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Optimising Sargable Conjunctive Predicate 
Queries in the Context of Big Data 

Veronica V.N. Akwukwuma α & Patrick O. Obilikwu σ 

Abstract- With the continued increase in the volume of data, 
the volume dimension of big data has become a significant 
factor in estimating query time. When all other factors are held 
constant, query time   increases as the volume of data 
increases and vice versa. To enhance query time, several 
techniques have come out of research efforts in this direction. 
One of such techniques is factorisation of query predicates. 
Factorisation has been used as a query optimization 
technique for the general class of predicates but has been 
found inapplicable to the subclass of sargable conjunctive 
equality predicates. Experiments performed exposed a 
peculiar nature of sargable conjunctive equality predicates 
based on which insight, the concatenated predicate model 
was formulated as capable of optimising sargable conjunctive 
equality predicates. Equations from research results were 
combined in a way that theorems describing the application 
and optimality of the concatenated predicate model were 
derived and proved.  The theorems proved that the novel 
concatenated predicate model transforms a sargable 
conjunctive equality predicate such that the resultant 
concatenated predicate is an optimal equivalent of the 
sargable conjunctive equality predicate from which it is 
derived. The model enhances conjunctive sargable equality 
queries making our results capable of application in software 
applications, majority of whose queries are of the conjunctive 
query type. The results are equally useful in optimising query 
time within the context of Big Data where the continuous 
increase in the volume dimension of data calls for query 
structures that enhance query time. 
Keywords: concatenated predicate, conjunctive equality 
predicate, sargable predicate, query, factorisation, 
database, software applications. 

I. Background to Study 

he fundamental Vs of Big Data are volume, velocity 
and variety [1]. Volume refers to the size of data 
being created, Velocity is the speed at which data 

is created, captured, extracted, processed, and stored 
while variety connotes different data types and sources 
ranging from structured, semi-structured to unstructured 
data. Of the three Vs, volume is most directly associated 
with big data and to put its importance in a perspective 
that emphasizes its relevance to query optimisation, 
volume may be redefined as voluminosity, vacuum, and 
vitality – three additional V-dimensions of data as 
exposed by [2]. Voluminosity states that there is  already 
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a very large set of data collected and even much more 
is available that can be harvested. Voluminosity speaks 
of a significant gap that can be filled by data yet to be 
collected. From the perspective of voluminosity, volume 
refers to the size of data being created from all sources 
in an organization including text, audio, video, social 
networks, research studies, medical data, space 
images, crime reports, weather forecasting and natural 
disaster [3].  

The vacuum dimension of volume states that 
there is a strong requirement for storage to store large 
volumes of data. Due to the fact that the data is 
acquired incrementally, empty spaces will always be 
needed for use in the creation of room to store, process 
and manage tremendous data set as they are harvested 
from different sources. This dimension of volume pops 
up the research question about how much storage 
space is available for incoming data rather than how 
much data has already been stored. The process of 
creating storage space for incoming data is equally as 
challenging as it is with managing vast sets of already 
stored data. Empty spaces that serve this purpose are 
created by either augmenting storage devices or 
techniques used to compress the size of data [4]. 

Vitality may be defined as the survival of data in 
the storage environment and thus its reliability and 
usefulness. Data in the storage environment falls into the 
two categories, namely active served and unserved. In a 
large data bank, some data are actively used while 
some are not [4]. Vitality redefines volume as meaning 
that data and its subsets are used actively at different 
times. While a portion of data may be actively used data 
at a time or within a specific transaction, the rest are 
stored for future uses. There is the risk that data stored 
for future may take so long for it to be used which may 
lead to such sub-datasets to be abandoned or not 
properly maintained. As the risk of being abandoned 
gets higher, anything can happen to those datasets not 
currently in use. In other words, with less investment and 
attention to the unserved data, they are exposed to 
incidences of fire, earthquake, flood, war, and terrorist 
which are the prominent causes of data loss. Thus, 
vitality is a critical component of volume. The lack of 
vitality, in any case, is symptomatic of the absence of 
disaster management systems which decimates data 
reliability or can lead to complete data loss. Apart from 
reliability, vitality also describes flexibility, dependability, 
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and security which are all integral components of 
volume, 

As data gets larger in the dimensions of big 
data, partitioning strategies have been used to reduce 
the data to smaller subsets over which queries become 
faster compared to the original dataset [5]. Popular 
among these partitioning strategies is the horizontal 
scaling (scaling out), Horizontal scaling refers to 
resource increment by the addition of complete and 
independent units that work in unison with an existing 
system. The additional units may be of smaller capacity, 
making it cheaper compared to the replacement of an 
existing single unit with one of larger capacity. The scale 
out effect of the horizontal partitioning strategy creates a 
hardware infrastructure platform on which partitioned 
data is then distributed across multiple units or servers, 
hence, reducing the excess load of the entire data set 
on a single machine [6,7]. This platform comes with the 
added advantage of keeping the entire system up even 
if some of the units go down, thus, avoiding the “single 
point of failure” problem associated with vertical scaling. 
The vertical scaling (scaling up) strategy refers to 
increasing the ability of a single hardware unit such as a 
server to handle the ever-increasing workload as a way 
of achieving resource increment. From the perspective 
of hardware, this includes adding memory and 
processing power to the single unit. 

The horizontal scaling strategy is at the heart of 
the implementation of big data stores namely p-stores, 
c-stores and NoSql among others that have pioneered 
the paradigm shift of  “No One Size Fits-All” proposed 
by Stonebraker and Çetintemel [8]. The horizontal 
scaling strategy partitions data such that queries can be 
fired selectively on the partitions with the aim of 
retrieving the desired data in optimal query time. As is 
applicable to all datasets, the desired data in a partition 
is indicated in a query using a boolean expression of 
conditions called predicates. Predicates are used in 
joins as well in search arguments of queries. A join 
predicate is a predicate that relates columns of two 
tables to be joined and the columns referenced in a join 
predicate are called join columns. When used in Search 
ARGuments (SARGs), predicates are referred to as 
sargable predicates [9]. A sargable predicate is one of 
the form (or which can be put into the form) “column 
comparison-operator value”.  Matalqa and Mustafa [5] 
experimentally demonstrated that restructuring big data 
into partitions produces query enhancement  results. 
Using the theorem and axiom, Obilikwu, Kwaghtyo and 
Ogbuju [10] theoretically proved  the result of  [5] as 
follows: 

Theorem: Given P1, P2 … Pn as the partitions of 
a relation R, then R = {P1, P2, …, Pn} where n = the 
number of distinct values in the value set associated 
with the partition key that generated P1, P2 … Pn 

Axiom: The following axioms are applicable: 
1. A partition key has a value set, V whose element 

cannot be null 
2. The number of distinct values of V is n= number of 

partitions produced 

Proof: Let ϭ be the partition predicate associated with a 
distinct value of V, then Arity(ϭ) is the arity of the tuples 
filtered by ϭ.  
Given any value of n, there exists ϭ1, ϭ2, ..., ϭn, where  
ϭ1 filters all tuples in P1 from relation R,  
Ϭ2 filters all tuples in P2 from relation R, and  
Ϭn filters all tuples in Pn from relation R, 
Since the elements of V cannot be null, then Arity(V) = 
Arity (R) 
Since ϭ1, ϭ2, ..., ϭn filter the tuples of R according to the 
distinct values of V, it follows that 
Arity(V)=Arity(ϭ1) + Arity(ϭ2) + .... + 
Arity(ϭn)=∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜎𝜎𝐴𝐴)𝑛𝑛

𝐴𝐴  
This implies that ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜎𝜎𝐴𝐴)𝑛𝑛

𝐴𝐴 = Arity (R) since n is the 
number of distinct values of V defined in R 
This shows that R = {P1, P2, …, Pn} since ϭ1, ϭ2, ..., ϭn 

The use of partitioning strategies makes queries 
faster [5]. This is because retrieving a record or a set of 
records from a relation is done relative to the number of 
the total number of records in the relation (R). Based on 
this relationship, query time can be computed as a ratio 
using equation 1. 

