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Abstract- Predicting reservoir porosity, permeability and other reservoir parameters are very important but 
arduous task in formation evaluation, reservoir geophysics and reservoir engineering. Recent successes 
in machine learning and data analytics in different geoscience disciplines provides the opportunity to offer 
cheaper and faster techniques of predicting reservoir properties. This study used gross depositional 
environments, reservoir depth, diagenetic impact, permeability and stratigraphic heterogeneity from a 
database of 93 reservoir to predict reservoir porosity. The data for this study includes numeric and 
categorical descriptions of 93 reservoirs across the UK and Norwegian sector of the North Sea. Five 
models were trained using linear regression, support vector machine (SVM), boosted tree, bagged tree 
and random forest algorithms. The performance of the different models was evaluated using R-squared 
(R2), root mean square error (RMSE) and mean absolute error (MAE). Model trained using random forest 
algorithm with R2 score of 0.75, RMSE of 0.118 and MAE of 0.0028 outperformed other models. A 
comparison between predicted porosity and the actual porosity in training data and testing data show a 
good match, indicating the ability of the random forest model to make prediction on unseen data.  
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Abstract- Predicting reservoir porosity, permeability and other 
reservoir parameters are very important but arduous task in 
formation evaluation, reservoir geophysics and reservoir 
engineering. Recent successes in machine learning and data 
analytics in different geoscience disciplines provides the 
opportunity to offer cheaper and faster techniques of 
predicting reservoir properties. This study used gross 
depositional environments, reservoir depth, diagenetic impact, 
permeability and stratigraphic heterogeneity from a database 
of 93 reservoir to predict reservoir porosity. The data for this 
study includes numeric and categorical descriptions of 93 
reservoirs across the UK and Norwegian sector of the North 
Sea. Five models were trained using linear regression, support 
vector machine (SVM), boosted tree, bagged tree and random 
forest algorithms. The performance of the different models was 
evaluated using R-squared (R2), root mean square error 
(RMSE) and mean absolute error (MAE). Model trained using 
random forest algorithm with R2 score of 0.75, RMSE of 0.118 
and MAE of 0.0028 outperformed other models. A comparison 
between predicted porosity and the actual porosity in training 
data and testing data show a good match, indicating the 
ability of the random forest model to make prediction on 
unseen data. The machine learning technique presented in 
this study represents a pragmatic approach to the classical 
log conversion problem that over the years has caused 
dilemmas to generations of geoscientists and petroleum 
engineers. The method requires no underlying mathematical 
models or costly assumptions of linearity among variables. 
Predicting porosity by using sedimentological parameters can 
effectively reduce the high cost of using petrophysical 
methods such as nuclear magnetic resonance and other 
logging methods.  
Keywords: machine learning algorithms, reservoir 
porosity, sedimentology.  

I. Introduction 

orosity, permeability, oil, water and gas saturation 
are commonly obtained from logging and core 
data, however, reservoir parameters obtained by 

logging or coring are limited in extent, such data are 
only valid a few centimetres away from the wellbore. 
Due to reservoir heterogeneity and the complexity of the 
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geologic conditions, well logging data often exhibit a 
very strong nonlinear characteristic and the relative 
relation between different data is intricate (Chen et al., 
2017). Different depositional facies and depositional 
environments ultimately controls reservoir character 
(Mathew et al 2008; William and Milne 1991; Larue and 
Legarre 2004; Jian et al 2004; Skorstad et al 2005; 
Skorstad et al 2008). The primary depositional fabric of 
the rock is modified during burial by compaction and 
cementation. Consequently, reservoir depth of burial is 
very critical in understanding the reservoir quality. 
(Aliyuda et al. 2021; Cade et al. 1994). 

Accurate prediction of reservoir flow properties 
especially porosity and permeability are very vital in oil 
and gas recovery, production design, well placement 
and optimization, Co2 sequestration, radioactive waste 
disposal, and management of water aquifer. Prediction 
of reservoir porosity and permeability is also crucial for 
basin-wide evaluation of fluid-migration and in mapping 
potential pressure seals to reduce drilling hazards. 

