
© 2020. Neyole Misiko. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

A Review of Metrics for Object-Oriented Design

By Neyole Misiko
 UMMA University

Abstract- The ever-evolving body of empirical results do confirmation on the theoretical
perspective the validity of OOD metrics whose validity is determined by them demonstrating that
[1] they measure what they purport to measure. Quite often OOD metrics have been used as
indicators of both the internal and external behaviors in the software development process.
Software metrics especially for Object Oriented Systems literature often describe complex
models with the focus to help predict various properties of software products and processes by
measuring other properties. Usually designers are met with challenges to work with these
measures especially when and how to use them. The very process of collecting these
measurements leads to a better organization of the software process and a better understanding
of what designers do as long as they confine to measurements that are meaningful. To this end
therefore, the initiation of these metrics during the initial software development process is
important. This paper elicits an understanding of the OOD metrics used in OOS development.

AReviewofMetricsforObjectOrientedDesign

Volume 20 Issue 2 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Global Journal of Computer Science and Technology: C
Software & Data Engineering

Strictly as per the compliance and regulations of:

Index Terms: MOOD, OOD, metrics, software quality.

GJCST-C Classification: D.2.2

A Review of Metrics for Object-Oriented Design
Neyole Misiko

Abstract- The ever-evolving body of empirical results do
confirmation on the theoretical perspective the validity of OOD
metrics whose validity is determined by them demonstrating
that [1] they measure what they purport to measure. Quite
often OOD metrics have been used as indicators of both the
internal and external behaviors in the software development
process. Software metrics especially for Object Oriented
Systems literature often describe complex models with the
focus to help predict various properties of software products
and processes by measuring other properties. Usually
designers are met with challenges to work with these
measures especially when and how to use them. The very
process of collecting these measurements leads to a better
organization of the software process and a better
understanding of what designers do as long as they confine to
measurements that are meaningful. To this end therefore, the
initiation of these metrics during the initial software
development process is important. This paper elicits an
understanding of the OOD metrics used in OOS development.

I. Introduction

oftware metrics plays a key role in good software
engineering. Measurement is used to assess
situations, track progress and evaluate effectives

of software products. But there exists a huge challenge
in the measurement process due to lack of coordinated,
comprehensive framework for understanding and using
measurement [2]. Object-oriented approach to software
development requires some specific set of metrics [3].
Various object-oriented measurements are used to
evaluate and predict the quality of software products [4],
where the empirical results are used to supports the
theoretical validity of the Object-Oriented Software
Product metrics [5]. The validity of these metrics needs
to facilitate the accuracy that the metric measure what
they purport to measure.

II. Software Engineering Metrics and
Quality

According to Edward V. Berard [6] Metrics are
units of measurement that refer to a set of specific
measurements taken on a particular item or process.
For software engineering metrics are units of
measurement used to characterize software engineering
products, processes and the people, hence assessing
quality. Ahmad S et.al [7] indicated that Software
metrics are measures that facilitate software developers
and software analyst to preview into the efficiency of the
software process and projects that are conducted using

Author: UMMA University. e-mail: jneyole434@gmail.com

the process as framework. These metrics measures
different aspects of software complexity hence play an
important role in analysing and improving software
quality [8].

Mahfuzul Huda et.al [9] argued that the quality
of any object-oriented design is critical as it has a great
influence on the overall quality of finally delivered
software product. Further he asserts that Software
quality is still a vague terminology since it has different
meaning to different people, the way one measure
quality depends on the viewpoint he/she takes [10].
Acceptable object-oriented design properties and
associated metrics are helpful when utilized in the early
stage of software development process, since the
metrics determination is an important phase in testability
estimation process [11].

