
© 2019. Katembo Kituta Ezéchiel, Shri Kant & Ruchi Agarwal. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 19 Issue 3 Version 1.0 Year 2019
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Mediation of Lazy Update Propagation in a Replicated Database
over a Decentralized P2P Architecture

 By Katembo Kituta Ezéchiel, Shri Kant & Ruchi Agarwal
 Sharda University

Abstract- While replicating data over a decentralized Peer-to- Peer (P2P) network, transactions broadcasting
updates arising from different peers run simultaneously so that a destination peer replica can be updated
concurrently, that always causes transaction and data conflicts. Moreover, during data migration, connectivity
interruption and network overload corrupt running transactions so that destination peers can experience
duplicated data or improper data or missing data, hence replicas remain inconsistent. Different
methodological approaches have been combined to solve these problems: the audit log technique to capture
the changes made to data; the algorithmic method to design and analyse algorithms and the statistical
method to analyse the performance of new algorithms and to design prediction models of the execution time
based on other parameters. A Graphical User Interface software as prototype, have been designed with C #,
to implement these new algorithms to obtain a database synchronizer-mediator. A stream of experiments,
showed that the new algorithms were effective. So, the hypothesis according to which “The execution time of
replication and reconciliation transactions totally depends on independent factors.” has been confirmed.

Keywords: peer-to-peer (P2P), database replication, data reconciliation, transaction serialization, synchronizer-
mediator.

GJCST-C Classification: C.2.4

MediationofLazyUpdatePropagationinaReplicatedDatabaseoveraDecentralizedP2PArchitecture

 Strictly as per the compliance and regulations of:

Mediation of Lazy Update Propagation in a
Replicated Database over a Decentralized P2P

Architecture
Katembo Kituta Ezéchiel α, Shri Kant σ & Ruchi Agarwal ρ

Abstract- While replicating data over a decentralized Peer-to-
Peer (P2P) network, transactions broadcasting updates arising
from different peers run simultaneously so that a destination
peer replica can be updated concurrently, that always causes
transaction and data conflicts. Moreover, during data
migration, connectivity interruption and network overload
corrupt running transactions so that destination peers can
experience duplicated data or improper data or missing data,
hence replicas remain inconsistent. Different methodological
approaches have been combined to solve these problems:
the audit log technique to capture the changes made to data;
the algorithmic method to design and analyse algorithms and
the statistical method to analyse the performance of new
algorithms and to design prediction models of the execution
time based on other parameters. A Graphical User Interface
software as prototype, have been designed with C #
(C S harp), to implement these new algorithms to obtain a
database synchronizer-mediator. A stream of experiments,
showed that the new algorithms were effective. So, the
hypothesis according to which “The execution time of
replication and reconciliation transactions totally depends on
independent factors.” has been confirmed.
Keywords: peer-to-peer (P2P), database replication, data
reconciliation, transaction serialization, synchronizer-
mediator.

I. Introduction

n computing, a Distributed Database System
(DDBS) is a database whose storage devices are
not necessarily all linked to a common processing

unit; but rather in this approach, the database can
be stored on multiple computers, located in the same
physical location or can be scattered on networked
computers [1], [8]. The distribution transparency is
the fundamental principle of the DDBS which
consists of making a distributed system to appear
similar to a centralized system to the users. The
distribution transparency as well as the management
of a DDBS are ensured by a program called
Distributed Database Management System (DDBMS)

Author

α:

Ph.D. scholar, Department of Computer Science and

Engineering, Sharda University, Greater Noida, India.

e-mail: kkitutaezechiel@yahoo.com

Author

σ:

Professor, Research and Technology Development Centre,

Department of Computer Science and Engineering, Sharda
University, Greater Noida, India. e-mail: shri.kant@sharda.ac.in

Author

ρ:

Associate Professor, Department of Computer
Applications, JIMS Engineering Management Technic al Campus,
Greater Noida, India. e-mail: dr.ruchi@outlook.com

[3]. The design of a DDBS requires that it be entirely
resident on different sites of a computer network but
not necessarily all. This means that at least two sites
must host the database and not necessarily each site
in the network, as depicted in the Fig. 1.

Thus, there are two distribution strategies:
data fragmentation and data allocation on the one
hand and data replication on the other hand. So, to
make a good design, all these strategies are
compiled [2], [3], [33]. The fragmentation consists in
splitting a relation (a table of a database) into a
number of sub-relations, called fragments; which can
be horizontal, vertical or hybrid. Horizontal fragments
are subsets of tuples (table records), vertical
fragments are subsets of attributes (table columns),
and hybrid fragmentation consists of mixing the two
preceding ones. In turn the allocation is nothing more
than the assignment of fragments to the sites in an
optimal way [2]. When allocated fragments have to
share data among them, they need the replication
procedure.

Fig. 1: Architecture of Distributed Database System.

However, this work focuses on the data
replication strategy. The replication consists of
duplication and storage of multiple copies or replicas
(at least two) of the same fragment or the entire
relation (in the case of a fully replicated database) of
a DDBS in multiple different sites. The replication is
the strategy used to ensure the data exchange

I
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 1

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

mailto:shri.kant@sharda.ac.in�

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 2

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

between fragments or relations in a fully replicated
database [2], [3], [4], as illustrate in Fig. 2. In any
case, the main problem of the data replication is the
synchronization of replicas. Data synchronization is
nothing than keeping consistent replicas in a
Replicated Database System (RDBS) [5]. This means
ens uring the exchange of updates between replicas.

Fig. 2: Protocol of Database replication.

Nowadays P2P computer network is in full
emergence. Comparatively to client/server model, in a
P2P system, each client is itself a server. In this way
replicating a Database over a P2P network require
that all peers keep the same data copy. In the same
way, the emergence of advanced applications of
P2P systems, requiring general replication capabilities
with different levels of granularity and multi-master
mode [11], where each peer can transfer updates to
all others and the same replica can be updated by
several peers in a replicated databases environment
[4], [10], the serialization of updates and the
reconciliation of data turns out to be the particular
P2P replication problems because those flows of
updates (data) and refresh transactions conflict each
other [8], [30], [33].

For example, the operations on an account,
of a customer, opened in a bank with multiple
branches can be replicated by several branches of
the same bank and must be able to be updated by
any branch anytime, to acquire reception of a
transfer, for a deposit to the account, a withdrawal
from the account, etc. Concretely, changes made by
refresh transactions from different peers reach a
destination site at the same time and multiple updates
of the same replicas by different peers break the
reliability and the consistency of replicas [2].

This is why this study aims to introduce an
effective approach to serialize refresh transactions
and to reconcile replicas in the case of inconsistency.
To overcome one of DDBS homogeneity aspects,
namely the same DBMS, the result of this design
needs to be implemented as a synchronizer-mediator
for database replication in a Graphical User Interface
(GUI) using lazy decentralized sites strategy on a P2P
network. To reach this purpose, the structure of this
paper is organized as follow: the first section
introduced by presenting the context of this research
as well as the status of the problem, the second
section will review the related works, the third will
present the methodology, fourth section will show the
simulation environment for experimentation, the fifth
section will offer the result and finally the sixth section
will conclude this study.

II. Related Works

This section will rapidly review certain
research works already realized to attempt to solve
these two aforementioned problems.

a) Data replication
Designing a RDBS pursue four majeure

objectives, namely : improving data availability,
improving performance, ensuring scalability and
users applications requirements. These purposes can
be summarized as “improving consistency and/or
reliability” [2], [3]. To ensure consistency between
replicas, the synchronization procedure uses the
transaction running technique. A transaction is a
collection of operations that transforms the database
from a consistent state to another consistent state
[6], as illustrated in Fig. 3.

Fig. 3: Protocol of Transaction running.

A transaction has a Begin Of Transaction
(BOT) and an End Of Transaction (EOT). This End is
managed by three different functions: either a
“commit” to validate, a “rollback” to cancel, or an
“abort” to interrupt the execution of operations inside
the transaction. The consistency and/or reliability of
a transaction are guaranteed by 4 properties:
Atomicity, Coherence, Isolation, Durability (ACID) that
make the “acidity” of a transaction [2], [7]. As we are
dealing with data flow, our focus remains on the
Structured Query Language (SQL) operators,
especially the Data Manipulation Language
operators in most of DDBMSs, which contains [9]:
The write operators (Insert, Update and Delete SQL
commands) and the read operator (Select SQL
command). Typically, like the structuring of
instructions of a procedural language, a transaction
"T" can have the following structure:

Begin_Of_Transaction T
Insert operator
Update operator
Delete operator
Select operator
End_Of_Transaction T

However, to solve the aforementioned main
problem of data replication, i.e. the synchronization of
replicas, there already exits four replication strategies,
resulting from the combination of two factors: “when”
and “where”. The "when" factor specifies when

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 3

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

updates are broadcasted (synchronously/eagerly or
asynchronously/lazily), while the "where" factor
indicate where updates occur on a centralized site
(primary copy/mono- master) or on decentralized
sites (everywhere/multi-master) before being
propagated. So when we take the factor “where” in
“when”, it emerges [1], [2], [3], [4], [30], [33], [34]:

A. Synchronous or Eager Replication: All replicas
must be updated before the transaction commit
i.e. in real-time. Here, the most up to date value of
an item is guaranteed to the end user. There are
two different strategies in synchronous
replication:

1) Eager centralized site: This method is
beneficial in case where reads are much more
frequent than writes. It works under the
principle “Read-One, Write-All (ROWA)”. After
transaction commitment, any one of replicas
can be read; so the write process must update
all replicas.

2) Eager decentralized sites: The principle is
“update everywhere”; in this logic every site is
allowed to propagate updates to all sites in
the same transaction, at the same time so
that on the end of the transaction updates
become available on all sites.

B. Asynchronous or Lazy Replication: Allows different
replicas of the same object to have different
values for a short periods of time i.e. in near real-
time. They are updated after a predefined interval
of time. There are two different strategies in
asynchronous replication:

1) Lazy centralized site: It works with the principle
such that one copy of replicas is assigned as
the “primary copy or mono-master” so that
changes of data or writes are possible only
on it. These changes are periodically
propagated to the secondary copies. The
secondary copies of data can only be read.

2) Lazy decentralized sites: Here the principle is
so that changes can be performed
“everywhere or multi - master”, on each site.
So these changes are propagated
independently to other sites sporadically.

These replication strategies, have already
been implemented in most of modern DDBMSs [9]. It
is largely the centralized strategy that is much more
wrapped in the replication models offered by almost
all DBMSs. But, although these modelling are done,
there remains a problem to emphasize in eager
centralized site approach such that if there is a site
unavailable during updates propagation by the
master site, the transaction cannot commit. So, some
researches are already attempting to design an
optimal algorithm that can allow the update

transaction commitment on the available sites and to
update unavailable sites as soon as they become
available again; hence the approach “Read-One,
Write-All Available (ROWA-A)” [2], [30], [33]. In
addition, one could expect the problem related to the
momentary interpolation of the line of communication
between the master site and the slave sites, because
it is enough for example that the master site overlord
or be inaccessible so that the slaves no more access
to updates [8]. Well, there is only the decentralized
strategy that can clear this concern.

Nevertheless, eager decentralized sites
experience the same problem as eager centralized
site, whereby update transactions that arise from all
sites, if they find at least one site unavailable they
abort. But to overcome this problem, such kind of
systems should be able first of all to commit
transactions on only available sites and so update
unavailable sites as soon as they become available
again; hence the approach “Update Everywhere
Available” [17]. So nowadays, some researches
attempt to improve these algorithms by distributed
voting algorithm [4]. Thus, if the sites number
quorum is reached the transaction commit on them;
so afterwards, when writing, update all fraction of the
replicas and when reading, read enough replicas to
ensure you get at least one copy of the most
recent value.

In view of the above, it seems that the lazy
strategy is appropriate for P2P topology, especially
since it allows replicas of various sites to diverge for a
given moment. So as in a P2P network, the
participants (Peers) are present or absent
momentarily, updates propagation can be applicable
on the present Peers while the absent Peers will
remain with non - updated replicas in order to receive
their updates when they become available again
[10], [33]. Thus, lazy centralized sites approach is
appropriate for the centralized P2P topology because
updates are performed only on the central site and
then forwarded to slave sites in near real-time while
lazy decentralized sites approach is the most
appropriate for the materialization of replication on a
decentralized P2P topology because in near real-time,
like centralized approach, updates can be performed
everywhere, i.e. on each peer and then be
broadcasted to all others.

