
© 2020. Akinsola, Jide E. T., Kuyoro, Afolashade, O., Adeagbo, Moruf A. & Awoseyi, Ayomikun A.. This is a research/review
paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Performance Evaluation of Software using Formal Methods

By Akinsola, Jide E. T., Kuyoro, Afolashade, O., Adeagbo, Moruf A.
& Awoseyi, Ayomikun A.

 First Technical University

Abstract- Formal Methods (FMs) can be used in varied areas of applications and to solve critical
and fundamental problems of Performance Evaluation (PE). Modelling and analysis techniques
can be used for both system and software performance evaluation. The functional features and
performance properties of modern software used for performance evaluation has become so
intertwined.

Traditional models and methods for performance evaluation has been studied widely
which culminated into the modern models and methods for system and software engineering
evaluation such as formal methods. Techniques have transcended from functionality to
performance modeling and analysis. Formal models help in identifying faulty reasoning far earlier
than in traditional design; and formal specification has proved useful even on already existing
software and systems. Formal approach eliminates ambiguity. The basic and final goal of the
performance evaluation technique is to come to a conclusion, whether the software and system
are working in a good condition or satisfactorily.

Keywords: formal methods, performance evaluation, performance modeling, software
performance evaluation, machine learning, markov chains, queuing networks.

GJCST-C Classification:

PerformanceEvaluationofSoftwareusingFormalMethods

Volume 20 Issue 1 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Global Journal of Computer Science and Technology: C
Software & Data Engineering

D.2.m

Strictly as per the compliance and regulations of:

Akinsola, Jide E. T. α, Kuyoro, Afolashade, O. σ, Adeagbo, Moruf A. ρ & Awoseyi, Ayomikun A. Ѡ

Abstract- Formal Methods (FMs) can be used in varied areas
of applications and to solve critical and fundamental problems
of Performance Evaluation (PE). Modelling and analysis
techniques can be used for both system and software
performance evaluation. The functional features and
performance properties of modern software used for
performance evaluation has become so intertwined.

Traditional models and methods for performance
evaluation has been studied widely which culminated into the
modern models and methods for system and software
engineering evaluation such as formal methods. Techniques
have transcended from functionality to performance modelling
and analysis. Formal models help in identifying faulty
reasoning far earlier than in traditional design; and formal
specification has proved useful even on already existing
software and systems. Formal approach eliminates ambiguity.
The basic and final goal of the performance evaluation
technique is to come to a conclusion, whether the software
and system are working in a good condition or satisfactorily.

Formal methods (FM) or Formal Techniques (FT) for
performance evaluation include formalisms for performance
modeling (which are Markov chains, queuing networks,
stochastic Petri nets, and stochastic process algebras),
equivalence checking and model checking, efficient solution
techniques, and software performance engineering. Modeling
consists of five classes: requirements, activities, connectors,
performers, and resources.

The paper focuses on formal methods for
performance evaluation using formal modeling with emphasis
on Modeled System, Markov Chains, Queuing Networks,
Generalized Stochastic Petri Nets, Stochastic Process
Algebras, Markovian Behavioral Equivalences and Software
Performance Engineering (SPE) in relation tofunctional
features and performance properties.
Keywords: formal methods, performance evaluation,
performance modeling, software performance evaluation,
machine learning, markov chains, queuing networks.

I. Introduction

he term Formal Methods (FM) refers to the use of
mathematical modelling, calculation and prediction
in the specification, design, analysis and

assurance of computer systems and software. The
reason it is called formal methods rather than

Author

α

ρ

Ѡ:

Department of Mathematics and Computer Sciences,

First Technical University, Ibadan, Oyo State, Nigeria.

e-mails: akinsolajet@gmail.com, adedegy@gmail.com,

awoseyiayomikun@gmail.com

Author

σ:

Department of Computer Science, Babcock University,

Ilishan-Remo, Ogun State, Nigeria. e-mail: afolashadeng@gmail.com

mathematical modelling of software is to highlight the
character of the mathematics involved (Rushby, 1995).

