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Mediation of Lazy Update Propagation in a 
Replicated Database over a Decentralized P2P 

Architecture 
Katembo Kituta Ezéchiel α, Shri Kant σ & Ruchi Agarwal ρ 

Abstract- While replicating data over a decentralized Peer-to- 
Peer (P2P) network, transactions broadcasting updates arising 
from different peers run simultaneously so that a destination 
peer replica can be updated concurrently, that always causes 
transaction and data conflicts. Moreover, during data 
migration, connectivity interruption and network overload 
corrupt running transactions so that destination peers can 
experience duplicated data or improper data or missing data, 
hence replicas remain inconsistent. Different methodological 
approaches have been combined to solve these problems: 
the audit log technique to capture the changes made to data; 
the algorithmic method to design and analyse algorithms and 
the statistical method to analyse the performance of new 
algorithms and to design prediction models of the execution 
time based on other parameters. A Graphical User Interface 
software as prototype, have been designed with C #                     
(C S harp), to implement these new algorithms to obtain a 
database synchronizer-mediator. A stream of experiments, 
showed that the new algorithms were effective. So, the 
hypothesis according to which “The execution time of 
replication and reconciliation transactions totally depends on 
independent factors.” has been confirmed. 
Keywords: peer-to-peer (P2P), database replication, data 
reconciliation, transaction serialization, synchronizer-
mediator. 

I. Introduction 

n computing, a Distributed Database System 
(DDBS) is a database whose storage devices are 
not necessarily all linked to a common processing 

unit; but rather in this approach, the database can 
be stored on multiple computers, located in the same 
physical location or can be scattered on networked 
computers [1], [8]. The distribution transparency is 
the fundamental principle of the DDBS which 
consists of making a distributed system to appear 
similar to a centralized system to the users. The 
distribution transparency as well as the management 
of a DDBS are ensured by a program called 
Distributed Database Management System (DDBMS) 
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[3]. The design of a DDBS requires that it be entirely 
resident on different sites of a computer network but 
not necessarily all. This means that at least two sites 
must host the database and not necessarily each site 
in the network, as depicted in the Fig. 1. 

Thus, there are two distribution strategies: 
data fragmentation and data allocation on the one 
hand and data replication on the other hand. So, to 
make a good design, all these strategies are 
compiled [2], [3], [33]. The fragmentation consists in 
splitting a relation (a table of a database) into a 
number of sub-relations, called fragments; which can 
be horizontal, vertical or hybrid. Horizontal fragments 
are subsets of tuples (table records), vertical 
fragments are subsets of attributes (table columns), 
and hybrid fragmentation consists of mixing the two 
preceding ones. In turn the allocation is nothing more 
than the assignment of fragments to the sites in an 
optimal way [2]. When allocated fragments have to 
share data among them, they need the replication 
procedure. 

Fig. 1: Architecture of Distributed Database System. 

However, this work focuses on the data 
replication strategy. The replication consists of 
duplication and storage of multiple copies or replicas 
(at least two) of the same fragment or the entire 
relation (in the case of a fully replicated database) of 
a DDBS in multiple different sites. The replication is 
the strategy used to ensure the data exchange 
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between fragments or relations in a fully replicated 
database [2], [3], [4], as illustrate in Fig. 2. In any 
case, the main problem of the data replication is the 
synchronization of replicas. Data synchronization is 
nothing than keeping consistent replicas in a 
Replicated Database System (RDBS) [5]. This means 
ens uring the exchange of updates between replicas.

Fig. 2: Protocol of Database replication.

Nowadays P2P computer network is in full 
emergence. Comparatively to client/server model, in a 
P2P system, each client is itself a server. In this way
replicating a Database over a P2P network require 
that all peers keep the same data copy. In the same 
way, the emergence of advanced applications of
P2P systems, requiring general replication capabilities
with different levels of granularity and multi-master 
mode [11], where each peer can transfer updates to 
all others and the same replica can be updated by 
several peers in a replicated databases environment 
[4], [10], the serialization of updates and the 
reconciliation of data turns out to be the particular 
P2P replication problems because those flows of
updates (data) and refresh transactions conflict each 
other [8], [30], [33].

For example, the operations on an account, 
of a customer, opened in a bank with multiple 
branches can be replicated by several branches of 
the same bank and must be able to be updated by 
any branch anytime, to acquire reception of a 
transfer, for a deposit to the account, a withdrawal 
from the account, etc. Concretely, changes made by
refresh transactions from different peers reach a
destination site at the same time and multiple updates 
of the same replicas by different peers break the 
reliability and the consistency of replicas [2].

This is why this study aims to introduce an 
effective approach to serialize refresh transactions 
and to reconcile replicas in the case of inconsistency.
To overcome one of DDBS homogeneity aspects,
namely the same DBMS, the result of this design 
needs to be implemented as a synchronizer-mediator 
for database replication in a Graphical User Interface 
(GUI) using lazy decentralized sites strategy on a P2P
network. To reach this purpose, the structure of this 
paper is organized as follow: the first section
introduced by presenting the context of this research 
as well as the status of the problem, the second 
section will review the related works, the third will
present the methodology, fourth section will show the 
simulation environment for experimentation, the fifth
section will offer the result and finally the sixth section 
will conclude this study.

II. Related Works

This section will rapidly review certain 
research works already realized to attempt to solve 
these two aforementioned problems.

a) Data replication
Designing a RDBS pursue four majeure

objectives, namely : improving data availability, 
improving performance, ensuring scalability and
users applications requirements. These purposes can 
be summarized as “improving consistency and/or 
reliability” [2], [3]. To ensure consistency between 
replicas, the synchronization procedure uses the 
transaction running technique. A transaction is a 
collection of operations that transforms the database 
from a consistent state to another consistent state 
[6], as illustrated in Fig. 3.

Fig. 3: Protocol of Transaction running.

A transaction has a Begin Of Transaction
(BOT) and an End Of Transaction (EOT). This End is 
managed by three different functions: either a 
“commit” to validate, a “rollback” to cancel, or an
“abort” to interrupt the execution of operations inside
the transaction. The consistency and/or reliability of 
a transaction are guaranteed by 4 properties:
Atomicity, Coherence, Isolation, Durability (ACID) that 
make the “acidity” of a transaction [2], [7]. As we are 
dealing with data flow, our focus remains on the 
Structured Query Language (SQL) operators, 
especially the Data Manipulation Language 
operators in most of DDBMSs, which contains [9]: 
The write operators (Insert, Update and Delete SQL 
commands) and the read operator (Select SQL 
command). Typically, like the structuring of 
instructions of a procedural language, a transaction 
"T" can have the following structure:

Begin_Of_Transaction T 
Insert operator 
Update operator 
Delete operator 
Select operator
End_Of_Transaction T

However, to solve the aforementioned main
problem of data replication, i.e. the synchronization of 
replicas, there already exits four replication strategies, 
resulting from the combination of two factors: “when” 
and “where”. The "when" factor specifies when
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updates are broadcasted (synchronously/eagerly or 
asynchronously/lazily), while the "where" factor 
indicate where updates occur on a centralized site
(primary copy/mono- master) or on decentralized 
sites (everywhere/multi-master) before being
propagated. So when we take the factor “where” in 
“when”, it emerges [1], [2], [3], [4], [30], [33], [34]:

A. Synchronous or Eager Replication: All replicas 
must be updated before the transaction commit
i.e. in real-time. Here, the most up to date value of
an item is guaranteed to the end user. There are 
two different strategies in synchronous 
replication:

1) Eager centralized site: This method is 
beneficial in case where reads are much more 
frequent than writes. It works under the 
principle “Read-One, Write-All (ROWA)”. After 
transaction commitment, any one of replicas
can be read; so the write process must update
all replicas.

2) Eager decentralized sites: The principle is 
“update everywhere”; in this logic every site is 
allowed to propagate updates to all sites in 
the same transaction, at the same time so 
that on the end of the transaction updates 
become available on all sites.

B. Asynchronous or Lazy Replication: Allows different
replicas of the same object to have different
values for a short periods of time i.e. in near real-
time. They are updated after a predefined interval 
of time. There are two different strategies in 
asynchronous replication:

1) Lazy centralized site: It works with the principle 
such that one copy of replicas is assigned as
the “primary copy or mono-master” so that 
changes of data or writes are possible only 
on it. These changes are periodically 
propagated to the secondary copies. The 
secondary copies of data can only be read.

2) Lazy decentralized sites: Here the principle is 
so that changes can be performed 
“everywhere or multi - master”, on each site. 
So these changes are propagated 
independently to other sites sporadically.

These replication strategies, have already
been implemented in most of modern DDBMSs [9]. It 
is largely the centralized strategy that is much more 
wrapped in the replication models offered by almost
all DBMSs. But, although these modelling are done,
there remains a problem to emphasize in eager
centralized site approach such that if there is a site 
unavailable during updates propagation by the 
master site, the transaction cannot commit. So, some 
researches are already attempting to design an 
optimal algorithm that can allow the update 

transaction commitment on the available sites and to 
update unavailable sites as soon as they become
available again; hence the approach “Read-One, 
Write-All Available (ROWA-A)” [2], [30], [33]. In 
addition, one could expect the problem related to the
momentary interpolation of the line of communication 
between the master site and the slave sites, because
it is enough for example that the master site overlord
or be inaccessible so that the slaves no more access 
to updates [8]. Well, there is only the decentralized 
strategy that can clear this concern.

Nevertheless, eager decentralized sites
experience the same problem as eager centralized 
site, whereby update transactions that arise from all
sites, if they find at least one site unavailable they
abort. But to overcome this problem, such kind of
systems should be able first of all to commit 
transactions on only available sites and so update 
unavailable sites as soon as they become available 
again; hence the approach “Update Everywhere 
Available” [17]. So nowadays, some researches 
attempt to improve these algorithms by distributed 
voting algorithm [4]. Thus, if the sites number 
quorum is reached the transaction commit on them; 
so afterwards, when writing, update all fraction of the
replicas and when reading, read enough replicas to 
ensure you get at least one copy of the most   
recent value.

In view of the above, it seems that the lazy 
strategy is appropriate for P2P topology, especially 
since it allows replicas of various sites to diverge for a 
given moment. So as in a P2P network, the 
participants (Peers) are present or absent 
momentarily, updates propagation can be applicable 
on the present Peers while the absent Peers will 
remain with non - updated replicas in order to receive 
their updates when they become available again 
[10], [33]. Thus, lazy centralized sites approach is 
appropriate for the centralized P2P topology because
updates are performed only on the central site and
then forwarded to slave sites in near real-time while 
lazy decentralized sites approach is the most 
appropriate for the materialization of replication on a 
decentralized P2P topology because in near real-time,
like centralized approach, updates can be performed 
everywhere, i.e. on each peer and then be 
broadcasted to all others.