Reservoir porosity is a function of many 
geological factors, these factors include depth of burial, 
structural complexity, sedimentary environment, 
lithology, and diagenetic impact. There is a general non-
linear relationship between porosity and some 
petrophysical log properties such as density log, sonic 
log, and compensated neutron logs (Singh et al 2016; 
Zhong and Carr 2019). Several relationships which can 
relate porosity to wireline readings are available, 
common among such relationships are the sonic transit 
time and density logs. However, the conversion from 
density and transit time to equivalent porosity values is 
not straightforward. The common conversion formulae 
contain terms and factors that depend on the individual 
location and lithology of the well, for example, clay 
content, pore-fluid type, grain density and grain transit 
time for the conversion from density and sonic logs, that 
in general are unknowns and must be determined from 
rock sample analysis. 

Geophysical well logs generally provide a good 
representation of the in-situ conditions in a lithological 
unit. However, as with most well-logging measurements, 
the sonic log does not provide a direct measurement of 
reservoir porosity, the parameter with which it has been 
traditionally associated with. In like manner, porosity 
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conversion from bulk density log requires that the grain 
density and fluid density be known (Vernik, 1997).

It seems obvious that no single log 
measurement is enough to obtain reliable values of 
porosity. Additional data would be required from the 
pore fluid and grain material, which normally are not at 
hand except for special studies in cored reservoir 
intervals.

Some conventional machine learning algorithms 
have been applied in predicting reservoir evaluation 
parameters, such as Back Propagation neural network 
(Leite and Vidal, 2011; Para et al, 2003; Shi et al, 2016; 
Wang et al, 2018), Support Vector Machine (Wang and 
Peng, 2018; Feng et al, 2020) and other shallow 
machine learning algorithms (Talkhestani, 2015; Wang 
and Peng, 2019; Haklidir, 2020; Mahmoud et al, 2020; 
He et al, 2020). Deep Learning methods specifically 
convolutional neural network (CNN), recurrent neural 
network (RNN), and stack auto encoder (SAE) were also 
successfully applied in predicting reservoir porosity 
(Zhang et al, 2021). However, most studies on 
predicting reservoir porosity were done using logs 
inputs. This study used sedimentological properties as 
inputs to predict porosity using a robust database of 93 
reservoirs from the Norwegian continental shelf.

II. Database

The data for this study includes numeric and 
categorical descriptions of 93 reservoirs across the UK 
and Norwegian sector of the North Sea. 75 reservoirs 
from the Norwegian sector are from the Norwegian 
North Sea, Norwegian Sea, and the Barents Sea, while 

Further parameters which potentially influence 
permeability were also recorded for each of the 
reservoirs in the database that was used for this study. 
Parameters used for this study are gross depositional 
environments, reservoir depth, diagenetic impact, 
porosity, permeability, and stratigraphic heterogeneity 
(Table 1). Stratigraphic heterogeneity was defined on a 
scale of zero to eight, considering the vertical and 
horizontal heterogeneity of a given reservoir’s 
depositional sub-environment following Tyler and Finley 
(1991), also summarized in Manzocchi et al. (2008). In 
this scheme, zero refers to a reservoir with no vertical 
and lateral heterogeneity while eight refers to a reservoir 
with high vertical and horizontal heterogeneity (Fig. 1).

Figure 1: Depositional heterogeneity and flow unit diagram showing heterogeneity scale used for all the different 
Sub-environments, 0 = means low vertical and horizontal heterogeneity, highly connected sand reservoir with no 
clay or shale barriers. 8 = extremely heterogeneous, low net to gross reservoir sand bodies are isolated within clay 
or shale intervals (Modified after Tyler and Finley 1991; Aliyuda et al., 2020).

the remaining 18 reservoirsare from Viking graben on 
the UK sector. All the reservoirs were classified using the 
SAFARI schema into three gross depositional 
environments (Fluvial, Paralic/shallow marine and Deep 
marine). SAFARI is a Joint Industry Research Project 
between the University of Aberdeen and NORCE 
Research in Bergen, supported by a consortium of 16 
companies, the Research Council of Norway and the 
Norwegian Petroleum Directorate. The goal of the 
SAFARI project is to develop a fully searchable 
repository of geological outcrop data from clastic 
sedimentary systems for reservoir modelling and 
exploration (www.safaridb.com). SAFARI uses a 
systematic hierarchical schema to classify sedimentary 
rocks into gross depositional environment (GDE), 
depositional environment (DE), sub-environment and 
architectural element (AE).

© 2022 Global Journals
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III. Methods 

Five machine learning algorithms were used for 
the study; these are Linear Regression, Support Vector 
Machine (SVM), Boosted Tree, Bagged Tree and 
Random Forest. Boosted Tree and Bagged Tree are 
ensembles techniques of the Decision Tree methods.  