 

 
 

  

 
The implication of equation 1 is that an increase 

in volume implies an increase in query time. The query 
works with the DBMS as part of the algorithms that 
ensure data is retrieved seamlessly. While the DBMS 
suggests how the data can be located and retrieved, the 
query syntax tells what data is to be retrieved. These 
make up the two components of a database 
management system as depicted in Figure 1. 

 
 
 
 
 
 
 

 

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

20

  
 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

filter the tuples of R. QED.

𝑞𝑞𝐴𝐴 = 𝐴𝐴𝑅𝑅
𝑇𝑇𝑅𝑅

    ...                                         (1)

where qt is query time, tR is the number of tuples 
retrieved from a relation R using a predicate ϭ and TR is 
number of tuples in R. Equation 1 assumes an 
asymptotic value of tR as well as the fact that other 
factors that affect query time are held constant. Among 
others, these other factors are processor speed, RAM 
and ROM size, communication traffic and code 
efficiency. 



 

 

 

 

This paper is motivated by the critical need to 
optimise queries in the context of big data, big data 
being a development that has led to the ubiquitous 
incidence of big databases. The objectives of the paper 
are therefore as follows: (i) show that query time 
increases as the arity of database storage structures 
increase; (ii) show that optimising query time can be 
approached by organizing the storage structure using 
techniques like indexing and storage partitioning. It is 
also shown that queries can be modified or transformed 
to an equivalent form such that query time is reduced; 
(iii) use a combination of mathematical techniques to 
develop the concatenated predicate model thus 
enhancing the query time of sargable conjunctive 
equality predicates (iv) prove using mathematical 
induction and other applicable techniques that the 
concatenated predicate model optimises the sargable 
conjunctive equality predicate. 

The rest of this paper is organized as follows: 
Section 2 reviews literature on the general concept of 
query optimisation and subsequently narrows the 
discussion down to the specific class of conjunctive 
predicates and how optimisation of predicates 
enhances query time. In Section 3, the product function  
is presented as a mathematical model to describe the 
product of atomic predicates, an operation also referred 
to as concatenation. Concatenation achieves literal 
minimisation as an alternative to factorization where 
there are no common atomic predicates. Concatenation 
in this paper to propose the concatenated predicate 
model. In Section 4, the results of this study are 
demonstrated using mathematical induction and other  
proofs. The proofs are discussed relative to the 
expected behavior of the concatenated predicate 
model.Finally, Section 5 concludes the paper and 
makes suggestions for future work. 

II. Related Work 

 

a) Conjunctive Queries 
Conjunctive queries represent one of the query 

languages used to retrieve data from relational 
databases [11,12,13] among other database models. 
Conjunctive queries correspond to the non-recursive 
Datalog rules [14].  In recursive datalog rules, 
conjunctive queries are of the form, 

R0(u0)←Ri1(u1)˄ Ri2(u2)˄… Rim(um) 

 
 

  
 

Conjunctive queries consist strictly of 
conjunctive predicates and they are the most widely 
used database queries in practice. It is against the 
background that optimising them makes a whole lot of 
sense [15,16,17,18,19]. The wide use of conjunctive 
queries are observable in not only their ubiquitous use in 
decision support systems based on relational 
databases but in other areas such as Description 
Language queries used to query knowledge 
representation (KR) systems , ontology-based queries 
and query answering frameworks in general [20,21]. 
Optimising a conjunctive query simply means optimising 
the conjunctive predicate component.   

Heimel et al. [22] defined conjunctive 
predicates mathematically as  

θ
 
=⋀ 𝜃𝜃𝐴𝐴𝑚𝑚

𝐴𝐴=1
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Figure 2: Architecture of Database Management 
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Query and response

Relation(s)

Data Manipulation

A predicate is that part of the query that filters 
records based   on    certain   conditions.  The   
properties   of   a predicate are multifarious and their 

study has exposed opportunities for optimising them, 
given that optimising them ultimately optimises 
database query time. Techniques for optimising queries 
are dependent on the query type.

where Rij is the relation name of the underlying 
database. R0 is the output relation, and where each 
argument uj is a list of |uj| variables, where |uj| is the 
arity of the corresponding relation Rij.

where θi are atomic predicates joined by the AND 
relational operators and i =1,2, .., m are predicate terms 
(predicate literals, Boolean variables or atomic 
predicates) making up the conjunctive predicate. 
Sargable conjunctive predicates were defined by Yu X et 
al.[23] as conjunctive predicates of the form,



 

 
 

Q = P1˄P2 ˄ … ˄Pm 

where each component Pi, i>0 is an atomic predicate of 
the attribute value pair (attribute op value) with op being 
one of the comparison operators <, ≤, =, ≠, ≥ or >.  

Practically speaking, conjunctive predicates are 
identified in the filter component of the project-select-
join queries in the relational algebra, and in the where-
clause of SQL queries having the general form SELECT . 
. . FROM . . . WHERE . . . where the where-clause is a 
predicate clause. Predicates are the conditions based 
on which database queries filter tuples in a relation or 
group of related relations. In its basic form, a query 
predicate is an atomic conditional expression also 
referred to as an atomic predicate. Several atomic 
predicates can be combined using logical operators to 
make up complex predicates [24] and the number of 
atomic predicates in a complex predicate is the boolean 
factor [9]. An atomic predicate has a boolean factor of 
1. Boolean factors are notable because every tuple 
returned by a query must satisfy every boolean factor. A 
complex predicate made up of atomic predicates joined 
strictly using the AND logical operator is referred to as a 
conjunctive predicate. If all the atomic predicates in a 
complex predicate consist strictly of the equality 
operator, the complex predicate is referred to as a 
conjunctive equality predicate. Assuming the logical 
operator in the complex predicate is the OR logical 
operator then the resulting predicate will be a disjunctive 
predicate [25]. If the relational operator is the equality 
operator, then the complex predicate is a conjunctive 
equality predicate. If the conjunctive equality predicate is 
sargable, then it referred to as a sargable conjunctive 
equality predicate This paper is a study on how 
predicates of the class of sargable conjunctive equality 
predicates can be optimised. 

b) Query Optimisation 
Big data is resource-intensive and hence 

requires that both storage and query time are optimised 
for effective resource utilization. Resource optimisation, 
be it hardware or otherwise has been discussed within 
the larger context of solutions that we can never have 
enough of [26]. As a matter of fact the optimisation 
problem domain is one we are not yet done with [27]. 
Optimizing a number of running processes is 
considered an optimisation strategy though via 
software. Optimising query time by software (algorithms) 
is traditionally a function of the query optimizer, which is 
internal to the DBMS [9]. The algorithms associated with 
the query optimiser manipulate a query plan in its 
internal structure to choose an optimal plan for 
implementing a query. Query optimization gained 
research attention when the advantages of the relational 
data model in terms of user productivity and data 
independence became widely recognized in response 
to Codd's original ideas about the concept of relational 

databases [28]. Following this development, 
researchers began to ask questions about whether or 
not an automatic system can choose as efficient an 
algorithm for processing a complex query as a trained 
programmer would. System R, an experimental system 
was then constructed at the San Jose IBM Research 
Laboratory to demonstrate that a relational database 
system can incorporate the high performance and 
complete function, including automatic query 
optimisation required for everyday production use 
[9,29]. 

Query optimization has also been associated 
with modifying the structure of relations. In this regard, 
indexing can be said to be a pioneering effort at 
optimising query time from the dimension of database 
structure [30,31]. In processing a query that has a 
predicate, the attributes in the predicate are examined to 
find out if an index has been defined for any of the 
attributes, a concept referred to as index availability. The 
availability of an index makes searching relations faster 
compared to a full scan which is the search option used 
in the absence of an index. On the other hand, an index 
scan is used for the search if an index is available. The 
implementation of a full scan uses sequential search 
while an index scan is implemented using binary search. 
It is established in algorithmic theory that sequential 
search is of O(n) and binary search is O(log n) making it 
obvious that an index scan is faster thereby enhancing 
query time. 