Quality in the use of Object-Oriented Software
Engineering metrics are available when the final product
is in use in real conditions. Here the internal quality
determines the external quality, while the external quality
determines quality in use [12]. According to the GE
model for describing software quality, presented by
McCall et al. (1977), software quality is organized
around three main types of quality characteristic:-
factors which describe the external view of the software,
as viewed by the users, criteria which describe the
internal view of the software, as seen by the developer
and the metrics which control and are defined and used
to provide a scale and method for measurement.

With the help of software metric software
designers are able to deeper understand the software
product in an effective way as they use diverse
measurements of computer software in development.
Thus, though software metric we are able to measure
some property of software’s including their components
considering that software quality metrics to be subset of
software metrics they are helpful [7]. To this end, with
the aid of OOD metric therefore, software professionals
can then use object oriented metric suite to predict and
enhance the maintainability of software with least error
and best precision in an object-oriented paradigm [13].

III. Issues in Software Engineering
Metrics

Berard E argued that if used properly, software
engineering metrics enables us among others to
qualitatively and quantitatively define success and
failure by establishing the degree of success or failure
and identify and quantify improvement [6]. The objective
of the ISO/IEC 9126 standards is to address the human

S

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

1

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Index Terms: MOOD, OOD, metrics, software quality.

limitations that canadversely affect the final software
engineering development project. Some of the issues
addressed include the change of focus after the start of
a project. The standards provide clarity through
agreeing on the project priorities and converting the
compliance to measurable output values that can be
validated against schema with total zero interventions,
the standards therefore facilitate a common
understanding of software engineering project's
objectives and goals [14] These ISO/IEC 9126 standard
further classified into four main parts: - the quality
model, external metrics, internal metrics and quality in
use metrics. However, the use of these design metrics is
limited in practice due to the difficulty of measuring and
using a large number of metrics.

Fenton and Neil [15] journal indicated that the
major problem is in using such metrics in isolation. They
argued that it was possible to provide a genuine
improved management decision support system based
on suchsimplistic metrics, but only by adopting a less
isolationist approach. Much as software metrics play an
important role in developing high quality software as well
as to improve the developer's productivity [16] there
comes the problem of identifying the right metrics to be
used at a given stage of the OOD process.

Emphasis of introducing the metrics during the
intimal software development is vital. OO designs are
highly involved, often ill-defined, complex and iterative
process. Their needs and specifications get more
refined only as the design process moves toward its
final stages. This therefore calls for effective metric tools
that will help the designer make better-informed
decisions with proven efficient knowledge representation
schemes.

IV. Object-Oriented Design Metrics

Aggarwal et.al (2013) indicated that metrics for
OO design entails measurements that are applied to the
class and design characteristics [17], as they aim
achieve quality in software process and product, This
OO metrics measurement tools have yet to achieve the
needed degree of maturity [18] they therefore need
standardization [19]. Chidamber et.al [20] indicated that
while metrics for the traditional functional decomposition
and data analysis design approach measure the design
structure and data structure independently, the object-
oriented metrics need to focus on the combination of
both the function and data as an integrated object.
Despite the metric being traditional or new, it should be
able effective to measure at least one or mere OOSD
attributes of a software engineering product [21].

There exist various metrics for object Oriented
designs otherwise called MOOD (Metrics for Object
Oriented Designs). According to F.B. Abreu et al [22]
metrics for Object Oriented Designs define the structural
models of a software engineering design where they

facilitate measurements of OO paradigms such as
encapsulation, inheritance, polymorphism and message
passing. These metrics are usually expressed to
measure where the numerator defines the actual use of
a feature for a design namely the method and attributes.
The attributes represent the status of object in the
system while method is used to maintain or modify the
several kinds of status of the object [23].

Sahar et.al [24] stated that the most important
measures that need to be considered in any software
product is in the design quality. He established that
design phase takes only 5–10 % of the total effort but a
large part up to 80% of total effort goes into correcting
bad design decisions [25]. The MOOD metrics include:
- Method Hiding Factor (MHF), the Attribute Hiding
Factor (AHF), the Method Inheritance Factor (MIF), the
Coupling Factor (COF), the Attribute Inheritance Factor
(AIF) and the Polymorphism Factor (PF) [17]. Each
MOOD metric is associated with basic structural
mechanisms of the object-oriented paradigm [26]. The
MOOD metric set enables expression of some
recommendations for designers [27].