Referring on our problem concerning 
replication over a decentralized P2P architecture, the 
observation has been that only a few of DDBMSs
have already tried to implement the lazy decentralized 
strategy in order to formalize the P2P replication; let us 
quote for instance SQL Server [13] and Oracle [14]. 
Unfortunately, the particular problems of P2P 
replication still exist and will be developed in following
lines:
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• Transaction conflicts: Several updates carried by
refreshing transactions, from different sites reach 
a destination site at the same time but they 
cannot be performed on the same time, then 
reliability and consistency will be lost and there 
will be the risk of transaction conflicts [2], [30], 
[33], [35]. DDBMSs must ensure that transaction
execution meets a set of properties that lead to 
the consistency of distributed databases and
conveniently summarized by the ACID, since 
when the execution is always concurrent [6], [7].
Thus, several researches have already been
undertaken to solv e the transaction concurrency 
control problem. Concurrent execution without
harmonization constraints poses a number of 
problems, the most important of which is the loss 
of operations and incorrect readings. Therefore, 
it is necessary to set the serializability, a property 
determining a correct execution of the completion 
of transactions [3].

• Data conflicts: P2P replication allows to perform
changes on each peer in the topology and then 
forward them to other peers. However, as
changes are performed at different peers, 
probable data conflicts are to be pointing out 
when modifications are being broadcasted [2], 
[30], [33]. Thus, in all DDBMSs which have already 
succeed to implement the lazy decentralized sites 
approach to make it P2P replication, one can 
distinguish three types of data conflicts [13], [14], 
[20], [21]:

a) Primary key or uniqueness conflict: Occurs when 
a record with the same primary key has been 
created and inserted at more than one peer in
the topology. So when those peers need to 
exchange updates, it is then impossible to violate 
the criterion of entity integrity;

b) Foreign key conflict: Can occurs if in any case the
refresh transaction forward updates which
contains a record with a foreign key column but 
whose primary key is not yet forwarded to the
destination peer. So it is then impossible to violate 
the criterion of referential integrity;

Data modifications conflicts:

 Update conflict: occurs when the same record 
has been updated on more than one peer;

 Insertion/Update conflict: occurs when a record 
has been updated on a peer and the same record
has been deleted and re-inserted on another
peer;

 Insert/Delete conflict: occurs when a record has
been deleted on a peer and the same record has 
been deleted and re-inserted on another peer;

 Update/Delete conflict occurs when a record has 
been updated on one peer and the same record 
has been deleted on another peer;

 Deletion conflict: occurs when a record has been 
deleted on more than one peer.

Thus it is necessary to think about a certain
number of rules to warranty the conflict policy 
avoidance in the decentralized P2P replicated 
environment. Apart from the inconsistency of data
caused by transaction conflicts and data conflicts,
there are other phenomena which make the 
replicated data inconsistent. Thus, although the 
transaction that propagates the updates is 
successfully committed, the data remains 
inconsistent. Hence, there is the need of an 
automatic data reconciler.

b) Data reconciliation
Database reconciliation is a process of 

verifying data when there has been a migration or 
transfer of data from a source database to a 
destination. The purpose of this process is to 
ensure that the migration has been done accurately 
[22]. In this logic, in a global manner, the data is the
set of tables of a given database and in a basic way,
the set of records of definite tables which can be 
accessed by a certain selection criterion. In a 
replicated Databases environment, updates
broadcasting as well consists to migrate or to 
transfer data changes from a Prima ry site toward 
Secondary sites [23].

However, during data migration, errors may 
have occurred [12]. Most are like execution failures 
due to network interruptions as well as network 
overload those end up corrupting transactions and 
causing data to be lost or remain in an invalid state at 
the destination [8], [34]. These phenomena lead to a 
series of problems such as: missing records, 
duplicate records, incorrect values, missing values, 
incorrectly formatted values, broken relationships 
between tables in case of forced redundancy, etc. 
[22]. But, some researches have already been 
undertaken to find solutions in several ways and 
some algorithms are already implemented in DDBMs 
and particular software to reconcile data after 
migration process.

Oracle Corporation [24], possesses some 
databases reconciliation tools for their DDBMSs: 
Upgrade Reconciliation Toolkit is used to compare
the data on the Oracle DB source and Oracle DB 
destinations after data migration and after running 
the parallel End Of Day (EOD) activities mostly for 
different branches of a bank. This tool generates 
also the reconciliation report at the end of the
process. Another tool is mysqldbcompare especially 
for MySQL, this tool compares two databases by 
identifying differences between databases objects; 
changed or missing rows of tables are shown in 
standard formats like grid, table, etc. It is going 
beyond the data comparison; this utility compare 
also objects data definition of two databases [25].

c)
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H.  Jonathan  [26],  implemented   a   PHP 
script, to produce MySQL_Diff tool, a Web application 
running in a browser, to reconcile two MySQL
databases schema difference by visualizing 
databases tools and resolving differences. ApexSQL 
LLC [29], a Microsoft Gold  Certified  Partner, provide
ApexSQL Data Diff, a Windows application to compare 
tables in the databases and visualize the difference 
in a grid before synchronizing two different remote 
sources SQL Server databases. Slotix s.r.o. [27], 
provide DBConvert, a Windows application to migrate 
data (1 Million records in 5-10 minutes) between 
multiple databases and DBSync, a customized 
Windows application as well, to compare (missing 
and additional records) and synchronize data
between two different databases.

Pragmatic Works Inc. [28], a Microsoft Gold 
Certifie d Partner, provide another Data Reconciliation 
Tool LegiTest’s, which can be connected to a variety 
of data sources, mostly for Microsoft so that data 
verification can be perform cross- platform. It 
supports SQL Server, Oracle, SSAS, OLE DB 
sources, and ODBC sources. Experian Ltd. [22], 
provides Experian Aperture Data Studio, a Windows 
application for data migration and data reconciliation 
between a source and a destination database.

Nevertheless, all these tools run reconciliation 
between one source and one destination. The only 
one which can reconcile one source and multiple 
destinations is Upgrade Reconciliation Toolkit for 
Oracle. Unfortunately, it is only limitated to Oracle DB. 
The tools mysqldbcompare and MySQL_Diff are also 
limitated to MySQL and they are not taking in to 
account multiple destinations. The Tool LegiTest’s 
should be more interesting because it is able to 
reconcile multi-DBM S databases, but it is also one 
source, one destination; and all others which have 
been listed in this review present such kind of 
limitation.

Moreover, these data reconciliation tools rely 
on simple counting of records to keep track if the 
expected number of records has been migrated. It 
can be esteemed that this was mainly due to the
importance of the processing of essential data to
carry out field validation of a given data. Nowadays,
for more accuracy, the data migration algorithm 
should provide data reconciliation capabilities that 
allow the reconciliation of each data or each field, i.e. 
at the intersection of each row an d each column 
(attributes by record) of each database table [12].

To preserve data inconsistency and to 
maintain acidity, all instructions of the replication 
procedure must be wrapped in transactions [2], [7]. 
The instructions of a transaction are the commands 
or operators of the data manipulation language. But, 
when an operator of the data modification language 
is executed on a site, some time passes while waiting 

for the response. While a transaction may have more 
than one operator and the factors are likely to be 
varied in a P2P environment, this phenomenon 
should greatly influence the temporal complexity in 
the event of variation of different factors. So it is 
necessary to design a prediction model of replication 
and reconciliation execution time.

The assumption of this study is formulated as 
follows: “it seems that P2P replication systems 
experience the weak performance, especially since 
the time to replicate and to reconcile data from a 
Master Peer to Slave Peers dependent, if not totally, 
partially of certain factors, such as: the number of 
records in each table, the number of tables whose 
data has changed, the number of peers connected 
during the propagation of updates and other      
factors (number of columns per table, data types 
columns, etc.)”.

However, these problems deserve a special
attention; that is why there is a reason to wonder 
about setting up “a synchronizer-mediator for lazy 
replicated databases over a decentralized P2P 
architecture”. This system should be able to serialize
updates performed simultaneously on different
replicas of the same database and to reconcile this 
replicas, effectively, over a decentralized P2P network.

III. Methodology

To ensure strong replica consistency in a 
distributed database, traditionally the implementation 
of a syn chronous or eager refresh algorithm which is 
specially Two -Phase-Commit (2PC) based technique 
is the unique gateway to avoid discrepancies 
between replicas [2]. However, this solution is 
inapplicable in a P2P architecture because does not 
guarantee the updates delivery to all peers as they 
are not all always available at the same time [15]. 
Thus, asynchronous or lazy replication is more 
appropriate for P2P systems because it allows 
replicas to be updated independently and to remain 
divergent until a refresh transaction takes place [16]. 
Modifications which have been done to the local 
replica, by local transactions are captured and the 
refresh transaction propagates them to remote 
replicas asynchronously i.e. in near real-time. The 
technique used in this work to capture modifications 
is audit-log.

a) Audit-log technique
Almost all DDBMSs support this technique by 

running triggers belonging to a specific table in order 
to capture data modifications. A trigger is attached to
an event produced by an Insert or Update or Delete 
operator so that it captures changes before or after
the event has taken place in the database [5], [33]. So,
in this work the interest is carried on after trigger. To
achieve this, for each data-table the creation of one 
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audit-table is necessary. The audit-table is 
composed by the data-table primary key column, 
other data-table columns (apart from the primary 
key), the updated column name, the audit action, the 
timestamp and the synchronization ID. These 

elements are required for a record to do the 
comparison between data. Each table in the
database would need three triggers to run after Insert, 
after Update and after Delete. The flow chart, Fig. 4 
here below illustrates the audit-log creation.

Fig. 4: Audit -log (Audit table and triggers) creation.

Suppose that the database is homogenous
and full replicated, as soon as the audit log creation 
of each data table completed, on each peer, for 
each SQL data modification operation, the DDBMS 
performs following action accordingly:

• After each Insert operation in the data table, the 
“insert trigger” captures the newly added record
and inserts it in the audit table, as shown in Fig. 6, 
row 1 to 5 in Slave Peer Audit-table;

• After each Update operation of a column of data 
table, the “update trigger” captures the

concerned record, with the new data that has just
been set, and inserts it in the audit table, as 
shown in Fig. 6, row 6 to 8 in Slave Peer Audit-
table;

• After each Delete operation from the data table, 
the “delete trigger” captures the deleted record
and inserts it in the audit table, as shown in Fig .6, 
row 9 and 10 in Slave Peer Audit- table.
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Fig. 5: Data table triggered and audit tables Master and Slave.

The column synchronisation ID (Sync_ID) in 
Audit -tables don’t have same value; for a Master Peer
Audit-table its content is “Local-Transaction”, value 
automatically provided by the trigger procedure when
the transaction is initiated locally by the user 
application whereas for a remote transaction the 
synchronization procedure update automatically this
column by the sync. ID provided by the Sync. 
Mediator-System. So, the synchronization procedure 
select only data whose Sync_ID is equal to “Local-
Transaction” and whose Audit_Timestamp is in the 
interval of begging date and time to ending date and 
time and apply them to Slave Peers according to the 
Audit_Action value. This technique permits us to 
resolve the problem of the endless loop in the sync. 
procedure used two -ways or symmetrical replication 
which was knowing old synchronizers [5].

b) Algorithmic method
The Algorithmic method will be used to 

design and to analyse instructions of algorithms and 
steps of a Peer-to-Peer Synchronizer. This method 
will take in account the Circulatin g Token Ring 
Algorithm, the Decentralized Peer-to-Peer Replication 

Algorithm and the Decentralized Peer-to-Peer Data 
Reconciliation Algorithm.

i. Network Topology and Algorithm
When a peer needs to broadcast its captured 

updates toward other peers, it needs a token which 
gives it the state of a Master i.e. the permission to 
forward its updates and other peers become 
automatically Slaves. A fully replicated P2P database 
system includes p peers and each peer has a 
complete copy of the database. Peers communicate
with each other by exchanging messages and 
forwarding updates or accessing peer data by 
performing transactions [17]. In this way, updates will 
be applied according to a circulating token, as 
depicted in Fig. 6, which determine transactions
serialization order or one can give the privilege to
updates from certain sites considered to be mo re 
important or privileged.

