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Abstract- Computer vision is concerned with the automatic extraction, analysis, and understanding of 
useful information from a single image or a sequence of images. We have used Convolutional Neural 
Networks (CNN) in automatic image classification systems. In most cases, we utilize the features from the 
top layer of the CNN for classification; however, those features may not contain enough useful information 
to predict an image correctly. In some cases, features from the lower layer carry more discriminative 
power than those from the top. Therefore, applying features from a specific layer only to classification 
seems to be a process that does not utilize learned CNN’s potential discriminant power to its full extent. 
Because of this property we are in need of fusion of features from multiple layers. We want to create a 
model with multiple layers that will be able to recognize and classify the images. We want to complete our 
model by using the concepts of Convolutional Neural Network and CIFAR-10 dataset. Moreover, we will 
show how MatConvNet can be used to implement our model with CPU training as well as less training 
time. The objective of our work is to learn and practically apply the concepts of Convolutional            

Neural Network. 
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Abstract- Computer vision is concerned with the automatic 
extraction, analysis, and understanding of useful information 
from a single image or a sequence of images. We have used 
Convolutional Neural Networks (CNN) in automatic image 
classification systems. In most cases, we utilize the features 
from the top layer of the CNN for classification; however, those 
features may not contain enough useful information to predict 
an image correctly. In some cases, features from the lower 
layer carry more discriminative power than those from the top. 
Therefore, applying features from a specific layer only to 
classification seems to be a process that does not utilize 
learned CNN’s potential discriminant power to its full extent. 
Because of this property we are in need of fusion of features 
from multiple layers. We want to create a model with multiple 
layers that will be able to recognize and classify the images. 
We want to complete our model by using the concepts of 
Convolutional Neural Network and CIFAR-10 dataset. 
Moreover, we will show how MatConvNet can be used to 
implement our model with CPU training as well as less training 
time. The objective of our work is to learn and practically apply 
the concepts of Convolutional Neural Network. 
Keywords: convolutional neural network, CIFAR-10 
dataset, MatConvNet, relu, softmax. 

I. Introduction 
onvolutional Neural Networks (CNN) becomes 
one of the most appealing approaches recently 
and has been an ultimate factor in a variety of 

recent success and challenging applications related to 
machine learning applications such as challenge 
ImageNet object detection, image classification, and 
face recognition. Therefore, we consider CNN as our 
model for our challenging tasks of image classification. 
We use CNN for segmentation and classification of the 
images in academic and business transactions. We use 
image recognition in different areas for example 
automated image organization, stock photography, face 
recognition, and many other related works. 

a) CIFAR-10 Database  
The CIFAR-10 database (Canadian Institute for 

Advanced Research database) is a collection of images. 
 
 
Author α: Assistant Professor, Department of Information & 
Communication Engineering, Faculty of Engineering & Technology, 
Pabna University of Science & Technology, Pabna, Bangladesh. 
e-mail: manwar.ice@gmail.com  
Author σ: Student, Department of Information & Communication 
Engineering, Faculty of Engineering & Technology, Pabna University of 
Science & Technology, Pabna, Bangladesh. 
e-mail: sajibpust130639@gmail.com  

We use this dataset to train machine learning and 
computer vision algorithms. CIFAR-10 database is the 
contribution of Alex Krizhevsky and Geoffrey Hinton. This 
dataset has 60,000 colored images. It has ten classes, 
and they are an airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, truck. The images are of size 
32x32 pixels. The dataset consists of 50,000 training 
and 10,000 testing examples. It is a database for people 
who want to try learning techniques and pattern 
recognition methods on real-world data while spending 
minimal efforts on preprocessing and formatting. We will 
use this database in our experiment. 

