
© 2022. Veronica V.N. Akwukwuma & Patrick O. Obilikwu. This research/review article is distributed under the terms of the
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and
reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative
commons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Optimising Sargable Conjunctive Predicate Queries in the
Context of Big Data

By Veronica V.N. Akwukwuma & Patrick O. Obilikwu
 Benue State University

Abstract- With the continued increase in the volume of data, the volume dimension of big data
has become a significant factor in estimating query time. When all other factors are held
constant, query time increases as the volume of data increases and vice versa. To enhance
query time, several techniques have come out of research efforts in this direction. One of such
techniques is factorisation of query predicates. Factorisation has been used as a query
optimization technique for the general class of predicates but has been found inapplicable to the
subclass of sargable conjunctive equality predicates. Experiments performed exposed a peculiar
nature of sargable conjunctive equality predicates based on which insight, the concatenated
predicate model was formulated as capable of optimising sargable conjunctive equality
predicates. Equations from research results were combined in a way that theorems describing
the application and optimality of the concatenated predicate model were derived and proved.

Keywords: concatenated predicate, conjunctive equality predicate, sargable predicate, query,
factorisation, database, software applications.

GJCST-C Classification: I.2.4

OptimisingSargableConjunctivePredicateQueriesintheContextofBigData

 Strictly as per the compliance and regulations of:

Optimising Sargable Conjunctive Predicate
Queries in the Context of Big Data

Veronica V.N. Akwukwuma α & Patrick O. Obilikwu σ

Abstract- With the continued increase in the volume of data,
the volume dimension of big data has become a significant
factor in estimating query time. When all other factors are held
constant, query time increases as the volume of data
increases and vice versa. To enhance query time, several
techniques have come out of research efforts in this direction.
One of such techniques is factorisation of query predicates.
Factorisation has been used as a query optimization
technique for the general class of predicates but has been
found inapplicable to the subclass of sargable conjunctive
equality predicates. Experiments performed exposed a
peculiar nature of sargable conjunctive equality predicates
based on which insight, the concatenated predicate model
was formulated as capable of optimising sargable conjunctive
equality predicates. Equations from research results were
combined in a way that theorems describing the application
and optimality of the concatenated predicate model were
derived and proved. The theorems proved that the novel
concatenated predicate model transforms a sargable
conjunctive equality predicate such that the resultant
concatenated predicate is an optimal equivalent of the
sargable conjunctive equality predicate from which it is
derived. The model enhances conjunctive sargable equality
queries making our results capable of application in software
applications, majority of whose queries are of the conjunctive
query type. The results are equally useful in optimising query
time within the context of Big Data where the continuous
increase in the volume dimension of data calls for query
structures that enhance query time.
Keywords: concatenated predicate, conjunctive equality
predicate, sargable predicate, query, factorisation,
database, software applications.

I. Background to Study

he fundamental Vs of Big Data are volume, velocity
and variety [1]. Volume refers to the size of data
being created, Velocity is the speed at which data

is created, captured, extracted, processed, and stored
while variety connotes different data types and sources
ranging from structured, semi-structured to unstructured
data. Of the three Vs, volume is most directly associated
with big data and to put its importance in a perspective
that emphasizes its relevance to query optimisation,
volume may be redefined as voluminosity, vacuum, and
vitality – three additional V-dimensions of data as
exposed by [2]. Voluminosity states that there is already

Author α: Ph.D, Department of Computer Science, University of Benin,
Benin City, Nigeria.
Author σ: Ph.D, Department of Computer Science, Benue State
University, Makurdi, Nigeria. e-mail: poblikwu@gmail.com

a very large set of data collected and even much more
is available that can be harvested. Voluminosity speaks
of a significant gap that can be filled by data yet to be
collected. From the perspective of voluminosity, volume
refers to the size of data being created from all sources
in an organization including text, audio, video, social
networks, research studies, medical data, space
images, crime reports, weather forecasting and natural
disaster [3].

The vacuum dimension of volume states that
there is a strong requirement for storage to store large
volumes of data. Due to the fact that the data is
acquired incrementally, empty spaces will always be
needed for use in the creation of room to store, process
and manage tremendous data set as they are harvested
from different sources. This dimension of volume pops
up the research question about how much storage
space is available for incoming data rather than how
much data has already been stored. The process of
creating storage space for incoming data is equally as
challenging as it is with managing vast sets of already
stored data. Empty spaces that serve this purpose are
created by either augmenting storage devices or
techniques used to compress the size of data [4].

Vitality may be defined as the survival of data in
the storage environment and thus its reliability and
usefulness. Data in the storage environment falls into the
two categories, namely active served and unserved. In a
large data bank, some data are actively used while
some are not [4]. Vitality redefines volume as meaning
that data and its subsets are used actively at different
times. While a portion of data may be actively used data
at a time or within a specific transaction, the rest are
stored for future uses. There is the risk that data stored
for future may take so long for it to be used which may
lead to such sub-datasets to be abandoned or not
properly maintained. As the risk of being abandoned
gets higher, anything can happen to those datasets not
currently in use. In other words, with less investment and
attention to the unserved data, they are exposed to
incidences of fire, earthquake, flood, war, and terrorist
which are the prominent causes of data loss. Thus,
vitality is a critical component of volume. The lack of
vitality, in any case, is symptomatic of the absence of
disaster management systems which decimates data
reliability or can lead to complete data loss. Apart from
reliability, vitality also describes flexibility, dependability,

T

© 2022 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

19

 (

)
C

Y
e
a
r

20
22

and security which are all integral components of
volume,

As data gets larger in the dimensions of big
data, partitioning strategies have been used to reduce
the data to smaller subsets over which queries become
faster compared to the original dataset [5]. Popular
among these partitioning strategies is the horizontal
scaling (scaling out), Horizontal scaling refers to
resource increment by the addition of complete and
independent units that work in unison with an existing
system. The additional units may be of smaller capacity,
making it cheaper compared to the replacement of an
existing single unit with one of larger capacity. The scale
out effect of the horizontal partitioning strategy creates a
hardware infrastructure platform on which partitioned
data is then distributed across multiple units or servers,
hence, reducing the excess load of the entire data set
on a single machine [6,7]. This platform comes with the
added advantage of keeping the entire system up even
if some of the units go down, thus, avoiding the “single
point of failure” problem associated with vertical scaling.
The vertical scaling (scaling up) strategy refers to
increasing the ability of a single hardware unit such as a
server to handle the ever-increasing workload as a way
of achieving resource increment. From the perspective
of hardware, this includes adding memory and
processing power to the single unit.

The horizontal scaling strategy is at the heart of
the implementation of big data stores namely p-stores,
c-stores and NoSql among others that have pioneered
the paradigm shift of “No One Size Fits-All” proposed
by Stonebraker and Çetintemel [8]. The horizontal
scaling strategy partitions data such that queries can be
fired selectively on the partitions with the aim of
retrieving the desired data in optimal query time. As is
applicable to all datasets, the desired data in a partition
is indicated in a query using a boolean expression of
conditions called predicates. Predicates are used in
joins as well in search arguments of queries. A join
predicate is a predicate that relates columns of two
tables to be joined and the columns referenced in a join
predicate are called join columns. When used in Search
ARGuments (SARGs), predicates are referred to as
sargable predicates [9]. A sargable predicate is one of
the form (or which can be put into the form) “column
comparison-operator value”. Matalqa and Mustafa [5]
experimentally demonstrated that restructuring big data
into partitions produces query enhancement results.
Using the theorem and axiom, Obilikwu, Kwaghtyo and
Ogbuju [10] theoretically proved the result of [5] as
follows:

Theorem: Given P1, P2 … Pn as the partitions of
a relation R, then R = {P1, P2, …, Pn} where n = the
number of distinct values in the value set associated
with the partition key that generated P1, P2 … Pn

