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Multi -Target Detection Capability of 
Linear Fusion Approach under Different  
Swerling Models of Target Fluctuation 

Mohamed Bakry El_Mashade 

Abstract- In evolving radar systems, detection is regarded as a 
fundamental stage in their receiving end. Consequently, 
detection performance enhancement of a CFAR variant 
represents the basic requirement of these systems, since the 
CFAR strategy plays a key role in automatic detection process. 
Most existing CFAR variants need to estimate the background 
level before constructing the detection threshold. In a multi-
target state, the existence of spurious targets could cause 
inaccurate estimation of background level. The occurrence of 
this effect will result in severely degrading the performance of 
the CFAR algorithm. Lots of research in the CFAR design have 
been achieved. However, the gap in the previous works is that 
there is no CFAR technique that can operate in all or most 
environmental varieties. To overcome this challenge, the linear 
fusion (LF) architecture, which can operate with the most 
environmental and target situations, has been presented. This 
processor is a combination of the properties of three different 
CFAR algorithms (CA, OS, and TM), and forms two different 
processes:  statistical ordering and averaging. This paper is 
devoted to analyze LF structure when the primary and the 
secondary targets are considered to be fluctuating in terms of 
four Swerling models. Closed-form expression is derived for 
the processor performance. Superiority of the LF algorithm 
over the conventional ones in multi-target scenarios is verified 
by numerical simulation. Additionally, the LF ideal performance 
outperforms that of Neyman-Pearson (N-P) detector, which is 
the basic reference in the CFAR world. Moreover, the LF 
detector mitigates the impact of outlying targets and has the 
capability of holding the rate of false alarm stationary en face 
of outliers.   
Keywords: adaptive detection, non-coherent integration, 
fluctuating targets, swerling models, target multiplicity 
environments. 

I. Introduction 

adar systems are widely used for safety 
purposes. For case in point, they are utilized at 
airports to safely regulate the air traffic and in a 

military context, they are employed to defend against 
hostile missiles. The mission of the radar is to detect 
targets of interest and to discard those that don't 
concern a particular application. 

Depending on the type of radar application, the 
system might be concerned with estimating the target 
radar  cross  section (RCS),  measuring  and tracking its 
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position or velocity, imaging it, or providing fire control 
data to direct weapons to the target. In all of these 
practical applications, one of the most fundamental 
tasks of a radar is the detection; the process of 
examining the radar data and determining if it 
represents interference only, or interference plus echoes 
from a target of interest (ToI) [1-5].  

The detection capability is one of the most 
significant factors in the behavior of such type of vital 
systems. Normally, the purpose of detection is to 
distinguish genuine target reflections from noise and 
clutter. More specifically, target detection can be 
regarded as a style of classification, which distinguishes 
whether the tested signal contains an echo from a target 
or just corresponds to the noise. This process relies on 
the thresholding criteria. This criteria has two 
philosophies: fixed and adaptive. Although the fixed 
threshold is simple in design, it has a misdetection and 
this procedure deprives the system from its  ability to 
control the false alarm rate. This strategy of detection is 
useful for non-fluctuating targets of identical reflection 
models but fails when a mixture of different targets 
exists in radar's field of view (FoV). Therefore, variable 
threshold will be needed to cover such scenarios. For 
this reason, adaptive detection thresholds have been 
the subject of research for a long time. In other words, 
there is a demand for a detection process that is based 
on dynamic, instead of static, threshold to cope with 
those situations of inhomogeneous or changing clutter 
environment all over the search space. This is the 
objective of the second philosophy. Constant false 
alarm rate (CFAR) technology is the most popular target 
detection framework to address the issues associated 
with fixed threshold. This technology is crucial as a 
desired property for automatic target detection in an 
unknown and non-stationary background. In other 
words, CFAR is a property that is assigned to the 
processor in which the threshold, or gain control 
devices, guarantees an approximately constant rate of 
false target detection when the noise/clutter level 
temporally varies. The feature of CFAR activates the 
threshold in such a way that it becomes adaptive to the 
local clutter environment. Thus, the CFAR mechanism 
maintains the amount of false alarm under supervision in 
a diverse background of interference. It should be taken 
into account that this approach doesn't come at no cost.  
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In radar applications which necessitate precision strikes 
for reduced risk and cost efficient operation with 
minimum possible guarantee damage, besides radar 
size, computation cost is major issue. The increased 
performance of the detection algorithm demands an 
increase in computation speed and device memory for 
every scan. Therefore, a trade-off between performance 
and cost has to be made [6-10]. 

A robust detector should not only find targets 
but also eliminate false alarms. Therefore, the general 
objective of all radar detection schemes is to ensure that 
false alarms don't fluctuate randomly. During the 
detection process, each cell is evaluated for the 
presence/absence of a target using a threshold. It is 
beneficial to be able to detect both high- and low-fidelity 
targets while maintaining constant false alarm rate. This 
is actually the function of the adaptive thresholding 
algorithm which most modern radar systems apply it in 
their detection process. Although there exists a large 
number of versions of CFAR circuits, cell-averaging 
(CA), order-statistics (OS), and trimmed-mean (TM) 
scenarios remain the most popular and well-understood 
techniques. In many cases, a single CFAR processor 
can hardly meet the complex radar operation 
environment. Thus, the concept of composite CFAR 
designing was introduced, to account for both 
homogeneous and heterogeneous situations. Based on 
this concept, fusion of particular decisions of the single 
CFAR detectors by appropriate fusion rules provides a 
better final detection. In this regard, the linear fusion (LF) 
approach is based on the parallel operation of the CA, 
OS, and TM types of CFAR techniques. However, the 
computational complexity may prevent the use of these 
more robust algorithms in favor of simple thresholding 
techniques, especially in automotive applications. 
Nevertheless, with the increasing prospect of reduction 
in hardware cost and availability of high-speed 
processors, the drift to high-performance algorithms is 
inevitable [11-15].  