According to Wikipedia, the use of formal
methods for software and hardware design is motivated
by the expectation that, as in other engineering
disciplines, performing appropriate mathematical
analyses can contribute to the reliability and robustness
of a design.

Formal methods (FM) or Formal Techniques
(FT) for performance evaluation include formalisms for
performance modeling (Markov chains, queuing
networks, stochastic Petri nets, and stochastic process
algebras), equivalence checking and model checking,
efficient solution techniques, and software performance
engineering (Bernardo & Hillston, 2007). Collins (1998),
opined that formal methods are techniques used to
model complex systems as mathematical entities. By
building a mathematically rigorous model of a complex
system, it is possible to verify the system's properties in
a more thorough fashion than empirical testing.

System engineers can inspect the modeled
system architecture to determine whether it is
acceptable, but few formal methods exist to aid in the
performance of this task (Rodano & Giammarcob,
2013). In a safety critical system, ambiguity can be
extremely dangerous, and one of the primary benefits of
the formal approach is the elimination of ambiguity
(Kling, 1994).

Modelling is one of the ways used in presenting
performance evaluation. Heuristics can be applied in
determining the good characteristics for performance
evaluation. Formal methods can be applied to identify
the characteristics of a good system architecture using
logical notations. Formal method is the fast approach to
identify possible problems in any software architectural
design (Rodano & Giammarcob, 2013).

Performance evaluation gives a measure of the
service delivered by a system (Jean-Yves & Boudec,
2010) and performance is one of the most important
non-functional aspects of any (hardware or software)
system. Performance evaluation comprises of certain
techniques such as direct measurements using test-
beds, analytical or simulation modeling which can be
applied to existing or envisioned systems like computer
systems, communication networks, algorithms and
protocols (Jain, 1991). The basic and final goal of the
performance evaluation concept is to come to a
conclusion, whether the software and system are

T
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

17

Performance Evaluation of Software using
Formal Methods

working in a good condition or satisfactorily. This is can
be achieved with formal modelling techniques.

Datamining is the discovery of “models” fordata
(Leskovec, Rajaraman & Ullman, 2014). According to
Anwaar, Junaid, Raihan, Arjuna, Andrej & Jon (2016),
datamining normally denotes the automation of pattern
discovery and prediction from huge volumes of data
using Machine Learning (ML) techniques. Datamining
can also be used to denote an Online Analytical
Processing (OLAP) or Structured Query Language (SQL)
queries that entails retrospectively searching a large
data base for a specific query. There has been upsurge
in availability of information and device connectivity have
brought about increase in application of machine
learning (which is a sub-domain Artificial Intelligence (AI)
in diverse areas (Akinsola, Awodele, Idowu & Kuyoro,
2020). These areas include applications of Machine
Learning (ML) in performance evaluation and verification
of software. ML requires application of algorithms for
model building using performance metrics. Every
performance metric must be considered holistically
before choosing an optimal algorithm for predictive
analytics (Akinsola, Awodele, Idowu & Kuyoro, 2020).

Formal method axioms can be used in
structural evaluation of a software model especially data
mining model. The relationships among the various
elements of data mining software you be used to
evaluate its effectiveness in terms of performance.
Formal methods can be used for testing the realization
of the entire software against its specification as well as
connections between components in order to determine
its interoperability.

Characteristics heuristics natural language
axioms. The axioms symbolizes syntactic checks that
can be used in software performance evaluation.
Transformation of axioms into formal language notation

is essential in performance evaluation of data mining
software. CORE and Innoslate are some of the software
engineering tools for software performance evaluation.

The quality of any software for performance
evaluation has three sets of factors which are
functionality, engineering, and adaptability. They are
also referred to as exterior quality, interior quality and
future quality respectively. Formal method functionality
features are the exterior qualities such as Correctness,
Reliability. Usability and Integrity. The engineering
features are Efficiency, Testability, Documentation and
Structure while the adaptability features are Flexibility,
Reusability and Maintainability

II. Literature Review

Axioms are statements that we cannot deny
without using them in our denial. Axioms are the
foundation of all knowledge. When they are well
constructed, the transformation of axioms into formal
language notation can be a veritable tool in performance
evaluation of data mining software. Formal methods
axioms can be used in structural evaluation of a
software model especially data mining model.

