking with shadow detection,” in Video-based
surveillance systems, Springer, 2002, pp. 135–144.

60. Z. Wang and A. C. Bovik, “Mean squared error:
Love it or leave it? a new look at signal fidelity
measures,” IEEE signal processing magazine, vol.
26, no. 1, pp. 98–117, 2009.

61. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli, “Image quality assessment: From error
visibility to structural similarity,” IEEE transactions on
image processing, vol. 13, no. 4, pp. 600–612,
2004.

62. openCV, Contour approximation method. [Online].
Available: https : / /docs . opencv . org /3 . 4/d4/
d73 /tutorial py contours begin.html.

63. V. Nair and G. E. Hinton, “Rectified linear units
improve restricted boltzmann machines,” in
Proceedings of the 27th International Conference on
International Conference on Machine Learning, ser.
ICML’10, Haifa, Israel: Omnipress, 2010, pp. 807–
814, ISBN: 9781605589077.

64. C. Nwankpa, W. Ijomah, A. Gachagan, and S.
Marshall, “Activation functions: Comparison of
trends in practice and research for deep learning,”
arXiv preprint arXiv:1811.03378, 2018.

65. R. Nishihara and P. Moritz, Ray v1.0.1. [Online].
Available: https://docs.ray.io/en/ray-1.0.1/serve
/faq.html.

66. K. Srinath, “Python–the fastest growing
programming language,” International Research
Journal of Engineering and Technology, vol. 4, no.
12, pp. 354–357, 2017.

67. A. S. Saabith, M. Fareez, and T. Vinothraj, “Python
current trend applications-an overview,”
International Journal of Advance Engineering and
Research Development, vol. 6, no. 10, 2019.

68. S. Raschka, J. Patterson, and C. Nolet, “Machine
learning in python: Main developments and
technology trends in data science, machine
learning, and artificial intelligence,” Information, vol.
11, no. 4, p. 193, 2020.

69. I. Staňcin and A. Jovi´c, “An overview and
comparison of free python libraries for data mining
and big data analysis,” in 2019 42nd International
Convention on Information and Communication
Technology, Electronics and Microelectronics
(MIPRO), IEEE, 2019, pp. 977–982.

70. G. Piatetsky, “Python leads the 11 top data science,
”Machine Learning Platforms: Trends and Analysis,
2019.

71. F. Pedregosa et al., “Scikit-learn: Machine learning
in python,” the Journal of machine Learning
research, vol. 12, pp. 2825–2830, 2011.

72. C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu,
“A survey on parallel computing and its applications
in data-parallel problems using gpu architectures,”
Communications in Computational Physics, vol. 15,
no. 2, pp. 285–329, 2014.

Capillary X: A Software Design Pattern for Analyzing Medical Images in Real-time using Deep Learning

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
II

V
er
sio

n
I

23

Y
e
a
r

20
22

 (

)
C

 © 2022 Global Journals

	Capillary X: A Software Design Pattern for Analyzing MedicalImages in Real-time using Deep Learning
	Author
	I. Introduction
	II. Related Work
	III. Proposed System
	a) The Deep Learning Algorithm part of the ProposedSystem
	b) The Parallel System part of the Proposed System

	IV. Implementation
	V. Evaluation and Discussion
	a) Execution Time
	b) Speedup
	c) System Resource Utilization - CPU Usage
	d) System Generalization

	VI. Conclusion
	Acknowledgment
	References Références Referencias