Axiom: The following axioms are applicable:
1. A partition key has a value set, V whose element

cannot be null
2. The number of distinct values of V is n= number of

partitions produced

Proof: Let ϭ be the partition predicate associated with a
distinct value of V, then Arity(ϭ) is the arity of the tuples
filtered by ϭ.
Given any value of n, there exists ϭ1, ϭ2, ..., ϭn, where
ϭ1 filters all tuples in P1 from relation R,
Ϭ2 filters all tuples in P2 from relation R, and
Ϭn filters all tuples in Pn from relation R,
Since the elements of V cannot be null, then Arity(V) =
Arity (R)
Since ϭ1, ϭ2, ..., ϭn filter the tuples of R according to the
distinct values of V, it follows that
Arity(V)=Arity(ϭ1) + Arity(ϭ2) + +
Arity(ϭn)=∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜎𝜎𝐴𝐴)𝑛𝑛

𝐴𝐴
This implies that ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜎𝜎𝐴𝐴)𝑛𝑛

𝐴𝐴 = Arity (R) since n is the
number of distinct values of V defined in R
This shows that R = {P1, P2, …, Pn} since ϭ1, ϭ2, ..., ϭn

The use of partitioning strategies makes queries
faster [5]. This is because retrieving a record or a set of
records from a relation is done relative to the number of
the total number of records in the relation (R). Based on
this relationship, query time can be computed as a ratio
using equation 1.

The implication of equation 1 is that an increase

in volume implies an increase in query time. The query
works with the DBMS as part of the algorithms that
ensure data is retrieved seamlessly. While the DBMS
suggests how the data can be located and retrieved, the
query syntax tells what data is to be retrieved. These
make up the two components of a database
management system as depicted in Figure 1.

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

20

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

filter the tuples of R. QED.

𝑞𝑞𝐴𝐴 = 𝐴𝐴𝑅𝑅
𝑇𝑇𝑅𝑅

 ... (1)

where qt is query time, tR is the number of tuples
retrieved from a relation R using a predicate ϭ and TR is
number of tuples in R. Equation 1 assumes an
asymptotic value of tR as well as the fact that other
factors that affect query time are held constant. Among
others, these other factors are processor speed, RAM
and ROM size, communication traffic and code
efficiency.

This paper is motivated by the critical need to
optimise queries in the context of big data, big data
being a development that has led to the ubiquitous
incidence of big databases. The objectives of the paper
are therefore as follows: (i) show that query time
increases as the arity of database storage structures
increase; (ii) show that optimising query time can be
approached by organizing the storage structure using
techniques like indexing and storage partitioning. It is
also shown that queries can be modified or transformed
to an equivalent form such that query time is reduced;
(iii) use a combination of mathematical techniques to
develop the concatenated predicate model thus
enhancing the query time of sargable conjunctive
equality predicates (iv) prove using mathematical
induction and other applicable techniques that the
concatenated predicate model optimises the sargable
conjunctive equality predicate.

The rest of this paper is organized as follows:
Section 2 reviews literature on the general concept of
query optimisation and subsequently narrows the
discussion down to the specific class of conjunctive
predicates and how optimisation of predicates
enhances query time. In Section 3, the product function
is presented as a mathematical model to describe the
product of atomic predicates, an operation also referred
to as concatenation. Concatenation achieves literal
minimisation as an alternative to factorization where
there are no common atomic predicates. Concatenation
in this paper to propose the concatenated predicate
model. In Section 4, the results of this study are
demonstrated using mathematical induction and other
proofs. The proofs are discussed relative to the
expected behavior of the concatenated predicate
model.Finally, Section 5 concludes the paper and
makes suggestions for future work.

II. Related Work

a) Conjunctive Queries
Conjunctive queries represent one of the query

languages used to retrieve data from relational
databases [11,12,13] among other database models.
Conjunctive queries correspond to the non-recursive
Datalog rules [14]. In recursive datalog rules,
conjunctive queries are of the form,

R0(u0)←Ri1(u1)˄ Ri2(u2)˄… Rim(um)

Conjunctive queries consist strictly of
conjunctive predicates and they are the most widely
used database queries in practice. It is against the
background that optimising them makes a whole lot of
sense [15,16,17,18,19]. The wide use of conjunctive
queries are observable in not only their ubiquitous use in
decision support systems based on relational
databases but in other areas such as Description
Language queries used to query knowledge
representation (KR) systems , ontology-based queries
and query answering frameworks in general [20,21].
Optimising a conjunctive query simply means optimising
the conjunctive predicate component.

Heimel et al. [22] defined conjunctive
predicates mathematically as

θ

=⋀ 𝜃𝜃𝐴𝐴𝑚𝑚

𝐴𝐴=1

Access to
relation
queried

Query
Result

Set

Index
Table(if
applicable

Data Definition

Figure 2: Architecture of Database Management

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

21

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

Query and response

Relation(s)

Data Manipulation

A predicate is that part of the query that filters
records based on certain conditions. The
properties of a predicate are multifarious and their

study has exposed opportunities for optimising them,
given that optimising them ultimately optimises
database query time. Techniques for optimising queries
are dependent on the query type.

where Rij is the relation name of the underlying
database. R0 is the output relation, and where each
argument uj is a list of |uj| variables, where |uj| is the
arity of the corresponding relation Rij.

where θi are atomic predicates joined by the AND
relational operators and i =1,2, .., m are predicate terms
(predicate literals, Boolean variables or atomic
predicates) making up the conjunctive predicate.
Sargable conjunctive predicates were defined by Yu X et
al.[23] as conjunctive predicates of the form,

Q = P1˄P2 ˄ … ˄Pm

where each component Pi, i>0 is an atomic predicate of
the attribute value pair (attribute op value) with op being
one of the comparison operators <, ≤, =, ≠, ≥ or >.

Practically speaking, conjunctive predicates are
identified in the filter component of the project-select-
join queries in the relational algebra, and in the where-
clause of SQL queries having the general form SELECT .
. . FROM . . . WHERE . . . where the where-clause is a
predicate clause. Predicates are the conditions based
on which database queries filter tuples in a relation or
group of related relations. In its basic form, a query
predicate is an atomic conditional expression also
referred to as an atomic predicate. Several atomic
predicates can be combined using logical operators to
make up complex predicates [24] and the number of
atomic predicates in a complex predicate is the boolean
factor [9]. An atomic predicate has a boolean factor of
1. Boolean factors are notable because every tuple
returned by a query must satisfy every boolean factor. A
complex predicate made up of atomic predicates joined
strictly using the AND logical operator is referred to as a
conjunctive predicate. If all the atomic predicates in a
complex predicate consist strictly of the equality
operator, the complex predicate is referred to as a
conjunctive equality predicate. Assuming the logical
operator in the complex predicate is the OR logical
operator then the resulting predicate will be a disjunctive
predicate [25]. If the relational operator is the equality
operator, then the complex predicate is a conjunctive
equality predicate. If the conjunctive equality predicate is
sargable, then it referred to as a sargable conjunctive
equality predicate This paper is a study on how
predicates of the class of sargable conjunctive equality
predicates can be optimised.

b) Query Optimisation
Big data is resource-intensive and hence

requires that both storage and query time are optimised
for effective resource utilization. Resource optimisation,
be it hardware or otherwise has been discussed within
the larger context of solutions that we can never have
enough of [26]. As a matter of fact the optimisation
problem domain is one we are not yet done with [27].
Optimizing a number of running processes is
considered an optimisation strategy though via
software. Optimising query time by software (algorithms)
is traditionally a function of the query optimizer, which is
internal to the DBMS [9]. The algorithms associated with
the query optimiser manipulate a query plan in its
internal structure to choose an optimal plan for
implementing a query. Query optimization gained
research attention when the advantages of the relational
data model in terms of user productivity and data
independence became widely recognized in response
to Codd's original ideas about the concept of relational

databases [28]. Following this development,
researchers began to ask questions about whether or
not an automatic system can choose as efficient an
algorithm for processing a complex query as a trained
programmer would. System R, an experimental system
was then constructed at the San Jose IBM Research
Laboratory to demonstrate that a relational database
system can incorporate the high performance and
complete function, including automatic query
optimisation required for everyday production use
[9,29].

