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Abstract- Hyper-parameters tuning is a key step to find the optimal machine learning parameters. 
Determining the best hyper-parameters takes a good deal of time, especially when the objective 
functions are costly to determine, or a large number of parameters are required to be tuned. In 
contrast to the conventional machine learning algorithms, Neural Network requires tuning hyper-
parameters more because it has to process a lot of parameters together, and depending on the 
fine tuning, the accuracy of the model can be varied in between 25%-90%.  

A few of the most effective techniques for tuning hyper-parameters in the Deep learning 
methods are: Grid search, Random forest, Bayesian optimization, etc. Every method has some 
advantages and disadvantages over others. For example: Grid search has proven to be an 
effective technique to tune hyper-parameters, along with drawbacks like trying too many 
combinations, and performing poorly when it is required to tune many parameters at a time. In 
our work, we will determine, show and analyze the efficiencies of a real-world synthetic polymer 
dataset for different parameters and tuning methods.   
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Abstract- Hyper-parameters tuning is a key step to find the 
optimal machine learning parameters. Determining the best 
hyper-parameters takes a good deal of time, especially when 
the objective functions are costly to determine, or a large 
number of parameters are required to be tuned. In contrast to 
the conventional machine learning algorithms, Neural Network 
requires tuning hyper-parameters more because it has to 
process a lot of parameters together, and depending on the 
fine tuning, the accuracy of the model can be varied in 
between 25%-90%.  

A few of the most effective techniques for tuning 
hyper-parameters in the Deep learning methods are: Grid 
search, Random forest, Bayesian optimization, etc. Every 
method has some advantages and disadvantages over others. 
For example: Grid search has proven to be an effective 
technique to tune hyper-parameters, along with drawbacks like 
trying too many combinations, and performing poorly when it 
is required to tune many parameters at a time. In our work, we 
will determine, show and analyze the efficiencies of a real-
world synthetic polymer dataset for different parameters and 
tuning methods. 
Keywords: machine learning, hyper parameter 
optimization, grid search, random search, BO-GP. 

I. Introduction 

n the era of Machine learning, performance (based on 
accuracy and computing time) is very important. The 
growing number of tuning parameters associated with 

the Machine learning models is tedious and time-
consuming to set by standard optimization techniques. 
Researchers working with ML models often spend long 

hours to find the perfect combination of hyper-
parameters [1]. If we think w, x, y, z as the parameters of 
the model, and if all of these parameters are integers 
ranging from 0.0001 to say 5.00, then hyperparameter 
tuning is the finding the best combinations to make the 
objective function optimal.  

One of the major difficulties in working with the 
Machine learning problem is tuning hyperparameters. 
These are the design parameters that could directly 
affect the training outcome. The conversion from a non-
tuned Machine learning model to a tuned ML model is 
like learning to predict everything accurately from 
predicting nothing correctly [2]. There are two types of 
parameters in ML models: Hyperparameters, and Model 
parameters. Hyperparameters are arbitrarily set by the 
user even before starting to train the model, whereas, 
the model parameters are learned during the training.  

The quality of a predictive model mostly 
depends on the configuration of its hyperparameters, 
but it is often difficult to know how these 
hyperparameters interact with each other to affect the 
final results of the model [14]. To determine accuracy 
and make a comparison between two models it is 
always better to make comparisons between two 
models with both of the models' parameters tuned. It 
would be unfair to compare a Decision Tree model with 
the best parameter against an ANN model whose 
hyperparameters haven’t been optimized yet. 

 

Figure 1: (a) Manual tuning (b) Random tuning (c) Grid tuning approach [From left to Right] 

 
 
 
Author α: Graduate Research Assistant, Department of Manufacturing 
Engineering, UTRGV, USA. e-mail: riyad35@gmail.com 
Author σ: Professor, Department of Manufacturing Engineering, UTRGV, 
USA. 

II. Literature Review 

The hyperparameter tuning, due to its 
importance, has changed to a new interesting topic in 
the ML community. The hyperparameter tuning 
algorithms are either model-free or model-based. 
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Model-free algorithms are free of using knowledge 
about the solution space extracted during the 
optimization; a few of this category includes manual 
search [4], random search [2, 6-7], and grid search [5]. 
In the Manual search categories, we assume the values 
of the parameters based on our previous experience. In 
this technique, the user allows some sets of 
hyperparameters based on judgments or previous 
experience, trains the algorithm by them, observes the 
performance, keeps repeating to train the model until 
achieving a satisfactory accuracy and then selects the 
best set of hyperparameters that gives the maximum 
accuracy. However, this technique is heavily dependent 
on the judgment and previous expertise and its reliability 
is dependent on the correctness of the previous 
knowledge [3]. Some of the few of the main parameters 
used by Random forest classifiers are: criterion, 
max_depth, n_estimators, min_samples_split etc.  