Queries are also faster when relations are 
normalized. Partitioning relations also achieve good 
results. Optimising query operators, especially 
SELECTION and JOIN operators equally enhance query 
time. Incidentally, research into the optimisation of query 
operators has focused on joins and their ordering to the 
near neglect of research into the optimization of 
selection predicates [24]. Query optimisation is an open 
ended research question and hence it has been the 
object of research efforts over the years 
[26,9,15,32,33,34,35,36].  

c) Predicate Optimisation 

Query optimisation
 

research efforts over the 
years in the specific area of predicate optimization have 
resulted in several optimization techniques notable 
among which are Predicate Pushdown [37], LDL 
approach [38,39], Predicate Move-around [12], 
Predicate Migration [40], By-Pass Predicate Processing 
[25], Optimising User-defined functions using Pruning 
Strategies [41,42]. Prominent among this technique is 
factorisation, a technique used to mininise the number 
of atomic predicates or terms in a complex predicate. 
Kemper et al. [43]

 
and Chaudhuri et al.[24]

 
used 

factorization to minimise atomic predicates in queries. 
The objective of factorization is to represent a Boolean 
function in a logically equivalent factored form having a 
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minimum number of literals [44]. The concept of 
minimizing atomic predicates (predicate literals) in a 
Boolean expression means that such expressions can 
be made simpler by reducing the terms in them. 
Predicate literals are found in the design of VSLI [45], 
compilers [46], and database query predicates [43,24] 
and minimization techniques of various types have been 
applied in each of these application areas thereby 
optimising the expressions involved. Factorisation is 
however only possible where the predicate expression 
has common atomic predicates. 

Muralikrishna and DeWitt [47] established that 
the number of times a relation in a query is scanned is 
equal to the number of terms in which attributes of the 
relation are involved. This means that minimising the 
number of terms equally minimises the number of scans 
for each relation. Scanning constitutes a fundamental 
operation in query processing and thus a reduction in 
the number of scans done by a query equally reduces 
query time. Chaudhuri et al. [24] showed that 
factorization can be used to minimize predicate terms in 
scenarios where there are common atomic predicate 
factors. In this work, the sargable conjunctive equality 
predicates have been exposed as incidences of 
predicates where there are no common atomic 
predicate factors implying that factorization is 
inapplicable as a predicate minimisation technique. 
Sargable conjunctive equality predicates do not have 
common Boolean factors because an atomic predicate 
appearing more than once in a sargable conjunctive 
equality predicate duplicates such an atomic predicate. 
The duplicate atomic predicate is redundant and the 

result of such is unsatisfiable and evaluating them would 
lead to incorrect results [22]. This motivates the study of 
the nature of optimisation problems inherent in sargable 
conjunctive equality predicates. The experiments 
performed exposed interesting insights as to why 
existing predicate optimistion techniques, particularly 
factorization are inapplicable. 

d) Nature of Optimisation Problem Posed by Sargable 
conjunctive equality predicates 

To optimise sargable conjunctive equality 
predicates, there is need to understand the nature of 
optimisation problem posed by them. Series of 
experiments were conducted using a simulated data of 
students scores in an examination to expose what 
happens in terms of query time when the number of 
atomic predicates in a sargable conjunctive equality 
predicate is varied in a query. The experiments 
performed assumed that a number of students took an 
examination in the Department of Physics of a 
hypothetical University. The examination results are 
captured in a database relation, named studentscores. 
A schema is defined for the relation as 
studentscores(sno

Table 1: Instances of Examination Results Schema (Query Table) 

, studentID, level, courseCode, 
semesterID, sessionID, status, score) where the 
attributes are described as follows: sno (serial number); 
studentID (unique identifier for student); courseCode 
(semester course code); semesterID (identifier for 
semester); sessionID (identifier for session); status 
(semester course status) and score (an attribute for 
students score in the examination). Five instances of this 
schema are shown in Table 1. 

Sno StudentID Level CourseCode SemesterID SessionID Status Score 
1 SCN890178254 400 PHY412 1ST 2016/2017 C 94 
2 SCN907524101 400 PHY412 1ST 2016/2017 C 65 
3 SCN901782548 400 PHY412 1ST 2016/2017 C 76 
4 SCN898888254 400 PHY412 1ST 2016/2017 C 35 
5 SCN895428266 400 PHY412 1ST 2016/2017 C 58 

The instances of the relational schema 
generated in

 
Table 1 are five but the assumption is that 

as many students as there wrote the examination in the 
physics course (PHY412). The level is 400 (a course 
taken at the fourth year of study except when taken as a 
carry over). SessionID and semesterID are 2016/2017 
and 1ST respectively. The semester course is a core 
course hence it has the code “C” for the status. A core 
course in this context is a course that is compulsory for 
all the students doing the same course of study or 
programme. Elective courses on the

 
other hand are not 

compulsory. They are offered by students as a matter of 
choice.

 

The experiments conducted involved sargable 
conjunctive equality predicates and it involved varying 
the number of atomic predicates from two to five. Five 

atomic predicates
 

are realistic enough to test the 
behavior of a complex predicate [41]. For each sargable 
conjunctive equality predicate, the number of schema 
instances was varied from 600,000 to 1,000,000. A data 
set of 1,000,000 records was assumed to be asymptotic 
(big

 
data) and sufficient based on the use of the same 

number of records in a similar database experiment 
[41]. For a sargable conjunctive equality predicate to

 

select an instance, the atomic conditions in the conjunct 
must all be true for the instance.  For this reason, it is 
common in experiments testing conjunctive equality 
predicates to have record instances with repeated 
values [48]. The predicate attributes in the experimental 
data are grouped in terms of the number of predicates 
in the sargable conjunctive equality predicate and 
presented in Table 2.
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.



 

 

Table 2: Predicates attributes used in the Sargable conjunctive equality predicates 

 

The predicate attributes listed in Table 2 are 
classified according to the number of their atomic 
predicate attributes beginning from 2 to 5 with their 
corresponding sargable conjunctive equality predicates. 
The combination of the predicate attributes of each 

sargable conjunctive equality predicate in any order or 
pattern is commutative and equivalent. They retrieve the 
same number of records and hence the order does not 
matter. The query times obtained from the experiment 
performed are shown in Table 3. 

Table 3: Query times for sargable conjunctive equality predicates 

Number of 
records (n) 

Query time in microseconds according to number of predicates 
2 predicates 3 predicates 4 predicates 5 predicates 

600,000 7.653684139 8.102646112 8.527706862 8.91692996 

800,000 9.84117198 10.45632792 10.88422108 11.36055684 

1,000,000 12.14951396 12.91807389 13.49754906 14.54573202 

The data obtained from the experiment exposed 
a pattern whereby the query times associated with 
sargable conjunctive equality predicates increase as the 
number of atomic predicates are varied from two 
through five which implies that when the atomic 
predicates are reduced, the query time is equally 

reduced. It is obvious from this observation that 
minimizing the number of atomic predicates of the 
sargable conjunctive equality predicate enhances query 
time. Figure 2 shows the query times of the sargable 
conjunctive equality predicates as a graph.  

In the DBMS architecture shown in Figure 1, a 
query is a component of the DBMS that works in 
conjunction with the query optimiser to ensure queries 
run optimally. The query times obtained in Figure 2 
includes every internal optimisation done by optimiser 
as well as any restructuring that can be done to the 
database such as indexing, partitioning, normalization 

and the introduction of primary keys. This scenario was 
earlier modeled in equation 1 as: 

𝑞𝑞𝐴𝐴 =
𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

 

The point in this paper is that the query can be 
optimised even before it is submitted to the optimiser. A 
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Figure 2:  Query times of sargable conjunctive equality 
predicates

5 predicates

4 predicates

3 predicates

2 predicates

Number of 
predicate attributes 

Predicate attributes Sargable conjunctive equality predicates 

2 courseCode, semesterID courseCode=”PHY412” and semesterID=’1st’ 
3 level, coursecode, 

semesterID 

Level =”400” and  courseCode=”PHY412” 
and semesterID=’1st’ 

4 
courseCode,semesterID, 

sessionID, status 

courseCode=”PHY” and semesterID=’1st’ 
and sessionID = “2015/2016” and status = 

“C” 

5
 level,courseCode, 

semesterID, sessionID, 
status 

Level =”400” and  courseCode=”PHY” and 
semesterID=’1st’ and sessionID = 

“2015/2016” and status = “C” 
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typical case in point is the use of subqueries (nested 
queries also referred to as queries in predicates) in 
place of joins in scenarios where subqueries and joins 
are equivalent queries. An example is where the join 
retrieves a single tuple, then it is less costly to use 
subqueries than joins. The equivalent query that 
optimises query time introduces an optimisation factor, 
qopt to equation 1 to produce equation 2. 