The behavior of the target detection processor 
can be significantly enhanced with the availability of the 
statistical characteristics of a target’s radar cross-
section (RCS). To achieve such interesting objective, 
Swerling proposed five models (SWI-SWV), to describe 
the RCS statistical properties, for practical objects, 
based on χ2-distribution with varying degrees of 
freedom. In SWI model, the target reflections in a single 
scan have a constant RCS magnitude (perfectly 
correlated), but it varies from scan-to-scan obeying χ2-
probability density function (PDF) with two-degrees of 
freedom. For SWII model, the PDF of RCS is the same 
as in SWI with the exception that it is independent from 
pulse-to-pulse instead of scan-to-scan. Because some 
objects have a dominant scatterer, SWIII mod uses a 
fourth-degree χ2-statistics to model the returned pulses. 
This model has the same characteristics as SWI style 

which has constant magnitude from pulse-to-pulse, but 
different from scan-to-scan. The RCS, in SWIII template, 
has the same description as SWI form with the 
difference that its PDF follows χ2-statistics with four-
degrees of freedom. The RCS, in SWIV pattern, varies 
from pulse-to-pulse, instead of scan-to-scan, with the 
same PDF of SWIII model. Finally, SWV mode is 
characterized by constant and perfectly correlated, from 
pulse-to-pulse and from scan-to-scan, echo pulses 
which corresponds to infinite degrees of freedom [10, 
13].  

Our goal in this paper is to analyze LF-CFAR 
structure when this strategy uses non-coherent 
integration of M pulses to carry out its decision. The 
primary and the secondary outlying targets are assumed 
to be fluctuating in terms of four Swerling models s 
(SWI-SWIV). Closed-form expression is derived for its 
performance in the absence as well as in the presence 
of interferers. A comparison of the tested scheme with 
its basic variants along with Neyman-Pearson (N-P) 
detector is also portrayed. The paper proceeds as 
follows. Section II formulates the problem of interest. 
The detection performance of the tested methodology 
along with its fundamental variants is analyzed in section 
III. Section IV portrays our numerical results to evaluate 
the accuracy of the theoretical derivation and 
substantiate the effectiveness of the proposed 
schemes. Finally, our useful conclusions are drawn in 
section V. 

II. Statistical Background and Model 
Description 

The basic demands of the limited warfare of the 
present era necessitate precision strikes of reduced risk 
and cost efficient operation with minimum possible 
guarantee damage. In order to reply such exact 
challenges, the capability of automatic detection is 
increasingly becoming more important to the defense 
community. Automatic detection can be achieved by 
setting a fixed threshold based on the interference 
power level. This construction operates with predictable 
performance if the interference belongs only to thermal 
noise. However, the ideality of operating environment of 
radar systems is scarcely verified. Therefore, technology 
of adaptation is of primary concern in the design of their 
future scenarios [15-16].  

The ability of a weak echo detection by the 
radar receiver is limited by the noise energy that 
occupies the same spectrum as the signal. From this 
point of view, the process of detection is based on 
establishing a threshold level at the output of the 
receiver. This threshold must be adjusted in such a way 
that weak signals are detected, but not so low that 
allows noise peaks to cross it and give a false target. 
Thus, the proper threshold selection is dependent upon 
how important it is if a mistake is occurred because of 
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failing to recognize a signal (miss probability) or falsely 
indicating the presence of a signal (false alarm 
probability). On the other hand, to cope with a changing 
clutter environment, there is a persistent need of 
dynamic and adaptive threshold. This threshold must be 
varied, up and down, in accordance with the 
background level for the false alarm rate to be 
maintained at its pre-set value. A detector with this 
characteristic is designated as constant CFAR. Thus, 
the CFAR strategy is the main goal of the radar system 
designer.  

For the CFAR circuit to be efficient, it must 
realize some characteristics. The more motivating 
features include rigorous fitting of the detection 
threshold to the clutter background, masking avoidance 
of closely spaced targets, low CFAR loss, and 
constructing a threshold that gives point as well as 
extended targets the chance to pass. Whatever the 
structure of the CFAR model is, the framework of sliding 
window is regarded as its basic arrangement. As Fig.(1) 
depicts, this window moves throughout the coverage 
area, and contains a set of reference cells (RC’s) around 
the central cell, which is termed as cell under test (CUT). 
To alleviate self-interference in a real target echo, some 
guard cells (GCs) embrace CUT. These cells are used 
as buffer between CUT and the training cells. They are 
excluded from the background computation to insure 
that the CUT doesn’t affect the threshold calculation. 
The declaration of the presence of a target is carried out 
if the power of CUT is greater than the power of both 
GCs and the estimated level. Each resolution cell has 
the chance to occupy the position of CUT. In this regard, 
the RC’s that have been already processed constitute 
the leading subset, whilst those that have not yet 
occupied the center organize the lagging subset. The 
size selection of the sliding window is dependent upon 
rugged knowledge of the typical clutter background. 
Generally, the window length N should be as large as 
possible for the estimation process to be of good 
modality.  Meanwhile, N is preferred to be compatible 
with the typical range extension of homogeneous clutter 
zones for the demand of identically distributed random 
variables to be statistically satisfied. Normally, the 
typical value of N lies in the 16-32 range.  

The detection threshold is established as the 
product of the estimated noise power Z by a scaling 
factor T, which is imposed to verify the desired rate of 
false alarm, as Fig.(1) portrays. By comparing the 
content of CUT with the resulting threshold, the 
procedure will recommend that the signal is belonging 
to a target, if the magnitude of the CUT surpasses the 
calculated threshold. Otherwise, the signal is coming 
from interference and no target is present. 

Most modern radar systems are of coherent 
type. This means that they receive the returned signal in 
a polar (amplitude and phase) form. In the radar 

receiver, the synchronous detector generates an in-
phase (𝐼𝐼) and a quadrature (𝑄𝑄) components from the 
received signal. Whilst the in-phase component denotes 
the real part, the quadrature component represents the 
imaginary part of the received signal. Under the null 
hypothesis (H0), the received noise for both 𝐼𝐼 and 𝑄𝑄 
channels is modeled as an independent and identically 
distributed (IID) Gaussian random process with zero 
mean and of variance ψ/2. In addition, 𝐼𝐼 and 𝑄𝑄 channels 
are statistically independent. Thus, the received noise is 
a complex Gaussian signal (ℕ=𝐼𝐼+𝑖𝑖𝑄𝑄) with μ=0 and 
𝜎𝜎𝑛𝑛2=ψ.  