CORE I is used for analyzing the axioms.
Innoslate is a web-based system modeling tool that is
based on the Lifecycle Modeling Language (LML)

Model consists of five classes: requirements,
activities, connectors, performers, and resources.
Resources are data or information that is produced
and/or consumed by the system. An activity is an
element that transforms inputs into outputs (inputs and
outputs are both resources). Performers carry out
activities, and physical or logical relationships between
performers are known as connectors. Requirements are
written specifications for the system (Giammarco, 2012)

Figure 1: Class / Relationship Diagram of Software Model (Source: Giammarco, 2012)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

18

Performance Evaluation of Software using Formal Methods

The axioms for evaluating a modeled software
architecture are categorized into five groups:
Decomposition, Requirements Traceability, Activity
Performance, Input/Output and Connection.

Markov chains have become an accepted
technique for modeling a great variety of situations.
Formal methods in computer science as a prominent
approach to the rigorous design of computer,
communication and software systems. Markov chains,
the fundamental performance modeling formalism in
use since the early 1900s. The success that has
accompanied queuing modeling has largely eliminated
the need to set up and solve global balance equations
numerically. However, as models become more
complex, it is becoming increasing evident that there is
place for numerical analysis methods in the modelers’
toolbox (Stewart, 2007).

Queuing Networks (QNs) have been proved to
be a powerful and versatile tool for system performance
evaluation and prediction. Queuing networks, a class of
stochastic models extensively applied to represent and
analyze resource-sharing systems such as
communication and computer systems. Product-form
queuing networks, allows for defining efficient
algorithms to evaluate average performance measures.
The main computational algorithms for QNs have been
integrated in various software tools for performance
modelling and analysis that include user friendly
interfaces based on different languages to take into
account the particular field of application, e.g., computer
networks, computer systems. Basic queuing systems
have been defined in queuing theory and applied to
analyze congestion systems (Balsamo & Marin, 2007).

Generalized Stochastic Petri Nets (GSPNs), a
modeling formalism that can be conveniently used both
for the functional verification of complex models of
discrete-event dynamic software and systems as well as
for their performance and reliability evaluation. The
automatic construction of the probabilistic models that
underlie the dynamic behaviors of these nets rely on a
set of results that derive from the theory of untimed Petri
Nets. Petri nets are a powerful tool for the description
and the analysis of systems that exhibit concurrency,
synchronization and conflicts. There is general
consensus that the only means of successfully dealing
with large models is to keep them simple by using a
“divide and conquer” approach in which the solution of
the entire model is constructed on the basis of the
solutions of its individual components (Balbo, 2007).

Process algebras emerged as a modelling
technique for the functional analysis of concurrent
systems approximately twenty years ago. Over the last
17 years there have been several attempts to take
advantage of the attractive features of this modelling
paradigm within the field of performance evaluation.
Stochastic Process Algebras (SPA) were first proposed
as a tool. Stochastic process algebras and their use in
performance modeling, with a focus on the PEPA
formalism is highly efficient for evaluation. The
compositional modeling capabilities of the formalism
and the tools available to support Markov-chain based
analysis are good for formal models building (Clark,
Gilmore, Hillston, & Tribastone, 2007).

Figure 2: Classification of the stochastic process algebras (Source: Clarke et al., 2007)

The formality of the process algebra approach
allows assigning of a precise meaning to every
language expression. This implies that once we have a
language description of a given system its behavior can
be deduced automatically (Clarke et al., 2007)

Performance-oriented notations provide the
designer with the capability of building performance
aware system models, which can be used in the early
development stages to predict the satisfy ability of
certain performance requirements as well as to choose

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

19

Performance Evaluation of Software using Formal Methods

among alternative designs on the basis of their
expected Quality of Service (QoS) guarantees.
Markovian behavioral equivalences with respect to a
number of criteria such as their discriminating power,
the exactness of the Markov-chain-level aggregations
they induce, the achievement of the congruence
property, the existence of sound and complete
axiomatizations, the existence of logical
characterizations, and the existence of efficient
verification algorithms can provide satisfactory analysis
with respect to certain criteria such as exact
aggregation, congruence property , sound and
complete axiomatization, logical characteristics and
verification complexity (Bernardo, 2007).