Suppose a network consisting of four peers 
A, B, C and D all networked. The Fig. 6 below 
presents the decentralized topology of peer-to-peer 
token ring network.
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Fig. 6: T opology of Decentralized P2P circulating
Token Ring.

A predefined order of releasing or getting the 
token, since we are in a P2P network where a peer p 
may or may not be available, is not needed. The 
optimization policy here is to give the token directly to 
a peer which needs it instead of going through a list
of peers that we are not sure of their availability at the 
time of the token release. So, transaction serialization 
is managed by the new circulating token algorithms 1 
and 2, successively for getting the token and
releasing the token.

Algorithm 1: P2P getting the circulating token

Input: A set p of slave peers
Output: A peer (Master/Slave) owning the token
begingetTokenFunction()
1: selectall SlavePeers

2: for(p ← 0 toNumberOfSlavePeers – 1)do

3: if(SlavePeer(p).ConnexionState = “True”) then
4: SlavePeer(p).Availability ←“True”

5: else
6: SlavePeer(p).Availability ←“False”

7: end if

8: end forp
9: selectAvailableSlavePeers

10: for(p ← 0 toNumberOfAvailableSlavePeers – 1)do

11: selectToken from SlavePeer(p)
12: for(j ←0 to NumberOfSyncIDInSlavePeer(p) – 1)
13: ifSyncID(j).TokenPossession = “True”then

14: SlavePeer.TokenPossState←“True” 
15: SlavePeer.SyncID←SlavePeer(p).SyncID(j)
16: end if
17: end forj
18: if(SlavePeer(p).TokenPossState = “True”)then
19: TokenAvailability←“false”
20: select Token from MasterPeer

21: if(MasterPeer.TokenPossState = “True”)then
22: Set MasterPeer.TokenPossState←“False”
23: Set MasterPeer.TokenReleaseDateTime←now()
24: end if
25: if (MasterPeer.Privilege = “True”) then
26: for(p ←0 toNumberOfAvailableSlavePeers– 1)do
27: if(SlavePeer(p).Privilege = “False”)then

28: Set SlavePeer(p).TokenPrevention←“True”
29: end if
30: end forp
31: Send TokenRequest to SlavePeer(p)
32: else
33: Send TokenRequest to SlavePeer(p)
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34: end if
35: else
36: if(p = NumberOfAvailableSlavePeers – 1)then
37: Set MasterPeer.TokenPossState = “True”
38: Set MasterPeer.TokenReceptionDateTime = now()
39: end if
40: end if
41: end forp
42: returna peer (Master/Slave) owning the token
endgetTokenFunction

Since when a peer (p), which can be “A” or “B” 
or “C” or “D” gets the token, it executes the transactions 
according to the algorithm 3, 4 and 5 for data replication 
and 6 for data reconciliation. Consequently, all 
transactions performed are accepted and none rejection 
because only a peer which possess the token can 
perform a transaction of its updates broadcasting and 

reconcile other peers’ data with its updates. As soon as 
peer “A” finishes to perform updates and reconciliations 
with peers "B, C and D", it releases the token and other 
peers like "B" or “C” or “D” can randomly take it, but 
according to the token request minimum date and time, 
and do the same, unless a privileged peer requests it.

Algorithm 2: P2P releasing the circulating token
Input: A set p of slave peers
Output: A slave peer receiving the token
beginreleaseTokenFunction()

1: selectAvailableSlavePeers
2: NonPrilegedPeerNber← 0
3: TokenRequestNber← 0
4: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
5: ifSlavePeer(p).ConnexionState = “True”then
6: selectSlavePeer(p).TokenRequest
7: if(SlavePeer(p).TokenRequest = “True”)then
8: TokenRequestNber ++
9: if(NonPrilegedPeerNber = 0)then

10: if(SlavePeer(p).Privilege = “True”)then
11: if(SlavePeer(p).TokenRequestDateTime = Min(DateTimeOfPrivilegedSlavePeers))then
12: Set MasterPeer.TokenPossState←“False”
13: Set MasterPeer.TokenReleaseDateTime←now()
14: Set SlavePeer(p).TokenPossState←“True”
15: Set SlavePeer(p).TokenPrevention←“False”
16: Set SlavePeer(p).TokenRequest←“False”
17: returnSlavePeer(p).TokenReceived (end forp)
18: else
19: Continue(p ++)
20: endif
21: else
22: if(p = NumberOfAvailableSlavePeer – 1)then
23: if(SlavePeer(p).TokenRequestDateTime = 

Min(DateTimeOfNonPrivilegedSlavePeers)then
24: Set MasterPeer.TokenPossState←“False”
25: Set MasterPeer.TokenReleaseDateTime←now()
26: Set SlavePeer(p).TokenPossState←“True”
27: Set SlavePeer(p).TokenPrevention←“False”
28: Set SlavePeer(p).TokenRequest←“False”
29: returnSlavePeer(p).TokenReceived (end for p)
30: else
31: NonPrilegedPeerNber ++
32: p ←-1
33: end if
34: else if(p <NumberOfAvailableSlavePeer – 1)then
35: Continue(p ++)
36: end if
37: end if
38: else
39: if(SlavePeer(p).TokenRequestDateTime = 

Min(DateTimeOfNonPrivilegedSlavePeers))then
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40: Set MasterPeer.TokenPossState←“False”
41: Set MasterPeer.TokenReleaseDateTime←now()
42: Set SlavePeer(p).TokenPossState←“True”
43: Set SlavePeer(p).TokenPrevention←“False”
44: Set SlavePeer(p).TokenRequest←“False”
45: returnSlavePeer(p).TokenReceived (end for p)
46: end if
47: end if
48: else
49: if(p = NumberOfAvailableSlavePeer – 1)then
50: Set MasterPeer.TokenPossState←“False”
51: Set MasterPeer.TokenReleaseDateTime←now()
52: end if
53: end if 
54: end if
55: end for p
56: returna slave peer receiving the token

endreleaseTokenFunction

ii. Replication Protocol and Algorithm
Assuming that the database is homogenous, 

full replicated and each Peer work under a Two-
Phase-Locking (2PL) concurrency control technique. 
The model of the lazy replication over a decentralized 
Peer-to-Peer Architecture is presented as follows: let 

W(x) be a write transaction where x is a replicated 
data item at Peers A, B, C and D. The Fig. 7, here 
below depicts how transactions update different 
copies at all Peers and after commit the refresh 
transaction, wrapped in the Sync. Mediator-System, 
forward updates to all peers.

Fig. 7: Protocol of Lazy Decentralized P2P Data Replication.

Figure legend

1. Modifications are performed to all replicas by
users;

2. The commitment of a transaction makes the 
modifications stable;

3. The modifications (Inserted, Updated and
Deleted data) are independently transmitted to 
the other data copies or replicas.

According to the Fig. 7, arrows (1) and (2)
deal with the user application i.e. for each local write 
transaction (1), the user application must receive the 
commitment (or abort) message (2). Changes carried 
by (3) are another set of transactions, wrapped in the 
Sync. Mediator-System, routed from each Master 
Peer to Slave Peers. The algorithm 3 here below 
establishes instructions in transactions of the Insert 
operator function.
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Algorithm 3: P2P Replication Algorithm for Data Insertion
Input: Master peer inserted records
Output: Transaction Commitments or Abortions 

begininsertFunction()
1: begininsertMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: begininsertSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Inserted’ 

and AuditTimeStamp≥BeginningDateAndTime and 
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 toRowsInAuditTable(ts)OfMasterPeerDatabase – 1)do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: for(cts←0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database – 1)do
12: ColumnNames←ColumnNames&ColumnNames[cts]
13: Values ←Values & Row[rtm]Column[cts]
14: end for cts
15: insert in toDataTableNames(ts)InSlavePeer(p)Database (ColumnNames)values(Values)
16: end for rtm
17: end for ts
20: endinsertSubTransaction(Commit or Abort)
21: end for p
22: endinsertMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions

endinsertFunction

After records which have been inserted be
replicated to slave peers, the algorithm 4 here below,

which has the instructions in transactions of the
update function, also runs in turn.

Algorithm 4: P2P Replication Algorithm for Data Update
Input: Master peer updated records
Output: Transaction Commitments or Abortions 

beginupdateFunction()
1: beginupdateMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: beginupdateSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Updated’ 

and AuditTimeStamp≥BeginningDateAndTime and 
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 toRowsInAuditTable(ts)OfMasterPeerDatabase -1)do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: for(cts←0 toNumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -1) do
12: if(ColumnName(cts)InDataTable(ts)OfSlavePeer(p)Database = 

UpdatedColumnName)then
13: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)Of

SlavePeer(p)Database ←‘Row[rtm]Column[cts]’ 
whereColumnName(0)InDataTable(ts)OfSlavePeer(p)Database = 
‘Row[rtm]Column[0]’

14: end if
15: end for cts
16: end for rtm
17: end for ts
20: endupdateSubTransaction(Commit or Abort)
21: end for p
22: endupdateMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions

endupdateFunction
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Finally, all deleted records are replicated by the algorithm 5 here below, by instructions in transactions
of the delete function.

Algorithm 5: P2P Replication Algorithm for Data Delete
Input: Master peer deleted records
Output: Transaction Commitments or Abortions 

begindeleteFunction()
1: begindeleteMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: begindeleteSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Deleted’ 

and AuditTimeStamp≥BeginningDateAndTime and 
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 to RowsInAuditTable(ts)OfMasterPeerDatabase–1) do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts)

OfSlavePeer(p)Database = ‘Row[rtm]Column[0]’
12: end forrtm
13: end for ts
14: enddeleteSubTransaction(Commit or Abort)
15: end for p
16: enddeleteMainTransaction(Commit or Abort)
17: returnTransaction Commitments or Abortions

enddeleteFunction

iii. Reconciliation Protocol and Algorithm
After a large data transmission, to overcome

the problem of data inconsistency due to untimely
interruptions of connectivity, network overload and 
other technical hazards, updates forwarded to each 
peer in the replication procedure must be reconciled. 

The model of the Decentralized Peer-to-Peer Data 
Reconciliation is presented as follows: let R(x) be a 
read transaction where x is a replicated data item at 
Peers A, B, C and D. The Fig. 8, here below depicts 
how reconciliation is performed on different copies of 
all peers.