Referring on our problem concerning
replication over a decentralized P2P architecture, the
observation has been that only a few of DDBMSs
have already tried to implement the lazy decentralized
strategy in order to formalize the P2P replication; let us
quote for instance SQL Server [13] and Oracle [14].
Unfortunately, the particular problems of P2P
replication still exist and will be developed in following
lines:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 4

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

• Transaction conflicts: Several updates carried by
refreshing transactions, from different sites reach
a destination site at the same time but they
cannot be performed on the same time, then
reliability and consistency will be lost and there
will be the risk of transaction conflicts [2], [30],
[33], [35]. DDBMSs must ensure that transaction
execution meets a set of properties that lead to
the consistency of distributed databases and
conveniently summarized by the ACID, since
when the execution is always concurrent [6], [7].
Thus, several researches have already been
undertaken to solv e the transaction concurrency
control problem. Concurrent execution without
harmonization constraints poses a number of
problems, the most important of which is the loss
of operations and incorrect readings. Therefore,
it is necessary to set the serializability, a property
determining a correct execution of the completion
of transactions [3].

• Data conflicts: P2P replication allows to perform
changes on each peer in the topology and then
forward them to other peers. However, as
changes are performed at different peers,
probable data conflicts are to be pointing out
when modifications are being broadcasted [2],
[30], [33]. Thus, in all DDBMSs which have already
succeed to implement the lazy decentralized sites
approach to make it P2P replication, one can
distinguish three types of data conflicts [13], [14],
[20], [21]:

a) Primary key or uniqueness conflict: Occurs when
a record with the same primary key has been
created and inserted at more than one peer in
the topology. So when those peers need to
exchange updates, it is then impossible to violate
the criterion of entity integrity;

b) Foreign key conflict: Can occurs if in any case the
refresh transaction forward updates which
contains a record with a foreign key column but
whose primary key is not yet forwarded to the
destination peer. So it is then impossible to violate
the criterion of referential integrity;

Data modifications conflicts:

 Update conflict: occurs when the same record
has been updated on more than one peer;

 Insertion/Update conflict: occurs when a record
has been updated on a peer and the same record
has been deleted and re-inserted on another
peer;

 Insert/Delete conflict: occurs when a record has
been deleted on a peer and the same record has
been deleted and re-inserted on another peer;

 Update/Delete conflict occurs when a record has
been updated on one peer and the same record
has been deleted on another peer;

 Deletion conflict: occurs when a record has been
deleted on more than one peer.

Thus it is necessary to think about a certain
number of rules to warranty the conflict policy
avoidance in the decentralized P2P replicated
environment. Apart from the inconsistency of data
caused by transaction conflicts and data conflicts,
there are other phenomena which make the
replicated data inconsistent. Thus, although the
transaction that propagates the updates is
successfully committed, the data remains
inconsistent. Hence, there is the need of an
automatic data reconciler.

b) Data reconciliation
Database reconciliation is a process of

verifying data when there has been a migration or
transfer of data from a source database to a
destination. The purpose of this process is to
ensure that the migration has been done accurately
[22]. In this logic, in a global manner, the data is the
set of tables of a given database and in a basic way,
the set of records of definite tables which can be
accessed by a certain selection criterion. In a
replicated Databases environment, updates
broadcasting as well consists to migrate or to
transfer data changes from a Prima ry site toward
Secondary sites [23].

However, during data migration, errors may
have occurred [12]. Most are like execution failures
due to network interruptions as well as network
overload those end up corrupting transactions and
causing data to be lost or remain in an invalid state at
the destination [8], [34]. These phenomena lead to a
series of problems such as: missing records,
duplicate records, incorrect values, missing values,
incorrectly formatted values, broken relationships
between tables in case of forced redundancy, etc.
[22]. But, some researches have already been
undertaken to find solutions in several ways and
some algorithms are already implemented in DDBMs
and particular software to reconcile data after
migration process.

Oracle Corporation [24], possesses some
databases reconciliation tools for their DDBMSs:
Upgrade Reconciliation Toolkit is used to compare
the data on the Oracle DB source and Oracle DB
destinations after data migration and after running
the parallel End Of Day (EOD) activities mostly for
different branches of a bank. This tool generates
also the reconciliation report at the end of the
process. Another tool is mysqldbcompare especially
for MySQL, this tool compares two databases by
identifying differences between databases objects;
changed or missing rows of tables are shown in
standard formats like grid, table, etc. It is going
beyond the data comparison; this utility compare
also objects data definition of two databases [25].

c)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 5

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

H. Jonathan [26], implemented a PHP
script, to produce MySQL_Diff tool, a Web application
running in a browser, to reconcile two MySQL
databases schema difference by visualizing
databases tools and resolving differences. ApexSQL
LLC [29], a Microsoft Gold Certified Partner, provide
ApexSQL Data Diff, a Windows application to compare
tables in the databases and visualize the difference
in a grid before synchronizing two different remote
sources SQL Server databases. Slotix s.r.o. [27],
provide DBConvert, a Windows application to migrate
data (1 Million records in 5-10 minutes) between
multiple databases and DBSync, a customized
Windows application as well, to compare (missing
and additional records) and synchronize data
between two different databases.

Pragmatic Works Inc. [28], a Microsoft Gold
Certifie d Partner, provide another Data Reconciliation
Tool LegiTest’s, which can be connected to a variety
of data sources, mostly for Microsoft so that data
verification can be perform cross- platform. It
supports SQL Server, Oracle, SSAS, OLE DB
sources, and ODBC sources. Experian Ltd. [22],
provides Experian Aperture Data Studio, a Windows
application for data migration and data reconciliation
between a source and a destination database.

Nevertheless, all these tools run reconciliation
between one source and one destination. The only
one which can reconcile one source and multiple
destinations is Upgrade Reconciliation Toolkit for
Oracle. Unfortunately, it is only limitated to Oracle DB.
The tools mysqldbcompare and MySQL_Diff are also
limitated to MySQL and they are not taking in to
account multiple destinations. The Tool LegiTest’s
should be more interesting because it is able to
reconcile multi-DBM S databases, but it is also one
source, one destination; and all others which have
been listed in this review present such kind of
limitation.

Moreover, these data reconciliation tools rely
on simple counting of records to keep track if the
expected number of records has been migrated. It
can be esteemed that this was mainly due to the
importance of the processing of essential data to
carry out field validation of a given data. Nowadays,
for more accuracy, the data migration algorithm
should provide data reconciliation capabilities that
allow the reconciliation of each data or each field, i.e.
at the intersection of each row an d each column
(attributes by record) of each database table [12].

To preserve data inconsistency and to
maintain acidity, all instructions of the replication
procedure must be wrapped in transactions [2], [7].
The instructions of a transaction are the commands
or operators of the data manipulation language. But,
when an operator of the data modification language
is executed on a site, some time passes while waiting

for the response. While a transaction may have more
than one operator and the factors are likely to be
varied in a P2P environment, this phenomenon
should greatly influence the temporal complexity in
the event of variation of different factors. So it is
necessary to design a prediction model of replication
and reconciliation execution time.

The assumption of this study is formulated as
follows: “it seems that P2P replication systems
experience the weak performance, especially since
the time to replicate and to reconcile data from a
Master Peer to Slave Peers dependent, if not totally,
partially of certain factors, such as: the number of
records in each table, the number of tables whose
data has changed, the number of peers connected
during the propagation of updates and other
factors (number of columns per table, data types
columns, etc.)”.

However, these problems deserve a special
attention; that is why there is a reason to wonder
about setting up “a synchronizer-mediator for lazy
replicated databases over a decentralized P2P
architecture”. This system should be able to serialize
updates performed simultaneously on different
replicas of the same database and to reconcile this
replicas, effectively, over a decentralized P2P network.

III. Methodology

To ensure strong replica consistency in a
distributed database, traditionally the implementation
of a syn chronous or eager refresh algorithm which is
specially Two -Phase-Commit (2PC) based technique
is the unique gateway to avoid discrepancies
between replicas [2]. However, this solution is
inapplicable in a P2P architecture because does not
guarantee the updates delivery to all peers as they
are not all always available at the same time [15].
Thus, asynchronous or lazy replication is more
appropriate for P2P systems because it allows
replicas to be updated independently and to remain
divergent until a refresh transaction takes place [16].
Modifications which have been done to the local
replica, by local transactions are captured and the
refresh transaction propagates them to remote
replicas asynchronously i.e. in near real-time. The
technique used in this work to capture modifications
is audit-log.

a) Audit-log technique
Almost all DDBMSs support this technique by

running triggers belonging to a specific table in order
to capture data modifications. A trigger is attached to
an event produced by an Insert or Update or Delete
operator so that it captures changes before or after
the event has taken place in the database [5], [33]. So,
in this work the interest is carried on after trigger. To
achieve this, for each data-table the creation of one

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 6

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

audit-table is necessary. The audit-table is
composed by the data-table primary key column,
other data-table columns (apart from the primary
key), the updated column name, the audit action, the
timestamp and the synchronization ID. These

elements are required for a record to do the
comparison between data. Each table in the
database would need three triggers to run after Insert,
after Update and after Delete. The flow chart, Fig. 4
here below illustrates the audit-log creation.

Fig. 4: Audit -log (Audit table and triggers) creation.

Suppose that the database is homogenous
and full replicated, as soon as the audit log creation
of each data table completed, on each peer, for
each SQL data modification operation, the DDBMS
performs following action accordingly:

• After each Insert operation in the data table, the
“insert trigger” captures the newly added record
and inserts it in the audit table, as shown in Fig. 6,
row 1 to 5 in Slave Peer Audit-table;

• After each Update operation of a column of data
table, the “update trigger” captures the

concerned record, with the new data that has just
been set, and inserts it in the audit table, as
shown in Fig. 6, row 6 to 8 in Slave Peer Audit-
table;

• After each Delete operation from the data table,
the “delete trigger” captures the deleted record
and inserts it in the audit table, as shown in Fig .6,
row 9 and 10 in Slave Peer Audit- table.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 7

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Fig. 5: Data table triggered and audit tables Master and Slave.

The column synchronisation ID (Sync_ID) in
Audit -tables don’t have same value; for a Master Peer
Audit-table its content is “Local-Transaction”, value
automatically provided by the trigger procedure when
the transaction is initiated locally by the user
application whereas for a remote transaction the
synchronization procedure update automatically this
column by the sync. ID provided by the Sync.
Mediator-System. So, the synchronization procedure
select only data whose Sync_ID is equal to “Local-
Transaction” and whose Audit_Timestamp is in the
interval of begging date and time to ending date and
time and apply them to Slave Peers according to the
Audit_Action value. This technique permits us to
resolve the problem of the endless loop in the sync.
procedure used two -ways or symmetrical replication
which was knowing old synchronizers [5].

b) Algorithmic method
The Algorithmic method will be used to

design and to analyse instructions of algorithms and
steps of a Peer-to-Peer Synchronizer. This method
will take in account the Circulatin g Token Ring
Algorithm, the Decentralized Peer-to-Peer Replication

Algorithm and the Decentralized Peer-to-Peer Data
Reconciliation Algorithm.

i. Network Topology and Algorithm
When a peer needs to broadcast its captured

updates toward other peers, it needs a token which
gives it the state of a Master i.e. the permission to
forward its updates and other peers become
automatically Slaves. A fully replicated P2P database
system includes p peers and each peer has a
complete copy of the database. Peers communicate
with each other by exchanging messages and
forwarding updates or accessing peer data by
performing transactions [17]. In this way, updates will
be applied according to a circulating token, as
depicted in Fig. 6, which determine transactions
serialization order or one can give the privilege to
updates from certain sites considered to be mo re
important or privileged.

Suppose a network consisting of four peers
A, B, C and D all networked. The Fig. 6 below
presents the decentralized topology of peer-to-peer
token ring network.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 8

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Fig. 6: T opology of Decentralized P2P circulating
Token Ring.

A predefined order of releasing or getting the
token, since we are in a P2P network where a peer p
may or may not be available, is not needed. The
optimization policy here is to give the token directly to
a peer which needs it instead of going through a list
of peers that we are not sure of their availability at the
time of the token release. So, transaction serialization
is managed by the new circulating token algorithms 1
and 2, successively for getting the token and
releasing the token.