 

Where qopt lies in the range 0 < qopt < 1. qopt = 
1 means there was no optimisation by the optimisation 
technique applied. The concept of optimizing sargable 
conjunctive predicates is rooted in theory of equivalent 
queries. For any sargable conjunctive predicates, there 
exists a corresponding sargable concatenated 
predicate.  

On the basis of this insight from the 
experimental results in Figure 2, the concatenated 
Predicate model is formulated as consisting of a 
concatenated predicate and a corresponding surrogate 
index that is exploited by the concatenated predicate to 
enhance the query time of an equivalent sargable 
conjunctive equality predicate. The experiments are 
restricted to single table access and by implication, 
sargable conjunctive equality predicates [17]. Based on 
the experimental results, the methodology of this study 
consists of equations describing the product of terms 
(atomic predicates) which were subsequently used to 
formulate the concatenated predicate model. Theorems 
describing the application and optimality of the model 
as capable of optimising sargable conjunctive equality 
predicates are derived and also proved. It is hoped that 
the clarity of the concepts using the single table access 
will help in extrapolating the model to the other types of 
table access.  

III. Methodology 

The basic materials for this research were 
published literatures. Chaudhuri et al. [24] used the 
factorization technique to optimize a class of predicates 
that have common Boolean factors. The class of 
sargable conjunctive equality predicates on the other 
hand do not have common Boolean factors which 
makes factorization inapplicable to them. Motivated by 
this insight, this study unravelled some properties of the 
sargable conjunctive equality predicate which gave an  
insight on how this class of predicates can be 
optimised. 

a) Mathematical Model 
In describing the proposed model, 

mathematical models have been used extensively. 
Muralikrishna and DeWitt [47] referred to the product of 
the atomic predicates, Pi, i =1,2, .., m in a join or 
selection clause as, 

�𝑃𝑃𝐴𝐴 ,    𝑚𝑚 > 0
𝑚𝑚

𝐴𝐴=1

 

Each of the atomic predicates is referred to as a 
term. Assuming each atomic predicate, Pi to be of the 
form, ai = vi and ai denotes an attribute name of relation 
R and vi is a value, then the predicate defined is an 
equality predicate. The product of terms operation is 
also referred to as the concatenation of the terms [49]. 
Since Pi in ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1  is of the form, ai = vi, then ∏ 𝑃𝑃𝐴𝐴𝑚𝑚
𝐴𝐴=1  can 

be decomposed to become,  

�𝑎𝑎𝐴𝐴 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1

𝑚𝑚

𝐴𝐴=1

 

∏ 𝑎𝑎𝐴𝐴𝑚𝑚
𝐴𝐴=1  is the product of attribute names which for ease 

of reference can be assigned a variable name, say C to 
get, 

𝐶𝐶 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1

    

where ∏ 𝑣𝑣𝐴𝐴𝑚𝑚
𝐴𝐴=1 =  𝑣𝑣1.𝑣𝑣2, … , 𝑣𝑣𝑚𝑚  =   𝑣𝑣1𝑣𝑣2  …𝑣𝑣𝑚𝑚  and 

equation (3), defining an atomic predicate can be 
referred to as the concatenated predicate.  

b) The Concatenated Predicate Model 
Concatenation amounts to finding the product 

of terms, the result of which is a single term.  Given the 
equality predicates of a sargable conjunctive equality 
predicate as terms, concatenation can be used to find 
the product of the equality predicates which results in a 
single atomic predicate. Put differently, concatenation 
reduces (minimises) the number of terms (atomic 
predicates) in a sargable conjunctive equality predicate 
to one irrespective of the number of terms [49,11]. 
Concatenation in mathematics is the joining of two 
numbers by their numerals in contrast to arithmetic 
operations on numbers. Arithmetic operations such as 
addition, multiplication and all the others are based not 
only on the numerals but also on the magnitude of the 
numerals involved. Generalising, concatenation is an 
operation on the literals of an expression. If the term is a 
number, the literals are the numerals; the literals are 
alphabets or alphanumeric if the term is alphabetic or 
alphanumeric respectively.  

Deen [50] exposed concatenation to be a very 
useful operation in computer programming and used it 
to generate surrogate keys as  the product of an internal 
relation number (irn) and an effective key value (ekey 

value). The surrogate key generated is given by 
surrogate ::= <irn> <ekey value>. In Oracle noSQL, 
the concatenation of a Major Key Path and a Minor Key 
Path was used to generate record keys [51]. All records 
sharing a Major Key Path are co-located to achieve data 
locality. Within a co-located collection of Major Key 
Paths, the full key, comprising of both the Major and 
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𝑞𝑞𝐴𝐴 = 𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

.𝑞𝑞𝑜𝑜𝑜𝑜𝐴𝐴       

… (3)

(2)



 

 
 

Minor Key Paths, provides fast indexed lookups. 
Concatenation has also been applied in the theory of 
languages [52].  

To use concatenation as a product of atomic 
predicates in a sargable predicate, the following 
conditions must be met: 
1. The values of the atomic predicate attributes of the 

predicate must be exact and this can only be 
guaranteed by the equality relational operator 

2. The predicate terms must not be less than two and 
each of them must be an atomic predicate in the 
predicate to be concatenated. This condition can 
only be guaranteed when the AND logical operator 
is used to join the atomic predicates 

The second condition is a necessary condition 
because different values defined for the same atomic 
predicate attribute in a conjunctive equality predicate is 
unsatisfiable and evaluating them would lead to 
incorrect results [22]. In practical terms we cannot have 
A=12 and A=10 as a valid atomic predicates in a 
conjunctive equality predicate. The predicate attribute, A 
in a conjunctive equality predicate cannot have different 

values at the same time. Sargable conjunctive equality 
predicates meet the two conditions specified above 
hence concatenation is applicable to them as an 
optimisation technique. For every sargable conjunctive 
equality predicate, an equivalent concatenated 
predicate is derivable by concatenating the atomic 
predicates of the sargable conjunctive equality 
predicate.  

The transformation of the sargable conjunctive 
equality predicate to the concatenated predicate can be 
shown diagrammatically using a logical plan tree, the 
height of which depends on the number of atomic 
predicate operations involved in the predicate. 
Considering a sargable conjunctive equality predicate 
having three atomic predicates, σ1, σ2 and σ3 defined on 
relation, R for example, the plan tree will have three 
predicate operations as shown in Figure 3a. The 
equivalent concatenated predicate, say C is a product 
of the atomic predicates and hence it has a single 
predicate operation, σ defined on relation R as shown in 
Figure 3b.  

 
 

In general, each atomic predicate in a sargable 
conjunctive equality predicate corresponds to a 
predicate operator (σ), on the logical plan tree. Each 
additional operator increases the height of 3a by 1 
meanwhile the height of 3b remains constant. It is 
obvious from the logical plan trees that irrespective of 
the number of atomic predicates, the concatenated 
predicate has one atomic predicate and is assumed to 
be the transformation of an equivalent sargable 
conjunctive equality predicate. 

The concatenated predicate is derived from the 
atomic predicate attributes of the sargable conjunctive 
equality predicate meaning that the atomic predicate 
attributes must be natural attributes of the relation 
queried by the sargable conjunctive equality predicate. 