Query optimization has also been associated
with modifying the structure of relations. In this regard,
indexing can be said to be a pioneering effort at
optimising query time from the dimension of database
structure [30,31]. In processing a query that has a
predicate, the attributes in the predicate are examined to
find out if an index has been defined for any of the
attributes, a concept referred to as index availability. The
availability of an index makes searching relations faster
compared to a full scan which is the search option used
in the absence of an index. On the other hand, an index
scan is used for the search if an index is available. The
implementation of a full scan uses sequential search
while an index scan is implemented using binary search.
It is established in algorithmic theory that sequential
search is of O(n) and binary search is O(log n) making it
obvious that an index scan is faster thereby enhancing
query time.

Queries are also faster when relations are
normalized. Partitioning relations also achieve good
results. Optimising query operators, especially
SELECTION and JOIN operators equally enhance query
time. Incidentally, research into the optimisation of query
operators has focused on joins and their ordering to the
near neglect of research into the optimization of
selection predicates [24]. Query optimisation is an open
ended research question and hence it has been the
object of research efforts over the years
[26,9,15,32,33,34,35,36].

c) Predicate Optimisation

Query optimisation

research efforts over the
years in the specific area of predicate optimization have
resulted in several optimization techniques notable
among which are Predicate Pushdown [37], LDL
approach [38,39], Predicate Move-around [12],
Predicate Migration [40], By-Pass Predicate Processing
[25], Optimising User-defined functions using Pruning
Strategies [41,42]. Prominent among this technique is
factorisation, a technique used to mininise the number
of atomic predicates or terms in a complex predicate.
Kemper et al. [43]

and Chaudhuri et al.[24]

used

factorization to minimise atomic predicates in queries.
The objective of factorization is to represent a Boolean
function in a logically equivalent factored form having a

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

22

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

minimum number of literals [44]. The concept of
minimizing atomic predicates (predicate literals) in a
Boolean expression means that such expressions can
be made simpler by reducing the terms in them.
Predicate literals are found in the design of VSLI [45],
compilers [46], and database query predicates [43,24]
and minimization techniques of various types have been
applied in each of these application areas thereby
optimising the expressions involved. Factorisation is
however only possible where the predicate expression
has common atomic predicates.

Muralikrishna and DeWitt [47] established that
the number of times a relation in a query is scanned is
equal to the number of terms in which attributes of the
relation are involved. This means that minimising the
number of terms equally minimises the number of scans
for each relation. Scanning constitutes a fundamental
operation in query processing and thus a reduction in
the number of scans done by a query equally reduces
query time. Chaudhuri et al. [24] showed that
factorization can be used to minimize predicate terms in
scenarios where there are common atomic predicate
factors. In this work, the sargable conjunctive equality
predicates have been exposed as incidences of
predicates where there are no common atomic
predicate factors implying that factorization is
inapplicable as a predicate minimisation technique.
Sargable conjunctive equality predicates do not have
common Boolean factors because an atomic predicate
appearing more than once in a sargable conjunctive
equality predicate duplicates such an atomic predicate.
The duplicate atomic predicate is redundant and the

result of such is unsatisfiable and evaluating them would
lead to incorrect results [22]. This motivates the study of
the nature of optimisation problems inherent in sargable
conjunctive equality predicates. The experiments
performed exposed interesting insights as to why
existing predicate optimistion techniques, particularly
factorization are inapplicable.

d) Nature of Optimisation Problem Posed by Sargable
conjunctive equality predicates

To optimise sargable conjunctive equality
predicates, there is need to understand the nature of
optimisation problem posed by them. Series of
experiments were conducted using a simulated data of
students scores in an examination to expose what
happens in terms of query time when the number of
atomic predicates in a sargable conjunctive equality
predicate is varied in a query. The experiments
performed assumed that a number of students took an
examination in the Department of Physics of a
hypothetical University. The examination results are
captured in a database relation, named studentscores.
A schema is defined for the relation as
studentscores(sno

Table 1: Instances of Examination Results Schema (Query Table)

, studentID, level, courseCode,
semesterID, sessionID, status, score) where the
attributes are described as follows: sno (serial number);
studentID (unique identifier for student); courseCode
(semester course code); semesterID (identifier for
semester); sessionID (identifier for session); status
(semester course status) and score (an attribute for
students score in the examination). Five instances of this
schema are shown in Table 1.

Sno StudentID Level CourseCode SemesterID SessionID Status Score
1 SCN890178254 400 PHY412 1ST 2016/2017 C 94
2 SCN907524101 400 PHY412 1ST 2016/2017 C 65
3 SCN901782548 400 PHY412 1ST 2016/2017 C 76
4 SCN898888254 400 PHY412 1ST 2016/2017 C 35
5 SCN895428266 400 PHY412 1ST 2016/2017 C 58

The instances of the relational schema
generated in

Table 1 are five but the assumption is that

as many students as there wrote the examination in the
physics course (PHY412). The level is 400 (a course
taken at the fourth year of study except when taken as a
carry over). SessionID and semesterID are 2016/2017
and 1ST respectively. The semester course is a core
course hence it has the code “C” for the status. A core
course in this context is a course that is compulsory for
all the students doing the same course of study or
programme. Elective courses on the

other hand are not

compulsory. They are offered by students as a matter of
choice.

The experiments conducted involved sargable
conjunctive equality predicates and it involved varying
the number of atomic predicates from two to five. Five

atomic predicates

are realistic enough to test the
behavior of a complex predicate [41]. For each sargable
conjunctive equality predicate, the number of schema
instances was varied from 600,000 to 1,000,000. A data
set of 1,000,000 records was assumed to be asymptotic
(big

data) and sufficient based on the use of the same

number of records in a similar database experiment
[41]. For a sargable conjunctive equality predicate to

select an instance, the atomic conditions in the conjunct
must all be true for the instance. For this reason, it is
common in experiments testing conjunctive equality
predicates to have record instances with repeated
values [48]. The predicate attributes in the experimental
data are grouped in terms of the number of predicates
in the sargable conjunctive equality predicate and
presented in Table 2.

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

23

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

.

Table 2: Predicates attributes used in the Sargable conjunctive equality predicates

The predicate attributes listed in Table 2 are
classified according to the number of their atomic
predicate attributes beginning from 2 to 5 with their
corresponding sargable conjunctive equality predicates.
The combination of the predicate attributes of each

sargable conjunctive equality predicate in any order or
pattern is commutative and equivalent. They retrieve the
same number of records and hence the order does not
matter. The query times obtained from the experiment
performed are shown in Table 3.

Table 3: Query times for sargable conjunctive equality predicates

Number of
records (n)

Query time in microseconds according to number of predicates
2 predicates 3 predicates 4 predicates 5 predicates

600,000 7.653684139 8.102646112 8.527706862 8.91692996

800,000 9.84117198 10.45632792 10.88422108 11.36055684

1,000,000 12.14951396 12.91807389 13.49754906 14.54573202

The data obtained from the experiment exposed
a pattern whereby the query times associated with
sargable conjunctive equality predicates increase as the
number of atomic predicates are varied from two
through five which implies that when the atomic
predicates are reduced, the query time is equally

reduced. It is obvious from this observation that
minimizing the number of atomic predicates of the
sargable conjunctive equality predicate enhances query
time. Figure 2 shows the query times of the sargable
conjunctive equality predicates as a graph.