Malhotra et.al [28] indicated that design of a
system plays an essential role in ascertaining the
system’s reaction to incoming changes, and well-
chosen OO design metrics can function as an indicator
of changeability. Gupta & Saxena [29] stated thatthe
prediction of software defect is possible on the basis of
historical data accumulated during implementation of
similar or same software projects or it can be developed
using design metrics collected during design phase of
software development.

Chidamber and Kemerer [30] theoretical
presentation on OO design metrics for software
development life cycle are based upon OOD
measurement theories that are used by OO software
developers. The key requirements of metric
measurements by Chidamber and Kemerer [20]
focused on improving the quality of software with the
help of a new metrics suite that consists of six design
level metrics named WMC, DIT, NOC, CBO, RFC and
LCOM [29]. According to Shyam Chidamber and Chris
Kemerer [31] on the role of metrics for OOD indicated
that the important components of process improvement
is the ability to measure the process. Their paper
provided the appreciation of development and empirical
validation of sets of theoretically-grounded metrics of
OO designs.

V. Oodmetrics for Analysis

Object Oriented Software Engineering product
code is analyzed through object-oriented metrics, two
suites of metrics are used, the Chidamber-Kemerer (CK)
[20] and MOOD [1] [32] suites. Many of the OOD
software’s usually fail due to poor quality especially
when the estimation of software quality is not prioritized

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

2

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

A Review of Metrics for Object-Oriented Design

during the software development. Mago et.al [33]
indicated that design metrics play an important role in
helping developers to appreciate design aspects of
software especially to the improvement of software
quality. Thus, through the analysis of the OOD metric
data one can forecast the quality of the object-oriented
system. Boehm et.al [34] stated that to produce high-
quality Object-Oriented applications a strong emphasis
on design aspects is highly necessary. To this end
therefore OOD software metrics among other metrics
should make it possible for software engineers to
measure and predict software processes, necessary
resources for a project and products relevant for a
software development effort. Software quality for OOD is
the degree to which OO software possesses required
combinations of attributes such as reliability,
maintainability, efficiency, portability, usability and
reusability.

Object oriented design are intended to capture
the fundamental structure of an object-oriented
program. The, set of components which can evaluate,
represent and implement an object-oriented design
include attributes, methods, objects/ classes,
relationships and class hierarchies and must be
addressed during the whole process of OOSD process.
Measuring software quality in the early stages of
software development is the key to develop high quality
software [33]. During the OOD process analysis of
model captures the logical information about the
system, while the design model adds details to support
efficient information access. This is important; however,
the optimizing process must also be considered so as
to make the implementation more efficient.

Despite this, design optimization should not be
extreme since the ease of implementation,
maintainability, and extensibility need to be considered.
Often a perfectly optimized design is usually more
efficient but less readable and reusable. Designers must
strike a balance between the two. Factor to be
considered in the analysis include: - addition of
redundant associations [35], omission of non-usable
associations [36], optimization of algorithms [37] and
storage of derived attributes to avoid re-computation of
complex expressions.

VI. Internal Metrics

Internal events are those that pass from one
object to another object within a system. Dubey et.al
[38] stated that metrics provide insight necessary to
create and design model through the test. It also
provides a quantative way to access the quality of
internal attributes of the product, thereby it enables the
software engineer to access quality before the product
is build [39]. OOD metrics are thus crucial source of
information through which a software developer takes a
decision for design good software. For instance,

through the Reliability metrics, the quality of internal
product can be measured by the number of bugs in the
software and by the duration of software metrics crash.
The Class Method Complexity (CMC) metric defined as
the summation of the internal structural complexity of all
local methods is a theoretical basis and viewpoints. The
metrics greatly affect the effort required to design,
implement, test and maintain a class [40].