After pulse compression, the signal passes 
through a rectifier, which converts the complex signal 
into an amplitude and phase. In this vein, there are two 
familiar types of rectifiers: linear and square-law 
detectors. The linear detector measures only the 
magnitude (I2+Q2)½ of the complex received signal, 
which follows the Rayleigh distribution. The square-law 
detector, on the other hand, measures only the power 
(I2+Q2) of the linear detector, the distribution of which is 
exponential. For both types, the phase is uniformly 
distributed in the interval [−𝜋𝜋, 𝜋𝜋] [17].  

a) Neymann - Pearson Detector 
The Neyman-Pearson (N-P) processor operates 

with a detection threshold which is imposed in such a 
way that for a desired rate of false alarm, the level of 
detection will be maximized. This threshold is fixed and 
is derived from a known interference PDF. Practically, 
the using of N-P detector necessitates: 1) the 
background interference is IID over all resolution cells, to 
which the fixed threshold is to be applied, 2) the 
interference is of statistical distribution the parameters of 
which are known, 3) the interference environment is 
homogenous. 

Generally, the detection process is achieved at 
the output of the rectifier and yields one of three 
possible outcomes: correct decision, missed detection, 
or false alarm. A correct decision is one in which the 
detector correctly declares the presence/absence of a 
target. A missed detection is one in which the detector 
declares the absence of a target when in truth the 
measurement contains a target return. A false alarm 
occurs when the detector declares the presence of a 
target and in reality a target’s return is not present in the 
measured data. Whilst the first outcome is specified by 
Pd, the second one represents its complement (1 - Pd). 
Therefore, Pd plays an important role in determining the 
first two outcomes. The last outcome is characterized by 
Pfa. Thus, once Pd and Pfa are calculated, the processor 
performance is completely evaluated. 
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Here, we are concerned with square-law type of signal rectifiers. Thus, as we have noted above, the square-
law detected output for any range cell (ν0) has an exponential distribution, the general formulation of which is: 

( ) ( )ν
η
ν

η
ν

ν
Up 








−= exp1

0

         (1) 

In the above expression, U(.) stands for the unit-step function. The value of η depends on the situation of 
operation and can take one of the following values: 

( )
( )
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γψ
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η
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In the preceding formula, "γ" denotes the signal-
to-noise ratio (SNR) of the ToI return, whereas "ϑ" 
symbolizes the interference-to-noise ratio (INR) of the 
interfering target return, and "ψ" represents the 
background noise power.  

Since the target returns and interference are of 
the stochastic nature, the performance of a signal's 
detector is characterized in terms of probabilities. For N-
P procedure, these probabilities take the form [9]: 
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It may be rarely that a decision is made on the 
basis of a single transmitted pulse. More often, a lot of 
pulses are transmitted, and the resulting received signal 
is integrated or processed in some way to enhance, 
relative to the mono-pulse case, the SNR. In this  regard, 

to detect the target signal with some reasonable 
probability and to reject noise, the signal must be more 
strengthened than the noise. For M-pulses, the range 
cell (ν0) has a PDF given by [.]: 
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(4)

The cumulative distribution function (CDF) corresponding to the PDF of Eq.(4) has a form given by:  
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M
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(5)

In radar systems, detection performance is 
always related to target models and background 
environments. Thus, the availability of the statistical 
characteristics of a target’s radar cross-section (RCS) 
can significantly ameliorate the performance of the 
detection algorithm. For this purpose, Swerling 

introduced five models (SWI-SWV), to describsse the 
RCS statistical properties of the objects based on χ2-
distributionss of varying degrees of freedom. For κth 
degree of freedom χ2 fluctuating target, the PDF of the 
target return is given by [9]: 
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1F1(.) stands for the confluent hyper-geometric function and γ denotes the average M-pulse SNR. The calculation of 
the CDF associated with this PDF yields:   
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The substitution of Eq.(7) into Eq.(3) and using the values indicated in Eq.(8), the N-P performance can be 
easily obtained for fluctuating targets of different Swerling's models.  

b) Constant False Alarm Rate (CFAR) Detector 
CFAR detectors are designed to track changes 

in the interference and to adjust the detection threshold 
to maintain a constant probability of false alarm. Since 
the performance of a detection scheme is measured by 

evaluating the probability of detection and the 
probability of false alarm, our strategy in analyzing a 
CFAR variant is to calculate its detection probability 
which is given by: 
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FZ(.) denotes the CDF of the noise power level estimate and T is a thresholding constant required to guarantee the 
designed rate of false alarm. In terms of the Laplace transformation, Eq.(10) takes the form:          

   

        (11) 

With the aid of convolution theorem, Eq.(11) can be put in another form as: 

( ) ( ) ( )ΩΩ=Ω ΘΦ Zg T
T M *1

0ν
(12)

In the above formula, Mx(.) represents the moment generating function (MGF) of the random variable (RV) x,  
ΘZ(.) denotes the Laplace transformation of the CDF of the RV Z, and the symbol "*" stands for the convolution 
process. By using Eq.(12), Eq.(10) can be written as: 
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C
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The contour of integration C- consists of a 
vertical path in the complex ω-plane crossing the 
negative real axis at the rightmost negative real axis 
singularity of Mν0(.) and closed in an infinite semicircle in 
the left half plane. 

Eq.(13) demonstrates that the MGF of ν0, the 
content of the CUT, plays an important role in 

determining the processor detection performance. Let's 
go to calculate this interesting parameter for the 
Swerling's models of fluctuating targets.  

For mono-pulse application and when a non-
fluctuating target return-plus-noise represents the 
content of the CUT, the output of this cell has a PDF 
given by [11]: 
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δ denotes the signal power, ψ is the noise power, δ/ψ 
represents the SNR at the square-law detector input and 
I0(.) stands for the modified Bessel function of type 1 
and of order 0.  