In the Random search, we train and test our 
model based on some random combinations of the 
hyperparameters. This method is better used to identify 
new combinations of the parameters or to discover new 
hyperparameters. Although it may take more time to 
process, it often leads to better performance. Bergstra 
et al. (2012) in their work mentioned that, over the same 
domain, random search is able to find models that are 
as good as or even better in a reduced computation 
time. After granting the same computational budget for 
the random search, it was evident that random search 
can find better models by effectively searching for larger 
and less promising configuration spaces [16]. Random 
Search, which is developed based on grid research, 
sets up a grid of hyper-parameter values and selects 
random combinations to train the algorithm; Bergstra et 
al. (2011) [2]. 

In the grid search, the user sets a grid of 
hyperparameters and trains the model based on each 
possible combination. Amirabadi et al. (2020) proposes 
two novel suboptimal grid search techniques on the four 
separate dataset to show the efficiency of their 
hyperparameter tuning model and later compare it with 
some of the other recently published work. The main 
drawback of the grid search method is its high 
complexity. It is commonly used when there are a few 
numbers of hyperparameters to be tuned. In other 
words, grid search works well when the best 
combinations are already determined. Some of the 
similar works of grid search applications have been 
reported by Zhang et al. (2014) [17], Ghawi et al. (2019) 
[18], and Beyramysoltan et al. (2013) [19].  

Zhang et al. (2019) [20] in their work reported a 
few of the drawbacks of the existing hyperparameter 
tuning methods. In their work, they mentioned grid 
search as an ad-hoc process, as it traverses all the 
possible combinations, and the entire procedure 
requires a lot of time. Andradóttir (2014) [13] shows that 
Random Search (RS) eradicates some of the limitations 

of the grid search technique to an extent. RS can reduce 
the overall time consumption, but the main 
disadvantage is that it cannot converge to the global 
optimal value.  

The combination of randomly selected hyper-
parameters can never guarantee a steady and widely 
acceptable result. That’s why, apart from the manually 
tuning methods, automated tuning methods are 
becoming more and more popular in recent times; 
snoek et al. (2015) [10]. Bayesian Optimization is one of 
the most widely used automated hyperparameter tuning 
methods to find the global optimum in fewer steps. 
However, Bayesian optimization’s results are sensitive to 
the parameters of the surrogate model and the accuracy 
is greatly depending on the quality of the learning 
model; Amirabadi et al. (2020) [3].  

To minimize the error function of 
hyperparameter values, Bayesian optimization adopts 
probabilistic surrogate models like Gaussian processes. 
Through precise exploration and development, an 
alternative model of hyperparameter space is 
established; Eggensperger et al. (2013) [8]. However, 
probabilistic surrogates need accurate estimations of 
sufficient statistics of error function distribution. So, a 
sizable number of hyperparameters is required to 
evaluate the estimations and this method doesn’t work 
well when there is to process myriad hyperparameters 
altogether. 

III. Methodology 

a) Dataset description  

Denier: Denier is a weight measurement usually refers to 
the thickness of the threads. It is the weight (grams) of a 
single optical fiber for 9 kilometers. If we have a 9 km 
fiber weighs 1 gram, this fiber has a denier of 1, or 1D. A 
fiber with less than 1 gram weight calls Microfibers [22]. 
Microfibers become a new development trend in the 
synthetic polymer industry. The higher the denier is, the 
more thick and strong the fiber is. Conversely, less 
denier means that the fiber/fabric will be softer and more 
transparent. Fine denier fibers are becoming a new 
standard and are very useful for the development of new 
textiles with excellent performance [21]. 

Breaking Elongation (%): Elongation at break is one of 
the few main quality parameters of any synthetic fiber 
[24]. It is the percentage of elongation at break. Fiber 
elongation partly reflects the extent of stretching a 
filament under a certain loading condition. Fibers with 
high elongation at break are determined to be easily 
stretched under a predetermined load. Fibers showing 
these characteristics are known to be flexible. The 
elongation behavior of any single fiber can be complex 
because of its multiplicity of structural factors affecting it. 
Moreover, a cotton fiber comes up with a natural crimp, 
which is important for fibers to stick together while 
undergoing other production processes [23]. If L is the 
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length of the fiber, then the equation for the percentages 
of the breaking elongation would be: 

𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  𝐵𝐵𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝐵𝐵𝑒𝑒𝐵𝐵 =
∆𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐿𝐿0

∗ 100% 

Breaking elongation for the cotton fiber might 
be varied from 5% to 10%, which is significantly lower 
than that of wool fibers (25%-45%), and much lower than 
polyester fibers (typically over 50%). 