Fig. 8: Protocol of Decentralized P2P Data Reconciliation.

Figure legend

1. After the refresh transactions (Deleted, Updated
and Inserted data) commit, then the reconciliation 

procedure starts. A read transaction is 
performed to the Master peer to retrieve updates
lastly broadcasting toward Slaves.
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2. Processing:

− Reading of updates independently 
forwarded to other replicas by the refresh 
transactions (in (2) dashed arrows);

− Comparison with the Master data read in (1) 
undashed arrows;

− Reconciliation is written to the Slave peers (in 
(2) undashed arrows).

3. The commitment (or cancelation) of a 
reconciliation transaction makes replicas
consistent.

According to the Fig. 8, arrows (1) read data 
forwarded by the Master peer in the last update 

transactions to Slave peers. Dashed arrows (2) read 
as well data received by Slave peers. The 
comparison is done on the Master peer, by the 
Sync. - System in order to detect conflicts between 
data. Undashed arrows (2) update respective Slave 
peers fixing incoherency detected. So when the 
reconciliation transaction ends, the message,
represented by arrows (3), is sending back to the
Sync. Mediator-System and the process terminates. 
The whole reconciliation process is established by 
instructions in transactions of the reconciliation 
function of the algorithm 6 here below:

Algorithm 6: P2P Algorithm for Data Reconciliation
Input: Master peer replicated (inserted, updated and deleted) records
Output: Transaction Commitments or Abortions 

beginreconcileFunction()
1: beginreconcileMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: beginreconcileSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Audit Table Names in Slave Peer(p) Database
7: selectall Data Table Names in Slave Peer(p) Database
8: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database –1)do
9: selectall Rows in Audit Table(ts) of Master Peer Database where TransactionType =

’Local’ and AuditTimeStamp≥BeginningDateAndTime and 
AuditTimeStamp≤EndingDateAndTime

10: selectall Rows in Audit Table(ts) of Slave Peer(p) Database where TransactionType =
’Remote’

11: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
12: sortRows of Audit Table(ts) of Master Peer Database
13: sortRows of Audit Table(ts) of Slave Peer(p) Database
14: if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database – 1 <NumberOfRowsInAudit 

Table(ts)OfMasterPeerDatabase – 1)then
//Reconcile missing records process start

15: rts←0
16: for(rtm←0 toNumberOfRowsInAuditTable(ts)OfMasterPeerDatabase – 1)do
17: repeat
18: if(rts≤NumberOfRowsInAudit Table(ts)OfSlavePeerDatabase – 1)then
19: if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase = 

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then
20: Continue(rts ++)
21: end repeat
22: else

//Call function to insert missing records
23: insertMissingRecordFunction(arguments)
24: end if
25: else

//Call function to insert missing records
26: insertMissingRecordFunction(arguments)
27: end repeat
28: end if
29: until(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase = 

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)
30: end for rtm
31: else if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database – 1 

>NumberOfRowsInAuditTable(ts)OfMasterPeerDatabase – 1)then
//Reconcile duplicated records process start
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32: startSlaveLoop←0
33: for(rtm ← 0 toNumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)do
34: for(rts ← startSlaveLooptoNumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database –

1)do
35: if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase = 

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then
36: if(rtm<NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)then
37: startSlaveLoop←rts + 1
38: end for rts
39: else
40: startSlaveLoop←rts + 1
41: end if
42: else

//Call function to delete duplicated records
43: deleteDuplicatedRecordFunction(arguments)
44: end if
45: end for rts
46: end for rtm
47: else 

//Reconcile incorrect, missing and incorrectly formatted values process start
48: for (rtm = 0 to NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)do
49: for (cts = 0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database –

1)do
50: if (Row[rtm]Column[cts]InAudit Table(ts)OfMasterPeerDatabase ≠ 

Row[rtm]Column[cts]InAuditTable(ts)OfSlavePeer(p)Database) then
//Call function to update Incorrect values, missing values, incorrectly formatted 
values

51: updateIncorrectValuesFunction(arguments)
52: end if 
53: end for cts
54: end for rtm
55: end if
56: end for ts
57: endreconcileSubTransaction(Commit or Abort)
58: end for p
59: endreconcileMainTransaction(Commit or Abort)
60: returnTransaction Commitments or Abortions

endreconcileFunction

To insert missing records, the algorithm 7 here is called.

Algorithm 7: Function to insert missing records
Input: DataTable(ts)OfSlavePeer(p)Database, cts, rtm
Output: Nothing
begininsertMissingRecordFunction(args)

1: for(cts←0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database – 1)do
2: ColumnNames←ColumnNames&ColumnNames[cts]
3: Values ←Values & Row[rtm]Column[cts]
4: end for cts
5: insert in toDataTableNames(ts)InSlavePeer(p) Database (ColumnNames) values (Values)

endinsertMissRecordFunction

To delete duplicated records, the algorithm 8 here is called.

Algorithm 8: Function to delete duplicated records
Input: DataTable(ts)OfSlavePeer(p)Database, rtm
Output: Nothing
begindeleteDuplicatedRecordFunction(args)
1: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts)OfSlave 

Peer(p)Database = ‘Row[rtm]Column[0]’
enddeleteDuplicatedRecordFunction

To update incorrect values, the algorithm 9 is called.
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Algorithm 9: Function to update incorrect values, missing values, incorrectly formatted values
Input: DataTableName(ts)OfSlavePeer(p)Database, UpdatedColumnName, cts, rtm
Output: Nothing
beginupdateIncorrectValuesFunction(args)
1: if(ColumnName(cts)InDataTable(ts)OfSlave Peer(p)Database=UpdatedColumnName)then
2: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)OfSlave 

Peer(p)Database = ‘Row[rtm]Column[cts]’whereColumnName(0)InDataTable(ts)OfSlave 
Peer(p)Database = ‘Row[rtm]Column[0]’

3: end if
endupdateIncorrectValuesFunction

After the implementation of these algorithms 
presented above, the main goal, according to which 
setting up a synchronizer-mediator for database 
replication being able to serialize the propagation of
updates and their reconciliation in a replicated
databases system over a decentralized P2P network
is achieved. Although this goal be achieved, it is 
appropriate to know here that in computing the
performance of an algorithm is assessed on the basis
of its complexity [18]. The analysis of the theoretical 
complexity of this algorithm will be more concerned 
the time complexity than the space complexity  
especially as the data will be momentarily transit 
through the buffer to the destination. Nevertheless, 
the practical time that the execution of this algorithm 
takes will result from the simulation and will be
calculated by the statistical method.

c) Statistical method
The performance of a system depends on a 

certain number of factors. We have to determine the 
practical time, that makes our system to execute 
successively transactions of updates propagation or 
replication (insert, update and delete) and 
transactions of data reconciliation. To analyse this
performance, we will use the linear regression test
with the random sampling technique. The linear 
regression test is a statistical analysis method that
describes the variations of an endogenous variable 
associated with the variations of one or more 
exogenous variables i.e. the relation between an 
endogenous variable and one or more exogenous 
variables. In the case where the study concerns an
endogenous variable with one exogenous variable, 
it’s a simple regress ion and when it’s an 
endogenous variable with more than one exogenous 
variable, it is a multiple regression [19].

This test will be used not only to determine 
the execution time based on a certain sample, but 
also to make a linear regression model that will be
used to predict the execution time , which is the
dependant factor or endogenous variable, based on 
other independent factors or exogenous variables, 
namely the number of records, the number of tables
in the database and the number of Slave Peers. The 
following variables areselected:

• Yi: is a random variable to explain “the time the
synchronization algorithm takes to broadcast

updates and to reconcile replicas for an execution
i”;

• Xi1: is an explanatory variable “the number of 
records the synchronization algorithm broadcast 
from a Master Peer to Slaves and reconcile 
between the Master and Slaves for an execution
i”;

• Xi2: is an explanatory variable “the number of 
tables in the database whose records knew 
updates which need to be broadcasted and 
reconciled with Slaves for an execution i”

• Xi3: is an explanatory variable “the number of 
Slave Peers available to receive updates and to 
be reconciled for an execution i”.

Given   a sample (Yi, Xi1, Xi2, Xi3) whose i ϵ                

[1, n], we will try to explain, as precisely as possible, 
the values taken by Yi, the so-called endogenous 
variable from a series of explanatory variables Xi1, Xi2,
Xi3. The model formulated in terms of random
variables, takes the form: 𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1 𝑋𝑋𝑖𝑖1 + 𝑏𝑏2 𝑋𝑋𝑖𝑖2 +
𝑏𝑏3 𝑋𝑋𝑖𝑖3 + 𝜀𝜀𝑖𝑖
Where:
• i = 1, 2, . . . , n
• b0 is the constant term;
• b1, b2 and b3 are coefficients of the regression to 

be estimated;
• ɛi: is the model error that expresses or summarizes

the missing information in the linear explanation of 
the values of Yi from Xi1, Xi2, Xi3 (a random variable 
of zero mathematical expectation in this model i.e. 
problem of specifications, variables not taken into
account, etc.).

The intensity of the relation between the 
independent variables and the dependent variable 
will be expressed by the correlation coefficient “R”,
which is the square root of the “R²”, the determination 
coefficient of a linear regression model. The 
coefficient of correlation, will be used to determine 
the degree of linkage between the independent
variables and the dependent variable while the 
coefficient of determination will help to measure the
proportion of dependence of the dependent variable 
explained by independent variables. Thus, two sets 
of hypothesises are evoked as follow:

1. Test of the significance of each independent 
variable (Xi1, Xi2, Xi3)
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 Null hypothesis (H0): Xik is not a significant 
predictor of Yi.
 Alternative hypothesis (H1): Xik is a significant 
predictor of Yi.

2. Test of significance of the overall regression 
model
 Null hypothesis (H0): The overall regression

model is not significant.
 Alternative hypothesis (H1): The overall 

regression model issignificant.
These hypotheses will be verified at the end 

of the results which will be produced by a series of 
experiments perpetrated on a simulation environment 
which will be described in the following section.

IV. Simulation Environment

The implementation and experimentations will 
be run on a P2P network consisting of 4 traditional 
computers depicted in the Fig. 9, with the following 
properties: Processor: Intel Core i5, CPU 2.40GHz, 
Memory (RAM): 8.00GB and Storage: 1TB. The
network will be based on a desktop switch of 100
Mbps of transmission speed, to establish a simple 
LAN using twisted - pair cables connection and RJ45 
connectors. These computers will run under 
Windows 10 Professional 64 bits and SQL Server 
Management Studio 2012 Express as DDBMS, to 
manage databases and establish the connectivity
between them.

Fig. 9: Protocol of P2P Mediator-Synchronizer.

According to this Fig. 9 above, a node is 
composed by hardware and software as required 
previously. But in this same figure one can point out 
the presence of a “Mediator” for each peer. The 
mediator is nothing else than the synchronization 
system, "Sync. Mediator-System", a C# software 
which has been designed and in which it has been
implemente d algorithms, already described in the 
methodology, to lead to a windows application 
running under a graphical user interface, as
presented in the Multiple-Document Interface (MDI)
window here below in the Fig. 10.