Since the single pulse case is infrequently used, the    
M-pulses form of Eq.(14) is preferable. After integrating 
M pulses, the new form of Eq.(14) becomes [9]: 
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The MGF associated with the PDF of Eq.(15) can be easily evaluated and the result yields: 
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The unconditional MGF can be obtained by averaging the above formula over the target fluctuation 
distribution of δ. For χ2 family of target fluctuation models, the RV δ is characterized by a PDF given by [18] 
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The unconditional MGF is then extracted by calculating the average value of Eq.(16) given the PDF of 
Eq.(17). Thus, we have 
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Eq.(18) is the fundamental formula from the Swerling's models can be derived as special cases. 

Swerling I Model (SWI) 
As Eq.(8) indicates, this model is characterized by κ=1. Replacing κ by 1 in Eq.(18) yields:   
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In the above expression, γ denotes the average per pulse SNR. The substitution of this MGF into Eq.(13) results: 
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Swerling II Model (SWII) 

This model of target fluctuation has an Mth degree of freedom. Setting κ=M in Eq.(18) leads to: 
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γ denotes the average, over M pulses, SNR. In this case, the processor detection performance is given by: 
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Swerling III Model (SWIII) 
This model of target fluctuation is characterized by κ=2 in the MGF of the CUT. In this situation, the MGF of 

the concerned cell becomes: 

( ) ( )γψψδψα
α

α
ψ

ψ
ν +=








+∆








+Ω








+Ω

=Ω
−

1
2

1&
1

1
1

1
22

0

M

M  (23)

 
 
 
 
 
 

© 2021 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
V
ol
um

e 
X
X
I 
Is
su

e 
III

 V
er
sio

n 
I 

  
  
 

  

24

  
 

(
)

H
Y
e
a
r

20
21

Multi -Target Detection Capability of Linear Fusion Approach under Different Swerling Models of Target 
Fluctuation



 

 

The probability of detection of SWIII target fluctuation model will be: 
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Swerling IV Model (SWIV)

 This case of target fluctuation has (2M)th degrees of freedom. Thus, the substitution of κ=2M in Eq.(18) 
yields:  
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 Eq.(25), as a MGF, in the definition of Pd gives the processor detection performance which has a 

mathematical form given by: 
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In all cases, the false alarm probability takes a unified form; the mathematical version of which is:  
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Since enhancing detection performance of a 

CFAR variant is a basic requirement in evolving radar 
systems, we choose the recent version of CFAR 
detectors to fulfill this objective. It is intuitive that as Pd 
increases, the missed detection decreases and 
consequently, the processor performance will be 
enhanced. The upcoming section is devoted to evaluate 
the performance of the linear fusion (LF) strategy to 
have a knowledge about its reaction against fluctuating 
targets of Swerling models.  

By careful examining the previous derived 
formulas, it is evident that they rely on the Laplace 
transformation of the CDF of the noise power level 
estimate Z and its mathematical differentiation. 
Therefore, we are focused on formulating this 
transformation when the detection scheme operates in 
an environment that has several outlying targets along 
with the main one (ToI). 

 

III. Processor performance analysis 

Specifically, the efficiency of a CFAR scheme is 
measured in the perfect case of operating conditions or 
in the presence of some of fallacious targets beside the 
ToI. Since the ideal situation is a special case of non-
ideal operation, it is preferable to analyze the processor 
performance in heterogeneous background. This is 
actually the case that we are going to follow in the 
upcoming subsections.  

a) Single Adaptive Processors  

  
This procedure of CFAR technology performs 

robustly in both inhomogeneous clutter and target 
multiplicity situations. It extracts the Kth largest sample 
from the candidates of the reference window to 
represent the estimate of the unknown noise power. To 
carry out such extraction, it ranks the reference cells in 
an ascending order, in  such a way that: 

1.,..........,2,1&)1()( −=+≤ Nyy    (28) 
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In this ranked samples, y(1) denotes the lowest noise level whilsst y(N) represents the highest one. After the 
rank order, we plan to pick the sample of Kth level to constitute the unknown noise level in the reference window. 
Thus, the OS test-statistic takes the form: 

i. Ordered-Statistics (OS)



 

 

Aiming at evaluating the performance of the OS 
algorithm, this necessitates the PDF calculation of the 
Kth ordered sample in the case where the samples are 
independent, but not identically distributed. To 
accomplish such objective, let us consider that the 
reference window has "R" cells that contain outlying 
target returns each with power level ψ(1+ϑ)  and the 

remaining, "N – R" ones having thermal noise only with 
power level ψ. In both cases, the observations are 
governed by the exponential PDF and are statistically 
independent quantities. Taking these assumptions into 
account, the cumulative distribution function (CDF) of 
the Kth ordered cell is given by [19]: 
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In the above expression, FC(.)

 

represents the CDF of the cell that contains clutter background whilst FI(.)

 

denotes the same thing for the cell that has interfering target return. The random variable (RV's) representing the 
returns from clutter background has MGF of the same form as that given in Eq.(18) after nullifying α. By using the 
resulting form of that equation, the Laplace transformation of Fc(.)

 

becomes: 
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The Laplace inverse of the above formula yields:
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The substitution of Eqs.(32 & 33) into Eq.(30) leads to:
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For the interference case, there are two situations:

a. χ2_fluctuation with 4-degrees of freedom: if the interfering target fluctuates following this statistical type, FI

(.) has a form given by [12]:
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By using binomial theorem, we can expand the bracketed quantities as a binomial of t. This expansion 
results in reformatting Eq. (36) as:
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(37) 

The Laplace transformation of Eq. (37) gives: 
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(38)
 

In the previous formulas, the term Ψ(J; j1, j2, ...., jM) is defined as [20]:s 
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y evaluating the Laplace inverse processing of the above formula, one obtains:  
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The substitution of Eqs.(32 & 41) into Eq.(30) yields: 
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b. χ2_fluctuation with 2-degrees of freedom: Let us now return to the fluctuating target obeying χ2_distribution 
with 2-degrees of freedom in its fluctuation. In this case, FI(.) is given by [19]:



 

 

With the aid of binomial theorem, the bracketed quantities can be expanded as a binomial of t. Following 
this procedure of expansion, Eq.(42) can be rewritten as: 
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(43) 

The Laplace transformation of Eq.(43) results: 
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(44)

Once Eqs. (38 & 44) are obtained, the false alarm and detection performances are completely evaluated, as 
Eqs.(20, 22, 24, 26, 27) demonstrate. The major drawback of this scheme is the high processing time that is taken in 
performing the sorting mechanism. 
 