In the DBMS architecture shown in Figure 1, a
query is a component of the DBMS that works in
conjunction with the query optimiser to ensure queries
run optimally. The query times obtained in Figure 2
includes every internal optimisation done by optimiser
as well as any restructuring that can be done to the
database such as indexing, partitioning, normalization

and the introduction of primary keys. This scenario was
earlier modeled in equation 1 as:

𝑞𝑞𝐴𝐴 =
𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

The point in this paper is that the query can be
optimised even before it is submitted to the optimiser. A

0
2
4
6
8

10
12
14
16

6,00,000 8,00,000 10,00,000

Ti
m

e
(in

 m
ic

ro
se

co
nd

s)

Figure 2: Query times of sargable conjunctive equality
predicates

5 predicates

4 predicates

3 predicates

2 predicates

Number of
predicate attributes

Predicate attributes Sargable conjunctive equality predicates

2 courseCode, semesterID courseCode=”PHY412” and semesterID=’1st’
3 level, coursecode,

semesterID

Level =”400” and courseCode=”PHY412”
and semesterID=’1st’

4
courseCode,semesterID,

sessionID, status

courseCode=”PHY” and semesterID=’1st’
and sessionID = “2015/2016” and status =

“C”

5
 level,courseCode,

semesterID, sessionID,
status

Level =”400” and courseCode=”PHY” and
semesterID=’1st’ and sessionID =

“2015/2016” and status = “C”

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

24

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

typical case in point is the use of subqueries (nested
queries also referred to as queries in predicates) in
place of joins in scenarios where subqueries and joins
are equivalent queries. An example is where the join
retrieves a single tuple, then it is less costly to use
subqueries than joins. The equivalent query that
optimises query time introduces an optimisation factor,
qopt to equation 1 to produce equation 2.

Where qopt lies in the range 0 < qopt < 1. qopt =
1 means there was no optimisation by the optimisation
technique applied. The concept of optimizing sargable
conjunctive predicates is rooted in theory of equivalent
queries. For any sargable conjunctive predicates, there
exists a corresponding sargable concatenated
predicate.

On the basis of this insight from the
experimental results in Figure 2, the concatenated
Predicate model is formulated as consisting of a
concatenated predicate and a corresponding surrogate
index that is exploited by the concatenated predicate to
enhance the query time of an equivalent sargable
conjunctive equality predicate. The experiments are
restricted to single table access and by implication,
sargable conjunctive equality predicates [17]. Based on
the experimental results, the methodology of this study
consists of equations describing the product of terms
(atomic predicates) which were subsequently used to
formulate the concatenated predicate model. Theorems
describing the application and optimality of the model
as capable of optimising sargable conjunctive equality
predicates are derived and also proved. It is hoped that
the clarity of the concepts using the single table access
will help in extrapolating the model to the other types of
table access.

III. Methodology

The basic materials for this research were
published literatures. Chaudhuri et al. [24] used the
factorization technique to optimize a class of predicates
that have common Boolean factors. The class of
sargable conjunctive equality predicates on the other
hand do not have common Boolean factors which
makes factorization inapplicable to them. Motivated by
this insight, this study unravelled some properties of the
sargable conjunctive equality predicate which gave an
insight on how this class of predicates can be
optimised.

a) Mathematical Model
In describing the proposed model,

mathematical models have been used extensively.
Muralikrishna and DeWitt [47] referred to the product of
the atomic predicates, Pi, i =1,2, .., m in a join or
selection clause as,

�𝑃𝑃𝐴𝐴 , 𝑚𝑚 > 0
𝑚𝑚

𝐴𝐴=1

Each of the atomic predicates is referred to as a
term. Assuming each atomic predicate, Pi to be of the
form, ai = vi and ai denotes an attribute name of relation
R and vi is a value, then the predicate defined is an
equality predicate. The product of terms operation is
also referred to as the concatenation of the terms [49].
Since Pi in ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1 is of the form, ai = vi, then ∏ 𝑃𝑃𝐴𝐴𝑚𝑚
𝐴𝐴=1 can

be decomposed to become,

�𝑎𝑎𝐴𝐴 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1

𝑚𝑚

𝐴𝐴=1

∏ 𝑎𝑎𝐴𝐴𝑚𝑚
𝐴𝐴=1 is the product of attribute names which for ease

of reference can be assigned a variable name, say C to
get,

𝐶𝐶 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1

where ∏ 𝑣𝑣𝐴𝐴𝑚𝑚
𝐴𝐴=1 = 𝑣𝑣1.𝑣𝑣2, … , 𝑣𝑣𝑚𝑚 = 𝑣𝑣1𝑣𝑣2 …𝑣𝑣𝑚𝑚 and

equation (3), defining an atomic predicate can be
referred to as the concatenated predicate.

b) The Concatenated Predicate Model
Concatenation amounts to finding the product

of terms, the result of which is a single term. Given the
equality predicates of a sargable conjunctive equality
predicate as terms, concatenation can be used to find
the product of the equality predicates which results in a
single atomic predicate. Put differently, concatenation
reduces (minimises) the number of terms (atomic
predicates) in a sargable conjunctive equality predicate
to one irrespective of the number of terms [49,11].
Concatenation in mathematics is the joining of two
numbers by their numerals in contrast to arithmetic
operations on numbers. Arithmetic operations such as
addition, multiplication and all the others are based not
only on the numerals but also on the magnitude of the
numerals involved. Generalising, concatenation is an
operation on the literals of an expression. If the term is a
number, the literals are the numerals; the literals are
alphabets or alphanumeric if the term is alphabetic or
alphanumeric respectively.

Deen [50] exposed concatenation to be a very
useful operation in computer programming and used it
to generate surrogate keys as the product of an internal
relation number (irn) and an effective key value (ekey

value). The surrogate key generated is given by
surrogate ::= <irn> <ekey value>. In Oracle noSQL,
the concatenation of a Major Key Path and a Minor Key
Path was used to generate record keys [51]. All records
sharing a Major Key Path are co-located to achieve data
locality. Within a co-located collection of Major Key
Paths, the full key, comprising of both the Major and

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

25

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

𝑞𝑞𝐴𝐴 = 𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

.𝑞𝑞𝑜𝑜𝑜𝑜𝐴𝐴

… (3)

(2)

Minor Key Paths, provides fast indexed lookups.
Concatenation has also been applied in the theory of
languages [52].

To use concatenation as a product of atomic
predicates in a sargable predicate, the following
conditions must be met:
1. The values of the atomic predicate attributes of the

predicate must be exact and this can only be
guaranteed by the equality relational operator

2. The predicate terms must not be less than two and
each of them must be an atomic predicate in the
predicate to be concatenated. This condition can
only be guaranteed when the AND logical operator
is used to join the atomic predicates

The second condition is a necessary condition
because different values defined for the same atomic
predicate attribute in a conjunctive equality predicate is
unsatisfiable and evaluating them would lead to
incorrect results [22]. In practical terms we cannot have
A=12 and A=10 as a valid atomic predicates in a
conjunctive equality predicate. The predicate attribute, A
in a conjunctive equality predicate cannot have different

values at the same time. Sargable conjunctive equality
predicates meet the two conditions specified above
hence concatenation is applicable to them as an
optimisation technique. For every sargable conjunctive
equality predicate, an equivalent concatenated
predicate is derivable by concatenating the atomic
predicates of the sargable conjunctive equality
predicate.

The transformation of the sargable conjunctive
equality predicate to the concatenated predicate can be
shown diagrammatically using a logical plan tree, the
height of which depends on the number of atomic
predicate operations involved in the predicate.
Considering a sargable conjunctive equality predicate
having three atomic predicates, σ1, σ2 and σ3 defined on
relation, R for example, the plan tree will have three
predicate operations as shown in Figure 3a. The
equivalent concatenated predicate, say C is a product
of the atomic predicates and hence it has a single
predicate operation, σ defined on relation R as shown in
Figure 3b.