Algorithm 1: P2P getting the circulating token

Input: A set p of slave peers
Output: A peer (Master/Slave) owning the token
begingetTokenFunction()
1: selectall SlavePeers

2: for(p ← 0 toNumberOfSlavePeers – 1)do

3: if(SlavePeer(p).ConnexionState = “True”) then
4: SlavePeer(p).Availability ←“True”

5: else
6: SlavePeer(p).Availability ←“False”

7: end if

8: end forp
9: selectAvailableSlavePeers

10: for(p ← 0 toNumberOfAvailableSlavePeers – 1)do

11: selectToken from SlavePeer(p)
12: for(j ←0 to NumberOfSyncIDInSlavePeer(p) – 1)
13: ifSyncID(j).TokenPossession = “True”then

14: SlavePeer.TokenPossState←“True”
15: SlavePeer.SyncID←SlavePeer(p).SyncID(j)
16: end if
17: end forj
18: if(SlavePeer(p).TokenPossState = “True”)then
19: TokenAvailability←“false”
20: select Token from MasterPeer

21: if(MasterPeer.TokenPossState = “True”)then
22: Set MasterPeer.TokenPossState←“False”
23: Set MasterPeer.TokenReleaseDateTime←now()
24: end if
25: if (MasterPeer.Privilege = “True”) then
26: for(p ←0 toNumberOfAvailableSlavePeers– 1)do
27: if(SlavePeer(p).Privilege = “False”)then

28: Set SlavePeer(p).TokenPrevention←“True”
29: end if
30: end forp
31: Send TokenRequest to SlavePeer(p)
32: else
33: Send TokenRequest to SlavePeer(p)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 9

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

34: end if
35: else
36: if(p = NumberOfAvailableSlavePeers – 1)then
37: Set MasterPeer.TokenPossState = “True”
38: Set MasterPeer.TokenReceptionDateTime = now()
39: end if
40: end if
41: end forp
42: returna peer (Master/Slave) owning the token
endgetTokenFunction

Since when a peer (p), which can be “A” or “B”
or “C” or “D” gets the token, it executes the transactions
according to the algorithm 3, 4 and 5 for data replication
and 6 for data reconciliation. Consequently, all
transactions performed are accepted and none rejection
because only a peer which possess the token can
perform a transaction of its updates broadcasting and

reconcile other peers’ data with its updates. As soon as
peer “A” finishes to perform updates and reconciliations
with peers "B, C and D", it releases the token and other
peers like "B" or “C” or “D” can randomly take it, but
according to the token request minimum date and time,
and do the same, unless a privileged peer requests it.

Algorithm 2: P2P releasing the circulating token
Input: A set p of slave peers
Output: A slave peer receiving the token
beginreleaseTokenFunction()

1: selectAvailableSlavePeers
2: NonPrilegedPeerNber← 0
3: TokenRequestNber← 0
4: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
5: ifSlavePeer(p).ConnexionState = “True”then
6: selectSlavePeer(p).TokenRequest
7: if(SlavePeer(p).TokenRequest = “True”)then
8: TokenRequestNber ++
9: if(NonPrilegedPeerNber = 0)then

10: if(SlavePeer(p).Privilege = “True”)then
11: if(SlavePeer(p).TokenRequestDateTime = Min(DateTimeOfPrivilegedSlavePeers))then
12: Set MasterPeer.TokenPossState←“False”
13: Set MasterPeer.TokenReleaseDateTime←now()
14: Set SlavePeer(p).TokenPossState←“True”
15: Set SlavePeer(p).TokenPrevention←“False”
16: Set SlavePeer(p).TokenRequest←“False”
17: returnSlavePeer(p).TokenReceived (end forp)
18: else
19: Continue(p ++)
20: endif
21: else
22: if(p = NumberOfAvailableSlavePeer – 1)then
23: if(SlavePeer(p).TokenRequestDateTime =

Min(DateTimeOfNonPrivilegedSlavePeers)then
24: Set MasterPeer.TokenPossState←“False”
25: Set MasterPeer.TokenReleaseDateTime←now()
26: Set SlavePeer(p).TokenPossState←“True”
27: Set SlavePeer(p).TokenPrevention←“False”
28: Set SlavePeer(p).TokenRequest←“False”
29: returnSlavePeer(p).TokenReceived (end for p)
30: else
31: NonPrilegedPeerNber ++
32: p ←-1
33: end if
34: else if(p <NumberOfAvailableSlavePeer – 1)then
35: Continue(p ++)
36: end if
37: end if
38: else
39: if(SlavePeer(p).TokenRequestDateTime =

Min(DateTimeOfNonPrivilegedSlavePeers))then

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 10

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

40: Set MasterPeer.TokenPossState←“False”
41: Set MasterPeer.TokenReleaseDateTime←now()
42: Set SlavePeer(p).TokenPossState←“True”
43: Set SlavePeer(p).TokenPrevention←“False”
44: Set SlavePeer(p).TokenRequest←“False”
45: returnSlavePeer(p).TokenReceived (end for p)
46: end if
47: end if
48: else
49: if(p = NumberOfAvailableSlavePeer – 1)then
50: Set MasterPeer.TokenPossState←“False”
51: Set MasterPeer.TokenReleaseDateTime←now()
52: end if
53: end if
54: end if
55: end for p
56: returna slave peer receiving the token

endreleaseTokenFunction

ii. Replication Protocol and Algorithm
Assuming that the database is homogenous,

full replicated and each Peer work under a Two-
Phase-Locking (2PL) concurrency control technique.
The model of the lazy replication over a decentralized
Peer-to-Peer Architecture is presented as follows: let

W(x) be a write transaction where x is a replicated
data item at Peers A, B, C and D. The Fig. 7, here
below depicts how transactions update different
copies at all Peers and after commit the refresh
transaction, wrapped in the Sync. Mediator-System,
forward updates to all peers.

Fig. 7: Protocol of Lazy Decentralized P2P Data Replication.

Figure legend

1. Modifications are performed to all replicas by
users;

2. The commitment of a transaction makes the
modifications stable;

3. The modifications (Inserted, Updated and
Deleted data) are independently transmitted to
the other data copies or replicas.

According to the Fig. 7, arrows (1) and (2)
deal with the user application i.e. for each local write
transaction (1), the user application must receive the
commitment (or abort) message (2). Changes carried
by (3) are another set of transactions, wrapped in the
Sync. Mediator-System, routed from each Master
Peer to Slave Peers. The algorithm 3 here below
establishes instructions in transactions of the Insert
operator function.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 11

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Algorithm 3: P2P Replication Algorithm for Data Insertion
Input: Master peer inserted records
Output: Transaction Commitments or Abortions

begininsertFunction()
1: begininsertMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: begininsertSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Inserted’

and AuditTimeStamp≥BeginningDateAndTime and
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 toRowsInAuditTable(ts)OfMasterPeerDatabase – 1)do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: for(cts←0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database – 1)do
12: ColumnNames←ColumnNames&ColumnNames[cts]
13: Values ←Values & Row[rtm]Column[cts]
14: end for cts
15: insert in toDataTableNames(ts)InSlavePeer(p)Database (ColumnNames)values(Values)
16: end for rtm
17: end for ts
20: endinsertSubTransaction(Commit or Abort)
21: end for p
22: endinsertMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions

endinsertFunction

After records which have been inserted be
replicated to slave peers, the algorithm 4 here below,

which has the instructions in transactions of the
update function, also runs in turn.

Algorithm 4: P2P Replication Algorithm for Data Update
Input: Master peer updated records
Output: Transaction Commitments or Abortions

beginupdateFunction()
1: beginupdateMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: beginupdateSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Updated’

and AuditTimeStamp≥BeginningDateAndTime and
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 toRowsInAuditTable(ts)OfMasterPeerDatabase -1)do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: for(cts←0 toNumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -1) do
12: if(ColumnName(cts)InDataTable(ts)OfSlavePeer(p)Database =

UpdatedColumnName)then
13: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)Of

SlavePeer(p)Database ←‘Row[rtm]Column[cts]’
whereColumnName(0)InDataTable(ts)OfSlavePeer(p)Database =
‘Row[rtm]Column[0]’

14: end if
15: end for cts
16: end for rtm
17: end for ts
20: endupdateSubTransaction(Commit or Abort)
21: end for p
22: endupdateMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions

endupdateFunction

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 12

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Finally, all deleted records are replicated by the algorithm 5 here below, by instructions in transactions
of the delete function.

Algorithm 5: P2P Replication Algorithm for Data Delete
Input: Master peer deleted records
Output: Transaction Commitments or Abortions

begindeleteFunction()
1: begindeleteMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: begindeleteSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database – 1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ‘Deleted’

and AuditTimeStamp≥BeginningDateAndTime and
AuditTimeStamp≤EndingDateAndTime

9: for(rtm←0 to RowsInAuditTable(ts)OfMasterPeerDatabase–1) do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts)

OfSlavePeer(p)Database = ‘Row[rtm]Column[0]’
12: end forrtm
13: end for ts
14: enddeleteSubTransaction(Commit or Abort)
15: end for p
16: enddeleteMainTransaction(Commit or Abort)
17: returnTransaction Commitments or Abortions

enddeleteFunction

iii. Reconciliation Protocol and Algorithm
After a large data transmission, to overcome

the problem of data inconsistency due to untimely
interruptions of connectivity, network overload and
other technical hazards, updates forwarded to each
peer in the replication procedure must be reconciled.

The model of the Decentralized Peer-to-Peer Data
Reconciliation is presented as follows: let R(x) be a
read transaction where x is a replicated data item at
Peers A, B, C and D. The Fig. 8, here below depicts
how reconciliation is performed on different copies of
all peers.

Fig. 8: Protocol of Decentralized P2P Data Reconciliation.

Figure legend

1. After the refresh transactions (Deleted, Updated
and Inserted data) commit, then the reconciliation

procedure starts. A read transaction is
performed to the Master peer to retrieve updates
lastly broadcasting toward Slaves.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 13

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

2. Processing:

− Reading of updates independently
forwarded to other replicas by the refresh
transactions (in (2) dashed arrows);

− Comparison with the Master data read in (1)
undashed arrows;

− Reconciliation is written to the Slave peers (in
(2) undashed arrows).

3. The commitment (or cancelation) of a
reconciliation transaction makes replicas
consistent.

According to the Fig. 8, arrows (1) read data
forwarded by the Master peer in the last update

transactions to Slave peers. Dashed arrows (2) read
as well data received by Slave peers. The
comparison is done on the Master peer, by the
Sync. - System in order to detect conflicts between
data. Undashed arrows (2) update respective Slave
peers fixing incoherency detected. So when the
reconciliation transaction ends, the message,
represented by arrows (3), is sending back to the
Sync. Mediator-System and the process terminates.
The whole reconciliation process is established by
instructions in transactions of the reconciliation
function of the algorithm 6 here below:

Algorithm 6: P2P Algorithm for Data Reconciliation
Input: Master peer replicated (inserted, updated and deleted) records
Output: Transaction Commitments or Abortions

beginreconcileFunction()
1: beginreconcileMainTransaction
2: selectall Available Slave Peers
3: for(p ←0 toNumberOfAvailableSlavePeers – 1)do
4: beginreconcileSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Audit Table Names in Slave Peer(p) Database
7: selectall Data Table Names in Slave Peer(p) Database
8: for(ts←0 toNumberOfDataTableNamesInSlavePeer(p)Database –1)do
9: selectall Rows in Audit Table(ts) of Master Peer Database where TransactionType =

’Local’ and AuditTimeStamp≥BeginningDateAndTime and
AuditTimeStamp≤EndingDateAndTime

10: selectall Rows in Audit Table(ts) of Slave Peer(p) Database where TransactionType =
’Remote’

11: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
12: sortRows of Audit Table(ts) of Master Peer Database
13: sortRows of Audit Table(ts) of Slave Peer(p) Database
14: if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database – 1 <NumberOfRowsInAudit

Table(ts)OfMasterPeerDatabase – 1)then
//Reconcile missing records process start

15: rts←0
16: for(rtm←0 toNumberOfRowsInAuditTable(ts)OfMasterPeerDatabase – 1)do
17: repeat
18: if(rts≤NumberOfRowsInAudit Table(ts)OfSlavePeerDatabase – 1)then
19: if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase =

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then
20: Continue(rts ++)
21: end repeat
22: else

//Call function to insert missing records
23: insertMissingRecordFunction(arguments)
24: end if
25: else

//Call function to insert missing records
26: insertMissingRecordFunction(arguments)
27: end repeat
28: end if
29: until(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase =

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)
30: end for rtm
31: else if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database – 1

>NumberOfRowsInAuditTable(ts)OfMasterPeerDatabase – 1)then
//Reconcile duplicated records process start

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 14

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

32: startSlaveLoop←0
33: for(rtm ← 0 toNumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)do
34: for(rts ← startSlaveLooptoNumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database –

1)do
35: if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase =

Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then
36: if(rtm<NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)then
37: startSlaveLoop←rts + 1
38: end for rts
39: else
40: startSlaveLoop←rts + 1
41: end if
42: else

//Call function to delete duplicated records
43: deleteDuplicatedRecordFunction(arguments)
44: end if
45: end for rts
46: end for rtm
47: else

//Reconcile incorrect, missing and incorrectly formatted values process start
48: for (rtm = 0 to NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase – 1)do
49: for (cts = 0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database –

1)do
50: if (Row[rtm]Column[cts]InAudit Table(ts)OfMasterPeerDatabase ≠

Row[rtm]Column[cts]InAuditTable(ts)OfSlavePeer(p)Database) then
//Call function to update Incorrect values, missing values, incorrectly formatted
values

51: updateIncorrectValuesFunction(arguments)
52: end if
53: end for cts
54: end for rtm
55: end if
56: end for ts
57: endreconcileSubTransaction(Commit or Abort)
58: end for p
59: endreconcileMainTransaction(Commit or Abort)
60: returnTransaction Commitments or Abortions

endreconcileFunction

To insert missing records, the algorithm 7 here is called.

Algorithm 7: Function to insert missing records
Input: DataTable(ts)OfSlavePeer(p)Database, cts, rtm
Output: Nothing
begininsertMissingRecordFunction(args)

1: for(cts←0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database – 1)do
2: ColumnNames←ColumnNames&ColumnNames[cts]
3: Values ←Values & Row[rtm]Column[cts]
4: end for cts
5: insert in toDataTableNames(ts)InSlavePeer(p) Database (ColumnNames) values (Values)

endinsertMissRecordFunction

To delete duplicated records, the algorithm 8 here is called.

Algorithm 8: Function to delete duplicated records
Input: DataTable(ts)OfSlavePeer(p)Database, rtm
Output: Nothing
begindeleteDuplicatedRecordFunction(args)
1: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts)OfSlave

Peer(p)Database = ‘Row[rtm]Column[0]’
enddeleteDuplicatedRecordFunction

To update incorrect values, the algorithm 9 is called.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 15

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Algorithm 9: Function to update incorrect values, missing values, incorrectly formatted values
Input: DataTableName(ts)OfSlavePeer(p)Database, UpdatedColumnName, cts, rtm
Output: Nothing
beginupdateIncorrectValuesFunction(args)
1: if(ColumnName(cts)InDataTable(ts)OfSlave Peer(p)Database=UpdatedColumnName)then
2: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)OfSlave

Peer(p)Database = ‘Row[rtm]Column[cts]’whereColumnName(0)InDataTable(ts)OfSlave
Peer(p)Database = ‘Row[rtm]Column[0]’

3: end if
endupdateIncorrectValuesFunction

After the implementation of these algorithms
presented above, the main goal, according to which
setting up a synchronizer-mediator for database
replication being able to serialize the propagation of
updates and their reconciliation in a replicated
databases system over a decentralized P2P network
is achieved. Although this goal be achieved, it is
appropriate to know here that in computing the
performance of an algorithm is assessed on the basis
of its complexity [18]. The analysis of the theoretical
complexity of this algorithm will be more concerned
the time complexity than the space complexity
especially as the data will be momentarily transit
through the buffer to the destination. Nevertheless,
the practical time that the execution of this algorithm
takes will result from the simulation and will be
calculated by the statistical method.

c) Statistical method
The performance of a system depends on a

certain number of factors. We have to determine the
practical time, that makes our system to execute
successively transactions of updates propagation or
replication (insert, update and delete) and
transactions of data reconciliation. To analyse this
performance, we will use the linear regression test
with the random sampling technique. The linear
regression test is a statistical analysis method that
describes the variations of an endogenous variable
associated with the variations of one or more
exogenous variables i.e. the relation between an
endogenous variable and one or more exogenous
variables. In the case where the study concerns an
endogenous variable with one exogenous variable,
it’s a simple regress ion and when it’s an
endogenous variable with more than one exogenous
variable, it is a multiple regression [19].

This test will be used not only to determine
the execution time based on a certain sample, but
also to make a linear regression model that will be
used to predict the execution time , which is the
dependant factor or endogenous variable, based on
other independent factors or exogenous variables,
namely the number of records, the number of tables
in the database and the number of Slave Peers. The
following variables areselected:

• Yi: is a random variable to explain “the time the
synchronization algorithm takes to broadcast

updates and to reconcile replicas for an execution
i”;

• Xi1: is an explanatory variable “the number of
records the synchronization algorithm broadcast
from a Master Peer to Slaves and reconcile
between the Master and Slaves for an execution
i”;

• Xi2: is an explanatory variable “the number of
tables in the database whose records knew
updates which need to be broadcasted and
reconciled with Slaves for an execution i”

• Xi3: is an explanatory variable “the number of
Slave Peers available to receive updates and to
be reconciled for an execution i”.

Given a sample (Yi, Xi1, Xi2, Xi3) whose i ϵ

[1, n], we will try to explain, as precisely as possible,
the values taken by Yi, the so-called endogenous
variable from a series of explanatory variables Xi1, Xi2,
Xi3. The model formulated in terms of random
variables, takes the form: 𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1 𝑋𝑋𝑖𝑖1 + 𝑏𝑏2 𝑋𝑋𝑖𝑖2 +
𝑏𝑏3 𝑋𝑋𝑖𝑖3 + 𝜀𝜀𝑖𝑖
Where:
• i = 1, 2, . . . , n
• b0 is the constant term;
• b1, b2 and b3 are coefficients of the regression to

be estimated;
• ɛi: is the model error that expresses or summarizes

the missing information in the linear explanation of
the values of Yi from Xi1, Xi2, Xi3 (a random variable
of zero mathematical expectation in this model i.e.
problem of specifications, variables not taken into
account, etc.).

The intensity of the relation between the
independent variables and the dependent variable
will be expressed by the correlation coefficient “R”,
which is the square root of the “R²”, the determination
coefficient of a linear regression model. The
coefficient of correlation, will be used to determine
the degree of linkage between the independent
variables and the dependent variable while the
coefficient of determination will help to measure the
proportion of dependence of the dependent variable
explained by independent variables. Thus, two sets
of hypothesises are evoked as follow:

1. Test of the significance of each independent
variable (Xi1, Xi2, Xi3)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 16

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

 Null hypothesis (H0): Xik is not a significant
predictor of Yi.
 Alternative hypothesis (H1): Xik is a significant
predictor of Yi.

2. Test of significance of the overall regression
model
 Null hypothesis (H0): The overall regression

model is not significant.
 Alternative hypothesis (H1): The overall

regression model issignificant.
These hypotheses will be verified at the end

of the results which will be produced by a series of
experiments perpetrated on a simulation environment
which will be described in the following section.

IV. Simulation Environment

The implementation and experimentations will
be run on a P2P network consisting of 4 traditional
computers depicted in the Fig. 9, with the following
properties: Processor: Intel Core i5, CPU 2.40GHz,
Memory (RAM): 8.00GB and Storage: 1TB. The
network will be based on a desktop switch of 100
Mbps of transmission speed, to establish a simple
LAN using twisted - pair cables connection and RJ45
connectors. These computers will run under
Windows 10 Professional 64 bits and SQL Server
Management Studio 2012 Express as DDBMS, to
manage databases and establish the connectivity
between them.

Fig. 9: Protocol of P2P Mediator-Synchronizer.

According to this Fig. 9 above, a node is
composed by hardware and software as required
previously. But in this same figure one can point out
the presence of a “Mediator” for each peer. The
mediator is nothing else than the synchronization
system, "Sync. Mediator-System", a C# software
which has been designed and in which it has been
implemente d algorithms, already described in the
methodology, to lead to a windows application
running under a graphical user interface, as
presented in the Multiple-Document Interface (MDI)
window here below in the Fig. 10.

Fig. 10: Sync. Mediator-System MDI window.

Thus this mediator must be installed on each
node to manage the replication transactions and the
reconciliation of replicas. For the execution to be
effective, there are prerequisites to fulfil.

a) Prerequisites
When designing the global schema of the

database, each table must have:
• The name such as “Data_tbTableName” and the

first column as its primary-key to identify data and

to make the difference between records. The
creation of primary keys by automatic incremental
systemprovided by the DBMSs is disadvised, it is
preferable to program an automatic primary key
combined with the site number to avoid
redundancy;

• Bear in mind that the database is homogeneous
i.e. the data structure of the replicated database
must be uniform on all peers.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 17

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

b) Processing phases
Before the actual processing phase begins,

under expected replication, "Sync. Mediator-System"
provides two procedures that must be performed
automatically in advance for each table, as showed in
the window, Fig.11:

Fig. 11: Audit log creation window.

• To create one audit table named
“Audit_tbTableName”, to store changes captured
by 3 triggers belonging to each table. Each audit
table must have its next four last columns to store
respectively the updated column name, the audit
action, the audit timestamp and the last column
to store the synchronization ID;

• To create three triggers to run after Insert, after
Update and after Delete, to capture data
changes and store them in the specific audit
table.

The new circulating token algorithm has two phases:

i. Data replication
Update transaction serialization: All update

transactions must be executed in serial order. Before
initiating a refresh transaction, each peer must first
receive a single token of a sequential series, to get
the order in which the transaction will be executed.
Once a token has been assigned to a peer p, this
last becomes directly a Master so it performs update
transactions to all connected Slave peers, as showed
in the window, Fig. 12.

Fig. 12: Synchronization editor window.

Update transaction performing: When a Slave
peer receives an executing transaction, it places it

according to its Master peer’s token as well as its
number (Sync_ID, in Fig. 5) and updates are
performed to the Slave peer database. As soon asthe
transaction ends on each Slave peer, it sends an
appropriate message to the Master peer to certify
the transaction commitment. The peers connected
during the initiation of the transaction and whose
transaction has been aborting during transaction
performing, due to any kind of issue to the site which
host the peer, must be mentioned in the pending list
in order to be updated later in a new procedure re-
using the same Sync_ID. Then the main transaction,
initiated on the Master peer, ends when it has been
executed on all peers and give immediately the relay
to the reconciliation procedure.

ii. Data reconciliation
Reconciliation transaction serialization:

Reconciliation in turn will benefit from the serial order
of their “Mather” update transactions. This phase
must begin on the Master peer once the replication is
complete. The reconciliation procedure must also
initiate transactions to read updates received by
Slave peers. These readings consist of a
comparison between the data s ent by the Master
peer and the data received by the Slave peers. The
comparison operation is performed according to data
carrying the token of the same Master initiator of the
replication transactions, as revealed in the window,
Fig. 12. All errors like missing records, duplicate
records, incorrect values, missing values, incorrectly
formatted values are retained in order to be fixed.

Reconciliation transaction execution: This
phase consists of fixing all retained errors so that
missing records are inserted, duplicate records are
deleted, missing values are added to their respective
fields, incorrectly formatted values are replaced by
correct values. Data reconciliation process can be
however restarted if the first one done didn’t put
replicas in consistent state. So procedure can be
repeated until all replicas become consistent, then
the Master peer can release the token. In the case
where the inconsistency persists among data,
probably it can be caused by conflicts.

c) Conflicts avoidance rules
To avoid potential conflicts among data in the

P2P replicated database environment, some rules
must be respected:

• When using the database, it is inadvisable not to
update the value of the primary key; instead, it is
better to delete the entire record and re-insert it;

• When designing an application which
communicate with the database, create
procedures which cannot allow from a peer to
update or to delete a record whose insertion was
not performed on that same peer i.e. the
modification of a data must be done only and

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 18

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

respectively on the peer that created it or
inserted it.