  
The trimmed-mean (TM) algorithm is the more 

generalized version of the OS scheme. It may be 
considered as an amended version of the OS scenario. 
The motivation of using this algorithm is to combine the 
benefits of averaging and ordering along with censoring. 
In this scheme, the noise power is estimated by a linear 
combination of some selected ordered range samples. 

The linear combination may be anticipated to give better 
results because averaging estimates the noise power 
more efficiently as in the case of the CA processor and 
thus loss of detection in uniform background is more 
tolerable. In the TM-CFAR detector, the lowest L1 
ordered range samples and the highest L2 ordered ones 
are excised before summing the remaining cells to 
formulate the statistic ZTM. Thus, 
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(45)

Clearly, the ordered samples y(i)'s are neither 
independent nor identically distributed, so the 
performance evaluation of TM scheme becomes 
cumbersome. To handle this evaluation, a new linear 

transformation is needed. In other words, the following 
transformation can be used to make the ordered 
samples y(i)'s  satisfy the IID property [18]. 
Mathematically, this transformation takes the form: 
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(46) 

As a function of these new variables Yi's, Eq.(45) can be rewritten as: 
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ii. Trimmed-Mean (TM)
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After obtaining the formula (48), the computation of the MGF of the noise level estimate ZTM becomes an 
easy task owing to the independency of its samples. Thus, 
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Though the TM-CFAR scheme offers good 
performance, the large processing time, which is taken 
in ordering the candidates of the reference window, 
limits its practical applications. This problem can be 
overcome by partitioning the reference window into Q, 
symmetrical or nonsymmetrical, smaller sub-windows. 
The samples in the each sub-window are processed 
and its statistic Z may be estimated according to a 
specified rule and the final statistic is chosen by further 
processing the Q sub-window outputs. Here, we apply 
this idea by symmetrically partitioned the reference 
window into preceding and succeeding  sub-windows 
(Q=2). In this situation, suppose that the preceding 
subset has R1 cells from outlying target returns, N/2-R1 
ones from thermal background, the lowest P1 cells and 
the highest P2 ones are censored from its ordered-
statistic before adding the remaining cells to establish 

the background level of the preceding sub-window. 
Similarly, assume that the succeeding sub-window has 
R2 cells of fallacious target returns, N/2-R2 samples 
containing clutter, its associated ordered-statistic is 
trimmed from its ends, where the lowest S1 ordered cells 
are excised and S2 highest ranked cells are nullified. 
Under these circumstances, the MGF's of their noise 
power level estimates, Z1 and Z2, have the same form as 
that given by Eq.(49) after replacing its common 
parameters with their corresponding values for the 
preceding and succeeding subsets.  Since the mean-
level (ML) operation represents the simplest way that 
uses arithmetic averaging to extract the unknown noise 
power level, the two noise level estimates are combined 
through the ML operation to formulate the final noise 
power estimate. Mathematically, this can be expressed 
as: 

( )21 , ZZMeanZ f = (50) 

Since the two noise level estimates are statistically independent, the final noise level estimate has a MGF given by: 

( ) ( ) ( )2121 ,;,; SSZPPZZ MMM
TMTMf
ΩΩ=Ω    (51) 

As Eqs.(20, 22, 24, 26, 27) indicate that the 
probabilities of detection and false alarm are functions 
of the Laplace transformation of the CDF of the noise 

level estimate Zf, it is necessary to compute such 
important parameter. As a function of the MGF of Zf, its 
CDF has a Laplace transformation given by [21]:  

( ) ( ) ΩΘ Ω=Ω M ZZ ff

(52) 

Once the Ω-domain representation of the PDF 
of the resultant noise level estimate is formulated, the 
processor false alarm and detection performances can 
be completely evaluated, as we have proved in the 
previous section. It is of importance to note that the TM 
scenario reduces to the conventional CA and OS 

algorithms for specific trimming values. In other words, 
TM (0, 0) and TM (K-1, N-K) tend to the well-known CA 
and OS (K) processors, respectively; each handles N 
reference cells to estimate the unknown noise power 
level. Thus, for the conventional CA and OS (K) 
schemes, we have:  
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In terms of the Ω-domain representation of the CDF of the ordered samples y(i)'s, the MGF of the random variables 
Yj’s can be easily calculated as [12]:
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In Eq.(53), the noise levels extracted from the preceding and succeeding sub-windows of the OS scheme are: 
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iii. Cell-Averaging (CA) 
The CA is the king of the CFAR schemes that 

has the highest homogeneous performance, given that 
the clutter is exponentially distributed and the contents 
of the reference window are IID. It uses the maximum 
likelihood estimate of the noise power to set the 
adaptive threshold. The CA performs the traditional 
averaging technique by dividing the summing of the 
contents of the reference cells by their number. 
Commonly, it is regarded as the reference model 
against which new implementations are compared. 
Nevertheless, it exhibits a weak behavior against 
heterogeneous background which are frequently 
created by clutter edges and the appearance of multiple 
target situations. If one or more spurious targets fall 
within the reference window, the probability of losing the 
targets will be increased owing to the severe 
phenomenon of target masking. 