In general, each atomic predicate in a sargable
conjunctive equality predicate corresponds to a
predicate operator (σ), on the logical plan tree. Each
additional operator increases the height of 3a by 1
meanwhile the height of 3b remains constant. It is
obvious from the logical plan trees that irrespective of
the number of atomic predicates, the concatenated
predicate has one atomic predicate and is assumed to
be the transformation of an equivalent sargable
conjunctive equality predicate.

The concatenated predicate is derived from the
atomic predicate attributes of the sargable conjunctive
equality predicate meaning that the atomic predicate
attributes must be natural attributes of the relation
queried by the sargable conjunctive equality predicate.

The atomic predicate attributes are said to be sargable
because they are used to search the relation. In a similar
fashion, the concatenated predicate, being a product
has a single attribute which it equally uses to search the
relation. This also means that the concatenated
predicate is also a sargable predicate. Sargable
predicates search relations based on the value set of
the attribute involved in the predicate. Incidentally, the
attribute involved in the concatenated predicate is not a
natural attribute in the relation and it has to be
constructed as an artificial or surrogate attribute, call it
S. The value sets of S are arrived at by concatenating
the value sets of each of the natural attributes in the
sargable conjunctive equality predicate as follows:

σ3

σ1

σ2

R

σ

Sargable conjunctive equality predicate

Concatenated predicate

R

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

26

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

Figure 3: Equivalent Predicate Logical Plan Trees

𝑣𝑣(𝑆𝑆) = ∏ 𝑣𝑣𝐴𝐴𝑜𝑜𝑎𝑎𝑚𝑚
𝐴𝐴=1 = 𝑣𝑣1

𝑜𝑜𝑎𝑎 . 𝑣𝑣2
𝑜𝑜𝑎𝑎 , … ,𝑣𝑣𝑚𝑚

𝑜𝑜𝑎𝑎 = 𝑣𝑣1
𝑜𝑜𝑎𝑎 𝑣𝑣2

𝑜𝑜𝑎𝑎 … 𝑣𝑣𝑚𝑚
𝑜𝑜𝑎𝑎 ... (4)

𝐴𝐴(𝑆𝑆) = ∏ 𝑣𝑣𝐴𝐴𝑜𝑜𝑎𝑎𝑚𝑚
𝐴𝐴=1

 ... (5)

making qopt <1 in 𝑞𝑞𝐴𝐴 = 𝑇𝑇ϭ
𝑇𝑇𝑅𝑅

.𝑞𝑞𝑜𝑜𝑜𝑜𝐴𝐴

The artificial attribute and its tuples referred to in
equation 5 is a surrogate attribute and works very much
like a user-defined index or surrogate value [30,53].
Surrogate indexes are very useful in database query
optimisation [49,54,55]. The original concept of a
surrogate value was to provide a unique identifier for
each tuple (a kind of system primary key) that does not
change irrespective of what the user chooses to do with
the primary key value or the value of any of the other
fields in terms of modifying them. These were called
permanent surrogates. Deen [50] implemented the
inpure type of surrogates in which the surrogate key

changes if any of the values concatenated to generate
the surrogate changes. The inpure surrogates were
generated from the primary key using a hashing and a
key compression algorithm, supported by an overflow
mechanism. To effectively achieve this, surrogates are
maintained using the following operations. When a tuple
is inserted, a surrogate must be generated and the
surrogate directory updated. This operation is referred to
as surrogate generation. When a tuple is deleted, the
surrogate directory must be updated, releasing the
surrogate for possible re-use. This operation is referred
to as surrogate release. Given the value of the attributes
that make up the surrogate key value, the system should
be able to find the surrogate. This operation is referred
to as surrogate access. Given a surrogate, it should be
possible to find the stored tuple. This operation is
referred to as storage access and in this role, the
surrogate serves the purpose of a data structure that
can be exploited by predicates to locate records.

Diagrammatically, when the surrogate index is
exploited by a concatenated predicate, tuples of the
associated relation that match the predicate condition
are fetched. The tuples defined in Equation (5) that are
fetched by the concatenated predicate are depicted in
Figure 4.

𝜃𝜃𝐴𝐴(𝐴𝐴) =

� 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡, 𝐴𝐴𝑖𝑖

𝐴𝐴(𝑆𝑆𝐴𝐴) = 𝐶𝐶
𝑖𝑖𝑎𝑎𝑓𝑓𝑓𝑓𝑡𝑡, 𝑜𝑜𝐴𝐴ℎ𝑡𝑡𝐴𝐴𝑒𝑒𝐴𝐴𝑓𝑓𝑡𝑡

�

...

(6)

IV. Results and Discussion

p1

^

p2

^

p1p2 ... pw

Tuples fetched by the
Concatenated Predicate

Sargable conjunctive
equality predicate Concatenated

di t

Figure 4: Tuples Returned by the Concatenated Predicate

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

27

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

where pa is a predicate attribute of a sargable
conjunctive equality predicate and vi, i>0 is the value set
with the natural fields involved in the sargable
conjunctive equality predicate. It follows from this
definition that, S is the artificial attribute whose value
sets is the concatenation of all vi for each value set of m
atomic predicates in the sargable conjunctive equality
predicate. This makes S one of the attributes defined for
the query relation, t relative to which t(S) can be defines
at the tuples of S in relation, t shown in equation (5).

Figure 4 is a diagrammatic representation of
how the concatenated predicate is evaluated. Let 𝜃𝜃 be
the concatenated predicate on the query table, t, then
equation (6) models the evaluation of 𝜃𝜃. A tuple, is
returned from the query table by 𝜃𝜃 when the
concatenated predicate is evaluated and the result is
true.

Resulting from the experiments performed in
order to gain an understanding of the nature of
optimisation problem posed by sargable conjunctive
equality predicates, the Concatenated Predicate model
was formulated as consisting of a concatenated
predicate and a corresponding surrogate index that is
exploited by the concatenated predicate to enhance the
query time of an equivalent sargable conjunctive
equality predicate. This result is proved using formal

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

28

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

methods for their correctness. The correctness of this
result is discussed as a theoretical proof of the
concatenated predicate model.

a) Proof of Existence of the Concatenated Predicate

Lemma 1: The equality condition in a sargable
conjunctive equality predicate guarantees uniqueness of
its atomic predicates because a conjunct of two different
filters on the same attribute is unsatisfiable [22].

Theorem 1: For every sargable conjunctive equality
predicate, there exists a product of its atomic conditions
called the concatenated predicate

Proof: Theorem 1 follows from the work of [47] and [22].
Muralikrishna and DeWitt [47] and Heimel et al. [22]
defined a conjunctive predicate as, P1 AND P2, AND…

AND Pm and as being equivalent to a product of its
atomic predicate terms expressed as ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1 , where
each Pi in both the product term and the conjunctive
term is strictly a Boolean expression and each Pi in the
sargable conjunctive equality predicate is an equality
predicate.

b) Proof of Equivalence

Lemma 2: Two query predicates (conditions) are
equivalent if they return the same records from a
compatible database [11].