Probability is an important component in the
design and analysis of software and hardware systems.
In distributed algorithms electronic coin tossing is used
as a symmetry breaker and as a means to derive
efficient algorithms, Model checking for both discrete-
time and continuous-time Markov chains, which deals
with algorithms for verifying them against specifications
written in probabilistic extensions of temporal logic,
including quantitative properties with rewards supports

probabilistic modeling such as Probabilistic Symbolic
Model (PRISM) checker (Kwiatkowska, Norman &
Parker, 2007).

Software performance engineering (SPE) is a
systematic, quantitative approach to constructing
software systems that meet performance requirements.
SPE provides an engineering approach to performance,
avoiding the extremes of performance-driven
development and “fix-it-later.” SPE uses model
predictions to evaluate trade-offs in software functions,
hardware size, quality of results, and resource
requirements. Two SPE models provide the quantitative
data for SPE: the software execution model and the
system execution model. The software execution model
represents key facets of software execution behavior.
The model solution quantifies the computer resource
requirements for each performance scenario. The
system execution model represents computer system
resources with a network of queues and servers. The
model combines the performance scenarios and
quantifies overall resource utilization and consequent
response times of each scenario (Smith, 2007).

Figure 3: Software Performance Engineering Process (Source: Smith, 2007)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

20

Performance Evaluation of Software using Formal Methods

III. Merits and Demerits of Formal
Methods for Performance

Evaluation

a) Merits
It is effectual to write a specification formally

rather than writing an informal specification and then
translating it. To detect inconsistency and
incompleteness, it is efficient to analyze the formal
specification as early as possible (Mona, Amit & Meenu,
2010). Given below are some of the merits of formal
methods in software performance evaluation:

i. Measure of correctness: The use of formal methods
provides a measure of the correctness of a system,
as opposed to the current process quality
measures.

ii. Early defect detection: Formal Methods can be
applied to the earliest design artifacts, thereby
leading to earlier detection and elimination of
design defects.

iii. Guarantees of correctness: Formal analysis tools
such as model checkers consider all possible
execution paths through the system. If there is any
possibility of a fault/error, a model checker will find
it. In a multithreaded system where concurrency is
an issue, formal analysis can explore all possible
interleaving and event orderings. This level of
coverage is impossible to achieve through testing.

iv. Error Prone: Formal description forces the writer to
ask all sorts of questions that would otherwise be
postponed until coding. This helps to reduce the
errors.

b) Demerits
Formal methods are generally viewed with

suspicion by the professional engineering community
(Bowen, 93). Given below are some of the demerits of
formal methods in software performance evaluation:

i. Expansive
Formal Methods are expense. This is because

of the rigor involved, formal methods are always going
to be more expensive than traditional approaches to
engineering. Also, the tool development cost is high.

ii. Limits of Computational Models
While not a universal problem, most formal

methods introduce some form of computational model,
usually hamstringing the operations allowed in order to
make the notation elegant and the system provable.
Unfortunately, these design limitations are usually
considered intolerable from a developer's perspective.
iii. Usability

Traditionally, formal methods have been judged
on the richness of their descriptive model. That is, 'good'
formal methods have described a wide variety of
systems, and 'bad' formal methods have been limited in
their descriptive capacities.

iv. Adaptability
SPE activities are not easy to adapt and

economical for future environments. So it needs to
evolve in order to make SPE adaptable.