Since CA is a special case of TM scheme, we 
can exploit the analysis of the TM variant to evaluate the 
performance of the CA detector, where all of its ordered 
samples are activated. Thus, under the same conditions 
of the double-window TM scenario, the MGF of the 
double-window CA processor is given by Eq.(53).  

b) Combined CFAR Schemes 
i. Linear Fusion (LF) Emerged Strategy 

A robust detector should not only pick out 
targets but also diminish false alarms. For target 
detection in complex background, it is difficult to realize 
high level of detection simultaneously with holding low 
rate of false alarm. Therefore, an effective detector 
dictates an incorporation of different features in such a 
way that each aspect resolves one of the challenges 
that enface the detection characteristics. In other words, 
an architecture involving decentralized processing at 
multiple sensor locations provides the proper choice of 
optimum results in heterogeneous situation. From this 
point of view, the fusion strategy has rapidly become a 
methodology of choice for detecting fluctuating targets. 
Such establishment involves higher reliability and 
survivability, along with improved system performance 
at low latency. In this scenario of CFAR technology, a 

Fig.(1) portrays the detailed architecture of such 
developed model. In this layout, there are three 
individual arms in accordance with the standard 
detectors. Depending on the required rate of false 
alarm, the detection threshold along with the signal 
strength of the CUT of each local scheme is used to 
reach the final decision about the presence/absence of 
the target under research. According to the appropriate 
fusion rule, the three local decisions are simultaneously 
mixed in the fusion center to establish the final decision. 
As the circuit of Fig.(1) depicts, the potential outputs of 
fusion CA_OS_TM strategy are summarized in Table I. 
Since the CA scheme provides a low false alarm rate 
and a high level of detection, its output is taken as a 
baseline for the fusion center. When the CA output is 
positive (presence of target), there is a possibility of 
occurrence of false alarm, caused by clutter transition or 
target multiplicity. To eliminate this eventuality, the AND 
fusion Rule(I), indicated in Eq.(56), can be applied. This 
rule necessitates the application of an AND logic 
between the CA output and that obtained by applying an 
OR logic between the outputs of OS and TM schemes. 
On the other hand, when the CA output is negative 
(absence of target), there exists the possibility of a 
target lost caused by clutter interference. To avoid such 
occurrence, an AND fusion Rule(II), exhibited in Eq.(56) 
is utilized. This involves the application of an AND logic 
between the outputs of OS and TM variants. 
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Rule (56) 

In the previous expression, "∨" stands for the algebraic Boolean of OR gate whilst "∧" represents the same 
thing of AND gate. 

Table 1: Possible Outcomes of Linear Fusion Strategy 

CA Scenario OS Procedure TM Strategy FUSION RULE 
Absence Absence Absence Absence 
Absence Absence Presence Absence 
Absence Presence Absence Absence 
Absence Presence Presence Presence 
Presence Absence Absence Absence 
Presence Absence Presence Presence 
Presence Presence Absence Presence 
Presence Presence Presence Presence 

As Table I indicates, the appearance of ToI is 
demonstrated by the outcomes of rows 4, 6, 7, and 8. 
Since the occurrence of one of them excludes the 
occurrence of the others, they are mutually exclusive. 
Taking into account that the decisions of CA, OS, and 

TM approaches are independent events, the global 
detection probability "PLF"

 of the new implementation can 
be obtained by summing the outcomes of these rows. 
Thus,  PLF

 has a mathematical form given by: 

TMOSTMTMOSOSCA

TMOSCATMOSCATMOSCATMOSCA

ddddddd

dddmissdddmissdddmissLF

PPPPPPP

PPPPPPPPPPPPP
++−=

+++=

)2( (57) 

Here, Pmiss denotes the probability of missed 
detection. All the parameters of Eq.(57) are previously 
calculated. So, the detection performance of the LF-
CFAR strategy is completely analyzed.  

Our scope in the upcoming section is to 
numerically simulate the derived formulas through a PC 
device using C++ programming language to see the 
new contribution of the LF style in the CFAR world. 

IV. Simulation results and Discussion 

It is of importance to numerically evaluate the 
performance of the examined model. This section 
introduces the simulation results in order to confirm the 
performance superiority of the proposed algorithm. How 
well the model reacts against the presence of 
inhomogeneous background, can be assessed by 
several parameters. The most dominant and common 
ones include detection performance, CFAR loss, and 
actual probability of false alarm which measures the 
model's capability of holding the rate of false alarm 
stationary en face of outliers. Thus, we go to compute 
the detection performance, in the absence as well as in 
the presence of fallacious targets, for two and four 
(M=2 & 4) post-detection integrated pulses to see to 
what extent the pulse integration can ameliorate the 
reaction of the CFAR scheme against fluctuating targets. 
In our simulated results, it is assumed that the reference 
window has a size (N) of 24 cells, the designed Pfa is  
10-6. For OS scenario, the 10th ordered sample, OS(10), 

is chosen to represent its noise level estimate of each 
reference sub-window, whilst for TM scheme, the two 
smallest cells along with the two highest ones, TM(2, 2), 
are excised from the ordered set of each sub-window 
before adding the remaining ordered samples to extract 
its background power. Since the double-windows and 
mean-level operation are common for all the CFAR 
processors under test, it is of preferable to omit these 
features from nominating them. Instead, it is sufficient to 
designate each one of them with the CFAR rule used in 
estimating the unknown noise level of each sub-window 
as CA, OS(10) and TM(2, 2).     

Fig.(2) shows the level of detection as a 
function of primary target signal strength (SNR) of the 
new methodology in homogeneous environment for the 
four Swerling models when the CFAR circuit based its 
decision on integrating two (M=2) consecutive sweeps. 
For the sake of comparison, the single sweep (M=1) 
case is attached for χ2 fluctuating target with two (κ=1) 
and four (κ=2) degrees of freedom. Additionally, the 
same results of the optimum (N-P) detector are included 
among the curves of Fig.(2). In the case of single pulse 
operation, the displayed results illustrate that there is a 
turnover point; below which the N-P scheme surpasses, 
in detection performance, the LF strategy whilst upper 
this point the reverse is occurred. In other words, when 
the target signal is strengthened, the detection 
performance of the new variant outweighs that of the N-
P detector and the gap between the two curves 
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increases as the signal becomes more strengthened. 
Moreover, the processor performance for fluctuating 
targets with κ=2 is higher than that obtained for κ=1and 
this behavior is noticed for LF and N-P processors given 
that the turnover point is exceeded. Furthermore, the 
performance of SWI model coincides with that of SWII 
model and the performances of SWIII and SWIV models 
are the same. 