Theorem 2: The product of atomic predicates
(concatenation operation) is a bijective function on the
set of concatenated predicates from the set of sargable
conjunctive equality predicates thereby defining their
equivalence

Proof: Let a ∈ A, where A is the set of sargable
conjunctive equality predicates and b ∈ B, where B is
the set of the concatenated predicates and D is a
compatible database containing the surrogate field
derived from the concatenation of the natural fields of D
in the sargable conjunctive equality predicates. Let f
represent the operation that concatenates the atomic
conditions in a to get b. Then a ≡ b if and only if, f is a
bijective function. To be bijective, f must be onto as
well as one-to-one:
f is onto because each concatenated predicate, b in B is
in the image of f . That is,

∀ b ∈ B,∃ a ∈ A and f(a) = b …

f is one-to-one because for a concatenated predicate, b
∈ B there is at most one a ∈ A such that f(a)= b . That
is,

∀ a, a` ∈ A and f(a)= f(a`) implies a = a`

where a` is the inverse of a going by the concatenation
operation implied by f.
Given that (3.10) and (3.11) holds, we conclude that
f: A → B is a bijective function on the set of
concatenated equality predicates to the set of

conjunctive predicates because f is both one-to-one
and onto.
⇒ A ⇔ B and hence they return the same number of
records for a compatible database

c) Proof of Optimisation
The generic optimisation model of a relational

database query is described in terms of a relational
algebra expression. The relational algebra
corresponding to a query describes a set of operators
whose number can be determined and their cost
estimated. Based on either number of operators or
estimated cost, two queries can be compared to
ascertain that one optimizes the other. A relational
algebra expression e` optimises another relational
algebra, e if the following conditions are satisfied (1) e`
is equivalent to e given a compatible database (2) the
query time of e` is less than that of e. e` is optimal if a
relational algebra expression that optimises e` does not
exists.

Theorem 3: A predicate, C` is optimal relative to the
conjunctive equality predicate, C, if (1) C` is equivalent
to the conjunctive equality predicate, C (2) C` has fewer
occurrences of equality predicates than C, and (3) there
exists no other predicate, p that is equivalent to C` and
has fewer occurrences of equality predicate than C`.

Proof:
The proof consists of a lemma and a proof by

induction on n(σ), the number of equality atomic
conditions in the predicate, σ. The lemma establishes
the equivalence of C to C`, while the poof by induction
establishes the optimality of C` compared to C .

Lemma: Two query predicates (conditions) are said to be
equivalent if they each return the same records from a
compatible database [11].

Induction hypothesis: Consider the query execution tree
in Figure 3 and let n(σ)= number of atomic predicates.
Each atomic predicate in C corresponds to a predicate
operator (σc=σ1, σ2, .. ., σm). In all circumstances,
n(σ)=1 for C` since C` is a product of the terms of C.
Being a product, the number of terms in C` is m = 1
and so n(σ) = 1 for C`.

Initial Induction Step: The height of the tree
corresponding to C = number of atomic predicates in C
= n(σc) = m, where m is the number of atomic
predicates in C . Assuming n(σc) =m=5 as the initial
induction step, m is defined in subsequent induction
steps as m-i, where i is the subsequent induction step,
defined as 1,2, .., m. That is, in each subsequent
induction step, we decrease the number of atomic
predicates, m, by one at a time.

Subsequent Induction Steps:
When i=1, then m-i=5-1=4 implying n(σ) = 4
When i=2, then m-i=5-2=3 implying n(σ) = 3
When i=4, then m-i=5-4=1 implying n(σ) =1

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

29

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

When i=5, then m-i=5-5=0 implying n(σ) = 0
When m approaches 0, n(σ) approaches 0

This means that the number of operators, n(σ)
decreases in proportion to the number of atomic
predicates, m. Mathematically,

n(σ) = m, m = 1, 2, .. , ∞

The query does not work and is undefined for
when m = 0, n(σ) = 0. The query processes the least
number of selection operators and hence does the least
amount of work when m = 1, n(σ) = 1. Recall that n(σ)
= 1 for predicate C` . This means that C` is optimal
since any other reduction of the atomic predicates in C
will result in a predicate that has n(σ)<1 and by the
lemma, the equivalence of C since C` is proved`

The proof assumes that the cost of execution of
a predicate is directly proportional to the number of
atomic predicates that makes it up. This was proved by
previous experiments.

One of two equivalent predicates optimizes the
other if the query time associated with the optimising
predicate is lesser and both predicates are equivalent
given a compatible database.

Proof: The relational algebra of the concatenate
predicate and the sargable conjunctive equality
predicate are made up of the same operator, the
selection operation. The proof that the concatenate
predicate, 𝐶𝐶 = ∏ 𝑃𝑃𝐴𝐴𝑚𝑚

𝐴𝐴=1 has fewer occurrences of
operators than CP the conjunctive predicate and hence
optimizes the sargable conjunctive equality predicate is
as follows

Let the compatible database be R and the
relational algebra corresponding to the sargable
conjunctive equality predicate be e and the algebra of
the concatenated predicate be e`. Then e= σP1 and P2, and…

and Pm(R) and e`= σp(R) where the number of atomic
predicates in e, |e| = m, m>1. Given that e` is a
product, it follows that |e`| = 1. Given |e| = m, m>1
and |e`| = 1, we can assume the minimum value of
m=2 for e resulting in e= σP1 AND P2(R). The relational
algebra of e and e` consist of the selection operation, σ
whose implementation uses either the sequential search
(table scan) or the binary search (indexed scan). Since
both e and e` are made up of the same operation, it is
convenient to assume that table scan has been used to
implement them in the following algorithmic procedure.

The algorithmic steps corresponding to e = σP1 and P2(R)
are:
1. Apply the selection operator σP1 to get the

intermediate relation, I1
2. Apply the selection operator σP2 to get the

intermediate relation, I2, the final result Analysis:
Assume the arity of the intermediate results, I1

and I2 to be approximately of the uniform value, n

respectively. Let the total query time of e be fe(n). then
fe(n) = query time of I1 + query time of I2 = n+n =2n
The algorithmic steps corresponding to e`= σp(R) are:
1. Apply the selection operator ϭp to get the

intermediate relation, I the final result

Analysis
Assume the arity of the intermediate results, I1

and I2 to be approximately of the uniform value, n
respectively. Let the total query time of e` be fe`(n). then
fe`(n) = query time of I = n
Clearly, fe(n) > fe`(n), meaning that the query time of e`
is less than that of e implying that e` optimises e.
The proof of optimality follows.

d) Proof of Optimality

Theorem 4: Given two equivalent relational algebras
where one optimises the other, the one that optimises is
optimal if a relational algebra expression that optimises
it does not exist

Proof: The proof that the concatenated predicate, C that
optimizes the conjunctive equality predicate, CP is
optimal is proved by induction on m, the number of
predicates in both C and CP.

Induction hypothesis: Each atomic predicate in CP
corresponds to a predicate operator (σ) on the logical
plan tree. Assuming m to be the number of atomic
predicates in CP and n(σ) be the number of predicate
operators on the corresponding logical plan tree, then
for every additional atomic predicate, n(σ) increases by
1 such that m = n(σ).
Induction Step: Assuming CP has a single atomic
predicate, then m = 1 and n(σ) = 1. Proceeding with
the induction steps, we increase the number of atomic
predicates, m, by one at a time to get,
When m = 2, n(σ) = 2
When m = 2, n(σ) = 3
...When m approaches ∞, n(σ) approaches ∞

This means that the number of operators, n(σ)
grows in proportion to the number of atomic predicates,
m. Mathematically,
n(σ) = m, m = 1, 2, .. , ∞
But C is a product, implying that the number of terms in
C is m = 1 and so n(σ) = 1 for every C corresponding to
CP

For there to exist a predicate that optimises C,
the occurrence of operators in such a predicate, m,
must be zero, that is m < 1. If m = 0, then n(σ) will also
be zero. n(σ) = 0 defines a predicate that has no atomic
predicate which is non-existent and hence a predicate
that optimises C is non-existent. This means C having
one operator has the least number of operators and
hence it is optimal.

In this section, the proof of correctness of the
concatenated predicate model has demonstrated. Table

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

30

 (

)
C

Y
e
a
r

20
22

3.4 shows the equations used to model the various components of the model.