IV. Conclusion

Formal Methods (FM) is a very active research
area with a wide variety of methods and mathematical
models. There is not available any one method that
fulfills all the related needs of building a formal
specification. Just like the No Free Lunch theorem is
highly essential in the field of machine learning because
good number of correctly classified instances in
predicting valid disease outcomes using supervised
machine learning techniques is not just a function of
accuracy (Akinsola, Adeagbo, Awoseyi, Ayomikun,
2019).Performance evaluation of software using formal
methods can be carried out using hybridization of
machine learning and Multi Criteria Decision Making
(MCDM) techniques. MCDM methods can be used to
find the optimal classification and regression models in
relation to supervised machine learning algorithms
(Akinsola, Kuyoro, Awodele & Kasali, 2019).

Researchers and practitioners are continuously
working in this area and there by gaining the benefits of
using formal methods. Furthermore, formal methods are
only part of the solution to the problem related to
requirement analysis and success depends crucially on
integrating them into a larger process. Formal method
axioms are being used in structural evaluation of a
software model especially data mining model. Survey of
Markovian Behavioral Equivalences supports a merely
qualitative analysis, in the sense that it only allows one
to establish whether two models pass an arbitrary test in
the same way.

Generalized Stochastic Petri nets (GSPNs) can
be conveniently used for the analysis of complex
models of Discrete Event Dynamic Systems (DEDS) and
for their performance and reliability evaluation. Classical
Process algebra (CPA) can be used to develop models
which may be used to calculate performance measures
as well as deduce functional properties of the system.

Markovian Bisimilarity ∼MB, Markovian Testing
equivalence ∼MT, and Markovian Trace equivalence
∼MTr with respect to a number of criteria such as exact
aggregation, congruence property , sound and
complete axiomatization, logical characteristics and
verification complexity can be used to model by taking
advantage of symmetries within the model. Stochastic
model checking can be used to cover both the theory
and practical aspects for two important types of
probabilistic models such as discrete- and continuous-
time Markov chains.

Software Performance Engineering (SPE)
should become better integrated into capacity planning.
There has been a tremendous amount of research in the

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

21

Performance Evaluation of Software using Formal Methods

SPE field since it was first proposed as a discipline in
1981. The emphasis will change from finding and
correcting design flaws to verification and validation that
the system performs as expected. The verification and
validation can be implemented using predictive analytics
with proper application of the best fit machine learning
algorithms. Supervised predictive machine learning, ML
algorithms require precise accuracy and minimum
errors in addition to putting several factors into
consideration (Osisanwo, Akinsola, Awodele,
Hinmikaiye, Olakanmi & Akinjobi, 2017)

Software Application Gap Analysis
Software assessment must be determined in a

manner whether business requirements are being met, if
not, what steps should be taken to ensure they are met
successfully. The following must be considered for
critical performance evaluation.

1. The natural language axioms deals with first-order
predicate logic notation, therefore, it cannot be used
for implementing more complex software
performance evaluation.

2. The axioms are too generic and might not be robust
enough to cope with evaluating certain software
classes effectively. Therefore, domain specific
axioms should be developed

3. The verification and validation components of the
software performance evaluation process should
include more analyzer to make it efficient and highly
scalable with focus on machine learning.

4. In Markovian Behavioral Equivalences none of the
proposals seems to induce an exact aggregation at
the Continuous-Time Markov Chains (CTMC) level

5. Markov chains focuses on numerical analysis of
modelling but cannot handle novel approaches
concerning the special structures in performance
evaluation, thus cannot handle complex models.

6. There is need for the development of the solid
theoretical framework of model construction and
analysis for Generalized Stochastic Petri nets
(GSPNs).

7. Determination of the execution probability and the
average duration of the computations in the
presence of passive transitions is highly is a
challenge. Also, the set of logical operators
necessary to characterize Markovian behavioral
equivalences decreases as the discriminating power
of the equivalences decreases.

8. PRISM model checker for stochastic model
checking may prove too simplistic for some
modelling applications.

9. There is need to extend the quantitative methods to
model emerging hardware-software developments,
to extend hardware-software measurement
technology to support SPE, and to develop
interdisciplinary techniques to address the more
general definition of performance.