Breaking force (cN) and Tenacity (cN/tex): Breaking 
tenacity is the maximum load that a single fiber can 
withstand before breaking. For the Polypropylene and 
PET staple fibers, 10 mm lengths sample filaments is 
drawn until failure. Breaking tenacity is measured in 
grams/denier. Very small forces are encountered when 
evaluating fiber properties, so an instrument with gram-
level accuracy is required [25]. The tenacity of virgin PP 
fibers is about 5–8 g/den, and the elongation at break is 
about 100%. At the same time, the tenacity of recycled 
PET is about 3.5-5.7 g/den; the elongation at break 
usually exceeds 100%. 
Draw Ratio: The drawing ration is the ratio of the 
diameter of the initial blank form to the diameter of the 
drawn part. The limiting drawing ratio (Capstan 
speed/Nip reel speed) for the extruder section is 
between 1.6 and 2.2 [26], whereas, for the stretching 
section it is in between 3 and 4. 

b) Hyper-parameter Optimization (HPO)  
The purpose of hyperparameter optimization is 

to find the global optimal value 𝑥𝑥∗ of the objective 
function f(x) can be evaluated for any arbitrary𝒙𝒙 ∈ 𝑿𝑿 , 
𝑥𝑥∗ = arg𝑚𝑚𝐵𝐵𝐵𝐵𝑥𝑥∈𝑋𝑋𝑓𝑓(𝑥𝑥), and X is a hyperparameter space 
that can contain categorical, discrete, and continuous 
variables [27].In order to construct the design of 
different machine learning models, the application of 
effective hyperparameter optimization techniques can 
simplify the process of identifying the best 
hyperparameters for the models. HPO contains four 
major components: First, an estimator that could be a 
regressor or any classifier with one or more objective 
functions, second: a search space, Third: an 
optimization method to find the best combinations, and 
Fourth: a function to make a comparison between the 
effectiveness of various hyperparameter configurations 
[28]. Some of the common hyperparameter techniques 
is discussed below:  

Grid Search: Grid search is a process that exhaustively 
searches a manually specified subset of the 
hyperparameter space of the target algorithm [30]. A 
traditional approach to finding the optimum is to do a 
grid search, for example, to run experiments or 
processes on a number of conditions, for example, if 
there are three factors, a 15 × 15× 15 would mean 
performing 3375 experiments under different conditions. 
[32]. Grid search is more practical when [31]: (1) the 

total number of parameters in the model is small, say M 
<10. The grid is M-dimensional, so the number of test 
solutions is proportional to LM, where L is the number of 
test solutions along each dimension of the grid. (2) The 
solution is known to be within a specific range of values, 
which can be used to define the limits of the grid. (3) 
The direct problem d = g (m) can be computed quickly 
enough that the time required to compute LM from them 
is not prohibitive. (4) The error function E (m) is uniform 
on the scale of the grid spacing, Δm, so that the 
minimum is not lost because the grid spacing is too 
coarse. 

There are many problems with the grid search 
method. The first is that the number of experiments can 
be prohibitive if there are several factors. The second is 
that there can be significant experimental error, which 
means that if the experiments are repeated under 
identical conditions, different responses can be 
obtained; therefore, choosing the best point on the grid 
can be misleading, especially if the optimum is fairly flat. 
The third is that the initial grid may be too small for the 
number of experiments to be feasible, and it could lose 
characteristics close to the optimum or find a false 
(local) optimum [32]. 

Random Search: Random search [33] is a basic 
improvement on grid search. It indicates a randomized 
search over hyper-parameters from certain distributions 
over possible parameter values. The searching process 
continues till the predetermined budget is exhausted, or 
until the desired accuracy is reached. This methods are 
the simplest stochastic optimization and are very useful 
for certain problems, such as small search space and 
fast-running simulation. RS finds a value for each 
hyperparameter, prior to the probability distribution 
function. Both the GS and RS estimate the cost measure 
based on the produced hyperparameter sets. Although 
RS is simple, it has proven to be more effective than 
Grid search in many of the cases [33]. 