After the configuration be performed as
indicated in this section to simulate the replication
process on a P2P network, the test and/or experiment
sets yielded the results which are presented in the
next section.

V. Result

This section is dedicated to testing this new
synchronizer of databases, presenting the results and
evaluating the performance of the newly proposed
algorithm. To achieve this, it is necessary to analyse
the performance in order to jus tify the effectiveness
of the algorithm.

a) Performance analysis
Suppose that this algorithm has to

broadcast updates emerging from the replicated
database over 4 peers A, B, C, and D, local servers of
a bank branches. Being fully replicated and
homogeneous, the physical schema of this database
consists of 3 tables, as presented in Fig. 13.

Fig. 13: Physical schema of a Banking Database.

So, for all cases, consider the sample of 12
executions, to operate randomly and based on the
reality of the replicated data manipulation in the
distributed environment of banking database.
However, in all cases, insertions are greater than or
equal to updates and deletes. But updates can be
more or less than deletions.

After the replication transaction has
completed, if there has been an overload or
interruption of the network corrupting the replication
transaction, then assume that the data that the

destination peers have received has experienced
some inconsistencies with respect to those of the
master peer. Fro m the total replicated data (inserts,
updates, and deletes), consider that 25% are missing
records that require re-insertion, incorrect values,
missing values, and incorrectly formatted values
which need to be updated and duplicate records that
require deletion, as typically data to be reconciled
does not exceed ¼ of that of replication [2], [22].
Thus, it resorts the data presented in the table 1
hereafter:

Table 1: Records Number Sample data

Nbr.
Obs.

Number of rows
to replicate

Number of rows
to reconcile

1. 723 181
2. 900 225
3. 120 30
4. 2500 625
5. 1253 313
6. 80 20
7. 3000 750
8. 5000 1250
9. 450 113
10. 4860 1215
11. 600 150
12. 235 59

Mean 1643.42 410.92
Total 19721 4931

For analysing the effectiveness of our
algorithm, the experimentation will be realized in four
scenarios, namely:

1. Experimentation based one table stored on a
master peer with two slave peers ;

2. Experimentation based two tables stored on a
master peer with two slave peers ;

3. Experimentation based one table stored on a
master peer with three slave peers;

4. Experimentation based two tables stored on a
master peer with three slave peers.

To carry out the analysis of the performance,
based on the prediction of the execution time
according to the data of the sample presented in the
Table 1 above, it results the execution times obtained
after experimentation and presented successively in
the tables and charts below:

Table 2: Result of the experimentation based one table stored on a master peer with two slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 19 2 19 3 20 2
2. A 24 2 24 4 24 2
3. C 3 0 3 1 4 0
4. C 67 5 68 12 69 8
5. A 35 3 35 5 36 4

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 19

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

6. A 3 0 2 0 3 0
7. B 84 7 84 15 87 11
8. B 144 11 148 25 152 18
9. A 15 1 14 2 14 1
10. C 161 12 173 26 189 18
11. C 24 2 24 3 25 3
12. B 10 0 9 1 10 1

Mean 49.08 3.75 50.25 8.08 52.75 5.67
Total 589 45 603 97 633 68

All basic factors remaining unchanged i.e. one
table stored on a master peer with two slave peers,
replication and reconciliation models are successively
presented as follow : insert operator, Fig. 14(a)
y = 0.0302x − 0.5595 +𝜀𝜀 for data replication and Fig.
15(a) y = 0.0093x − 0.0777 + 𝜀𝜀 for data reconciliation,

update operator, Fig. 14(b) y = 0.0318 x − 2.0714 +𝜀𝜀
for data replication and Fig. 15(b) y = 0.0208 x − 0.4639
+ 𝜀𝜀 for data reconciliation and delete operator, Fig. 14(c)
y = 0.0336 x − 2.528 + 𝜀𝜀 for data replication and Fig.
15(c) y = 0.0148 x − 0.4124 + 𝜀𝜀 for data reconciliation.

Fig. 14: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
one table stored on a master peer with two slave peers.

Fig. 15: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values and (c) duplicate records results from the experimentation based one table stored on a master
peer with two slave peers.

Keeping unchanged basic factors, in 1
second (y) we predict that this algorithm can
successively replicate and reconcile following
number of records (x):
• For insert operator

 In replication procedure (Fig. 14(a)) : 1 = 0.0302
x − 0.5595⇒−0.0302 x = −1.5595 ⇒ x = 51.63
⇒ x ≈ 52 inserted records to be replicate in 1
second. So, as the coefficient of determination
R² = 0.9865 then the insertion execution time
depend on 98.65% of the number of records

and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9865 ⇒ R = 0.9934 then the degree of
linkage between the insertion execution time
and the number of records is 99.34%.

 In reconciliation procedure (Fig. 15(a)): 1 =
0.0093 x − 0.0777 ⇒−0.0093 x = −1.0777 ⇒

x = 115 .88 ⇒ x ≈ 116 missing records to be
reconcile in 1 second. So, as the coefficient of
determination R² = 0.9876 then the missing
records reconciliation execution time depend on

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 20

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

98.76% of the number of records and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9876 ⇒ R = 0.9938 then the degree of
relationship between the missing records
reconciliation execution time and the number of
records is 99.38%.

• For update operator
 In replication procedure (Fig. 14(b)): 1 = 0.0318

x − 2.0714⇒−0.0318 x = −3.0714 ⇒ x =96.58
⇒ x ≈ 97 updated records to be replicate in 1
second. Thus as the coefficient of
determination R² = 0.9789 then the update
execution time depend on 97.89% of the
number of records and as the coefficient of
correlation R= √𝑅𝑅2 ⇒ R = √0.9789 ⇒
R = 0.9894 then the degree of linkage between
the update execution time and the number of
records is 98.94%.

 In reconciliation procedure (Fig. 15(b)): 1 =
0.0208𝑥𝑥 − 0.4639 ⇒ −0.0208𝑥𝑥 = −1.4639 ⇒
𝑥𝑥 = 70.37 ⇒ 𝑥𝑥 ≈ 70 incorrect values, missing
values, and incorrectly formatted values to be
reconcile in 1 second. So, as the determination
coefficient R² = 0.9956 then incorrect values,
missing values, and incorrectly formatted
values reconciliation execution time depend on
99.56% of the number of records and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9956 ⇒ R = 0.9978 then the linkage
degree between the incorrect values, missing
values, and incorrectly formatted values

reconciliation execution time and the number of
records is 99.78%.

• For delete operator
 In replication procedure (Fig. 14(c)) : 1 =

0.0336𝑥𝑥 − 2.528 ⇒ −0.0336𝑥𝑥 = −3.528 ⇒ 𝑥𝑥 =
105 deleted records to be replicate in 1
second. So, as the coefficient of determination
R² = 0.9663 then the delete execution time
depend on 96.63% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9663 ⇒ R = 0.9830 then the correlation
between the insertion execution time and the
number of records is 96.63%.

 In reconciliation procedure (Fig. 15(c)): 1 =
0.0148𝑥𝑥 − 0.4124 ⇒ −0.0148𝑥𝑥 = −1.4124 ⇒
𝑥𝑥 = 95.43 ⇒ 𝑥𝑥 ≈ 95 duplicated records to be
reconcile in 1 second. Thus, as the coefficient
of determination R² = 0.9922 then the
duplicated records reconciliation execution time
depend on 99.22% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9922⇒ R = 0.9961 then the degree of
relation between the duplicated records
reconciliation execution time and the number of
records is 99.61%.

Table 2, Figs. 14 and 15 here above
presented successively the result of the replication
and reconciliation of records of one (1) table stored
on a master peer toward two (2) slave peers, in terms
of the execution time. Now, let's vary the number of
tables and still observe the result.

Table 3: Result of the experimentation based two tables stored on a master peer with two slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 12 2 12 3 11 2
2. A 15 2 15 4 16 3
3. C 2 0 2 1 3 1
4. C 45 5 47 11 46 7
5. A 24 3 24 5 25 4
6. A 1 0 2 0 2 1
7. B 61 7 61 9 63 10
8. B 104 12 110 24 116 18
9. A 12 1 12 2 12 1
10. C 115 11 121 23 125 16
11. C 16 1 16 2 16 1
12. B 7 1 6 1 7 1

Mean 34.50 3.75 35.67 7.08 36.83 5.42
Total 414 45 428 85 442 65

By varying the factor number of tables, from
one to two tables stored on a master peer, dividing
the number of records equitably between two tables
and maintaining unchanged the factor number of

slave peers in “two (2) peers”, the replication and the
reconciliation models are successively given as
follow:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 21

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Fig. 16: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
two tables stored on a master peer with two slave peers.

Fig. 17: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values and (c) duplicate records results from the experimentation based two tables stored on a master
peer with two slave peers.

Insert operator, Fig. 16(a) y = 0.0218𝑥𝑥 −
1.3366 + 𝜀𝜀 for data replication and Fig. 17(a)
y = 0.0093𝑥𝑥 − 0.0671 + 𝜀𝜀 for data reconciliation,
update operator, Fig. 16(b) y = 0.023𝑥𝑥 − 2.0949 + 𝜀𝜀
for data replication and Fig. 17(b) y = 0.0184𝑥𝑥 −
0.4798 + 𝜀𝜀 for data reconciliation and delete operator,
Fig. 16(c) y = 0.0239𝑥𝑥 − 2.4175 + 𝜀𝜀 for data replication
and Fig. 17(c) y = 0.0136𝑥𝑥 − 0.1746 + 𝜀𝜀 for data
reconciliation.

When we increase the number of tables from
one to two, in 1 second, the prediction of the
execution time (y), during which this algorithm can
successively replicate and reconcile the number of
records (x), is calculated from the following way:

• For insert operator
 In replication procedure (Fig. 16(a)) : 1 = 0.021

𝑥𝑥 − 1.3366 ⇒−0.021 𝑥𝑥=−1.3366 ⇒ 𝑥𝑥=111.26
⇒ 𝑥𝑥 ≈ 111 inserted records to be replicate in 1
second. So, as the coefficient of determination
R² = 0.9846 then the dependence degree of
insertion execution time compared to the
number of records is 98.46% and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9846 ⇒ R = 0.9923 then the degree of
linking between the insertion execution time and
the number of records is 99.23%.

 In reconciliation procedure (Fig. 17(a)): 1 =
0.0093𝑥𝑥 − 0.0671 ⇒ −0.0093 𝑥𝑥 = −1.0671 ⇒
𝑥𝑥 = 114 .74 ⇒ 𝑥𝑥 ≈ 115 missing records to be
reconcile in 1 second. As the coefficient of
determination R² = 0.9925 then the missing
records reconciliation execution time depend on
99.25% of the number of records and as

the coefficient of correlation R= √𝑅𝑅2 ⇒

R = √0.9925 ⇒ R = 0.9963 then the degree of
relation between the missing records
reconciliation execution time and the n umber of
records is 99.63%.

• For update operator
 In replication procedure (Fig. 16(b)): 1 = 0.023𝑥𝑥

− 2.0949 ⇒−0.023𝑥𝑥= −3.0949 ⇒ 𝑥𝑥 = 134.56
⇒ 𝑥𝑥 ≈ 135 updated records to be replicate in 1
second. Thus as the coefficient of determination
R² = 0.9832 then the update execution time
depend on 98.32% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9832 ⇒ R = 0.9916 then the degree of
the relation between the update execution time
and the number of records is 99.16%.

 In reconciliation procedure (Fig. 17(b)): 1 =
0.0184𝑥𝑥 − 0.4798 ⇒−0.0184𝑥𝑥 = −1.4798 ⇒
𝑥𝑥 = 80.42 ⇒ 𝑥𝑥 ≈ 80 incorrect values, missing

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 22

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

values, and incorrectly formatted values to be
reconcile in 1 second. As the coefficient of
determination R² = 0.9691 then incorrect
values, missing values, and incorrectly
formatted values reconciliation execution time
depend on 96.91% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2

⇒ R = √0.9691 ⇒ R = 0.9844 then the relation
degree between the incorrect values, missing
values, and incorrectly formatted values
reconciliation execution time and the number of
records is 98.44%.