Regressions are statistical technique that 
approximate the relationship between a dependent 
variable (the response) and one or more independent 
variables. Linear regression is mostly used for 
forecasting and finding out cause and response 
relationship between variables. Regression techniques 
mostly differ based on the number of independent 
variables and the type of relationship between the 
independent and dependent variables. Linear 
regression models are often plagued by a significant 
bias (Seber 1977; Mann 1987), where the predictor 
variables are cross correlated with each other and with 
the response variables, this results into the models 
reporting high accuracy but do not make accurate 

prediction of the new data. Some alternatives to linear 
regression are regularised linear regression approaches 
such as LASSO regression, Ridge regression, Elastic 
Net and Non-parametric regressors, usually based on 
decision trees. 

Decision tree regression takes multiple columns 
of potential predictor variables and finds a subset of 
predictor columns that best account for the variance of 
the target column values (Fig. 2). Boosted Decision Tree 
regression algorithms together with Bagged Decision 
Tree are ensembles of regression decision trees. In 
boosted regression, the algorithm learns by fitting the 
residual of the trees that preceded it, thereby improving 
accuracy with some small risk of less coverage. Bagged 
regression assumes a basic model structure as the one 
developed in a decision tree regression. Then, it divides 
the source data into several bags or groups and fits the 
same assumed model structure to each bag of data. 
Bagged regression aggregates the model estimates for 
each bag of data into one overall model. 

 

Figure 2: Decision tree regression schematic of a reservoir rate model, an example of a decision tree split at each 
node (Aliyuda et al., 2020). 

Support vector machine (SVM) is a supervised 
machine learning algorithm that are commonly used to 
analyse data characteristic of both classification and 
regression problems. In SVM, each of the training data 
points is marked as one of two categories and then 
iteratively builds a region that will separate the data 
points in the space into two groups such that the data 
point in each region is well separated across the 
boundary with the maximum width. Support vector 
machine can generalize the characteristics that 
differentiate the training data that is provided to the 
algorithm. This is achieved by checking for a boundary 
that differentiates the two classes with the maximum 
margin. The boundary that separates the two classes is 
known as a hyperplane (Cortes and Vapnik 1995; 

Aliyuda and Howell, 2019; Ali et al., 2021a; Ali et al., 
2021b). 

Random forest is a common non-parametric 
regression approach which aggregates an ensemble of 
decision trees in order to arrive at a result. It predicts by 
taking the mean of the output from various trees. 
Increasing the number of trees increases the precision 
of the outcome.The decision trees are generated in 
parallel, and each split is made from random subsets of 
the dependent variables. Decision trees generated 
through taking random columns from the dependent 
variables are less prone to overfitting (Breiman, 2001). 
This technique allows random forests to be more robust 
than decision trees. 
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Data for this study were normalised using min-
max method, other pre-processing techniques 
performed on the data include a split of the data into 
training and testing sets. These techniques prevent 
against over-fitting of the models. The training set is 
used to train the model, whereas the testing set is used 
to detect the accuracy of the model and output the 
predicted reservoir porosity. 

Explained variance or R-squared (R2), square 
root of the mean squared error (RMSE) and mean 
absolute error (MAE) were used to estimate the 
performance and the accuracy of the trained models:  

= 𝑁𝑁 ∑𝑥𝑥𝑥𝑥− ∑ 𝑥𝑥  ∑𝑥𝑥
�[𝑁𝑁 ∑𝑥𝑥2−(∑ 𝑥𝑥)2][𝑁𝑁 ∑𝑥𝑥2−(∑𝑥𝑥)2]

, . . 

 . 

I

 

RMSE=
�∑ (𝑥𝑥𝑦𝑦−𝑝𝑝𝑦𝑦 )𝑁𝑁

𝑦𝑦=1
2

𝑁𝑁
, . . . 

 . . 
II

 

MAE= ∑ |𝑥𝑥𝑦𝑦−𝑝𝑝𝑦𝑦 |𝑁𝑁
𝑦𝑦=1

𝑁𝑁
,. . . . 
 . 

III
 

 

 

Figure 3: Workflow used to show the rundown of the procedure from building the database to training and testing of 
models (adopted from Aliyuda et al 2020). 
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IV. Results/Discussion

The distribution of some of the major predictors 
of the model is presented in Fig. 4, 5 and 6, these 
predictors are reservoir depth of burial (Fig. 4), gross 
depositional environments (Fig. 5) and reservoir 

stratigraphic heterogeneity (Fig. 6), as well as the 
response variable (Fig. 7).
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Figure 4: Distribution of reservoir depths of all the 93 reservoirs in the database. About half of the reservoirs are 

buried below 2,000 meters subsea. 