Random search has been shown to provide 
better results due to several benefits: first, the budget 
can be set independently according to the distribution of 
the search space, therefore, random search can work 
better especially when multiple hyper-parameters are 
not uniformly distributed

 
[34]. Second: Because each 

evaluation is independent, it is easy to parallelize and 
allocate

 
resources. Unlike GS, RS samples a number of 

parameter combinations from a defined distribution, 
which maximizes system efficiency by reducing the 
likelihood of wasting a lot of time in a small, 
underperforming area. In addition, this method can 
detect global optimum values or close to global if given 
a sufficient budget. Third, although getting optimal 
results using random search is not promising, more time 
consumption will lead to a greater likelihood of finding 
the best hyperparameter set, whereas longer search 
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times cannot guarantee better results in Grid searches.



  

 

Bayesian Optimization: Bayesian optimization (BO) is a 
commonly used reprocessing algorithm for HPO 
problems. Unlike GS and RS, BO determines future 
assessment levels based on the previous results. To 
determine the following parameters of the 
hyperparameter, BO uses two key factors: a surrogate 
model and an acquisition function. The division model 
aims to match all the points that are now seen in the 
objective function. The acquisition function determines 
the use of different points, balancing exploration and 
exploitation. The BO model balances the search and 
use process to identify the best possible area and avoid 
losing the best configuration in undeveloped areas [35].  

The basic BO method works as follows: (i) 
Building a reduced-order probabilistic model (ROM) of 
the objective function. (ii) Finding the best 
hyperparameter values in the ROM model. (iii) Applying 
those optimal values to the objective function. (iv) 
Updating the ROM model with the new set of results. (v) 

Repeating above steps until achieving maximum 
number of iterations. 

BO is more efficient than GS and RS because it 
can detect optimal combinations of hyperparameters by 
analyzing previously tested values, and running the 
surrogate model is usually much cheaper than running 
the objective function as a whole. However, because 
Bayesian optimization models are run based on 
previously tested values, it is difficult to belong to them 
with parallel sequential methods; but they are generally 
able to detect optimal close hyperparameter 
combinations in a few iterations [36]. Common 
substitution models for BO include the Gaussian 
process (GP) [37], random forest (RF) [38], and Parzen 
estimator (TPE) [39]. Therefore, there are three main BO 
algorithms based on their substitution models: BO-GP, 
BO-RF, BO-TPE. GP is an attractive reduced order 
model of BO that can be used to quantify forecast 
uncertainty. This is not a parametric model and the 
number of its parameters depends only on the input 
points. With the right kernel function, your GP can take 
advantage of the data structure. However, the GP also 
has disadvantages. For example, it is conceptually 
difficult to understand with BO theory. In addition, its low 
scalability with large dimensions or a large number of 
data points is another important issue [36]. 

 

Figure 2: Exploration-based (left) and exploitation-based Bayesian optimization (right); the shadow indicates 
uncertainty (Yang and Shami, 2020) 

IV. Applying HPO in ML Models 

In order to put the theory into practice, several 
experiments have been performed on an industrial-
based synthetic polymer model. This section describes 
experiments with four different HPO techniques on three 

general and representative ML algorithms. In the first 
part of the section, we discussed the experimental setup 
and the main HPO process. In the second part, we 
compare and analyze the results of the application of 
different HPO methods. 

Table 1: An overview of common ML models we used in this work, their hyper-parameters are listed below: 

ML Model Hyper-parameter 

RF Regressor 
n_estimators, max_depth, min_samples_split, 

min_samples_leaf, criterion, max_features 

SVM Regressor C, kernel, epsilon 

KNN Regressor n neighbors 
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The use of random search is recommended in 
the early stages of HPO to narrow the search space 
quickly, before using guided algorithms to get better 
results. The main drawback [28] of RS and GS is that 
each evaluation in its iteration does not depend on 
previous evaluations; thus, they waste time evaluating 
underperforming areas of the search space.



Table 2: Performance evaluation of applying HPO methods to the regressor on the synthetic polymer dataset 

 

 

Figure 3: Cycle time vs. MSE graph 

V. Discussion & Conclusion 

Machine learning has become the primary 
strategy for dealing with data problems and is widely 
used in various applications. To apply ML models to 
practical problems, hyperparameters must be tuned to 
handle specific datasets. However, as the size of the 
generated data increases greatly in real life, and manual 
tuning of hyperparameters is extremely computationally 
expensive, it has become essential to optimize the 
hyperparameters by an automatic process. In this work, 
we used hyperparameter techniques in the ML model to 
find the best set of hyperparameters. Our data set was 
small, and in this small datset we can see that the 
randomly selected subsets are very representative for 
the given data set, as they can effectively optimize all 
types of hyperparameters. Our future work would be to 

test our model on a much larger data set and see the 
feedback. 
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