Fig. 10: Sync. Mediator-System MDI window.

Thus this mediator must be installed on each
node to manage the replication transactions and the 
reconciliation of replicas. For the execution to be
effective, there are prerequisites to fulfil.

a) Prerequisites
When designing the global schema of the 

database, each table must have:
• The name such as “Data_tbTableName” and the

first column as its primary-key to identify data and

to make the difference between records. The
creation of primary keys by automatic incremental
systemprovided by the DBMSs is disadvised, it is
preferable to program an automatic primary key
combined with the site number to avoid
redundancy;

• Bear in mind that the database is homogeneous 
i.e. the data structure of the replicated database 
must be uniform on all peers.
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b) Processing phases
Before the actual processing phase begins,

under expected replication, "Sync. Mediator-System" 
provides two procedures that must be performed
automatically in advance for each table, as showed in 
the window, Fig.11:

Fig. 11: Audit log creation window.

• To create one audit table named 
“Audit_tbTableName”, to store changes captured
by 3 triggers belonging to each table. Each audit
table must have its next four last columns to store 
respectively the updated column name, the audit
action, the audit timestamp and the last column 
to store the synchronization ID;

• To create three triggers to run after Insert, after 
Update and after Delete, to capture data 
changes and store them in the specific audit
table.

The new circulating token algorithm has two phases:

i. Data replication
Update transaction serialization: All update 

transactions must be executed in serial order. Before 
initiating a refresh transaction, each peer must first 
receive a single token of a sequential series, to get 
the order in which the transaction will be executed. 
Once a token has been assigned to a peer p, this 
last becomes directly a Master so it performs update
transactions to all connected Slave peers, as showed
in the window, Fig. 12.

Fig. 12: Synchronization editor window.

Update transaction performing: When a Slave
peer receives an executing transaction, it places it 

according to its Master peer’s token as well as its 
number (Sync_ID, in Fig. 5) and updates are
performed to the Slave peer database. As soon asthe 
transaction ends on each Slave peer, it sends an 
appropriate message to the Master peer to certify 
the transaction commitment. The peers connected 
during the initiation of the transaction and whose 
transaction has been aborting during transaction
performing, due to any kind of issue to the site which 
host the peer, must be mentioned in the pending list 
in order to be updated later in a new procedure re-
using the same Sync_ID. Then the main transaction, 
initiated on the Master peer, ends when it has been
executed on all peers and give immediately the relay 
to the reconciliation procedure.

ii. Data reconciliation
Reconciliation transaction serialization: 

Reconciliation in turn will benefit from the serial order 
of their “Mather” update transactions. This phase
must begin on the Master peer once the replication is 
complete. The reconciliation procedure must also 
initiate transactions to read updates received by 
Slave peers. These readings consist of a 
comparison between the data s ent by the Master
peer and the data received by the Slave peers. The 
comparison operation is performed according to data 
carrying the token of the same Master initiator of the 
replication transactions, as revealed in the window, 
Fig. 12. All errors like missing records, duplicate 
records, incorrect values, missing values, incorrectly 
formatted values are retained in order to be fixed.

Reconciliation transaction execution: This 
phase consists of fixing all retained errors so that 
missing records are inserted, duplicate records are 
deleted, missing values are added to their respective 
fields, incorrectly formatted values are replaced by 
correct values. Data reconciliation process can be 
however restarted if the first one done didn’t put 
replicas in consistent state. So procedure can be 
repeated until all replicas become consistent, then 
the Master peer can release the token. In the case 
where the inconsistency persists among data, 
probably it can be caused by conflicts.

c) Conflicts avoidance rules
To avoid potential conflicts among data in the

P2P replicated database environment, some rules 
must be respected:

• When using the database, it is inadvisable not to
update the value of the primary key; instead, it is 
better to delete the entire record and re-insert it;

• When designing an application which
communicate with the database, create
procedures which cannot allow from a peer to 
update or to delete a record whose insertion was 
not performed on that same peer i.e. the 
modification of a data must be done only and
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respectively on the peer that created it or 
inserted it.

After the configuration be performed as 
indicated in this section to simulate the replication
process on a P2P network, the test and/or experiment 
sets yielded the results which are presented in the 
next section.

V. Result

This section is dedicated to testing this new
synchronizer of databases, presenting the results and
evaluating the performance of the newly proposed
algorithm. To achieve this, it is necessary to analyse 
the performance in order to jus tify the effectiveness 
of the algorithm.

a) Performance analysis
Suppose that this algorithm has to 

broadcast updates emerging from the replicated
database over 4 peers A, B, C, and D, local servers of 
a bank branches. Being fully replicated and 
homogeneous, the physical schema of this database
consists of 3 tables, as presented in Fig. 13.

Fig. 13: Physical schema of a Banking Database.

So, for all cases, consider the sample of 12 
executions, to operate randomly and based on the 
reality of the replicated data manipulation in the 
distributed environment of banking database. 
However, in all cases, insertions are greater than or 
equal to updates and deletes. But updates can be 
more or less than deletions.

After the replication transaction has 
completed, if there has been an overload or 
interruption of the network corrupting the replication 
transaction, then assume that the data that the 

destination peers have received has experienced 
some inconsistencies with respect to those of the 
master peer. Fro m the total replicated data (inserts, 
updates, and deletes), consider that 25% are missing 
records that require re-insertion, incorrect values, 
missing values, and incorrectly formatted values 
which need to be updated and duplicate records that
require deletion, as typically data to be reconciled 
does not exceed ¼ of that of replication [2], [22]. 
Thus, it resorts the data presented in the table 1 
hereafter:

Table 1: Records Number Sample data

Nbr.
Obs.

Number of rows 
to replicate

Number of rows 
to reconcile

1. 723 181
2. 900 225
3. 120 30
4. 2500 625
5. 1253 313
6. 80 20
7. 3000 750
8. 5000 1250
9. 450 113
10. 4860 1215
11. 600 150
12. 235 59

Mean 1643.42 410.92
Total 19721 4931

For analysing the effectiveness of our 
algorithm, the experimentation will be realized in four 
scenarios, namely:

1. Experimentation based one table stored on a 
master peer with two slave peers ;

2. Experimentation based two tables stored on a 
master peer with two slave peers ;

3. Experimentation based one table stored on a 
master peer with three slave peers;

4. Experimentation based two tables stored on a 
master peer with three slave peers.

To carry out the analysis of the performance, 
based on the prediction of the execution time 
according to the data of the sample presented in the 
Table 1 above, it results the execution times obtained
after experimentation and presented successively in 
the tables and charts below:

Table 2: Result of the experimentation based one table stored on a master peer with two slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr. 
Obs.

Master 
Peer

Repli 
cation

Reconci 
liation

Repli 
cation

Reconci 
liation

Repli 
cation

Reconci 
liation

1. B 19 2 19 3 20 2
2. A 24 2 24 4 24 2
3. C 3 0 3 1 4 0
4. C 67 5 68 12 69 8
5. A 35 3 35 5 36 4
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6. A 3 0 2 0 3 0
7. B 84 7 84 15 87 11
8. B 144 11 148 25 152 18
9. A 15 1 14 2 14 1
10. C 161 12 173 26 189 18
11. C 24 2 24 3 25 3
12. B 10 0 9 1 10 1

Mean 49.08 3.75 50.25 8.08 52.75 5.67
Total 589 45 603 97 633 68

All basic factors remaining  unchanged i.e. one 
table stored on a master peer with two slave peers, 
replication and reconciliation models are successively 
presented as follow : insert operator, Fig. 14(a)               
y = 0.0302x − 0.5595 +𝜀𝜀 for data replication and Fig. 
15(a) y = 0.0093x − 0.0777 + 𝜀𝜀 for data reconciliation, 

update operator, Fig. 14(b) y = 0.0318 x − 2.0714 +𝜀𝜀
for data replication and Fig. 15(b) y = 0.0208 x − 0.4639
+ 𝜀𝜀 for data reconciliation and delete operator, Fig. 14(c)
y = 0.0336 x − 2.528 + 𝜀𝜀 for data replication and Fig.
15(c) y = 0.0148 x − 0.4124 + 𝜀𝜀 for data reconciliation.

Fig. 14: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
one table stored on a master peer with two slave peers.

Fig. 15: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values and (c) duplicate records results from the experimentation based one table stored on a master
peer with two slave peers.

Keeping unchanged basic factors, in 1
second (y) we predict that this algorithm can 
successively replicate and reconcile following 
number of records (x):
• For insert operator

 In replication procedure (Fig. 14(a)) : 1 = 0.0302
x − 0.5595⇒−0.0302 x = −1.5595 ⇒ x = 51.63
⇒ x ≈ 52 inserted records to be replicate in 1 
second. So, as the coefficient of determination 
R² = 0.9865 then the insertion execution time 
depend on  98.65%  of the number of records 

and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9865  ⇒ R = 0.9934 then the degree of 
linkage between the insertion execution time 
and the number of records is 99.34%.

 In reconciliation procedure (Fig. 15(a)): 1 = 
0.0093 x − 0.0777 ⇒−0.0093 x = −1.0777 ⇒

    

x = 115 .88 ⇒ x ≈ 116 missing records to be 
reconcile in 1 second. So, as the coefficient of 
determination R² = 0.9876 then the missing 
records reconciliation execution time depend on 
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98.76% of the number of records and as                
the coefficient of correlation R= √𝑅𝑅2 ⇒                 
R = √0.9876 ⇒ R = 0.9938 then the degree of 
relationship between the missing records 
reconciliation execution time and the number of 
records is 99.38%.

• For update operator
 In replication procedure (Fig. 14(b)): 1 = 0.0318

x − 2.0714⇒−0.0318 x = −3.0714 ⇒ x =96.58
⇒ x ≈ 97 updated records to be replicate in 1 
second. Thus as the coefficient of 
determination R² = 0.9789 then the update 
execution time depend on 97.89%  of the 
number of records and as the coefficient of 
correlation R= √𝑅𝑅2 ⇒ R = √0.9789 ⇒               
R = 0.9894 then the degree of linkage between 
the update execution time and the number of 
records is 98.94%.

 In reconciliation procedure (Fig. 15(b)): 1 = 
0.0208𝑥𝑥 − 0.4639 ⇒ −0.0208𝑥𝑥 = −1.4639 ⇒             
𝑥𝑥 = 70.37 ⇒ 𝑥𝑥 ≈ 70 incorrect values, missing 
values, and incorrectly formatted values to be 
reconcile in 1 second. So, as the determination 
coefficient R² = 0.9956 then incorrect values, 
missing values, and incorrectly formatted 
values reconciliation execution time depend on 
99.56% of the number of records and as         
the coefficient of correlation R= √𝑅𝑅2 ⇒              
R = √0.9956 ⇒ R = 0.9978 then the linkage 
degree between the incorrect values, missing 
values, and incorrectly formatted values 

reconciliation execution time and the number of 
records is 99.78%.