• For delete operator
 In replication procedure (Fig. 16(c)) : 1 =

0.0239𝑥𝑥 − 2.4175 ⇒−0.0239𝑥𝑥 = −3.4175 ⇒
𝑥𝑥 = 142.99 ⇒ 𝑥𝑥 ≈ 143 deleted records to be
replicate in 1 second. So, as the coefficient of
determination R² = 0.9832 then the delete
execution time depend on 98.32% of the
number of records and as the coefficient of
correlation R= √𝑅𝑅2 ⇒ R = √0.9832 ⇒ R =
0.9916 then the correlation between the
insertion execution time and the number of
records is 99.16%.

 In reconciliation procedure (Fig. 17(c)): 1 =
0.0136𝑥𝑥 − 0.1746 ⇒−0.0136𝑥𝑥 = −1.1746 ⇒
𝑥𝑥= 86.36 ⇒ 𝑥𝑥 ≈ 86 duplicated records to be
reconcile in 1 second. Thus, as the coefficient
of determination R² = 0.9859 then the
duplicated records reconciliation execution time

depend on 98.59% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9859 ⇒ R = 0.9929 then the degree of
relation between the duplicated records
reconciliation execution time and the number of
records is 99.29%.

The experimentation of this algorithm on a
topology consisting of two (2) slave peers proves that
the variation of the number of tables containing data
to replicate and reconcile in a P2P replication system
has a significant impact o nly for the replication
transaction as illustrated in Fig. 18. For all data
modification operators , illustrated by graphs of
Fig. 18(a), Fig. 18(b) and Fig. 18(c), successively,
taken into account in the replication process, the
execution time, when record s originate from one (1)
table, is greater than the execution time when the
same number of records emerge from two (2)
different tables while for reconciliation the impact is
not too great.

Hence this variation has no significant effect
on the execution time of data reconciliation because
the number of records to reconcile from one (1) table
and average of execution time, calculated in Table 2,
are not far different from those to reconcile from two
(2) tables and whose average of execution time is
calculated in Table 3. This is why the curves of the
graphs depicted in Fig. 18(d), Fig. 18(e) and Fig. 18(f)
are almost similar.

Fig. 18: Effectiveness of replication and reconciliation based one table stored on a master peer with two slave
peers vs. two tables stored on a master peer with two slave peers.

So, partially we can conclude that this
algorithm is efficient for the replication of databases
because generally a database does not have one
table i.e. data to replicate are scattered in several
tables. As for reconciliation, since it takes place only

when it is necessary and mostly data to be reconciled
do not exceed one quarter of that of replication, little
importance should be attached to the computational
time of this phenomenon.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 23

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

This conclusion was obtained after varying
the factor number of tables. However, by keeping
unchanged all other factors, except the number of
slave peers that vary from two (2) to three (3) peers,

using the same sample in Table 1, let us observe the
execution time results from experimentatio n,
presented successively in the tables and graphs
below:

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 22 2 23 3 23 2
2. A 28 2 28 5 28 2
3. C 3 0 3 1 5 0
4. C 78 6 79 14 80 11
5. D 41 3 41 6 42 5
6. A 3 0 2 0 3 0
7. B 97 8 97 17 101 15
8. D 185 14 200 30 218 21
9. A 17 1 16 2 16 1
10. C 165 12 170 27 172 20
11. D 28 2 28 3 29 3
12. B 12 1 11 1 12 1

Mean 56.58 4.25 58.17 9.08 60.75 6.75
Total 679 51 698 109 729 81

Keeping the factor number of table
unchanged, one table stored on a master peer with
three slave peers, the replication and reconciliation
models are successively presented as follow: insert
operator, Fig. 19(a) y = 0.0348𝑥𝑥 − 0.5762 +𝜀𝜀 for data
replication and Fig. 20(a) y = 0.0106𝑥𝑥 − 0.0883 + 𝜀𝜀 for

data reconciliation, update operator, Fig. 19(b)

y = 0.0368𝑥𝑥 − 2.3047 +𝜀𝜀 for data replication and Fig.
20(b) y = 0.0235𝑥𝑥 − 0.5576 + 𝜀𝜀 for data reconciliation
and delete operator, Fig. 19(c) y = 0.0387𝑥𝑥 − 2.8053 +
𝜀𝜀 for data replication and Fig. 20(c) y = 0.0176𝑥𝑥 −
0.4611 + 𝜀𝜀 for data reconciliation.

Fig. 19: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
one table stored on a master peer with three slave peers.

Fig. 20: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values an d (c) duplicate records results from the experimentation based one table stored on a master
peer wit h three slave peers.

Table 4: Result of the experimentation based one table stored on a master peer with three slavepeers

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 24

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

In 1 second (y) we predict that this algorithm
can successively replicate and reconcile following
number of records (x):

• For insert operator
 In replication procedure (Fig. 19(a)) : 1 = 0.0348

𝑥𝑥 − 0.5762 ⇒ −0.0348 𝑥𝑥 = −1.5762 ⇒
𝑥𝑥 = 45.29 ⇒ 𝑥𝑥 ≈ 45 inserted records to be
replicate in 1 second. So, as the coefficient of
determination R² = 0.9914 then the insertion
execution time depend on 99.14% of the
number of records and as the coefficient
of correlation R= √𝑅𝑅2 ⇒ R = √0.9914 ⇒
R = 0.9957 then the degree of linkage between
the insertion execution time and the number of
records is 99.57%.

 In reconciliation procedure (Fig. 20(a)): 1 =
0.0106𝑥𝑥 − 0.0883 ⇒ −0.0106𝑥𝑥 = −1.0883 ⇒
𝑥𝑥 = 102 .67 ⇒ 𝑥𝑥 ≈ 103 missing records to be
reconcile in 1 second. Thus, as the coefficient
of determination R² = 0.9905 then the missing
records reconciliation execution time depend on
99.05% of the number of records and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9905 ⇒ R = 0.9952 then the degree of
relationship between the missing records
reconciliation execution time and the number of
records is 99.52%.

• For update operator
 In replication procedure (Fig. 19(b)): 1 =

0.0386𝑥𝑥 − 2.3047 ⇒ −0.0638𝑥𝑥 = −3.3047 ⇒
𝑥𝑥 = 51.79 ⇒ 𝑥𝑥 ≈ 52 updated records to be
replicate in 1 second. Thus as the coefficient of
determination R² = 0.9849 then the update
execution time depend on 98.49% of the
number of records and as the coefficient
of correlation R= √𝑅𝑅2 ⇒ R = √0.9849 ⇒
R = 0.9924 then the degree of linkage between
the update execution time and the number of
records is 99.24%.

 In reconciliation procedure (Fig. 20(b)): 1 =
0.0235 𝑥𝑥 − 0.5576 ⇒−0.0235 𝑥𝑥= −1.5576 ⇒
𝑥𝑥 = 66.28 ⇒ 𝑥𝑥 ≈ 66 incorrect values, missing
values, and incorrectly formatted values to be

reconcile in 1 second. Thus, as the
determination coefficient R² = 0.9964 then
incorrect values, missing values, and
incorrectly formatted values reconciliation
execution time depend on 99.64% of the
number of records and as the correlation
coefficient R= √𝑅𝑅2 ⇒ R = √0.9964 ⇒ R =
0.9982 then the relationship degree between
the incorrect values, missing values, and
incorrectly formatted values reconciliation
execution time and the number of records is
99.82%.

• For delete operator
 In replication procedure (Fig. 19(c)) : 1 =

0.0387𝑥𝑥 − 2.8053 ⇒−0.0387𝑥𝑥 = −2.8053 ⇒
𝑥𝑥 = 98.32 ⇒ 𝑥𝑥 ≈ 98 deleted records to be
replicate in 1 second. So, as the coefficient of
determination R² = 0.9735 then the delete
execution time depend on 97.35% of the
number of records and as the coefficient
of correlation R= √𝑅𝑅2 ⇒ R = √0.9735 ⇒
R = 0.9867 then the correlation between the
insertion execution time and the number of
records is 98.67%.

 In reconciliation procedure (Fig. 20(c)): 1 =
0.0176𝑥𝑥 − 0.4611 ⇒−0.0176𝑥𝑥 = −1.4611 ⇒ 𝑥𝑥
= 83.02 ⇒ 𝑥𝑥 ≈ 83 duplicated records to be
reconcile in 1 second. Thus as the
determination coefficient R² = 0.9848 then the
duplicated records reconciliation execution time
depend on 98.48% of the number of records
and as the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9848 ⇒ R = 0.9924 then the degree
of relation between the duplicated records
reconciliation execution time and the number of
records is 99.24%.
Table 4, Figs. 19 and 20 here above

presented successively the execution time results
from the replication and reconciliation of records of
one (1) table stored on a master peer toward three (3)
slave peers. So, after the variation of the number of
tables from one (1) and spreading proportionally
records in two (2) tables, let us observe the result.

Table 5: Result of the experimentation based two tables stored on a master peer with three slavepeers

Sample
numbering

Insert execution
time (in Sec.)

Update execution
time (in Sec.)

Delete execution
time (in Sec.)

Nbr.
Obs.

Master
Peer

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

Repli
cation

Reconci
liation

1. B 22 3 19 5 18 3
2. A 26 3 28 6 28 5
3. C 6 0 7 1 6 2
4. C 90 8 93 18 92 15
5. D 58 5 51 8 76 6
6. A 6 0 6 0 6 0
7. B 188 12 181 13 180 23

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 25

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

8. D 242 28 266 38 288 32
9. A 39 2 27 3 26 2

10. C 291 24 250 37 272 31
11. D 42 2 42 3 41 1
12. B 17 2 17 2 17 2

Mean 85.58 7.42 82.25 11.17 87.50 10.17
Total 1027 89 987 134 1050 122

Varying the factor number of table stored on a
master peer with three slave peers, the replication
and reconciliation models are successively
presented as follow: insert operator, Fig. 21(a)
y = 0.0539𝑥𝑥 − 2.9424 + 𝜀𝜀 for data replication and
Fig. 22(a) y = 0.0206𝑥𝑥 − 1.0387 + 𝜀𝜀 for
data reconciliation, update operator, Fig. 21(b)

y = 0.0527𝑥𝑥 − 4.3298 + 𝜀𝜀 for data replication and

Fig. 22(b) y = 0.0293𝑥𝑥 − 0.8713 + 𝜀𝜀 for data
reconciliation and delete operator, Fig. 21(c)

y = 0.0566𝑥𝑥 − 5.5273 + 𝜀𝜀 for data replication and

Fig. 22(c) y = 0.0266𝑥𝑥 − 0.7763 + 𝜀𝜀 for data
reconciliation.

Fig. 21: Replication execution time: (a) Insertion, (b) Update and (c) Delete results from the experimentation based
two tables stored on a master peer with three slave peers.

Fig. 22: Reconciliation execution time: (a) missing records, (b) incorrect values, missing values, and incorrectly
formatted values an d (c) duplicate records results from the experimentation based two tables stored on a master
peer with three slave peers.

After increasing the number of tables from
one to two, in 1 second, the prediction of the
execution time (y), during which this algorithm can
successively replicate and reconcile the number of
records (x), is established as follows:

• For insert operator
 In replication procedure (Fig. 21(a)) : 1 =

0.0539𝑥𝑥 − 2.9424 ⇒−0.0539𝑥𝑥 = −2.9424 ⇒
𝑥𝑥 = 73.17 ⇒ 𝑥𝑥 ≈ 73 inserted records to be
replicate in 1 second. So, as the determination
coefficient R² = 0.9495 then the dependence
degree of insertion execution time compared to
the number of records is 94.95% and as

the coefficient of correlation R= √𝑅𝑅2 ⇒

R = √0.9495 ⇒ R = 0.9744 then the degree of

linking between the insertion execution time and
the number of records is 97.44%.