Table 4: Summary of Model Equations

Model
Component

Equation

Conjunctive
Predicate �𝜃𝜃𝐴𝐴

𝑚𝑚

𝐴𝐴=1

= 𝑃𝑃1 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃2 𝐴𝐴𝐴𝐴𝐴𝐴…𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑚𝑚

Conjunctive
Predicate as a

product of terms
�𝑃𝑃𝐴𝐴

𝑚𝑚

𝐴𝐴=1

Concatenate
Predicate 𝐶𝐶 = �𝑣𝑣𝐴𝐴

𝑚𝑚

𝐴𝐴=1
Surrogate Index

𝐴𝐴(𝑆𝑆) = �𝑣𝑣𝑓𝑓𝐴𝐴𝑜𝑜𝑎𝑎
𝑚𝑚

𝐴𝐴=1
Model Evaluation 𝜃𝜃𝐴𝐴(𝐴𝐴) = � 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡, 𝐴𝐴𝑖𝑖 𝐴𝐴(𝑆𝑆𝐴𝐴) = 𝐶𝐶

𝑖𝑖𝑎𝑎𝑓𝑓𝑓𝑓𝑡𝑡, 𝑜𝑜𝐴𝐴ℎ𝑡𝑡𝐴𝐴𝑒𝑒𝐴𝐴𝑓𝑓𝑡𝑡
�

V. Conclusion and Suggestion for
Further Work

The optimization of queries where complexity is
due to a large number of joins has received a lot of
attention in the database literature, but the optimization
of complex selection predicates involving multiple ANDs
(conjunctive predicates) and ORs (disjunctive
predicates) has not been widely addressed [24]. In lieu
of the dearth of research into selection predicates, the
contribution to knowledge of this research effort can be
said to be significant. Enhancing the query times of
sargable conjunctive equality predicates is significant in
the following ways:

1. The optimisation of the sargable conjunctive
equality predicates within the context of big data
minimises query time which tend to increase with
big data

2. Sargable conjunctive equality predicates are widely
used in applications involving data extraction,
mining, matching and resolving data entities [56].
Enhancing these predicates directly improves the
running times of applications designed to automate
these operations.

3. Considering the very many other areas in which an
improved query time can be of use, the research is
of significance to software architects, software
developers, the software industry and researchers.

The concatenated predicate model works very
much like an index hence we can refer to it as a
surrogate index. In our subsequent work, the
concatenated predicate model will be experimentally
validated and work on how to integrate the surrogate
index into existing DBMS architecture studied.

References Références Referencias

1. Storey VC, Song I. Big data technologies and
management: What conceptual modeling can do?
Data & Knowledge Engineering. 2017; 108:50–67

2. Obilikwu, P., Ogbuju, E. (2020) A data model for
enhanced data comparability across multiple
organizations. J Big Data 7, 95 (2020). https://
doi.org/10.1186/s40537-020-00370-1

3. Khan MA, Uddin MF, Guptam N. Seven V’s of Big
Data: Understanding Big Data to extract value.
Proceedings of 2014 Zone 1 Conference of the
American Society for Engineering Education (ASEE
Zone 1). 2014.

4. Patgiri R, Ahmed A. Big Data: The V’s of the game
changer paradigm. International Conference on
High-Performance Computing and
Communications. 2016.

5. Matalqa H. and Mustafa S.H. (2016): “The Effect of
Horizontal Database Table Partitioning on Query
Performance”, The International Arab Journal of
Information Technology, Vol. 13, No. 1A, 2016

6. Das, T.K. & Mohapatro, Arati. (2014). A Study on Big
Data Integration with Data Warehouse. International
Journal of Computer Trends and Technology. 9.
188-192. 10.14445/22312803/IJCTT-V9P137.

7. Tailor, U., and Patel, P. (2016). A Survey on
Comparative Analysis of Horizontal Scaling and
Vertical Scaling of Cloud Computing Resources.
IJSART - Volume 2 Issue 6, ISSN [ONLINE]: 2395-
1052.

8. Stonebraker, M., & Çetintemel, U. (2018). One size
fits all: an idea whose time has come and gone. In
Proceedings of the International Conference on
Data Engineering (ICDE), 2-11. 10.1145/
3226595.3226636.

9. Selinger, P. G, Astrahan, M.M, Chamberlin, D.D,
Lorie, R.A, Price, T.G (1979): “Access Path Selection
in a Relational Database Management System”,

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

31

 (

)
C

Y
e
a
r

20
22

© 2022 Global Journals

SIGMOD Conference 1979, Boston, Massachusetts,
May 30 - June 01, pp. 23-34.

10. Obilikwu P.O., Kwaghtyo K.D and Ogbuju E. (2021),
Enhancing Query Time Using a Volume-Adaptive
Big Data Model OF Relational Databases, The
Journal of Basic Physical Research. Department of
Geological Sciences, Nnamdi Azikiwe University,
Awka, Anambra State, Nigeria

11. Chandra, A. K. and Merlin, P. M.(1977): “Optimal
implementation of conjunctive queries in Relational
Databases”, Proceedings of the 9th ACM
Symposium of Theory of Computing, Boulder,
Colorado, USA, May 4th, pp. 77-90.

12. Levy, A.Y., Mumick, I. S. and Sagiv Y. (1994): “Query
Optimization by Predicate Move-Around”,
Proceedings of the 20th VLDB Conference,
Santiago, Chile, September 12-15, pp. 96-107.

13. Abiteboul, S., Hull R. and Vianu V.(1995):
“Foundations of Databases”, Addison_Wesley,
Reading, MA. pp. 35 – 65.

14. Gottlob, G., Lee, S.T. and Valiant, G. (2012): “Size
and Tree width Bounds for Conjunctive Queries”,
Journal of the ACM, Volume 59 Issue 3, Article No.
16

15. Swami, A. and Scheifer, K.B. (1993): “On Estimation
of Join Result Sizes”, Technical Report, IBM
Research division, IBM Research Report RJ9569

16. Grohe, M., Schwentick, T. and Segoufin, L. (2001):
“When is the evaluation of Conjunctive Queries
Tractable”, Proceeding of the 33rd Annual ACM
symposium on Theory of Computing, Hersonissos,
Greece, July 6-8, pp. 657 – 666

17. Mohan, C., Haderle, D. J., Wang, Y., and Cheng, J.
M. (1990): “Single Table Access using Multiple
Indexes: Optimization, execution, and concurrency
control techniques”, International Conference on
Extending Database Technology (EDBT), Venice
Italy, March 26-30, Volume 416 of LNCS, pp. 29–43.

18. Elmasri, R. and Navathe, S. B. (2011):
“Fundamentals of Database Systems”, 6th Edition,
Pearson Education Inc, pp. 679 - 723

19. Garg, V.K. and Waldecker, B. (1994):“Detection of
weak unstable predicates in distributed programs”,
IEEE Transactions on Parallel and Distributed
Systems, Volume: 5, Issue: 3, Pp: 299 – 307

20. Mugnier M., Rousset M. and Ulliana F. (2016):
“Ontology-Mediated Queries for NOSQL
Databases”, Association for the Advancement of
Artificial Intelligence

22. Heimel, M., Markl, V. and Murthy, K. (2009): “A
Bayesian Approach to Estimating the selectivity of

Conjunctive Predicates”, Proceedings of
Datenbanken und Informationssysteme (DBIS),
Münster, Germany, March 2-6, pp 47-56

23. Yu, X., Koudas, N., and Zuzarte, C. (2006): “HASE:
A Hybrid Approach to Selectivity Estimation for
Conjunctive Predicates”, Advances in Database
Technology - EDBT 2006, Springer International
Publishing, AG, Volume 3896 of the series Lecture
Notes in Computer Science pp. 460-477.

24. Chaudhuri, S., Ganesan, P. and Sarawagi, S.
(2003): “Factorizing Complex Predicates in Queries
to Exploit Indexes”, ACM SIGMOD 2003, June 9-12,
San Diego, CA. pp. 361-372

25. Kemper, A., Moerkotte, G., Peithner, K., and
Steinbrunn, M. (1994): “Optimizing disjunctive
queries with expensive predicates”, ACM Intl.
Conference on Management of Data (SIGMOD),
Minneapolis, Minnesota, May 24-27, pp. 336–347.