For M=2, on the other hand, it is noted that the 
turnover point is shifted towards lower signal strength. At 
the preceding of this point, SWI has the top 
performance whereas SWIV gives the worst detection 
level. As this point is surpassed, the reverse is 
observed; where SWIV model has the highest 
performance whilst the SWI model exhibits the lowest 
probability of detection. It is of importance to note that 
the detector performance against SWII fluctuation model 
coincides with that corresponds to SWIII model in the 
case where the radar receiver has a non-coherent 
integration of two successive pulses (M=2) as Eq.(8) 
demonstrates. As we have noticed for M=1, the N-P 
detector has a detection performance which is meagerly 
superior, at lower SNR, than that of LF scheme, when 
the turnover point is not reached. When the SNR is 
greater than that corresponding to the turnover point, 
the new methodology has the top performance whatever 
the fluctuation model is. The gap between the two 
curves (LF & N-P) corresponding to SWI model is the 
widest whereas this gap is narrow for SWIV model, 
taking into account that the LF strategy has always the 
top performance against any fluctuation model.   

Fig.(3) illustrates the same thing as that 
presented in Fig.(2) on the exception that the operating 
environment is contaminated with some interfering 
targets instead of being free of them. The results of this 
scene are obtained on the assumption that one of each 
reference sub-window cells contains interfering target 
return (R1=R2=1); the signal strength of which equals to 
that of the primary target (INR=SNR) and follows the 
same Swerling model, as the target of interest, in its 
fluctuation. A big insight on the variation of the curves of 
this plot indicates that the turnover points of LF and N-P 
are different, instead of coincide as in homogeneous 
case in Fig.(2), and this occurs either the pulse 
integration is absent (M=1) or present (M=2). In 
addition, the N-P detector has the top performance 
especially when the signal strength is modest. As the 
target echo becomes strengthened, the detection 
performance of the new processor approaches that of 
the N-P and may surpass it if the CFAR circuit is 
provided by pulse integration, as Fig.(3) demonstrates. 
Moreover, the point of exceeding for SWI fluctuation 
model takes place at a SNR which is lower than that 
occurs for SWII model which in turn precedes, in its 
location, that associated with SWIV model. It is of 
importance to note that this behavior doesn't appear if 

pulse integration doesn't achieve. The single sweep 
performance confirms this knowledge.  

Fig.(4) repeats the behavior of LF and N-P, 
against fluctuating targets, when the operating 
environment is ideal (homogeneous) as that displayed 
in Fig.(2) with the exception that the radar receiver 
builds its decision on integrating four (M=4), instead of 
two (M=2), successive pulses. The portrayed results of 
this figure prove that the candidates of this figure have 
the same variation as those corresponding in Fig.(2) 
within some gain. Additionally, the gap between the 
performance of novel scheme and that of N-P becomes 
evident; with LF detector always on the top given that 
the signal strength exceeds the turnover point. 

Similarly, Fig.(5) redraws the results of Fig.(3) 
for M=4 under the same circumstances. In comparison 
with the results of Fig.(3), the current results exhibit 
some noticeable remarks as: the gap between the LF 
performance and optimum (N-P) is narrower, the point 
of exceeding is shifted towards lower SNR with the 
same sequence of Swerling models as that outlined 
during our comments on the curves of Fig.(3), and there 
is an evident gain in the performance of the examined 
and standard detectors.   

Now, Let us go to evaluate another figure of 
merit which is known as CFAR loss. Fig.(6) shows how 
the signal strength must be to satisfy a detection level of 
90% (Pd=0.9) as a function of the correlation strength 
among the primary target returns when this target obeys 
χ2-statistics, with two (κ=1) degrees of freedom, in its 
fluctuation. As a reference of comparison, the traditional 
CFAR and N-P schemes are incorporated among the 
results of the LF style. The displayed results are 
acquired on the assumption that the environment of 
operation is ideal and two (M=2) consecutive sweeps 
are non-coherently integrated. A big insight on the 
behavior of the curves of this figure demonstrates that 
as the correlation among the target returns increases, 
the echo signal must be more strengthened to reply the 
required level of detection. Additionally, the conventional 
OS scenario needs the highest, relative to the other 
ones stated here, signal power to attain 90% level of 
detection, the standard TM mechanism comes next, the 
traditional CA procedure reserves the third position, the 
optimum (N-P) occupies the fourth location, whilst the 
new methodology (LF) needs the minimum signal 
strength in order to accomplish the requested 
probability of detection. The results of this scene reveals 
the superiority of the underlined detector over its original 
ones as well as the N-P which is taken as a reference of 
any new variant added to the CFAR world. Fig.(7) 
depicts the same behavior for the concerned 
processors when the primary target fluctuates in 
accordance with χ2-statistics, with four (κ=2) degrees of 
freedom. The tested variants follow the same sequence, 
as indicated in Fig.(6), in demanding the signal strength 
to reply a detection level of 90%. Moreover, for any one 
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of the examined schemes, the signal power required in 
this situation is weaker than that needed in Fig.(6) to 
satisfy the same probability of detection. 

In multiple target situations, Figs.(8-11) illustrate 
the needed signal strength to satisfy a given level of 
detection when the primary and the secondary targets 
follow SWI, SWII, SWIII, and SWIV models, respectively, 
in their fluctuation for the underlined detectors given that 
the decision is carried out based on integrating two 
(M=2) successive pulses and the outlying target returns 
have the same signal strength as those of primary target 
(ϑ=γ).  

As a reference of comparison, the results of the 
N-P scheme are included among the curves of these 
figures under the same target fluctuation model. Fig.(8) 
portrays the required signal power versus the pre-
assigned level of detection for the standard as well as 
the derived versions when one cell among the contents 
of each reference sub-window is contaminated with 
extraneous target returns (R1=R2=1). The displayed 
results illustrate that the CA technique can reply the 
request probability of detection till a specified  level 
beyond which it hasn't the capability to satisfy the 
needed level of detection whatever the signal strength 
is. In this regard, we define the dynamic range as the 
range belong to which, the CFAR processor can reply 
any given level of detection. Based on this definition, the 
CA scheme has a limited dynamic range which is very 
narrow. All the other under-examination processors are 
able to reply any level of detection with different signal 
powers. For lower values of detection probability, there 
is a gap between the signal strengths needed by LF 
strategy and N-P detector with LF needs the highest. 
However, as the pre-assigned detection level increases, 
this gap becomes narrower till the two curves coincide 
and may LF requests the lowest signal strength to verify 
the high levels of detection. The OS(10), TM(2, 2), and 
LF scenarios have full dynamic range, with OS(10) 
demands the highest whilst LF needs the lowest signal 
power to give the pre-assigned level of detection. In 
addition, the length of the dynamic range of CA detector 
varies as a function of the target fluctuation model in 
such a way that SWI model gives smallest whilst SWIV 
model results in relatively the largest extend of the 
dynamic range. The remaining schemes have always 
the full length for their dynamic range irrespective the 
fluctuation model is. However, the required signal 
strength varies depending on the model of fluctuation in 
such a way that the SWI model requires the highest 
whereas the SWIV model needs the lowest signal power 
to reply the same level of detection. 