VII. External Metrics

Punia et.al [40] indicated that the external
metrics are used to examine and reuse of an OO
system. External events are those events that pass from
a user of the system to the objects within the system.
For example, mouse click or key−press by the user are
external events. For instance, the MPC (Message Pass
Coupling) metric addresses the external methods which
are the number of send statements defined in a
particular OOS class. When a message invokes
numerous methods as a response, the class becomes
more complicated and more testing and debugging is
required [41].

Bidve and Khare [42] indicated that coupling in
software has been associated with the maintainability
and is used as predictors of external software quality
attributes such as fault-proneness, impact analysis,
ripple effects of changes, changeability. Shaik et.al [43]
stated that external validation involves empirically
demonstrating that the product metric is associated with
some important external metric. Shaik et.al further states
that high cognitive complexity leads to a component
exhibiting undesirable external qualities, such as
increased fault proneness and reduced maintainability.
Accordingly, object-oriented product metrics that affect
cognitive complexity will be related with fault-proneness.
From the above, the underlying assumption is that such
measures can be used as objective measure to predict
various external quality aspects of the code or design
artifacts [44].

VIII. Conclusion

Dubey et.al [38] indicated that the popularity of
object-oriented design metrics is essential in software
engineering for measuring the software complexity,
estimating size, quality and project efforts. Object-
oriented metrics assures to provide OOD that are
reliable, maintainable and reusable software products.
The initiation of various OOD metrics during the software
initial development process in vital as this will enable
designers eliminate bugs and limitations making the
software product be of good quality. Increasingly,
object-oriented design measurements are being used to
evaluate and predict the quality of software [4] through
prediction SE are able to improve the software product
performance as well as enhance more user
requirements during and after the OOS design.

A Review of Metrics for Object-Oriented Design

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

3

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

References Références Referencias

1.

F. B. Abreu, "The MOOD Metrics Set," in ECOOP'95
Workshop on Metrics, 1995.

2.

N. Fenton and J. Bieman, Software Metrics:
ARigorous and Practical Approach, Third Edition,
Colorado USA: CRC Press-

Tayler & Francis Group,

2014.

3.

D. Rodriguez and R. Harrison, An Overview
ofObject-Oriented Design Metrics, United Kingdom:

The University of Reading UK, 2001.

4.

R. Harrison, S. J. Counsell and R. V. Nithi, "An
Evaluation of the MOOD Set of Object-Oriented
Software Metrics," IEEE Transactions on Software
Engineering, vol. 24, pp. 491-496, 1998.

5.

D. Glasberg, K. E. Emam, W. Melo and Madhavji,
"Validating Object-Oriented Design Metrics on a
Commercial Java Application," National Research
Council 44146, 01 September 2000.

6.

E. V. Berard, Metrics for Object-Oriented Software

Engineering, USA: The Object Agency, Inc., 1998.

7.

F. A. Sheikh, R. B. Mohd and H. Mohd, "A
Comparative Study of Software Quality Model,"
International Journal of Science, Engineering and

Technology Research (IJSETR), vol. 2, no. 1,
pp.172-177, 2013.

8.

S. Manik and S. Gurdev, "Analysis of Static and

Dynamic Metrics for Productivity and Time
Complexity," IJCA, vol. 30, no. 1, 2011.

9.

H. Mahfuzul, A. Y.D.S. and K. M. H., "Testability

Quantification Framework of Object-Oriented
Software:

A New Perspective," International Journal

of

Advanced

Research in

Computer and

Communication Engineering, vol. 4, no. 1, pp.
289302, 2015.

10.

H. Mahfuzul, A. Y.D.S. and K. M. H, "Measuring

Testability of Object-Oriented Design: A Systematic

Review," International

Journal

of

Scientific

Engineering and Technology (IJSET), vol. 3, no. 10,

pp.