 In reconciliation procedure (Fig. 22(a)): 1 =
0.0206𝑥𝑥 − 1.0387 ⇒−0.0206𝑥𝑥 = −2.0387 ⇒

𝑥𝑥 = 98.88 ⇒ 𝑥𝑥 ≈ 99 missing records to be
reconcile in 1 second. As the coefficient of
determination R² = 0.9622 then the missing
records reconciliation execution time depend on
96.22% of the number of records and as the
correlation coefficient R= √𝑅𝑅2 ⇒ R = √0.9622
⇒ R = 0.9809 then the degree of relation
between the missing records reconciliation
execution time and the number of records is
98.09%.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 26

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

• For update operator
 In replication procedure (Fig. 21(b)): 1 =

0.0527𝑥𝑥 − 4.3298 ⇒−0.0527𝑥𝑥 = −5.3298 ⇒
𝑥𝑥 = 101.13 ⇒ 𝑥𝑥 ≈ 101 updated records to be
replicate in 1 second. Thus as the coefficient of
determination R² = 0.9705 then the update
execution time depend on 97.05% of the
number of records and as the coefficient
of correlation R= √𝑅𝑅2 ⇒ R = √0.9705 ⇒
R = 0.9851 then the degree of the relation
between the update execution time and the
number of records is 98.51%.

 In reconciliation procedure (Fig. 22(b)): 1 =
0.0293𝑥𝑥 − 0.8713 ⇒ −0.0293𝑥𝑥 = −1.8713 ⟹
𝑥𝑥= 63.86 ⟹ 𝑥𝑥 ≈ 64 incorrect values, missing
values, and incorrectly formatted values to be
reconcile in 1 second. As the determination
coefficient R² = 0.9593 then incorrect values,
missing values, and incorrectly formatted
values reconciliation execution time depend on
95.93% of the number of records and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9593 ⇒ R = 0.9794 then the degree of
relation between the incorrect values, missing
values, and incorrectly formatted values
reconciliation execution time and the number of
records is 97.94%.

• For delete operator
 In replication procedure (Fig. 21(c)) : 1 =

0.0566𝑥𝑥 − 5.5273 ⇒ −0.0566𝑥𝑥 = −6.5273 ⇒

𝑥𝑥 = 115.32 ⇒ 𝑥𝑥 ≈ 115 deleted records to be
replicate in 1 second. So, as the coefficient of
determination R² = 0.9709 then the delete
execution time depend on 97.09% of the
number of records and as the coefficient
of correlation R= √𝑅𝑅2 ⇒ R = √0.9709 ⇒
R = 0.9853 then the correlation between the
insertion execution time and the number of
records is 98.53%.

 In reconciliation procedure (Fig. 22(c)): 1 =
0.0266𝑥𝑥 − 0.7763 ⇒ −0.0266𝑥𝑥 = −1.7763 ⇒
𝑥𝑥 = 66.78 ⇒ 𝑥𝑥 ≈ 67 duplicated records to be
reconcile in 1 second. As the coefficient of
determination R² = 0.9812 then the duplicated
records reconciliation execution time depend
on 98.12% of the number of records and as
the coefficient of correlation R= √𝑅𝑅2 ⇒
R = √0.9812 ⇒ R = 0.9905 then the degree of
relation between the duplicated records
reconciliation execution time and the number of
records is 99.05%.

When running this algorithm on a topology
consisting of three (3) slave peers, the
experimentation result proves that the variation in the
number of tables containing data to replicate and to
reconcile in a P2P replication systemhas a significant
impact on the execution time of replication and
reconciliation transactions, as shown in Fig. 23.

Fig. 23: Effectiveness of replication and reconciliation based one table stored on a master peer with three slave
peers vs two tables stored on a master peer with three slavepeers.

However, this impact is explained only by the
comparison of averages, in Table 4 and 5, which
make successively curves, of execution time with two

tables, of graphs shown in Figs. 23(a), 23(b) and 23(c)
for data replication and Figs. 23(d), 23(e) and 23(f) for
data reconciliation to be high than those of

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 27

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

execution time with one table. But, in terms of
predictive models, we found that, when the records
come from one table, the execution time is greater
than the execution time when the same number of
records is split and comes from two different tables.
This phenomenon is clarified by the successive
resolution of the prediction equations of the
replication and reconciliation models which proved
that the number of records to replicate and reconcile

to 1 second, with two tables of origin is greater than
those when there is only one table.

Thus, partially we can conclude that this
algorithm is effective for the replication of databases,
its performance increases with the increase of the
tables for a certain number of records. So, since the
data to replicate is usually scattered across multiple
tables, we can count on its effectiveness.

Fig. 24: Effectiveness of replication and reconciliation based one table stored on a master peer with two slave
peers vs one table sto red on a master peer with three slave peers.

The result we have achieved so far comes
from the analysis of performance by varying the
numbers of tables in which the data to be replicated
and reconciled originate. Nevertheless, later on, we
have to analyse the performance of this algorith m

starting from the variation of the slave peers. Thus,
Fig. 24 and Fig. 25, show the effectiveness result
when increasing the number of slave peers but the
data to replicate and reconcile successively from a
single table and two table.

Fig. 25: Effectiveness of replication and reconciliation based two tables stored on a master peer with two slav e
peers vs two tables stored on a master peer with three slave peers.

After increasing the number of slave peers,
the execution time of the replication transaction as
well as the reconciliation of the data, successively

from a table, as illustrated in Fig. 24 and two tables,
as shown in Fig. 25, knows a significant increase.
This increase in execution time affects negatively the

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 28

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

performance of replication and reconciliation
transactions. While the synchronization algorithm is
only constituted by these two types of transactions,
this loss of performance of said transactions involves
the loss of performance of the whole synchronization
algorithm.
This phenomenon can be explained in two ways:
• Firstly, by comparing the averages of the

execution time which is explained by the graphs
of Figs. 24 and 25, with illustrative curves of
replication execution time (Figs 24 and 25 (a), (b)
and (c)) and reconciliation (Figs 24 and 25 (d), (e)
and (f)), with three slave peers are high than
those with two slave peers;

• Secondly by comparing the predicted values, in
this case the prediction of the number of records
to replicate and reconcile to 1 second. After the

successive resolution of the prediction models
equations for replication and data reconciliation,
we found that the number of records to replicate
and reconcile are declining after increasing a
slave peer.

However, based on these observations from
all the cases i.e. with the data to be replicated and
reconciled from one or two tables, we can partially
conclude that the increase of the number of slave
peers on a Replicated Databases over a Decentralize
d P2P topology is causing the loss of performance of
the synchronization algorithm.

b) Result summary
In view of what we have just achieved as a

result, it is necessary to summarize and give a
general conclusion. Thus, the Table 6 here below will
first give a summary of the results.

Table 6: Results summary

Experimental
scenarios T ransaction Operator Model R² R

Prediction
(to 1 Sec.)

1. Experimentation
based one table
stored on a
master peer with
two slave peers

Replication
Insert 𝑦𝑦=0.0302𝑥𝑥−0.5595+ℇ 98.65% 99.34% 52 records

Update 𝑦𝑦=0.0318𝑥𝑥−2.0714+ℇ 97.89% 98.94% 97 records
Delete 𝑦𝑦 = 0.0336𝑥𝑥 − 2.528 + ℇ 96.63% 96.63% 105 records

Reconciliation
Insert 𝑦𝑦=0.0093𝑥𝑥−0.0777+ℇ 98.76% 99.38% 116 records

Update 𝑦𝑦=0.0208𝑥𝑥−0.4639+ℇ 99.56% 99.78% 70 records
Delete 𝑦𝑦=0.0148𝑥𝑥−0.4124+ℇ 99.22% 99.61% 95 records

2. Experimentation
based two tables
stored on a
master peer with
two slave peers

Replication
Insert 𝑦𝑦=0.0210𝑥𝑥−1.3366+ℇ 98.46% 99.23% 111 records

Update 𝑦𝑦=0.0230𝑥𝑥−2.0949+ℇ 99.25% 99.63% 135 records
Delete 𝑦𝑦=0.0239𝑥𝑥−2.4175+ℇ 98.32% 99.16% 143 records

Reconciliation
Insert 𝑦𝑦=0.0093𝑥𝑥−0.0671+ℇ 96.91% 98.44% 115 records

Update 𝑦𝑦 = 0.0184𝑥𝑥 − 0.4798 + ℇ 98.32% 99.16% 80 records
Delete 𝑦𝑦 = 0.0136𝑥𝑥 − 0.1746 + ℇ 98.59% 99.29% 86 records

3. Experimentation
based one table
stored on a
master peer with
three slave peers

Replication
Insert 𝑦𝑦 = 0.0348𝑥𝑥 − 0.5762 + ℇ 99.14% 99.57% 45 records

Update 𝑦𝑦 = 0.0368𝑥𝑥 − 2.3047 + ℇ 99.05% 99.52% 52 records
Delete 𝑦𝑦 = 0.0387𝑥𝑥 − 2.8053 + ℇ 98.49% 99.24% 98 records

Reconciliation
Insert 𝑦𝑦 = 0.0106𝑥𝑥 − 0.0883 + ℇ 99.64% 99.82% 103 records

Update 𝑦𝑦 = 0.0235𝑥𝑥 − 0.5576 + ℇ 97.35% 98.67% 66 records
Delete 𝑦𝑦 = 0.0176𝑥𝑥 − 0.4611 + ℇ 98.48% 99.24% 83 records

4. Experimentation
based two tables
stored on a
master peer with
three slave peers

Replication
Insert 𝑦𝑦 = 0.0539𝑥𝑥 − 2.9424 + ℇ 94.95% 97.44% 73 records

Update 𝑦𝑦 = 0.0527𝑥𝑥 − 4.3298 + ℇ 96.22% 98.09% 101 records
Delete 𝑦𝑦 = 0.0566𝑥𝑥 − 5.5273 + ℇ 97.05% 98.51% 115 records

Reconciliation
Insert 𝑦𝑦 = 0.0206𝑥𝑥 − 1.0387 + ℇ 95.93% 97.94% 99 records

Update 𝑦𝑦 = 0.0293𝑥𝑥 − 0.8713 + ℇ 97.09% 98.53% 64 records
Delete 𝑦𝑦 = 0.0266𝑥𝑥 − 0.7763 + ℇ 98.12% 99.05% 67 records

Starting from the results presented above
and summarizin g in Table 6, our first group of
hypotheses of the significance test of each
independent variable gives the conclusion that each
independent variable is a significant predictor of the
dependent variable. In other words, the number of
records in each table (xi1), the number of tables
whose data has chan ged (xi2), the number of peers
connected during the propagation of updates (xi3)
and other factors (ɛ) like number of columns per table,
data types columns, etc., each taken separately
predict significantly the execution time (y) of the

replication transaction as well as that of reconciliation
because almost all coefficient of determination (R²)
are greater than or equal to the confidence level of
95%. In all the cases the execution time depend on
other factors beyond 95% and these factors correlate
positiv ely and tightly of the totality. This means that
the changes made to one of these independent
variables affect in 95% or more of the dependant
variable and vice versa. Hence, we accept the
alternative hypothesis (H1) and thus reject the null
hypothesis (H0).

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 29

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

As for the second group of hypotheses,
since for all experimental scenarios all independent
variables (the number of records in each table (xi1),
the number of tables whose data has changed (xi2),
the number of peers connected during the
propagation of updates (xi3) and other factors (ɛ) like
number of columns per table, data types columns,
etc.,) are significant predictors of the dependent
variable which is the replication and reconciliation
transaction execution time (y), the overall model of
the regression is significant, at the same thresholds
significance derived from the combination of factors
by the experimental scenarios summarized in the
Table 6 above.

The experimental results show that our
algorithms are performant since when to 1 second, a
time elementary unity, it can replicate and reconcile a
considerable number of records, like present the last
column in the Table 6, for the present experimental
environment. However, since the performance of a
computer algorithm is due to its execution time, this is
how we assert our main hypothesis that P2P
replicated databases systems experience the weak
performance, especially since the time of
transmission of updates from a Master Peer toward
Slave Peers dependent in more than 95% of the
number of records, the number of tables whose data
know changes, the number of peers connected
during the propagation of updates and other factors.

Nevertheless, as we have just seen, when we
take two by two experimental scenarios those can be
noted successively I: 1 and 2, II: 3 and 4, III: 1 and 3
and finally IV: 2 and 4 of Table 6 above, I made a
good performance, II also made a performance gain
but not far from the average, III made a loss of
performance and IV made a loss as well. Taking III
and IV it emerges the variation of number of peers
connected whereas from I and II emerge the variation
of the tables. During the experiment, it was found that
the variation of number of the tables did not lose the
performance, contrariwise it improved it. Moreover,
among the independent variables, the number of
records and the number of tables being factors
directly related to the database before even hinting at
the data replication, it is clear that it is the growth of
number of connected peers which is at the base of
the considerable loss of the performance i.e. the
increase of the execution time of a synchronization
algorithm of distributed databases.