Finally, we are going to test the capability of the 
new methodology of holding the rate of false alarm 
unchanged en face of fallacious target returns that may 
exist among the contents of the reference sub-windows. 
This category of plots includes Figs.(12 & 13). While 
Fig.(12) is devoted to measure the actual false alarm 

rate, as a function of the correlation strength among the 
interferer's returns, in the case where the outliers 
fluctuate following χ2-distribution with two-degrees (κ=1) 
of freedom, Fig.(13) depicts the same thing for χ2-
distribution with four-degrees (κ=2) of freedom for the 
fluctuation of the interferers. In these two figures, it is 
assumed that each reference sub-window has only one 
contaminated cell (R1=R2=1) and the interference 
strength has a power of 10dB (ϑ=10dB). In addition, the 
data of these figures is established taking into account 
that the CFAR circuit non-coherently integrates two 
successive pulses (M=2). The displayed results of 
Figs.(12 & 13) demonstrate that the LF derived version 
has the ability of maintaining the false alarm rate, as the 
standard OS(10) and TM(2, 2) procedures, whatever the 
strength of correlation among interferer's returns is. As 
predicted, the conventional CA detector is incapable of 
fixing the rate of false alarm against the existence of 
outlier's returns.         

V. Conclusions 

According to the analysis outlined above, the 
current investigation is aimed at comparing the 
performance of several CFAR alternatives regarding the 
maintaining of the false alarm probability and the 
reaching of the top of detection probability with the goal 
of selecting the most promising CFARs. For the Swerling 
target models,  embedded in white Gaussian noise of 
unknown level, we derive an analytical expression for the 
overall probability of detection while the overall 
probability of false alarm is retained at the desired level 
for the given fusion rules. Through extensive simulations, 
the superiority and robustness of the linear fusion 
mechanism are clearly demonstrated by outperforming 
the conventional processors of CA, OS, TM and N-P in 
scenarios with different target fluctuation models, 
different correlation strengths among the target's 
returns, different numbers of integrated pulses, and 
varied operating circumstances. This ability to obtain 
improved performance compared to existing models is 
the major contribution of this work. In other words, 
performance analysis, conducted on both analytical and 
simulated results, highlights that the new architecture 
operating in multi-target background guarantees the 
constant false alarm rate property with respect to the 
correlation strength variations and a limited detection 
loss with respect to the other detectors, whose detection 
thresholds nevertheless are very sensitive to the 
interference power. The cost is that LF-CFAR suffers 
from more computational burden and elapsed time than 
other processors. We conclude from our simulation 
results that the fusion detector has higher quality 
detection interactions in heterogeneous environments. 
In other words, the linear fusion enjoy significant 
advantages in both the false alarm regulation property 
and detection performance, as the displayed results of 
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this research demonstrated. Thus, the LF strategy has 
the proficiency of choice en face of heterogeneous 
situations. 
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Fig. (1): Architecture of linear fusion (LF) adaptive detector with postdetection intregation
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 Fig.

 

(2):

 

M-sweeps homogeneous detection performance of LF and N-P schemes for Swerling models of 

 
χ2-fluctuating

 

targets when N=24, M=2, and Pfa=10-6

 

 

 
 

 

Fig.

 

(3):

 

M-sweeps multi-target detection performance of LF and N-P schemes for Swerling models of

 

χ2-fluctuating targets when N=24, M=2, R1=R2=1, ϑ=γ, ρs=ρp, and Pfa=10-6
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Fig.

 

(4):

  

M-sweeps homogeneous detection performance of LF and N-P schemes for Swerling models of

 

χ2-fluctuating targets when N=24, M=4, and Pfa=10-6

 

 
 

Fig.

 

(5):

  

M-sweeps multi-target detection performance of LF and N-P schemes for Swerling models of

 

χ2-fluctuating targets when N=24, M=4, R1=R2=1, ϑ=γ, ρs=ρp, and Pfa=10-6
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Fig.

 

(6):

 

M sweeps homogeneous signal strength requested to achieve a detection level of 90% of CFAR schemes  
for

 

second-degree of freedom χ2-fluctuating targets when N=24, M=2, and Pfa=10-6

 

 

 
Fig.

 

(7):

  

M-sweeps homogeneous signal strength requested to achieve a detection level of 90% of CFAR schemes  
for fourth-degree of freedom χ2-fluctuating targets when N=24, M=2, and Pfa=10-6
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Fig. (8): M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes  for 

SWI target fluctuation model when N=24, M=2, R =R =1, , and P =10 6  

 

Fig.

 

(9):

 

M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes  for 
SWII target fluctuation model when N=24, M=2, R1=R2=1, ϑ=γ, 

ρs=ρp

, and Pfa=10-6
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Fig.
 
(10):

 
M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes  

for SWIII target fluctuation model when N=24, M=2, R =R =1, 
 

 

Fig.

 

(11):

  

M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes  
for SWIV target fluctuation model when N=24, M=2, R1=R2=1, ϑ=γ, ρs=ρp, and Pfa=10-6

 

ϑ=γ, ρs=ρp, and Pfa=10-6
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Fig.

 

(12):

  

M-sweeps multi-target actual false alarm performance of M-sweeps operation of CFAR detectors for two-
degrees of freedom χ2-fluctuating targets when N=24, M=2, R1=R2=1, ϑ=10dB, and design Pfa=10-6

 

 
Fig.

 

(13):

  

M-sweeps multi-target actual false alarm performance of M-sweeps operation of CFAR detectors for four-
degrees of freedom χ2-fluctuating targets when N=24, M=2, R1=R2=1, ϑ=10dB, and design Pfa=10-6
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