References Références Referencias

1. Akinsola, Jide E. T., Adeagbo, Moruf A., Awoseyi,
Ayomikun A. Breast Cancer Predictive Analytics
Using Supervised Machine Learning Techniques.
International Journal of Advanced Trends in
Computer Science and Engineering, 8 (6), 3095-
3104, ISSN 2278-3091, November – December
2019. Available Online at http://www.warse.org/
IJATCSE/static/pdf/file/ijatcse70862019.pdf DOI:
https:// doi.org/10.30534/ijatcse/2019/70862019.

2. Akinsola, Jide E. T.; Awodele, Oludele; Idowu,
Sunday A.; Kuyoro, Shade O. SQL Injection Attacks
Predictive Analytics Using Supervised Machine
Learning Techniques, International Journal of
Computer Applications Technology and Research,
Volume 9–Issue 04, 139-149, 2020, ISSN:-2319–
8656. April, 2020. Available at: https://ijcat.
com/archieve/volume9/issue4/ijcatr09041004.pdf
doi: https://10.7753/IJCATR0904.1004.

3. Almeida, J.B., Frade, M. J., Pinto, J. S., & Melo de
Sousa, S., (2011). Rigorous Software Development,
A Practical Introduction to Program Verification.
Series: Undergraduate Topics in Computer Science.
Springer Verlag, 1st Edition, 2011, XIII, 307 p. 52
illus. Soft cover, ISBN 978-0-85729-017-5.

4. Anwaar,A., Junaid,Q., Raihan,R., Arjuna,S.,Andrej,Z.
& JonC. (2016). Big data for development:
applications and techniques. Big Data Analytics,
1/2,1-24. ISSN: 2058-6345.doi:10.1186/s41044-016-
0002-4. Available from: http://i.stanford.edu/~
ullman/mmds/ book.pdf.

5. Balbo, G. (2007). Introduction to Generalized
Stochastic Petri Nets. Universit`a di Torino,
Dipartimento di Informatica Corso Svizzera, 185,
10149 Torino, Italy. SFM 2007, LNCS 4486, pp. 83–
131, 2007. © Springer-Verlag Berlin Heidelberg
2007.

6. Balsamo, S & Andrea Marin, A. (2007). Queuing
Networks. Dipartimento di Informatica Universit`a
Ca’ Foscari di Venezia Via Torino 155, 30172
Venezia Mestre, Italy. SFM 2007, LNCS 4486, pp.
34–82, 2007. © Springer-Verlag Berlin Heidelberg
2007.

7. Bernardo, M. & Hillston, J. (2007). Formal Methods
for Performance Evaluation. 7th International School
on Formal Methods for the Design of Computer,
Communication and Software Systems, SFM 2007
Bertinoro, Italy, May 28-June 2, 2007. Advanced
Lectures. ISSN 0302-9743 © Springer-Verlag Berlin
Heidelberg 2007.

8. Bernardo, M. (2007). A Survey of Markovian
Behavioral Equivalences. Universit`a di Urbino
“Carlo Bo” – Italy Istituto di Scienze e Tecnologie
dell’Informazione. SFM 2007, LNCS 4486, pp. 180–
219, 2007. © Springer-Verlag Berlin Heidelberg
2007.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

22

Performance Evaluation of Software using Formal Methods

9. Bowen & Stavridou (1993). "Safety Critical Systems,
Formal Methods and Standards.

10. Bowen, J. P., & Hinchey, M. G. (1995). "Seven More
Myths of Formal Methods." IEEE Software 12.4
(1995): pp. 34-41.

11. Clark, A., Gilmore, S., Hillston, J. & Tribastone, M.
(2007). Stochastic Process Algebras. LFCS, School
of Informatics, University of Edinburgh. SFM 2007,
LNCS 4486, pp. 132–179, 2007. © Springer-Verlag
Berlin Heidelberg 2007

12. F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O.
Hinmikaiye, O. Olakanmi and J. Akinjobi.
Supervised Machine Learning Algorithms:
Classification and Comparison. International Journal
of Computer Trends and Technology (IJCTT) –
Volume 48 Number 3, 2017, https://doi:
10.14445/22312803/IJCTT-V48P126

13. Giammarco, K., Xie, G. & Whitcomb, C. A. (2012).
"A Formal Method for Assessing Interoperability
using Architecture Model Elements and
Relationships." (2012)

14. Jean-Yves & Boudec, L. (2010). “Performance
Evaluation of Computer and Communication
Systems”, EPFL Press, Lausanne, Switzerland,
2010.