The atomic predicate attributes are said to be sargable 
because they are used to search the relation. In a similar 
fashion, the concatenated predicate, being a product 
has a single attribute which it equally uses to search the 
relation. This also means that the concatenated 
predicate is also a sargable predicate. Sargable 
predicates search relations based on the value set of 
the attribute involved in the predicate. Incidentally, the 
attribute involved in the concatenated predicate is not a 
natural attribute in the relation and it has to be 
constructed as an artificial or surrogate attribute, call it 
S. The value sets of S are arrived at by concatenating 
the value sets of each of the natural attributes in the 
sargable conjunctive equality predicate as follows: 

σ3 

 

σ1 

 

 

σ2 

 

R 

σ 

Sargable conjunctive equality predicate 
   

Concatenated predicate 
 

 

R 
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Figure 3: Equivalent Predicate Logical Plan Trees 



 

 

𝑣𝑣(𝑆𝑆) = ∏ 𝑣𝑣𝐴𝐴𝑜𝑜𝑎𝑎𝑚𝑚
𝐴𝐴=1 = 𝑣𝑣1

𝑜𝑜𝑎𝑎 . 𝑣𝑣2
𝑜𝑜𝑎𝑎 , … ,𝑣𝑣𝑚𝑚

𝑜𝑜𝑎𝑎  =  𝑣𝑣1
𝑜𝑜𝑎𝑎 𝑣𝑣2

𝑜𝑜𝑎𝑎 … 𝑣𝑣𝑚𝑚
𝑜𝑜𝑎𝑎   ...  (4) 

 

 
 

 
 

   

𝐴𝐴(𝑆𝑆) = ∏ 𝑣𝑣𝐴𝐴𝑜𝑜𝑎𝑎𝑚𝑚
𝐴𝐴=1     

 ...  (5) 

making qopt <1 in 𝑞𝑞𝐴𝐴 = 𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

.𝑞𝑞𝑜𝑜𝑜𝑜𝐴𝐴     

The artificial attribute and its tuples referred to in 
equation 5 is a surrogate attribute and works very much 
like a user-defined index or surrogate value [30,53]. 
Surrogate indexes are very useful in database query 
optimisation [49,54,55]. The original concept of a 
surrogate value was to provide a unique identifier for 
each tuple (a kind of system primary key) that does not 
change irrespective of what the user chooses to do with 
the primary key value or the value of any of the other 
fields in terms of modifying them. These were called 
permanent surrogates. Deen [50] implemented the 
inpure type of surrogates in which the surrogate key 

changes if any of the values concatenated to generate 
the surrogate changes. The inpure surrogates were 
generated from the primary key using a hashing and a 
key compression algorithm, supported by an overflow 
mechanism. To effectively achieve this, surrogates are 
maintained using the following operations. When a tuple 
is inserted, a surrogate must be generated and the 
surrogate directory updated. This operation is referred to 
as surrogate generation. When a tuple is deleted, the 
surrogate directory must be updated, releasing the 
surrogate for possible re-use. This operation is referred 
to as surrogate release. Given the value of the attributes 
that make up the surrogate key value, the system should 
be able to find the surrogate. This operation is referred 
to as surrogate access. Given a surrogate, it should be 
possible to find the stored tuple. This operation is 
referred to as storage access and in this role, the 
surrogate serves the purpose of a data structure that 
can be exploited by predicates to locate records. 
 

Diagrammatically, when the surrogate index is 
exploited by a concatenated predicate, tuples of the 
associated relation that match the predicate condition 
are fetched. The tuples defined in Equation (5) that are 
fetched by the concatenated predicate are depicted in 
Figure 4. 

 

 
 

  

 

𝜃𝜃𝐴𝐴(𝐴𝐴) =
 

� 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡,   𝐴𝐴𝑖𝑖
 

𝐴𝐴(𝑆𝑆𝐴𝐴) = 𝐶𝐶
𝑖𝑖𝑎𝑎𝑓𝑓𝑓𝑓𝑡𝑡,        𝑜𝑜𝐴𝐴ℎ𝑡𝑡𝐴𝐴𝑒𝑒𝐴𝐴𝑓𝑓𝑡𝑡

�
 

...
  

(6)
 

 

IV. Results and Discussion 

p1 

^ 

p2 

^ 

 

 

 

 

 

p1p2 ... pw 

Tuples fetched by the 
Concatenated Predicate 

Sargable conjunctive 
equality predicate Concatenated 

di t  

Figure 4: Tuples Returned by the Concatenated Predicate 
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where pa is a predicate attribute of a sargable
conjunctive equality predicate and vi, i>0 is the value set 
with the natural fields involved in the sargable 
conjunctive equality predicate. It follows from this 
definition that, S is the artificial attribute whose value 
sets is the concatenation of all vi for each value set of m 
atomic predicates in the sargable conjunctive equality 
predicate. This makes S one of the attributes defined for 
the query relation, t relative to which t(S) can be defines 
at the tuples of S in relation, t shown in equation (5).

Figure 4 is a diagrammatic representation of 
how the concatenated predicate is evaluated. Let 𝜃𝜃 be 
the concatenated predicate on the query table, t, then
equation (6) models the evaluation of 𝜃𝜃. A tuple, is 
returned from the query table by 𝜃𝜃 when the
concatenated predicate is evaluated and the result is 
true.

Resulting from the experiments performed in 
order to gain an understanding of the nature of 
optimisation problem posed by sargable conjunctive 
equality predicates, the Concatenated Predicate model 
was formulated as consisting of a concatenated 
predicate and a corresponding surrogate index that is 
exploited by the concatenated predicate to enhance the 
query time of an equivalent sargable conjunctive 
equality predicate. This result is proved using formal 
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methods for their correctness. The correctness of this 
result is discussed as a theoretical proof of the 
concatenated predicate model.

a) Proof of Existence of the Concatenated Predicate

Lemma 1: The equality condition in a sargable 
conjunctive equality predicate guarantees uniqueness of 
its atomic predicates because a conjunct of two different 
filters on the same attribute is unsatisfiable [22].

Theorem 1: For every sargable conjunctive equality 
predicate, there exists a product of its atomic conditions 
called the concatenated predicate

Proof: Theorem 1 follows from the work of [47] and [22]. 
Muralikrishna and DeWitt [47] and Heimel et al. [22] 
defined a conjunctive predicate as, P1 AND P2, AND… 

AND Pm and as being equivalent to a product of its 
atomic predicate terms expressed as ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1 , where 
each Pi in both the product term and the conjunctive 
term is strictly a Boolean expression and each  Pi in the 
sargable conjunctive equality predicate is an equality 
predicate. 

b) Proof of Equivalence

Lemma 2: Two query predicates (conditions) are 
equivalent if they return the same records from a 
compatible database [11].

Theorem 2: The product of atomic predicates 
(concatenation operation) is a bijective function on the 
set of concatenated predicates from the set of sargable 
conjunctive equality predicates thereby defining their 
equivalence

Proof: Let a ∈ A, where A is the set of sargable 
conjunctive equality predicates and b ∈ B, where B is 
the set of the concatenated predicates and D is a 
compatible database containing the surrogate field 
derived from the concatenation of the natural fields of D 
in the sargable conjunctive equality predicates. Let f
represent the operation that concatenates the atomic 
conditions in a to get b. Then a ≡ b if and only if, f is a 
bijective function. To be bijective,  f must be onto as 
well as one-to-one:
f is onto because each concatenated predicate, b in B is 
in the image of f . That is,

∀ b ∈ B,∃ a ∈ A and f(a) = b …

f is one-to-one because for a concatenated predicate, b 
∈ B there is at most one a ∈ A such that  f(a)= b . That 
is,

∀ a, a` ∈ A and f(a)= f(a`) implies a = a`

where a`  is the inverse of a going by the concatenation 
operation implied by  f.
Given that (3.10) and (3.11) holds, we conclude that 
f: A → B  is a bijective function on the set of 
concatenated equality predicates to the set of 

conjunctive predicates because f  is both one-to-one 
and onto. 
⇒ A ⇔ B and hence they return the same number of 
records for a compatible database 

c) Proof of Optimisation
The generic optimisation model of a relational 

database query is described in terms of a relational 
algebra expression. The relational algebra 
corresponding to a query describes a set of operators 
whose number can be determined and their cost 
estimated. Based on either number of operators or 
estimated cost, two queries can be compared to 
ascertain that one optimizes the other. A relational 
algebra expression e` optimises another relational 
algebra, e if the following conditions are satisfied (1) e` 
is equivalent to e given a compatible database (2) the 
query time of e` is less than that of  e. e` is optimal if a 
relational algebra expression that optimises e` does not 
exists.