• For delete operator
 In replication procedure (Fig. 14(c)) : 1 = 

0.0336𝑥𝑥 − 2.528 ⇒ −0.0336𝑥𝑥 = −3.528 ⇒ 𝑥𝑥 =
105 deleted records to be replicate in 1 
second. So, as the coefficient of determination 
R² = 0.9663 then the delete  execution time 
depend on 96.63% of the number of records 
and as the coefficient of correlation R= √𝑅𝑅2 ⇒              
R = √0.9663 ⇒ R = 0.9830 then the correlation 
between the insertion execution time and the 
number of records is 96.63%.

 In reconciliation procedure (Fig. 15(c)): 1 = 
0.0148𝑥𝑥 − 0.4124 ⇒ −0.0148𝑥𝑥 = −1.4124 ⇒     
𝑥𝑥 = 95.43 ⇒ 𝑥𝑥 ≈ 95 duplicated records to be 
reconcile in 1 second. Thus, as the coefficient 
of determination R² = 0.9922 then the 
duplicated records reconciliation execution time 
depend on 99.22% of the number of records 
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9922⇒ R = 0.9961 then the degree of 
relation between the duplicated records 
reconciliation execution time and the number of 
records is 99.61%.

Table 2, Figs. 14 and 15 here above 
presented successively the result of the replication
and reconciliation of records of one (1) table stored 
on a master peer toward two (2)  slave peers, in terms 
of the execution time. Now, let's vary the number of
tables and still observe the result.

Table 3: Result of the experimentation based two tables stored on a master peer with two slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 12 2 12 3 11 2
2. A 15 2 15 4 16 3
3. C 2 0 2 1 3 1
4. C 45 5 47 11 46 7
5. A 24 3 24 5 25 4
6. A 1 0 2 0 2 1
7. B 61 7 61 9 63 10
8. B 104 12 110 24 116 18
9. A 12 1 12 2 12 1
10. C 115 11 121 23 125 16
11. C 16 1 16 2 16 1
12. B 7 1 6 1 7 1

Mean 34.50 3.75 35.67 7.08 36.83 5.42
Total 414 45 428 85 442 65

By varying the factor number of tables, from 
one to two tables stored on a master peer, dividing 
the number of records equitably between two tables 
and maintaining unchanged the factor number of 

slave peers in “two (2) peers”, the replication and the 
reconciliation models are successively given as 
follow:
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Fig. 16: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
two tables stored on a master peer with two slave peers.

Fig. 17: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values and (c) duplicate records results from the experimentation based two tables stored on a master
peer with two slave peers.

Insert operator, Fig. 16(a) y = 0.0218𝑥𝑥 − 
1.3366 + 𝜀𝜀 for data replication and Fig. 17(a)                        
y = 0.0093𝑥𝑥 − 0.0671 + 𝜀𝜀 for data reconciliation, 
update operator, Fig. 16(b) y = 0.023𝑥𝑥 − 2.0949 + 𝜀𝜀
for data replication and Fig. 17(b) y = 0.0184𝑥𝑥 − 
0.4798 + 𝜀𝜀 for data reconciliation and delete operator,
Fig. 16(c) y = 0.0239𝑥𝑥 − 2.4175 + 𝜀𝜀 for data replication
and Fig. 17(c) y = 0.0136𝑥𝑥 − 0.1746 + 𝜀𝜀 for data 
reconciliation.

When we increase the number of tables from 
one to two, in 1 second, the prediction of the 
execution time (y), during which this algorithm can 
successively replicate and reconcile the number of 
records (x), is calculated from the following way:

• For insert operator
 In replication procedure (Fig. 16(a)) : 1 = 0.021

𝑥𝑥 − 1.3366 ⇒−0.021 𝑥𝑥=−1.3366 ⇒ 𝑥𝑥=111.26
⇒ 𝑥𝑥 ≈ 111 inserted records to be replicate in 1 
second. So, as the coefficient of determination 
R² = 0.9846 then the dependence degree of 
insertion execution time compared to the 
number of records is 98.46% and as                    
the coefficient of correlation R= √𝑅𝑅2 ⇒                    
R = √0.9846 ⇒ R = 0.9923 then the degree of 
linking between the insertion execution time and 
the number of records is 99.23%.

 In reconciliation procedure (Fig. 17(a)): 1 = 
0.0093𝑥𝑥 − 0.0671 ⇒ −0.0093 𝑥𝑥 = −1.0671 ⇒      
𝑥𝑥 = 114 .74 ⇒ 𝑥𝑥 ≈ 115 missing records to be 
reconcile in 1 second. As the coefficient of 
determination R² = 0.9925 then the missing 
records reconciliation execution time depend on 
99.25% of the number of records and as                 

the coefficient of correlation R= √𝑅𝑅2 ⇒                     

R = √0.9925 ⇒ R = 0.9963 then the degree of 
relation between the missing records 
reconciliation execution time and the n umber of 
records is 99.63%.

• For update operator
 In replication procedure (Fig. 16(b)): 1 = 0.023𝑥𝑥

− 2.0949 ⇒−0.023𝑥𝑥= −3.0949 ⇒ 𝑥𝑥 = 134.56
⇒ 𝑥𝑥 ≈ 135 updated records to be replicate in 1 
second. Thus as the coefficient of determination 
R² = 0.9832 then the update execution time 
depend on 98.32% of the number of records 
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9832 ⇒ R = 0.9916 then the degree of 
the relation between the update execution time 
and the number of records is 99.16%.

 In reconciliation procedure (Fig. 17(b)): 1 = 
0.0184𝑥𝑥 − 0.4798 ⇒−0.0184𝑥𝑥 = −1.4798 ⇒       
𝑥𝑥 = 80.42 ⇒ 𝑥𝑥 ≈ 80 incorrect values, missing 
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values, and incorrectly formatted values to be 
reconcile in 1 second. As the coefficient of 
determination R² = 0.9691 then incorrect 
values, missing values, and incorrectly 
formatted values reconciliation execution time 
depend on 96.91% of the number of records 
and as the coefficient of correlation R= √𝑅𝑅2

⇒ R = √0.9691 ⇒ R = 0.9844 then the relation 
degree between the incorrect values, missing 
values, and incorrectly formatted values 
reconciliation execution time and the number of 
records is 98.44%.

• For delete operator
 In replication procedure (Fig. 16(c)) : 1 = 

0.0239𝑥𝑥 − 2.4175 ⇒−0.0239𝑥𝑥 = −3.4175 ⇒       
𝑥𝑥 = 142.99 ⇒ 𝑥𝑥 ≈ 143 deleted records to be 
replicate in 1 second. So, as the coefficient of 
determination R² = 0.9832 then the delete 
execution time  depend on 98.32%  of  the 
number of records and as the coefficient of 
correlation R= √𝑅𝑅2 ⇒ R = √0.9832 ⇒ R = 
0.9916 then the correlation between the 
insertion execution time and the number of 
records is 99.16%.

 In reconciliation procedure (Fig. 17(c)): 1 = 
0.0136𝑥𝑥 − 0.1746 ⇒−0.0136𝑥𝑥 = −1.1746 ⇒   
𝑥𝑥= 86.36 ⇒ 𝑥𝑥 ≈ 86 duplicated records to be 
reconcile in 1 second. Thus, as the coefficient 
of determination R² = 0.9859 then the 
duplicated records reconciliation execution time 

depend on 98.59% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9859 ⇒ R = 0.9929 then the degree of 
relation between the duplicated records 
reconciliation execution time and the number of 
records is 99.29%.

The experimentation of this algorithm on a 
topology consisting of two (2) slave peers proves that 
the variation of the number of tables containing data 
to replicate and reconcile in a P2P replication system 
has a significant impact o nly for the replication 
transaction as illustrated in Fig. 18. For all data 
modification operators , illustrated by graphs of      
Fig. 18(a), Fig. 18(b) and Fig. 18(c), successively, 
taken into account in the replication process, the 
execution time, when record s originate from one (1) 
table, is greater than the execution time when the 
same number of records emerge from two (2) 
different tables while for reconciliation the impact is 
not too great.

Hence this variation has no significant effect 
on the execution time of data reconciliation because 
the number of records to reconcile from one (1) table
and average of execution time, calculated in Table 2, 
are not far different from those to reconcile from two 
(2) tables and whose average of execution time is 
calculated in Table 3. This is why the curves of the 
graphs depicted in Fig. 18(d), Fig. 18(e) and Fig. 18(f) 
are almost similar.

Fig. 18: Effectiveness of replication and reconciliation based one table stored on a master peer with two slave
peers vs. two tables stored on a master peer with two slave peers.

So, partially we can conclude that this 
algorithm is efficient for the replication of databases 
because generally a database does not have one 
table i.e. data to replicate are scattered in several 
tables. As for reconciliation, since it takes place only 

when it is necessary and mostly data to be reconciled 
do not exceed one quarter of that of replication, little 
importance should be attached to the computational 
time of this phenomenon.
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This conclusion was obtained after varying 
the factor number of tables. However, by keeping 
unchanged all other factors, except the number of
slave peers that vary from two (2) to three (3) peers, 

using the same sample in Table 1, let us observe the 
execution time results from experimentatio n, 
presented successively in the tables and graphs 
below:

Sample 
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 22 2 23 3 23 2
2. A 28 2 28 5 28 2
3. C 3 0 3 1 5 0
4. C 78 6 79 14 80 11
5. D 41 3 41 6 42 5
6. A 3 0 2 0 3 0
7. B 97 8 97 17 101 15
8. D 185 14 200 30 218 21
9. A 17 1 16 2 16 1
10. C 165 12 170 27 172 20
11. D 28 2 28 3 29 3
12. B 12 1 11 1 12 1

Mean 56.58 4.25 58.17 9.08 60.75 6.75
Total 679 51 698 109 729 81

Keeping the factor number of table 
unchanged, one table stored on a master peer with 
three slave peers, the  replication and reconciliation 
models are successively presented as follow: insert 
operator, Fig. 19(a) y = 0.0348𝑥𝑥 − 0.5762 +𝜀𝜀 for data 
replication and Fig. 20(a) y = 0.0106𝑥𝑥 − 0.0883 + 𝜀𝜀 for

data reconciliation, update operator, Fig. 19(b) 

                      

y = 0.0368𝑥𝑥 − 2.3047 +𝜀𝜀 for data replication and Fig.
20(b) y = 0.0235𝑥𝑥 − 0.5576 + 𝜀𝜀 for data reconciliation
and delete operator, Fig. 19(c) y = 0.0387𝑥𝑥 − 2.8053 +
𝜀𝜀 for data replication and Fig. 20(c) y = 0.0176𝑥𝑥 − 
0.4611 + 𝜀𝜀 for data reconciliation.

Fig. 19: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
one table stored on a master peer with three slave peers.

Fig. 20: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values an d (c) duplicate records results from the experimentation based one table stored on a master
peer wit h three slave peers.