Thus, as a future work to be carried out, as
part of improving the performance of this proposed
algorithm, the thought will revolve around
synchronization algorithm for replicated databases
over a decentralized P2P architecture with super-
nodes or super-peers [31], [32] belonging to peers
clusters in order to reduce execution time of

transactions and to reach load balancing during data
transmission [35].

VI. Conclusion

This article proposes a prototype of a
synchronizer-mediator for lazy replicated databases
over a decentralized P2P architecture in a Graphical
User Interface. The motivation arises from the
common problem of databases replication consisting
to maintain consistent replicated databases over a
decentralized P2P network.

However, two specific problems caught our
attention: transactions broadcasting updates from
different peers are performed concurrently on a
destination peer replica, which always causes
transactions conflicts and data conflicts. Moreover,
during data migration, connectivity interruptions and
network overload corrupt transactions so that
destination peer databases can contract duplicated
records, unsuitable data o r missing records which
make replicas inconsistent. Differen t methodologies
have been used to solve these problems : the audit log
technique to capture and store data changes in audit
tables; the algorithmic method to design and analyse
algorithms for transactions serialization, for data
replication transactions and the replicas reconciliation
transactions end finally the statistical method to
analyse the performance of algorithms and to produce
prediction models of the execution time.

The C # prototype software has been
designed to implement algorithms and permit to
execute the test in order to make out the
effectiveness of each experimental scenarios.
Afterwards it has been shown that the algorithm has a
good performance because it can replicate and
reconcile a considerable number of records to 1
second. Finally, the assumption according to which
“The execution time of replication and reconciliation
transactions totally depends on independent factors”
has been affirmed.

Acknowledgement

Firstly, we are grateful to the Grace of
Almighty God. We would also like to thank the
academic corps of the Butembo (D. R. Congo)
Institute of Building and Public Works for their
encouragement and follow-up of our investigations.
On finish, we thank the Research Technology and
Development Centre (RTDC) of Sharda University, for
its facilities to realize this work.

References Références Referencias

1. Kituta, K., Agarwal, R., Kaushik, B.: Synchronous
and Asynchronous Replication. In: International
Conference on Machine Learning and
Computational Intelligence-2017, International

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 30

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

Journal of Scientific Research in Computer
Science, Engineering and Information Technology,
Vol. 2, No. 7, pp. 347-354, (2017).

2. Özsu, M. T., Valduriez, P.: Principles of Distributed
Database Systems (3rd ed.). In: Springer Science
& Business + Media, New York, USA (2011).

3. Magdalena, N., I.: The Replication Technology in
E-learning Systems. In: Procedia - Social and
Behavioral Sciences, Publisher: Elsivier, Vol. 28,
pp. 231 – 235, (2011).

4. Wiesmann, M., et al.: Understanding Replication
in Databases and Distributed Systems. In: IEEE
20th International Conference on Distributed
Computing Systems, (2002).

5. Gudakesa, R., Sukarsa, M., Sasmita, G.: T wo -
ways database synchronization in homogeneous
DBMS using audit log approach. In: Journal of T
heoretical and Applied Information Technology,
Vol. 65, pp. 854-859, (2014).

6. Pandey, S., Shanker, U.: IDRC: A Distributed
Real-T ime Commit Protocol, In: 6th International
Conference on Smart Computing and
Communications ICSCC 2017, Procedia
Computer Science, Publisher: Elsivier, Vol. 125,
pp. 290–296, (2017).

7. Kudo, T ., et al.: An implementation of concurrency
control between batch update and online entries,
In: 18th International Conference on Knowledge-
Based and Intelligent Information & Engineering
Systems - KES2014, Procedia Computer Science,
Publisher: Elsivier, Vol. 35, pp. 1625–1634, (2014).

8. Diallo, O., Rodrigues, Joel, J., Sene, M., Lloret, J.:
Distributed Database Management T echniques
for Wireless Sensor Networks, In: IEEE T
ransactions on Parallel and Distributed Systems,
Vol. 26, No. 2, 604– 620, (2015).

9. Silberschatz, A., Korth, H F., Sudarshan, S.:
Database system concepts. In: McGraw-Hill, New
York, (1997).

10. Vu, Q., Lupu, M., Ooi, C.: Peer-to-Peer
Computing - Principles and Applications, In:
Springer, ISBN: 978-3-642-03513-5, (2010).

11. Filip, I., Vasar, C., Robu, R.: Considerations about
an Oracle Database Multi-Master Replication. In:
IEEE 5th International Symposium on Applied
Computational Intelligence and Informatics,
(2009).

12. Mansouri Y., Buyya R.: Dynamic replication and
migration of data objects with hot -spot and cold-
spot statuses across storage data centers, In:
Journal of Parallel and Distributed Computing,
Publisher: Elsivier, Vol. 126, pp. 121-133, (2018).

13. Sebastian, M.: Fundamentals of SQL Server 2012
Replication. In: Simple T alk Publishing, New York,
United States of America, (2013).

14. Kirtikumar, D.: Oracle Streams 11g Data
Replication. In: McGraw-Hill, New York, United
States of America, (2011).

15. George, A., Balakrishnan, C.: An optimized
strategy for replication in peer-to-peer distributed
databases. In: IEEE International Conference on
Computational Intelligence and Computing
Research, (2012).

16. Zhang, T.: A Novel Replication Model with
Enhanced Data Availability in P2P Platforms. In:
International Journal of Grid and Distributed
Computing, Vol. 9, No. 4, pp.151-160, (2016).

17. T ing, Z., Yu, W.: Database Replication T
echnology having high Consistency
Requirements. In: IEEE Third International
Conference on Information Science and
Technology, (2013).

18. Cormen, T., H., et al.: Introduction to Algorithms
(4th ed.). In: The MIT Press, London, England,
(2012).

19. Kothari, C., R., Garg, G.: Research methodology
methods and techniques (3rd ed.). In-House, Ed.,
New-Dheli, India: M.P Printers, 2014.

20. Microsoft Corporation web site (2018).
https://docs.microsoft.com/en-us/sql/relational-data
bases/replication/transactional/peer-to-peer-conflict
-detection-in-peer-to-peer-replication?view=sql-
server-2017

21. Oracle Corporation web site (2018).
22. https://docs.oracle.com/database/121/REPLN/repcon

flicts.htm#REPLN0 05
23. Experian Ltd web site (2018). https://www.

edq.com/uk/glossary/data-reconciliation/
24. Shahin, K., Pedram, G., Khuzaima, D.: Dynamic

Data Allocation with Replication in Distributed
Systems. 30th IEEE International Performance
Computing and Communications Conference,
(2011).

25. Oracle Corporation web site (2018).
26. https://docs.oracle.com/cd/E80148_01/html/Upgrad

e_Tool_Kit/UTKRC N07.htm
27. Oracle Corporation web site (2018). https://dev.

mysql.com/doc/mysql-utilities/1.5/en/mysqldbcom
pare.html

28. Jonathan, H., MySQL_Diff: Database Schema
Difference Reconciliation (2018). https://www.
perpetual-beta.org/weblog/mysql-diff.html

29. D B Convert Company web site (2018).
https://dbconvert.com/

30. Pragmatic Works Inc. web site (2018).

31. http://pragmaticworks.com/Products_Old/LegiTes
t/Feature/Reconcile-Your-Production-Data

32. ApexSQL LLC web site (2018).

https://www.researchgate.net/scientific-contributions/12722815_Quang_Hieu_Vu�
https://www.sciencedirect.com/science/journal/07437315�
https://www.sciencedirect.com/science/journal/07437315�
https://www.sciencedirect.com/science/journal/07437315�
https://www.sciencedirect.com/science/journal/07437315/126/supp/C�
https://docs.microsoft.com/en-us/sql/relational-databases/replication/transactional/peer-to-peer-conflict-detection-in-peer-to-peer-replication?view=sql-server-2017�
https://docs.microsoft.com/en-us/sql/relational-databases/replication/transactional/peer-to-peer-conflict-detection-in-peer-to-peer-replication?view=sql-server-2017�
https://docs.microsoft.com/en-us/sql/relational-databases/replication/transactional/peer-to-peer-conflict-detection-in-peer-to-peer-replication?view=sql-server-2017�
https://docs.microsoft.com/en-us/sql/relational-databases/replication/transactional/peer-to-peer-conflict-detection-in-peer-to-peer-replication?view=sql-server-2017�
https://docs.oracle.com/database/121/REPLN/repconflicts.htm#REPLN005�
https://docs.oracle.com/database/121/REPLN/repconflicts.htm#REPLN005�
https://docs.oracle.com/database/121/REPLN/repconflicts.htm#REPLN005�
https://www.edq.com/uk/glossary/data-reconciliation/�
https://docs.oracle.com/cd/E80148_01/html/Upgrade_Tool_Kit/UTKRCN07.htm�
https://docs.oracle.com/cd/E80148_01/html/Upgrade_Tool_Kit/UTKRCN07.htm�
https://docs.oracle.com/cd/E80148_01/html/Upgrade_Tool_Kit/UTKRCN07.htm�
https://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqldbcompare.html�
https://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqldbcompare.html�
https://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqldbcompare.html�
https://dbconvert.com/�
https://dbconvert.com/�

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

 31

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture

33. https://solutioncenter.apexsql.com/fr/synchroniser-
les-bases-de-donnees-sql-server-dans-differentes-
sources-distantes/

34. Kituta, K., Kant, S., Agarwal, R.: Analysis of
database replication protocols. In: Special Issue
ICRMR-2018, International Journal of Latest T rends
in Engineering and T echnology, pp. 075-083,
(2018).

35. Spaho, E. et al.: P2P Data Replication: T echniques
and Applications. In: Xhafa F., Barolli L., Barolli A.,
Papajorgji P. (eds) Modeling and Processing for
Next -Generation Big-Data T echnologies.
Modeling and Optimization in Science and
Technologies, Publisher: Springer Vol. 4, pp 145-
166, (2015).

36. X. Fatos, et al.: Data Replication in P2P
Collaborative Systems. In: IEEE Seventh

International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, (2012).

37. Kituta, K., Kant, S. Agarwal, R.: A systematic
review on distributed databases systems and
their techniques. In: Journal of T heoretical and
Applied Information Technology, Vol. 96, No. 1, pp.
236-266, (2019).

38. Souri, A., Pashazadeh, S., Navin, A., H.:
Consistency of data replication protocols in
database systems: A review. International Journal
on Information Theory (IJIT), Vol. 3, No. 4, pp. 19-
32, (2014).

39. M., Santana, Enrique, J., Francesc, D.: Evaluation
of database replication techniques for cloud
systems. In: Computing and Informatics, Vol. 34, pp.
973-995, (2015).

http://pragmaticworks.com/Products_Old/LegiTest/Feature/Reconcile-Your-Production-Data�
http://pragmaticworks.com/Products_Old/LegiTest/Feature/Reconcile-Your-Production-Data�
http://pragmaticworks.com/Products_Old/LegiTest/Feature/Reconcile-Your-Production-Data�
https://solutioncenter.apexsql.com/fr/synchroniser-les-bases-de-donnees-sql-server-dans-differentes-sources-distantes/�
https://solutioncenter.apexsql.com/fr/synchroniser-les-bases-de-donnees-sql-server-dans-differentes-sources-distantes/�
https://solutioncenter.apexsql.com/fr/synchroniser-les-bases-de-donnees-sql-server-dans-differentes-sources-distantes/�

	Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture
	Author
	Keywords
	I. Introduction
	II. Related Works
	a) Data replication
	b) Data reconciliation

	III. Methodology
	a) Audit-log technique
	b) Algorithmic method
	i. Network Topology and Algorithm
	ii. Replication Protocol and Algorithm
	iii. Reconciliation Protocol and Algorithm

	c) Statistical method

	IV. Simulation Environment
	a) Prerequisites
	b) Processing phases
	i. Data replication
	ii. Data reconciliation

	c) Conflicts avoidance rules

	V. Result
	a) Performance analysis
	b) Result summary

	VI. Conclusion
	Acknowledgement
	References Références Referencias