Theorem 3: A predicate, C` is optimal relative to the 
conjunctive equality predicate, C, if (1) C` is equivalent 
to the conjunctive equality predicate, C  (2) C` has fewer 
occurrences of equality predicates than C, and (3) there 
exists no other predicate, p that is equivalent to C` and
has fewer occurrences of equality predicate than C`.

Proof:
The proof consists of a lemma and a proof by 

induction  on n(σ), the number of equality atomic 
conditions in the predicate, σ. The lemma establishes 
the equivalence of C to C`, while the poof by induction 
establishes the optimality of C` compared to C . 

Lemma: Two query predicates (conditions) are said to be 
equivalent if they each return the same records from a 
compatible database [11].

Induction hypothesis: Consider the query execution tree 
in Figure 3 and let n(σ)= number of atomic predicates. 
Each atomic predicate in C corresponds to a predicate 
operator (σc=σ1, σ2, .. ., σm). In all circumstances,  
n(σ)=1 for C` since C` is a product of the terms of C. 
Being a product, the number of terms in C` is m = 1 
and so n(σ) = 1 for C`. 

Initial Induction Step: The height of the tree 
corresponding to C = number of atomic predicates in C 
= n(σc) = m, where m is the number of atomic 
predicates in C . Assuming n(σc) =m=5 as the initial 
induction step, m is defined in subsequent  induction 
steps as m-i, where i is the subsequent induction step, 
defined as 1,2, .., m. That is, in each subsequent 
induction step,  we decrease the number of atomic 
predicates, m, by one at a time.

Subsequent Induction Steps: 
When i=1, then m-i=5-1=4 implying n(σ) = 4
When i=2, then m-i=5-2=3 implying n(σ) = 3
When i=4, then m-i=5-4=1 implying n(σ) =1
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When i=5, then m-i=5-5=0 implying n(σ) = 0
When m approaches 0, n(σ) approaches 0

This means that the number of operators, n(σ)
decreases in proportion to the number of atomic 
predicates, m. Mathematically,

n(σ) = m, m = 1, 2, .. , ∞

The query does not work and is undefined for 
when m = 0, n(σ) = 0. The query processes the least 
number of selection operators and hence does the least 
amount of work when m = 1, n(σ) = 1. Recall that n(σ)
= 1 for predicate C` . This means that C` is optimal 
since any other reduction of the atomic predicates in C
will result in a predicate that has n(σ)<1 and by the 
lemma, the equivalence of C since C` is proved`

The proof assumes that the cost of execution of 
a predicate is directly proportional to the number of 
atomic predicates that makes it up. This was proved by 
previous experiments.

One of two equivalent predicates optimizes the 
other if the query time associated with the optimising 
predicate is lesser and both predicates are equivalent 
given a compatible database.

Proof: The relational algebra of the concatenate 
predicate and the sargable conjunctive equality 
predicate are made up of the same operator, the 
selection operation. The proof that the concatenate 
predicate, 𝐶𝐶 = ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1 has fewer occurrences of 
operators than CP the conjunctive predicate and hence 
optimizes the sargable conjunctive equality predicate is 
as follows

Let the compatible database be R and the 
relational algebra corresponding to the sargable 
conjunctive equality predicate be e and the algebra of 
the concatenated predicate be e`. Then e= σP1 and P2, and… 

and Pm(R) and e`= σp(R) where the number of atomic 
predicates in e, |e| = m, m>1. Given that e` is a 
product, it follows that |e`| = 1. Given |e| = m, m>1
and |e`| = 1, we can assume the minimum value of 
m=2 for e resulting in e= σP1 AND P2(R). The relational 
algebra of e and e` consist of the selection operation, σ
whose implementation uses either the sequential search 
(table scan) or the binary search (indexed scan). Since 
both e and e` are made up of the same operation, it is 
convenient to assume that table scan has been used to 
implement them in the following algorithmic procedure. 

The algorithmic steps corresponding to e = σP1 and P2(R)
are:
1. Apply the selection operator σP1 to get the 

intermediate relation, I1
2. Apply the selection operator σP2 to get the 

intermediate relation, I2, the final result Analysis:
Assume the arity of the intermediate results, I1

and I2 to be approximately of the uniform value, n 

respectively. Let the total query time of e be fe(n). then 
fe(n) = query time of I1 + query time of I2 = n+n =2n
The algorithmic steps corresponding to e`= σp(R) are:
1. Apply the selection operator ϭp to get the 

intermediate relation, I the final result

Analysis
Assume the arity of the intermediate results, I1

and I2 to be approximately of the uniform value, n 
respectively. Let the total query time of e` be fe`(n). then 
fe`(n) = query time of I = n
Clearly, fe(n) > fe`(n), meaning that the query time of e` 
is less than that of e implying that e` optimises e. 
The proof of optimality follows.

d) Proof of Optimality

Theorem 4: Given two equivalent relational algebras
where one optimises the other, the one that optimises is 
optimal if a relational algebra expression that optimises 
it does not exist

Proof: The proof that the concatenated predicate, C that 
optimizes the conjunctive equality predicate, CP is 
optimal is proved by induction on m, the number of 
predicates in both C and CP.

Induction hypothesis: Each atomic predicate in CP
corresponds to a predicate operator (σ) on the logical 
plan tree. Assuming m to be the number of atomic 
predicates in CP and n(σ) be the number of predicate 
operators on the corresponding logical plan tree, then 
for every additional atomic predicate, n(σ) increases by 
1 such that m = n(σ). 
Induction Step: Assuming CP has a single atomic 
predicate, then m = 1 and n(σ) = 1.  Proceeding with 
the induction steps, we increase the number of atomic 
predicates, m, by one at a time to get,
When m = 2, n(σ) = 2
When m = 2, n(σ) = 3
...When m approaches ∞, n(σ) approaches ∞

This means that the number of operators, n(σ)
grows in proportion to the number of atomic predicates, 
m. Mathematically,
n(σ) = m, m = 1, 2, .. , ∞
But C is a product, implying that the number of terms in 
C is m = 1 and so n(σ) = 1 for every C corresponding to 
CP 

For there to exist a predicate that optimises C, 
the occurrence of operators in such a predicate, m, 
must be zero, that is m < 1. If m = 0, then n(σ) will also 
be zero. n(σ) = 0 defines a predicate that has no atomic 
predicate which is non-existent and hence a predicate 
that optimises C is non-existent. This means C having 
one operator has the least number of operators and 
hence it is optimal. 

In this section, the proof of correctness of the 
concatenated predicate model has demonstrated. Table 
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3.4 shows the equations used to model the various components of the model.