Table 4: Result of the experimentation based one table stored on a master peer with three slavepeers
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In 1 second (y) we predict that this algorithm 
can successively replicate and reconcile following 
number of records (x):

• For insert operator
 In replication procedure (Fig. 19(a)) : 1 = 0.0348

𝑥𝑥 − 0.5762 ⇒ −0.0348 𝑥𝑥 = −1.5762 ⇒                                                   
𝑥𝑥 = 45.29 ⇒ 𝑥𝑥 ≈ 45 inserted records to be 
replicate in 1 second. So, as the coefficient of 
determination R² = 0.9914 then the insertion 
execution time depend on  99.14%  of the 
number of records and as the coefficient                  
of correlation R= √𝑅𝑅2 ⇒ R = √0.9914 ⇒            
R = 0.9957 then the degree of linkage between 
the insertion execution time and the number of 
records is 99.57%.

 In reconciliation procedure (Fig. 20(a)): 1 = 
0.0106𝑥𝑥 − 0.0883 ⇒ −0.0106𝑥𝑥 = −1.0883 ⇒                         
𝑥𝑥 = 102 .67 ⇒ 𝑥𝑥 ≈ 103 missing records to be 
reconcile in 1 second. Thus, as the coefficient 
of determination R²  =  0.9905 then the missing 
records reconciliation execution time depend on 
99.05% of the number of records and as                
the coefficient of correlation R= √𝑅𝑅2 ⇒                     
R = √0.9905 ⇒ R = 0.9952 then the degree of 
relationship between the missing records 
reconciliation execution time and the number of 
records is 99.52%.

• For update operator
 In replication procedure (Fig. 19(b)): 1 = 

0.0386𝑥𝑥 − 2.3047 ⇒ −0.0638𝑥𝑥 = −3.3047 ⇒            
𝑥𝑥 = 51.79 ⇒ 𝑥𝑥 ≈ 52 updated records to be 
replicate in 1 second. Thus as the coefficient of 
determination R² = 0.9849 then the update 
execution time depend on 98.49% of the 
number of records and as the coefficient                         
of correlation R= √𝑅𝑅2 ⇒ R = √0.9849 ⇒                 
R = 0.9924 then the degree of linkage between 
the update execution time and the number of 
records is 99.24%.

 In reconciliation procedure (Fig. 20(b)): 1 = 
0.0235 𝑥𝑥 − 0.5576 ⇒−0.0235 𝑥𝑥= −1.5576 ⇒
𝑥𝑥 = 66.28 ⇒ 𝑥𝑥 ≈ 66 incorrect values, missing 
values, and incorrectly formatted values to be 

reconcile in 1 second. Thus, as the 
determination coefficient R² = 0.9964 then 
incorrect values, missing values, and 
incorrectly formatted values reconciliation 
execution time depend on 99.64% of the 
number of records and as the correlation  
coefficient  R= √𝑅𝑅2 ⇒ R = √0.9964 ⇒ R = 
0.9982 then the relationship degree between 
the  incorrect  values, missing     values,    and    
incorrectly     formatted values reconciliation 
execution time and the number of records is 
99.82%.

• For delete operator
 In replication procedure (Fig. 19(c)) : 1 = 

0.0387𝑥𝑥 − 2.8053 ⇒−0.0387𝑥𝑥 = −2.8053 ⇒           
𝑥𝑥 = 98.32 ⇒ 𝑥𝑥 ≈ 98 deleted records to be 
replicate in 1 second. So,  as the coefficient of 
determination R² = 0.9735 then the delete 
execution time  depend on 97.35%  of  the 
number of records and as the coefficient                    
of correlation R= √𝑅𝑅2 ⇒ R = √0.9735 ⇒                  
R = 0.9867 then the correlation between the 
insertion execution time and the number of 
records is 98.67%.

 In reconciliation procedure (Fig. 20(c)): 1 = 
0.0176𝑥𝑥 − 0.4611 ⇒−0.0176𝑥𝑥 = −1.4611 ⇒ 𝑥𝑥
= 83.02 ⇒ 𝑥𝑥 ≈ 83 duplicated records to be 
reconcile in 1 second. Thus as the 
determination coefficient  R²  = 0.9848  then the 
duplicated records reconciliation execution time 
depend on 98.48% of the number of records 
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9848 ⇒ R = 0.9924 then the degree            
of relation between the duplicated records 
reconciliation execution time and the number of 
records is 99.24%.
Table 4, Figs. 19 and 20 here above 

presented successively the execution time results 
from the replication and reconciliation of records of
one (1) table stored on a master peer toward three (3) 
slave peers. So, after the variation of the number of 
tables from one (1) and spreading proportionally 
records in two (2) tables, let us observe the result.

Table 5: Result of the experimentation based two tables stored on a master peer with three slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 22 3 19 5 18 3
2. A 26 3 28 6 28 5
3. C 6 0 7 1 6 2
4. C 90 8 93 18 92 15
5. D 58 5 51 8 76 6
6. A 6 0 6 0 6 0
7. B 188 12 181 13 180 23
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8. D 242 28 266 38 288 32
9. A 39 2 27 3 26 2

10. C 291 24 250 37 272 31
11. D 42 2 42 3 41 1
12. B 17 2 17 2 17 2

Mean 85.58 7.42 82.25 11.17 87.50 10.17
Total 1027 89 987 134 1050 122

Varying the factor number of table stored on a 
master peer with three slave peers, the replication 
and reconciliation models are successively 
presented as follow: insert operator, Fig. 21(a)                    
y = 0.0539𝑥𝑥 − 2.9424 + 𝜀𝜀 for data replication and              
Fig. 22(a) y = 0.0206𝑥𝑥 − 1.0387 + 𝜀𝜀 for                              
data reconciliation, update operator, Fig. 21(b)                            

y = 0.0527𝑥𝑥 − 4.3298 + 𝜀𝜀   for data replication and            

Fig. 22(b) y = 0.0293𝑥𝑥 − 0.8713 + 𝜀𝜀 for data 
reconciliation and delete operator, Fig. 21(c)                          

y = 0.0566𝑥𝑥 − 5.5273 + 𝜀𝜀 for data replication and                

Fig. 22(c) y = 0.0266𝑥𝑥 − 0.7763 + 𝜀𝜀 for data 
reconciliation.

Fig. 21: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
two tables stored on a master peer with three slave peers.

Fig. 22: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values an d (c) duplicate records results from the experimentation based two tables stored on a master
peer with three slave peers.

After increasing the number of tables from 
one to two, in 1 second, the prediction of the 
execution time (y), during which this algorithm can 
successively replicate and reconcile the number of 
records (x), is established as follows:

• For insert operator
 In replication procedure (Fig. 21(a)) : 1 = 

0.0539𝑥𝑥 − 2.9424 ⇒−0.0539𝑥𝑥 = −2.9424 ⇒                  
𝑥𝑥 = 73.17 ⇒ 𝑥𝑥 ≈ 73 inserted records to be 
replicate in 1 second. So, as the determination 
coefficient R² = 0.9495 then the dependence 
degree of insertion execution time compared to 
the number of records is 94.95% and as                      

the coefficient of correlation R= √𝑅𝑅2 ⇒                           

R = √0.9495 ⇒ R = 0.9744 then the degree of 

linking between the insertion execution time and 
the number of records is 97.44%.

 In reconciliation procedure (Fig. 22(a)): 1 = 
0.0206𝑥𝑥 − 1.0387 ⇒−0.0206𝑥𝑥 = −2.0387 ⇒

             
𝑥𝑥 = 98.88 ⇒ 𝑥𝑥 ≈ 99 missing records to be 
reconcile in 1 second. As the coefficient of 
determination R² = 0.9622 then the missing 
records reconciliation execution time depend on 
96.22% of the number of records and as the 
correlation coefficient R= √𝑅𝑅2 ⇒ R = √0.9622  
⇒ R = 0.9809 then the degree of relation 
between the missing records reconciliation 
execution time  and the number  of records is
98.09%.
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• For update operator
 In replication procedure (Fig. 21(b)): 1 = 

0.0527𝑥𝑥 − 4.3298 ⇒−0.0527𝑥𝑥 = −5.3298 ⇒                 
𝑥𝑥 = 101.13 ⇒ 𝑥𝑥 ≈ 101 updated records to be 
replicate in 1 second. Thus as the coefficient of 
determination R² = 0.9705 then the update 
execution time depend on 97.05% of the 
number of records and as the coefficient                     
of correlation R= √𝑅𝑅2 ⇒ R = √0.9705 ⇒                   
R = 0.9851 then the degree of the relation 
between the update execution time and the 
number of records is 98.51%.

 In reconciliation procedure (Fig. 22(b)): 1 = 
0.0293𝑥𝑥 − 0.8713 ⇒ −0.0293𝑥𝑥 = −1.8713 ⟹
𝑥𝑥= 63.86 ⟹ 𝑥𝑥 ≈ 64 incorrect values, missing 
values, and incorrectly formatted values to be 
reconcile in 1 second. As the determination 
coefficient R² = 0.9593 then incorrect values, 
missing values, and incorrectly formatted 
values reconciliation execution time depend on 
95.93% of the number of records and as                          
the coefficient of correlation R= √𝑅𝑅2 ⇒                        
R = √0.9593 ⇒ R = 0.9794 then the degree of 
relation between the incorrect values, missing 
values, and incorrectly formatted values 
reconciliation execution time and the number of 
records is 97.94%.

• For delete operator
 In replication procedure (Fig. 21(c)) : 1 = 

0.0566𝑥𝑥 − 5.5273 ⇒ −0.0566𝑥𝑥 = −6.5273 ⇒                          

𝑥𝑥 = 115.32 ⇒ 𝑥𝑥 ≈ 115 deleted records to be 
replicate in 1 second. So, as the coefficient of 
determination R² = 0.9709 then the delete 
execution time depend on 97.09% of the 
number of records and as the coefficient                      
of correlation R= √𝑅𝑅2 ⇒ R = √0.9709 ⇒                      
R = 0.9853 then the correlation between the 
insertion execution time and the number of 
records is 98.53%.

 In reconciliation procedure (Fig. 22(c)): 1 = 
0.0266𝑥𝑥 − 0.7763 ⇒ −0.0266𝑥𝑥 = −1.7763 ⇒                     
𝑥𝑥 = 66.78 ⇒ 𝑥𝑥 ≈ 67 duplicated records to be 
reconcile in  1 second. As the coefficient of 
determination R² = 0.9812 then the duplicated 
records reconciliation execution time  depend 
on 98.12% of the number of records and as                      
the coefficient of correlation R= √𝑅𝑅2 ⇒                    
R = √0.9812 ⇒ R = 0.9905 then the degree of 
relation between the duplicated records 
reconciliation execution time and the number of 
records is 99.05%.

When running this algorithm on a topology 
consisting of three (3) slave peers, the 
experimentation result proves that the variation in the
number of tables containing data to replicate and to 
reconcile in a P2P replication systemhas a significant 
impact on the execution time of replication and 
reconciliation transactions, as shown in Fig. 23.

Fig. 23: Effectiveness of replication and reconciliation based one table stored on a master peer with three slave
peers vs two tables stored on a master peer with three slavepeers.