Figure 5:

 

Proportion of the gross depositional environments of the reservoirs in the database.
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Figure 6: Distribution of stratigraphic heterogeneities in the database. Low values represent low heterogeneity, high 
values represent high heterogeneity. 

 

 Porosity distribution of all reservoirs in the database. Reservoir porosity ranges from a minimum of 10% to 
a maximum of 37%. 
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Figure 7:

Figures 8 and 9 demonstrate the correlation 
between two key predictors -reservoir depth of burial 
and stratigraphic heterogeneity with reservoir porosity. 
For the porosity against reservoir depth plot, it shows a 

slight decrease in porosity with increase in depth, 
except for a few outlier points which might indicate early 
migration of oil, halting reservoir porosity decline with 
increasing depth. The machine learning algorithms 
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Figure 8:
 
The relationship between reservoir depth and porosity, all measurements are in fraction (from 0 to 1)

 

Figure 9:
 
A plot of reservoir stratigraphic heterogeneity against porosity. Both measurements are in fraction.

 

We trained five different models using 5 different 
algorithms:

 
Linear regression; support vector machine 

with a Gaussian kernel function, Boosted Tree with a 
minimum leaf size of 8, 30 number of learners and 
learning rate of 0.1; Bagged Tree with minimum leaf size 
of 8 and 30 number of learners;

 
random forest 

regression with surrogate and 200 trees. The 

performance of the different models was compared 
using three metrics (Table 2), random forest model 
outperformed all other models. The comparison does 
not include model training time as no model took up to 
one minute to train.
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learns from these data to make prediction. The 
relationship between porosity and reservoir stratigraphic 
heterogeneity (Fig. 9) is not as strong as the one 
between reservoir depth and porosity ( Fig. 8), the plot 

still shows some level of correlation between the two 
variables.
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 Performance of the different models trained compared using R-squared, root mean square error (RMSE) 
and mean absolute error (MAE). 

Models R2 RMSE MAE 
Linear Regression 0.57 0.155 0.116 

Support Vector Machine 0.62 0.145 0.112 
Boosted Tree 0.52 0.163 0.128 
Bagged Tree 0.44 0.177 0.139 

Random Forest 0.75 0.118 0.0028 

Figures 10, 11 and 12 demonstrate the 
relationship between the predicted porosity and the 
actual porosity in the database for the random forest 
model. Fig. 12 shows a better match between the 

predicted porosity and the actual porosity in the test 
data with R2 score of 0.87, compared to Fig. 10 and 11 
with an R2 of 0.75 and 0.71 respectively. 

Figure 10:
 
The relationship between predicted porosity and actual porosity for both training and testing data from the 

random forest model.
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Table 2:

Figure 11: Cross plot of actual and predicted porosity for the training data.
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Figure 12:
 
Relationship between the actual and predicted porosity for the test.
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V. Conclusion

The machine learning technique of predicting 
porosity has numerous advantages over traditional 
techniques such as the empirical/semi-empirical 
formulae, Wyllie's equation and the density equation for 
porosity conversion where some suits of logs are used 
to predict porosity. The workflow shown in this study 
does not depend on any predetermined logs, it relays 
on a detailed characterization of the reservoir and its 
sedimentology. The machine learning approach 
represents a pragmatic approach to the classical log 
conversion problem that over the years has caused 
dilemmas to generations of geoscientists and petroleum 
engineers. The method requires no underlying 
mathematical models or costly assumptions of linearity 
among variables. Predicting porosity by using 
sedimentological parameters can effectively reduce the 
high cost of using petrophysical methods such as 
nuclear magnetic resonance and other logging 
methods.

The main limitation of the method is the amount 
of effort required to build a robust database, pre-
processed the data and partition the data into training 
and testing sets, which is common for all models relying 
on real data, and the time to train and test the models. 
On the other hand, once established, the application of 
the models requires a minimum of computing time.

For the five porosity models trained, we find that 
models trained using random forest algorithm 

outperformed all the other models. The model has an R-
squared score of 0.75 and MAE score of 0.0028.This 
study shows that machine learning has a strong 
potential to solve some important subsurface problems 
and could be an alternative to conventional methods of 
predicting porosity. This method can predict porosity not 
just around a wellbore but for some distance away from 
the well. 
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