1313-1319, 2014.

11.

A. Kout, F. Toure and M. Badri, "An empirical
analysis of a testability model for object-oriented

programs.," ACM, Inc, vol. 4, no. 36, 2011.

12.

Wikipedia, "ISO/IEC 9126," Wikimedia Foundation,

Inc., 5th

April

2017.

[Online].

Available:

https://en.wikipedia.org/wiki/ISO/IEC_9126.[Access
ed 16th July 2017].

13.

M. Ruchika and C. Anuradha, "Application of Group

Method of Data Handling model for software

maintainability prediction using object-oriented
systems," International Journal of System Assurance

Engineering and Management, vol. 5, no. 2, p. 165–

173, 2014.

14.

Scalet et.al, "ISO/IEC 9126 and 14598 integration

aspects," in The Second World Congress on
Software

Quality, Yokohama, Japan, 2000.

15. N. Fenton and M. Neil, "Software metrics:
successes, failures and new directions," Journal of
Systems and Software, vol. 47, no. 2-3, pp. 149-157,
1999.

16. M. Bansal and C. P. Agrawal, "Critical Analysis of
Object-Oriented Metrics in Software Development,"
Advanced Computing & Communication
Technologies (ACCT), pp. 197-201, 2014.

17. M. Aggarwal, V. K. Verma and H. V. Mishra, "An
Analytical Study of Object-Oriented Metrics
(ASurvey)," International Journal of Engineering
Trends and Technology (IJETT), vol. 6, no. 2, pp.
76-83, 2013.

18. H. Zuse, Software Complexity Measures and
Methods, Berline: Walter de Gruyter, 1991.

19. H. Zuse, "Foundations of Object-oriented Software
Measures," in 3rd International Symposium
onSoftware Metrics: From Measurement to
Empirical Results (METRICS '96) IEEE Computer
Society, Washington, DC USA, 1996.

20. S. R. Chidamber and C. F. Kemerer, "A Metrics Suite
for Object Oriented Design," IEEE Transactions
onSoftware Engineering, no. 20, pp. 1-5, 1994.

21. L. H. Rosenberg and L. E. Hyatt, Software Quality
Metrics for Object-Oriented Environments,
Greenbelt, MD 20771 USA: Goddard Space Flight
Center, 1995.

22. B. F. Abreu, "Design metrics for OO software
system,"inECOOP’95, Quantitative Methods
Workshop, 1995.

23. V. L. V.L.Basili, L. Briand and W. L. Melo,
"Avalidation of object-oriented Metrics as Quality
Indicators," IEEE Transaction Software Engineering,
vol. 22, no. 10, pp. 751-761, 1996.

24. R. R. Sahar and A. H. Hany, "Object oriented design
metrics and tools a survey," IEEE, pp. 1-10, 2010.

25. R. Marinescu, "Measurement and Quality in Object
oriented design," in In Proceedings 21st IEEE
International Conference on Software Maintenance,
USA, 2005.

26. J. A.-J. JUBAIR and M. S. KhairEddin, metrics for
object-oriented design (MOOD) to assess java
programs, Jordan: University of Jordan, 2001.

27. F. B. e Abreu, "Design Quality Metrics for Object-
Oriented Software Systems," ERCIM News, 1000029
Lisboa, Portugal, 1995.

28. R. Malhotra and. M. Khanna, "Investigation
ofrelationship between object-oriented metrics and
change proneness," Int. J. Mach. Learn. & Cyber,
vol. 10, no. 4, p. 273–286, 2012.

29. D. L. Gupta and K. Saxena, "Software bug
prediction using object-oriented metrics," Sadhana-
Indian Academy of Sciences, vol. 42, no. 5, p. 655–
669, 2016.