Table 4: Summary of Model Equations

Model 
Component

Equation

Conjunctive 
Predicate �𝜃𝜃𝐴𝐴

𝑚𝑚

𝐴𝐴=1

= 𝑃𝑃1 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃2 𝐴𝐴𝐴𝐴𝐴𝐴…𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑚𝑚

Conjunctive 
Predicate as a 

product of terms
�𝑃𝑃𝐴𝐴

𝑚𝑚

𝐴𝐴=1

Concatenate 
Predicate 𝐶𝐶 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1
Surrogate Index

𝐴𝐴(𝑆𝑆) = �𝑣𝑣𝑓𝑓𝐴𝐴𝑜𝑜𝑎𝑎
𝑚𝑚

𝐴𝐴=1
Model Evaluation 𝜃𝜃𝐴𝐴(𝐴𝐴) = � 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡, 𝐴𝐴𝑖𝑖 𝐴𝐴(𝑆𝑆𝐴𝐴) = 𝐶𝐶

𝑖𝑖𝑎𝑎𝑓𝑓𝑓𝑓𝑡𝑡, 𝑜𝑜𝐴𝐴ℎ𝑡𝑡𝐴𝐴𝑒𝑒𝐴𝐴𝑓𝑓𝑡𝑡
�

V. Conclusion and Suggestion for
Further Work

The optimization of queries where complexity is 
due to a large number of joins has received a lot of 
attention in the database literature, but the optimization 
of complex selection predicates involving multiple ANDs 
(conjunctive predicates) and ORs (disjunctive 
predicates) has not been widely addressed [24]. In lieu 
of the dearth of research into selection predicates, the 
contribution to knowledge of this research effort can be 
said to be significant.  Enhancing the query times of 
sargable conjunctive equality predicates is significant in 
the following ways:

1. The optimisation of the sargable conjunctive 
equality predicates within the context of big data  
minimises query time which tend to increase with 
big data

2. Sargable conjunctive equality predicates are widely 
used in applications involving data extraction, 
mining, matching and resolving data entities [56]. 
Enhancing these predicates directly improves the 
running times of applications designed to automate 
these operations.

3. Considering the very many other areas in which an 
improved query time can be of use, the research is 
of significance to software architects, software 
developers, the software industry and researchers. 

The concatenated predicate model works very 
much like an index hence we can refer to it as a 
surrogate index. In our subsequent work, the 
concatenated predicate model will be experimentally 
validated and work on how to integrate the surrogate 
index into existing DBMS architecture studied.

References Références Referencias

1. Storey VC, Song I. Big data technologies and
management: What conceptual modeling can do?
Data & Knowledge Engineering.  2017; 108:50–67

2. Obilikwu, P., Ogbuju, E. (2020) A data model for 
enhanced data comparability across multiple 
organizations. J Big Data 7, 95 (2020). https://  
doi.org/10.1186/s40537-020-00370-1

3. Khan MA, Uddin MF, Guptam N. Seven V’s of Big
Data: Understanding Big Data to extract value.
Proceedings of 2014 Zone 1 Conference of the
American Society for Engineering Education (ASEE
Zone 1). 2014.

4. Patgiri R, Ahmed A. Big Data: The V’s of the game
changer paradigm. International Conference on
High-Performance Computing and
Communications. 2016.

5. Matalqa H. and Mustafa S.H. (2016): “The Effect of 
Horizontal Database Table Partitioning on Query 
Performance”, The International Arab Journal of 
Information Technology, Vol. 13, No. 1A, 2016

6. Das, T.K. & Mohapatro, Arati. (2014). A Study on Big 
Data Integration with Data Warehouse. International 
Journal of Computer Trends and Technology. 9. 
188-192. 10.14445/22312803/IJCTT-V9P137.

7. Tailor, U., and Patel, P. (2016). A Survey on 
Comparative Analysis of Horizontal Scaling and 
Vertical Scaling of Cloud Computing Resources. 
IJSART - Volume 2 Issue 6, ISSN [ONLINE]: 2395-
1052.

8. Stonebraker, M., & Çetintemel, U. (2018). One size 
fits all: an idea whose time has come and gone. In 
Proceedings of the International Conference on 
Data Engineering (ICDE), 2-11. 10.1145/
3226595.3226636.

9. Selinger, P. G, Astrahan, M.M, Chamberlin, D.D, 
Lorie, R.A, Price, T.G (1979): “Access Path Selection 
in a Relational Database Management System”, 



 

 
 

  
   

 

 
  

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
  

 

 

 
 

   
 

      
      

 

 
  

  
 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
 

 
 

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
II 

Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

31

  
 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

SIGMOD Conference 1979, Boston, Massachusetts, 
May 30 - June 01, pp. 23-34.

10. Obilikwu P.O., Kwaghtyo K.D and Ogbuju E. (2021),
Enhancing Query Time Using a Volume-Adaptive 
Big Data Model OF Relational Databases, The 
Journal of Basic Physical Research. Department of 
Geological Sciences, Nnamdi Azikiwe University, 
Awka, Anambra State, Nigeria

11. Chandra, A. K. and Merlin, P. M.(1977): “Optimal 
implementation of conjunctive queries in Relational 
Databases”, Proceedings of the 9th ACM 
Symposium of Theory of Computing, Boulder, 
Colorado, USA,  May 4th, pp. 77-90.

12. Levy, A.Y., Mumick, I. S. and Sagiv Y. (1994): “Query 
Optimization by Predicate Move-Around”, 
Proceedings of the 20th VLDB Conference, 
Santiago, Chile, September 12-15, pp. 96-107.

13. Abiteboul, S., Hull R. and Vianu V.(1995): 
“Foundations of Databases”, Addison_Wesley, 
Reading, MA. pp. 35 – 65.

14. Gottlob, G., Lee, S.T. and Valiant, G. (2012): “Size 
and Tree width Bounds for Conjunctive Queries”, 
Journal of the ACM, Volume 59 Issue 3, Article No. 
16

15. Swami, A. and Scheifer, K.B. (1993): “On Estimation 
of Join Result Sizes”, Technical Report, IBM 
Research division, IBM Research Report RJ9569

16. Grohe, M., Schwentick, T. and Segoufin, L. (2001): 
“When is the evaluation of Conjunctive Queries 
Tractable”, Proceeding of the 33rd Annual ACM 
symposium on Theory of Computing, Hersonissos, 
Greece, July 6-8, pp. 657 – 666

17. Mohan, C., Haderle, D. J., Wang, Y., and Cheng, J. 
M. (1990): “Single Table Access using Multiple 
Indexes: Optimization, execution, and concurrency 
control techniques”, International Conference on 
Extending Database Technology (EDBT), Venice 
Italy, March 26-30, Volume 416 of LNCS, pp. 29–43.

18. Elmasri, R. and Navathe, S. B. (2011): 
“Fundamentals of Database Systems”, 6th Edition, 
Pearson Education Inc, pp. 679 - 723

19. Garg, V.K. and Waldecker, B. (1994):“Detection of 
weak unstable predicates in distributed programs”, 
IEEE Transactions on Parallel and Distributed 
Systems, Volume: 5, Issue: 3, Pp: 299 – 307

20. Mugnier M., Rousset M. and Ulliana F. (2016): 
“Ontology-Mediated Queries for NOSQL 
Databases”, Association for the Advancement of 
Artificial Intelligence

22. Heimel, M., Markl, V. and Murthy, K. (2009): “A 
Bayesian Approach to Estimating the selectivity of 

Conjunctive Predicates”, Proceedings of 
Datenbanken und Informationssysteme (DBIS), 
Münster, Germany, March 2-6, pp 47-56

23. Yu, X., Koudas, N., and Zuzarte, C. (2006): “HASE: 
A Hybrid Approach to Selectivity Estimation for 
Conjunctive Predicates”,  Advances in Database
Technology - EDBT 2006, Springer International 
Publishing, AG, Volume 3896 of the series Lecture
Notes in Computer Science pp. 460-477.

24. Chaudhuri, S., Ganesan, P. and  Sarawagi, S. 
(2003): “Factorizing Complex Predicates in Queries 
to Exploit Indexes”, ACM SIGMOD 2003, June 9-12, 
San Diego, CA. pp. 361-372

25. Kemper, A., Moerkotte, G., Peithner, K., and 
Steinbrunn, M. (1994): “Optimizing disjunctive 
queries with expensive predicates”, ACM Intl. 
Conference on Management of Data (SIGMOD), 
Minneapolis, Minnesota, May 24-27, pp. 336–347.