15. J. E. T. Akinsola, S. O. Kuyoro, O. Awodele & F. A.
Kasali. Performance Evaluation of Supervised
Machine Learning Algorithms Using Multi-Criteria
Decision Making Techniques. International
Conference on Information Technology in Education
and Development (ITED) Proceedings, 17 – 34,
2019.

16. Kling, R. (1994). "Systems Safety, Normal Accidents
and Social Vulnerability".

17. Kwiatkowska, M., Norman, G. & Parker, D. (2007).
Stochastic Model Checking, School of Computer
Science, University of Birmingham Edgbaston,
Birmingham B15 2TT, United Kingdom SFM 2007,
LNCS 4486, pp. 220–270, 2007. © Springer-Verlag
Berlin Heidelberg 2007.

18. Lamsweerde, A. V. (2000). "Formal Specification: A
Roadmap". Proceedings of the Conference on the
Future of Software Engineering. ACM, 2000. pp.
147-159.

19. Leskovec, J., Rajaraman, A. &Ullman, D. J. (2014).
Mining of Massive Datasets.

20. Melo de Sousa, S. (2011). Rigorous Software
Development: An introduction. (LIACC/DIUBI).
RELEASE (UBI), LIACC (Porto), CCTC (Minho)
Computer Science Department, University of Beira
Interior, Portugal.

21. Michael Collins, M. (1998). Formal Methods.
Carnegie Mellon University, 18-849b Dependable
Embedded Systems, Spring 1998. Available at:
https://users.ece.cmu.edu/~koopman/des_s99/for
mal_methods/.

22. Miller & Srivas, (1995). Formal Verification of the
AAMP5 Microprocessor.

23. Mona, B., Amit, M. & Meenu, D. (2010). Formal
Methods: Benefits, Challenges and Future Direction,
Journal of Global Research in Computer Science ©
JGRCS 2010, Volume 4, No. 5, May 2013. Pp. 21-25

24. Rechtin, E. (1992). "The Art of Systems Architecting."
IEEE Spectrum 29.10 (1992): pp. 66-69.

25. Rodano, M. & Giammarcob, K. (2013). A Formal
Method for Evaluation of a Modeled System
Architecture. Procedia Computer Science, Volume
20 (2013). Complex Adaptive Systems, Publication 3
Conference Pp. 210 – 215. Published by Elsevier
B.V.

26. Rushby, J. (1995). Formal Methods and their Role in
the Certification of Critical Systems - SRI - 1995.

27. Smith, C. U. (2007). Introduction to Software
Performance Engineering: Origins and Outstanding
Problems. Performance Engineering Services, Santa
Fe, NM 87504. SFM 2007, LNCS 4486, pp. 395–
428, 2007. © Springer-Verlag Berlin Heidelberg
2007.

28. Stewart, W. J. (2007). Performance Modelling and
Markov Chains. Department of Computer Science,
North Carolina State University, Raleigh, NC 27695,
USA. SFM 2007, LNCS 4486, pp. 1–33, © Springer-
Verlag Berlin Heidelberg 2007.

29. Wikipedia (2017). Available at: https://en.wikipedia.
org/wiki/Formal_methods.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

23

Performance Evaluation of Software using Formal Methods

	Performance Evaluation of Software using Formal Methods
	Author
	Keywords
	I. Introduction
	II. Literature Review
	III. Merits and Demerits of Formal Methods for Performance Evaluation
	a) Merits
	b) Demerits
	i. Expansive
	ii. Limits of Computational Models
	iii. Usability
	iv. Adaptability

	IV. Conclusion
	References Références Referencias