30. S. R. Chidamber and C. F. Kemerer, "Towards a
metric suite for object-oriented design," in
OOPSLA‘91 Conference Proceedings on Object-

A Review of Metrics for Object-Oriented Design
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

4

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

oriented Programming Systems, Languages, and
Applications: ACM, New York, USA, 1991.

31. S. Chidamberand. C. Kemerer, "A Metrics Suite for
Object-Oriented Design," IEEE Transactions on
Software Engineering, pp. 476-492, 1994.

32. F. B. Abreu and W. Melo, "Evaluating the Impact of
OO Design on Software Quality," in Third
International Software Metrics Symposium, Berlin,
1996.

33. J. Mago and P. Kaur, "Analysis of Quality of the
Design of the Object-Oriented Software using Fuzzy
Logic," International Conference on Recent
Advances and Future Trends in Information
Technology, pp. 21-26, 2012.

34. B. W. Boehm, J. R. Brown and M. L. Lipow,
"Quantitative Evaluation of Software Quality," in IEEE
- Proceedings of the 2nd International Conference
on Software Engineering, San Francisco, California,
United States, 1976.

35. G. Génova, J. Llorens and J. M. Fuentes, "UML
Associations: A Structural and Contextual View,
"Journal of Object Technology-ETH Zurich, vol. 3,
no. 7, pp. 83-100, 2004.

36. Z. Rashidi, "Properties of Relationships among
objects in Object-Oriented Software Design,
"AmirKabir University of Technology, Tehran, Iran,
2015.

37. P. Gandhi and P. K. Bhatia, "Optimization of Object-
Oriented Design using Coupling Metrics,"
International Journal of Computer Applications, vol.
27, no. 10, p. 0975 – 8887, 2011.

38. S. K. Dubey, A. Sharma and A. Rana, "Comparison
Study and Review on Object- Oriented Metrics,"
Global Journal of Computer Science and
Technology, vol. 12, no. 7, pp. 1-11, 2012.

39. A. C. Shaik, B. Reddy, M. Prakashine and K. Deepti,
"Metrics for object-oriented design software system:
A Survey," Journal of emerging trend in engineer
and applied science (JETEAS), pp. 190-198, 2010.

40. S. K. Punia, P. Kumar and A. Gupta, "A Review of
Software Quality Metrics for Object-Oriented
Design," International Journal of Advanced
Research in Computer Science and Software
Engineering, vol. 6, no. 8, pp. 359-368, 2016.

41. T.Biggerstaff and C. Richter, "Reusability Framework
Assessment, and Directions," IEEE Software, pp. 41-
49, 1987.

42. V. S. Bidve and A. Khare, "Simplified Coupling
Metrics for Object-Oriented Software," International
Journal of Computer Science and Information
Technologies (IJCSIT), vol. 3, no. 2, pp. 3839-3843,
2012.

43. A. Shaik, N. Satyanarayana, M. Huzaifa, N. Shaik,M.
Z. Naveed, S. Rao and C. K. Reddy, "Investigate the
Result of Object-Oriented Design Software Metrics
on Fault-Proneness in Object Oriented Systems: A
Case Study," Journal of Emerging Trends in

Computing and Information Sciences, vol. 2, no. 4,
pp. 201-209, 2011.

44. C. G. Desai, "Object Oriented Design Metrics,
Frameworks and Quality Models," 27 November
2013. [Online]. Available: http://www.bioinfo
publication.org/jouarchive.php?opt=&jouid=BIJ000
0002. [Accessed 3rd August 2017].

A Review of Metrics for Object-Oriented Design

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

5

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

	A Review of Metrics for Object-Oriented Design
	Author
	Index Terms
	I. Introduction
	II. Software Engineering Metrics andQuality
	III. Issues in Software Engineering Metrics
	IV. Object-Oriented Design Metrics
	V. Oodmetrics for Analysis
	VI. Internal Metrics
	VII. External Metrics
	VIII. Conclusion
	References Références Referencias