26. Lohman, G. (2014): “Is Query Optimization a 
‘Solved’ Problem?”, ACM Special Interest Group on 
Management of Data blog, http://wp.sigmod.org/

27. Chaudhuri, S. (2012): ”What next?: a half-dozen 
data management research goals for big data and 
the cloud”, Proceeding PODS '12 Proceedings of 
the 31st ACM symposium on Principles of Database 
Systems,  Scottsdale, Arizona, USA — May 21 - 23, 
pp. 1-4

28. Codd, E. F. (1970): “A Relational Model of Data for 
Large Shared Data Banks”. Communications ACM 
13(6): 377-387

29. Chamberlin, D.D., Astrahan, M.M., Blasgen, M. W., 
Gray, J. N., King, W. F., Lindsay B. G., Lorie, R., 
Mehl, J. W., Price, T, G., Putzolu, F., Selinger, P. G., 
Schkolnick, M., Slutz, D.R., Traiger, I. L., Wade, B. 
W., Yostet, R. A. (1981): “A History and Evaluation of 
System R”, Communications of ACM 24(10): Pp. 
632-646 

30. Clough, L., Haseman, W.D. and So, Y.H.(1976): 
“Designing Optimal Data Structures”, AFIPS 
national computer conference and exposition, New 
York, New York — June 07 - 10, pp. 829-837.

31. Codd, E. F. (1975): “Implementation of Relational 
Database Systems”, Panel Discussion, NCC 
(AFIPS) 75, Anaheim.

32. Chaudhuri, S. (1998): “An Overview of Query 
Optimization in Relational Systems”, Proceedings of 
the seventeenth ACM SIGACT-SIGMOD-SIGART 
Symposium on Principles of Database Systems

33. Ioannidis, Y. (2003): “The History of Histograms”, 
Proceedings of the 29th VLDB Conference, Berlin, 
Germany, September 9-12, pp. 19-30.

34. Cao, B. and Badia, A. (2005): “A Nested Relational 
Approach to Processing SQL Subqueries”, SIGMOD 
2005 June 14 - 16, 2005, Baltimore, Maryland, USA, 
pp. 191 – 202

21. Munir, K. and Anjum, M.S. (2017): “The use of 
ontologies for effective knowledge modelling and 
information retrieval”, Applied Computing and 
Informatics (2017),http://dx.doi.org/10.1016/j.aci.
2017.07.003

https://link.springer.com/book/10.1007/11687238�
https://link.springer.com/book/10.1007/11687238�
https://link.springer.com/bookseries/558�
https://link.springer.com/bookseries/558�


 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

  
 

 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

 

  
 

 
 

 
 

 

 
 

 

 
 

 
 
 

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
II 

Is
su

e 
I 
V
er
sio

n 
I 

32

(
)

C
Y
e
a
r

20
22

© 2022 Global Journals

35. Vellev, S. (2009): “Review of Algorithms for the Join 
Ordering Problem in Database Query Optimisation”, 
Information Technologies and Control, pp. 32 – 40

36. Bamnote, G. R. and Agrawal, S.S. (2013): 
“Introduction to Query Processing and Optimization 
“, International Journal of Advanced Research in 
Computer Science and Software Engineering,  
Volume 3, Issue 7, Pp. 53 – 56

37. Ullman, J. (1989): “Principles of Database and 
Knowledge Base System”, Volume 1, Computer 
Science Press Inc., New York, p. 631.

38. Chimenti, D., Gamboa, R. and Krishnamurthy R. 
(1989): “Towards an open architecture for LDL”, 
Proceedings of the fifth International VLDB 
Conference, Amsterdam, the Netherlands, August 
22-25, pp 195-203

39. Chaudhuri, S. and Shim, K. (1993): “Query 
optimization in the presence of foreign functions”, 
Proceeding of the 19th International VLDB 
Conference, Dublin, Ireland, August 24 – 27, pp. 
529 – 542.

40. Hellerstein, J. M. and Stonebraker, M. (1993): 
“Predicate Migration: Optimising queries with 
Expensive Predicates”, SIGMOD Conference, 
Washington DC, May 25-28, pp. 267–276

41. Chaudhuri, S. and Gravano, L (1996): “Optimizing 
queries over multimedia repositories”, ACM 
International Conference on Management of Data 
(SIGMOD), Montreal, Quebec, Canada, June 4-6, 
pp 91–102.

42. Chaudhuri, S. and Shim, K. (1999): “Optimization of 
queries with user-defined predicates”, ACM 
Transactions on Database Systems (TODS), 24(2), 
June 1-3, Seattle, Washington, USA, pp. 177–228.

43. Kemper, A., Moerkotte, G., and Steinbrunn, 
M.(1992): “Optimizing Boolean expressions in 
object Bases”,  Proceedings of the VLDB 
Conference, Vancouver, Canada, August 23-27, pp 
79-90

44. Balasubramanian, P. and Arisaka R. (2007): “A Set 
Theory Based Factoring Technique and Its Use for 
Low Power Logic Design”, World Academy of 
Science, Engineering and Technology, 3, pp. 446 –
456

45. Brayton, R.K., Rudell R. and Sangiovanni-Vincentelli,  
A. and Wang, A. (1987): “MIS: A multiple-level logic 
optimization system”,  IEEE Transactions. on CAD 
of Integrated Circuits and Systems, Vol 6, Issue 6, 
pp. 1062-1081.

46. Reinwald, L.T. and Soland, R.M. (1966): 
“Conversion of Limited-Entry Decision Tables to 
Optimal Computer Programs: Minimum Average 
Processing Time”, JACM, 13(3), Pp 339-358

47. Muralikrishna, M. and DeWitt, D. J. (1988): 
“Optimization of multiple-relation multiple-disjunct 
queries, In Proceedings of the Seventh 

ACMSIGACT-SIGMOD-SIGART Symposium on 
Principles of Database Systems, Austin, Texas, 
March 21 – 23, pp 263-275.

48. Hellerstein, J. M. (1994): “Practical Predicate 
Placement”, Proceedings of the 1994 ACM SIGMOD 
International Conference on Management of Data, 
Minneapolis, Minnesota, May 24-27, pp. 325-335

49. Deen, S. M. (1982): “An implementation of impure 
surrogates”, International Conference on Very Large 
Databases, Mexico City, September 8-10, pp. 245-
256. 

50. Deen, S. M., Amin, R. R. and Taylor, M. C. (1994): 
“A Strategy for Decomposing Complex Queries in a 
Heterogeneous DDB”, Proceedings of the Tenth 
International Conference on Very Large Databases, 
Singapore, August 27-31, pp. 397-400.

51. Oracle (2017): “Oracle Sharding Linear Scalability, 
Fault Isolation and Geo-distribution for Web-scale 
OLTP Applications”, ORACLE White Paper, April 
2017.

52. Sander-Bruggink, H.J., Konig, B. and  Kupper S. 
(2013): “Concatenation and other Closure 
Properties of Recognizable Languages in Adhesive 
Categories”, Proceedings of the 12th International 
Workshop on Graph Transformation and Visual 
Modeling Techniques, Mar 23 – Mar 24 2012, 
Rome, Italy

53. Lynch, C. and Stonebraker M. (1988): “Extended 
User-Defined Indexing with Application to Textual 
Databases”, Proc. 14th International Conference on 
Very Large Datsbases, Los Angeles, August 29 –
September 1, pp. 306 – 317

54. Harkins, S. (2011): “10 Tips for Choosing between a 
Surrogate and Natural Primary Key”. Retrieved from
www.techrepublic.com, pp 1-2

55. Valduriez, P. (1987): “Join Indices“, ACM 
Transactions on Database Systems, Vol. 12, No. 2, 
June 1987, pp. 218-246.

56. Getoor, L. and Machanavajjhala, A. (2012): “Entity 
Resolution: Theory, Practice and Open Challenges”, 
Proceedings of the VLDB Endownment, Istanbul, 
Turkey, August 27-31, Vol 5, No. 12, pp 2018 –
2019.


	Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
	Author
	Keywords
	I. Background to Study
	II. Related Work
	a) Conjunctive Queries
	b) Query Optimisation
	c) Predicate Optimisation
	d) Nature of Optimisation Problem Posed by Sargable conjunctive equality predicates

	III. Methodology
	IV. Results and Discussion
	a) Proof of Existence of the Concatenated Predicate
	b) Proof of Equivalence
	c) Proof of Optimisation
	d) Proof of Optimality

	V. Conclusion and Suggestion forFurtherWork
	References Références Referencias