26. Lohman, G. (2014): “Is Query Optimization a
‘Solved’ Problem?”, ACM Special Interest Group on
Management of Data blog, http://wp.sigmod.org/

27. Chaudhuri, S. (2012): ”What next?: a half-dozen
data management research goals for big data and
the cloud”, Proceeding PODS '12 Proceedings of
the 31st ACM symposium on Principles of Database
Systems, Scottsdale, Arizona, USA — May 21 - 23,
pp. 1-4

28. Codd, E. F. (1970): “A Relational Model of Data for
Large Shared Data Banks”. Communications ACM
13(6): 377-387

29. Chamberlin, D.D., Astrahan, M.M., Blasgen, M. W.,
Gray, J. N., King, W. F., Lindsay B. G., Lorie, R.,
Mehl, J. W., Price, T, G., Putzolu, F., Selinger, P. G.,
Schkolnick, M., Slutz, D.R., Traiger, I. L., Wade, B.
W., Yostet, R. A. (1981): “A History and Evaluation of
System R”, Communications of ACM 24(10): Pp.
632-646

30. Clough, L., Haseman, W.D. and So, Y.H.(1976):
“Designing Optimal Data Structures”, AFIPS
national computer conference and exposition, New
York, New York — June 07 - 10, pp. 829-837.

31. Codd, E. F. (1975): “Implementation of Relational
Database Systems”, Panel Discussion, NCC
(AFIPS) 75, Anaheim.

32. Chaudhuri, S. (1998): “An Overview of Query
Optimization in Relational Systems”, Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems

33. Ioannidis, Y. (2003): “The History of Histograms”,
Proceedings of the 29th VLDB Conference, Berlin,
Germany, September 9-12, pp. 19-30.

34. Cao, B. and Badia, A. (2005): “A Nested Relational
Approach to Processing SQL Subqueries”, SIGMOD
2005 June 14 - 16, 2005, Baltimore, Maryland, USA,
pp. 191 – 202

21. Munir, K. and Anjum, M.S. (2017): “The use of
ontologies for effective knowledge modelling and
information retrieval”, Applied Computing and
Informatics (2017),http://dx.doi.org/10.1016/j.aci.
2017.07.003

https://link.springer.com/book/10.1007/11687238�
https://link.springer.com/book/10.1007/11687238�
https://link.springer.com/bookseries/558�
https://link.springer.com/bookseries/558�

Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

32

(
)

C
Y
e
a
r

20
22

© 2022 Global Journals

35. Vellev, S. (2009): “Review of Algorithms for the Join
Ordering Problem in Database Query Optimisation”,
Information Technologies and Control, pp. 32 – 40

36. Bamnote, G. R. and Agrawal, S.S. (2013):
“Introduction to Query Processing and Optimization
“, International Journal of Advanced Research in
Computer Science and Software Engineering,
Volume 3, Issue 7, Pp. 53 – 56

37. Ullman, J. (1989): “Principles of Database and
Knowledge Base System”, Volume 1, Computer
Science Press Inc., New York, p. 631.

38. Chimenti, D., Gamboa, R. and Krishnamurthy R.
(1989): “Towards an open architecture for LDL”,
Proceedings of the fifth International VLDB
Conference, Amsterdam, the Netherlands, August
22-25, pp 195-203

39. Chaudhuri, S. and Shim, K. (1993): “Query
optimization in the presence of foreign functions”,
Proceeding of the 19th International VLDB
Conference, Dublin, Ireland, August 24 – 27, pp.
529 – 542.

40. Hellerstein, J. M. and Stonebraker, M. (1993):
“Predicate Migration: Optimising queries with
Expensive Predicates”, SIGMOD Conference,
Washington DC, May 25-28, pp. 267–276

41. Chaudhuri, S. and Gravano, L (1996): “Optimizing
queries over multimedia repositories”, ACM
International Conference on Management of Data
(SIGMOD), Montreal, Quebec, Canada, June 4-6,
pp 91–102.

42. Chaudhuri, S. and Shim, K. (1999): “Optimization of
queries with user-defined predicates”, ACM
Transactions on Database Systems (TODS), 24(2),
June 1-3, Seattle, Washington, USA, pp. 177–228.

43. Kemper, A., Moerkotte, G., and Steinbrunn,
M.(1992): “Optimizing Boolean expressions in
object Bases”, Proceedings of the VLDB
Conference, Vancouver, Canada, August 23-27, pp
79-90

44. Balasubramanian, P. and Arisaka R. (2007): “A Set
Theory Based Factoring Technique and Its Use for
Low Power Logic Design”, World Academy of
Science, Engineering and Technology, 3, pp. 446 –
456

45. Brayton, R.K., Rudell R. and Sangiovanni-Vincentelli,
A. and Wang, A. (1987): “MIS: A multiple-level logic
optimization system”, IEEE Transactions. on CAD
of Integrated Circuits and Systems, Vol 6, Issue 6,
pp. 1062-1081.

46. Reinwald, L.T. and Soland, R.M. (1966):
“Conversion of Limited-Entry Decision Tables to
Optimal Computer Programs: Minimum Average
Processing Time”, JACM, 13(3), Pp 339-358

47. Muralikrishna, M. and DeWitt, D. J. (1988):
“Optimization of multiple-relation multiple-disjunct
queries, In Proceedings of the Seventh

ACMSIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Austin, Texas,
March 21 – 23, pp 263-275.

48. Hellerstein, J. M. (1994): “Practical Predicate
Placement”, Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data,
Minneapolis, Minnesota, May 24-27, pp. 325-335

49. Deen, S. M. (1982): “An implementation of impure
surrogates”, International Conference on Very Large
Databases, Mexico City, September 8-10, pp. 245-
256.

50. Deen, S. M., Amin, R. R. and Taylor, M. C. (1994):
“A Strategy for Decomposing Complex Queries in a
Heterogeneous DDB”, Proceedings of the Tenth
International Conference on Very Large Databases,
Singapore, August 27-31, pp. 397-400.

51. Oracle (2017): “Oracle Sharding Linear Scalability,
Fault Isolation and Geo-distribution for Web-scale
OLTP Applications”, ORACLE White Paper, April
2017.

52. Sander-Bruggink, H.J., Konig, B. and Kupper S.
(2013): “Concatenation and other Closure
Properties of Recognizable Languages in Adhesive
Categories”, Proceedings of the 12th International
Workshop on Graph Transformation and Visual
Modeling Techniques, Mar 23 – Mar 24 2012,
Rome, Italy

53. Lynch, C. and Stonebraker M. (1988): “Extended
User-Defined Indexing with Application to Textual
Databases”, Proc. 14th International Conference on
Very Large Datsbases, Los Angeles, August 29 –
September 1, pp. 306 – 317

54. Harkins, S. (2011): “10 Tips for Choosing between a
Surrogate and Natural Primary Key”. Retrieved from
www.techrepublic.com, pp 1-2

55. Valduriez, P. (1987): “Join Indices“, ACM
Transactions on Database Systems, Vol. 12, No. 2,
June 1987, pp. 218-246.

56. Getoor, L. and Machanavajjhala, A. (2012): “Entity
Resolution: Theory, Practice and Open Challenges”,
Proceedings of the VLDB Endownment, Istanbul,
Turkey, August 27-31, Vol 5, No. 12, pp 2018 –
2019.

	Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data
	Author
	Keywords
	I. Background to Study
	II. Related Work
	a) Conjunctive Queries
	b) Query Optimisation
	c) Predicate Optimisation
	d) Nature of Optimisation Problem Posed by Sargable conjunctive equality predicates

	III. Methodology
	IV. Results and Discussion
	a) Proof of Existence of the Concatenated Predicate
	b) Proof of Equivalence
	c) Proof of Optimisation
	d) Proof of Optimality

	V. Conclusion and Suggestion forFurtherWork
	References Références Referencias