However, this impact is explained only by the 
comparison of averages, in Table 4 and 5, which 
make successively curves, of execution time with two

tables, of graphs shown in Figs. 23(a), 23(b) and 23(c) 
for data replication and Figs. 23(d), 23(e) and 23(f) for 
data reconciliation to be high than those of 
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execution time with one table. But, in terms of 
predictive models, we found that, when the records 
come from one table, the execution time is greater 
than the execution time when the same number of 
records is split and comes from two different tables. 
This phenomenon is clarified by the successive 
resolution of the prediction equations of the
replication and reconciliation models which proved 
that the number of records to replicate and reconcile 

to 1 second, with two tables of origin is greater than 
those when there is only one table.

Thus, partially we can conclude that this 
algorithm is effective for the replication of databases, 
its performance increases with the increase of the 
tables for a certain number of records. So, since the
data to replicate is usually scattered across multiple 
tables, we can count on its effectiveness.

Fig. 24: Effectiveness of replication and reconciliation based one table stored on a master peer with two slave
peers vs one table sto red on a master peer with three slave peers.

The result we have achieved so far comes 
from the analysis of performance by varying the 
numbers of tables in which the data to be replicated 
and reconciled originate. Nevertheless, later on, we 
have to analyse the performance of this algorith m

starting from the variation of the slave peers. Thus, 
Fig. 24 and Fig. 25, show the effectiveness result 
when increasing the number of slave peers but the 
data to replicate and reconcile successively from a 
single table and two table.

Fig. 25: Effectiveness of replication and reconciliation based two tables stored on a master peer with two slav e
peers vs two tables stored on a master peer with three slave peers.

After increasing the number of slave peers, 
the execution time of the replication transaction as 
well as the reconciliation of the data, successively 

from a table, as illustrated in Fig. 24 and two tables, 
as shown in Fig. 25, knows a significant increase. 
This increase in execution time affects negatively the 
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performance of replication and reconciliation 
transactions. While the synchronization algorithm is
only constituted by these two types of transactions, 
this loss of performance of said transactions involves 
the loss of performance of the whole synchronization
algorithm.
This phenomenon can be explained in two ways:
• Firstly, by comparing the averages of the 

execution time which is explained by the graphs 
of Figs. 24 and 25, with illustrative curves of 
replication execution time (Figs 24 and 25 (a), (b)
and (c)) and reconciliation (Figs 24 and 25 (d), (e)
and (f)), with three slave peers are high than
those with two slave peers;

• Secondly by comparing the predicted values, in
this case the prediction of the number of records 
to replicate and reconcile to 1 second. After the

successive resolution of the prediction models 
equations for replication and data reconciliation, 
we found that the number of records to replicate 
and reconcile are declining after increasing a
slave peer.

However, based on these observations from
all the cases i.e. with the data to be replicated and 
reconciled from one or two tables, we can partially
conclude that the increase of the number of slave 
peers on a Replicated Databases over a Decentralize 
d P2P topology is causing the loss of performance of 
the synchronization algorithm.

b) Result summary
In view of what we have just achieved as a 

result, it is necessary to summarize and give a 
general conclusion. Thus, the Table 6 here below will 
first give a summary of the results.

Table 6: Results summary

Experimental
scenarios T ransaction Operator Model R² R

Prediction 
(to 1 Sec.)

1. Experimentation 
based one table
stored on a 
master peer with 
two slave peers

Replication
Insert 𝑦𝑦=0.0302𝑥𝑥−0.5595+ℇ 98.65% 99.34% 52 records

Update 𝑦𝑦=0.0318𝑥𝑥−2.0714+ℇ 97.89% 98.94% 97 records
Delete 𝑦𝑦 = 0.0336𝑥𝑥 − 2.528 + ℇ 96.63% 96.63% 105 records

Reconciliation
Insert 𝑦𝑦=0.0093𝑥𝑥−0.0777+ℇ 98.76% 99.38% 116 records

Update 𝑦𝑦=0.0208𝑥𝑥−0.4639+ℇ 99.56% 99.78% 70 records
Delete 𝑦𝑦=0.0148𝑥𝑥−0.4124+ℇ 99.22% 99.61% 95 records

2. Experimentation
based two tables 
stored on a 
master peer with 
two slave peers

Replication
Insert 𝑦𝑦=0.0210𝑥𝑥−1.3366+ℇ 98.46% 99.23% 111 records

Update 𝑦𝑦=0.0230𝑥𝑥−2.0949+ℇ 99.25% 99.63% 135 records
Delete 𝑦𝑦=0.0239𝑥𝑥−2.4175+ℇ 98.32% 99.16% 143 records

Reconciliation
Insert 𝑦𝑦=0.0093𝑥𝑥−0.0671+ℇ 96.91% 98.44% 115 records

Update 𝑦𝑦 = 0.0184𝑥𝑥 − 0.4798 + ℇ 98.32% 99.16% 80 records
Delete 𝑦𝑦 = 0.0136𝑥𝑥 − 0.1746 + ℇ 98.59% 99.29% 86 records

3. Experimentation 
based one table
stored on a 
master peer with 
three slave peers

Replication
Insert 𝑦𝑦 = 0.0348𝑥𝑥 − 0.5762 + ℇ 99.14% 99.57% 45 records

Update 𝑦𝑦 = 0.0368𝑥𝑥 − 2.3047 + ℇ 99.05% 99.52% 52 records
Delete 𝑦𝑦 = 0.0387𝑥𝑥 − 2.8053 + ℇ 98.49% 99.24% 98 records

Reconciliation
Insert 𝑦𝑦 = 0.0106𝑥𝑥 − 0.0883 + ℇ 99.64% 99.82% 103 records

Update 𝑦𝑦 = 0.0235𝑥𝑥 − 0.5576 + ℇ 97.35% 98.67% 66 records
Delete 𝑦𝑦 = 0.0176𝑥𝑥 − 0.4611 + ℇ 98.48% 99.24% 83 records

4. Experimentation
based two tables 
stored on a 
master peer with 
three slave peers

Replication
Insert 𝑦𝑦 = 0.0539𝑥𝑥 − 2.9424 + ℇ 94.95% 97.44% 73 records

Update 𝑦𝑦 = 0.0527𝑥𝑥 − 4.3298 + ℇ 96.22% 98.09% 101 records
Delete 𝑦𝑦 = 0.0566𝑥𝑥 − 5.5273 + ℇ 97.05% 98.51% 115 records

Reconciliation
Insert 𝑦𝑦 = 0.0206𝑥𝑥 − 1.0387 + ℇ 95.93% 97.94% 99 records

Update 𝑦𝑦 = 0.0293𝑥𝑥 − 0.8713 + ℇ 97.09% 98.53% 64 records
Delete 𝑦𝑦 = 0.0266𝑥𝑥 − 0.7763 + ℇ 98.12% 99.05% 67 records

Starting from the results presented above 
and summarizin g in Table 6, our first group of
hypotheses of the significance test of each 
independent variable gives the conclusion that each 
independent variable is a significant predictor of the 
dependent variable. In other words, the number of 
records in each table (xi1), the number of tables 
whose data has chan ged (xi2), the number of peers 
connected during the propagation of updates (xi3)
and other factors (ɛ) like number of columns per table,
data types columns, etc., each taken separately 
predict significantly the execution time (y) of the 

replication transaction as well as that of reconciliation 
because almost all coefficient of determination (R²) 
are greater than or equal to the confidence level of
95%. In all the cases the execution time depend on
other factors beyond 95% and these factors correlate 
positiv ely and tightly of the totality. This means that
the changes made to one of these independent 
variables affect in 95% or more of the dependant 
variable and vice versa. Hence, we accept the 
alternative hypothesis (H1) and thus reject the null 
hypothesis (H0).
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As for the second group of hypotheses, 
since for all experimental scenarios all independent
variables (the number of records in each table (xi1), 
the number of tables whose data has changed (xi2), 
the number of peers connected during the 
propagation of updates (xi3) and other factors (ɛ) like
number of columns per table, data types columns, 
etc.,) are significant predictors of the dependent
variable which is the replication and reconciliation 
transaction execution time (y), the overall model of 
the regression is significant, at the same thresholds 
significance derived from the combination of factors 
by the experimental scenarios summarized in the 
Table 6 above.

The experimental results show that our 
algorithms are performant since when to 1 second, a 
time elementary unity, it can replicate and reconcile a 
considerable number of records, like present the last 
column in the Table 6, for the present experimental 
environment. However, since the performance of a
computer algorithm is due to its execution time, this is
how we assert our main hypothesis that P2P 
replicated databases systems experience the weak 
performance, especially since the time of 
transmission of updates from a Master Peer toward 
Slave Peers dependent in more than 95% of the 
number of records, the number of tables whose data 
know changes, the number of peers connected 
during the propagation of updates and other factors.

Nevertheless, as we have just seen, when we 
take two by two experimental scenarios those can be
noted successively I: 1 and 2, II: 3 and 4, III: 1 and 3 
and finally IV: 2 and 4 of Table 6 above, I made a
good performance, II also made a performance gain
but not far from the average, III made a loss of
performance and IV made a loss as well. Taking III 
and IV it emerges the variation of number of peers 
connected whereas from I and II emerge the variation
of the tables. During the experiment, it was found that
the variation of number of the tables did not lose the 
performance, contrariwise it improved it. Moreover, 
among the independent variables, the number of
records and the number of tables being factors 
directly related to the database before even hinting at 
the data replication, it is clear that it is the growth of 
number of connected peers which is at the base of 
the considerable loss of the performance i.e. the 
increase of the execution time of a synchronization 
algorithm of distributed databases.

Thus, as a future work to be carried out, as
part of improving the performance of this proposed 
algorithm, the thought will revolve around 
synchronization algorithm for replicated databases 
over a decentralized P2P architecture with super-
nodes or super-peers [31], [32] belonging to peers 
clusters in order to reduce execution time of

transactions and to reach load balancing during data 
transmission [35].

VI. Conclusion

This article proposes a prototype of a
synchronizer-mediator for lazy replicated databases 
over a decentralized P2P architecture in a Graphical
User Interface. The motivation arises from the 
common problem of databases replication consisting 
to maintain consistent replicated databases over a
decentralized P2P network.

However, two specific problems caught our 
attention: transactions broadcasting updates from 
different peers are performed concurrently on a 
destination peer replica, which always causes 
transactions conflicts and data conflicts. Moreover,
during data migration, connectivity interruptions and 
network overload corrupt transactions so that 
destination peer databases can contract duplicated 
records, unsuitable data o r missing records which 
make replicas inconsistent. Differen t methodologies
have been used to solve these problems : the audit log
technique to capture and store data changes in audit
tables; the algorithmic method to design and analyse 
algorithms for transactions serialization, for data 
replication transactions and the replicas reconciliation
transactions end finally the statistical method to
analyse the performance of algorithms and to produce 
prediction models of the execution time.

The C # prototype software has been 
designed to implement algorithms and permit to 
execute the test in order to make out the 
effectiveness of each experimental scenarios. 
Afterwards it has been shown that the algorithm has a 
good performance because it can replicate and 
reconcile a considerable number of records to 1 
second. Finally, the assumption according to which 
“The execution time of replication and reconciliation 
transactions totally depends on independent factors” 
has been affirmed.
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