b) Convolutional Neural Networks 
            Convolutional neural networks are deep artificial 
neural networks. We use CNN to classify images, cluster 
them by similarity (photo search), and perform object 
recognition within scenes. It can be used to identify 
faces, individual, street signs, tumors, platypuses and 
many other aspects of visual data. The convolutional 
layer is the core building block of a CNN. The layer’s 
parameters consist of a set of learnable filters (or 
kernels) which have a small receptive field but extend 
through the full depth of the input volume. During the 
forward pass, each filter is convolved across the width 
and height of the input volume, computing the dot 
product, and producing a 2-dimensional activation map 
of that filter. As a result, the network learns about the 
filters. The filter activates when they see some specific 
type of feature at some spatial position in the input. 
Then the activation maps are fed into a downsampling 
layer, and like convolutions, this method is applied one 
patch at a time. CNN has also fully connected layer that 
classifies output with one label per node. 

II. Related Works 

Image recognition has an active community of 
academics studying it. A lot of important work on 
convolutional neural networks happened for image 
recognition [1,2,3,4]. The most dominant recent works 
achieved using CNN is a challenging work introduced 
by Alex Krizhevsky [5], who used CNN for challenge 
classification ImageNet. Active areas of research are:  
object detection [14,15,16], scene labeling [17], 
segmentation [18,19], face recognition, and variety of 
other tasks [20,21,22]. 
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III. Methodology 

Deep Learning has emerged as a main tool for 
self-perception problems like understanding images, the 
voice from humans, robots exploring the world. We aim 
to implement the concept of the Convolutional Neural 
Network for the recognition of images. Understanding 
CNN and applying it to the image recognition system is 
the target of the proposed model. Convolutional Neural 
Network extracts the feature maps from the 2D images 
by using filters. The Convolutional neural network 
considers the mapping of image pixels with the 
neighborhood space rather than having a fully 
connected layer of neurons. The Convolutional neural 
network has been proved to be a very dominant and 
potential tool in image processing. Even in the fields of 
computer vision such as handwriting recognition, natural 
object classification, and segmentation, CNN has 
become a much better tool compared to all other 
previously implemented tools. 

a) The architecture of the Proposed Model 
When one starts learning deep learning with the 

neural network, he realizes that one of the most 
supervised deep learning techniques is the 
Convolutional Neural Network. We design Convolutional 
Neural Network to recognize visual patterns directly from 
pixel images with minimal preprocessing. Almost all 
CNN architectures follow the same general design 
principles of successively applying convolutional layers 
to the input, periodically downsampling (Max pooling) 
the spatial dimensions while increasing the number of 
feature maps. Moreover, there are also fully connected 
layers, activation functions and loss function (e.g., cross 
entropy or softmax). However, among all the operations 
of CNN, convolutional layers, pooling layers, and fully 
connected layers are the most important ones. 
Therefore, we will quickly introduce these layers before 
presenting our proposed model. 

The Convolutional layer is the very first layer 
where it can extract features from the images. Because 
pixels are only related to the adjacent and close pixels, 
convolution allows us to preserve the relationship 
between different parts of an image. Convolution is 
filtering the image with a smaller pixel filter to decrease 
the size of the image without losing the relationship 
between pixels. When we apply convolution to a 7x7 
image by using a filter of size 3x3 with 1x1 stride (1-pixel 
shift at each step), we will end up having a 5x5 output. 

 
 
 

 
                        Fig. 1: Convolution Operation 

When constructing CNN, it is common to insert 
pooling layers after each convolution layer, so that we 
can reduce the spatial size of the representation. This 
layer reduces the parameter counts, and thus reduces 
the computational complexity. Also, pooling layers help 
with the overfitting problem. We select a pooling size to 
reduce the amount of the parameters by selecting the 
maximum, average, or sum values inside these pixels. 
Fig.2 shows the max pooling and average pooling 
operation. 

 
Fig. 2: Max pooling and Average pooling operation 

A fully connected network is in any architecture 
where each parameter is linked to one another to 
determine the relation and effect of each parameter on 
the labels. We can vastly reduce the time-space 
complexity by using the convolution and pooling layers. 
We can construct a fully connected network in the end 
to classify our images.  

 
Fig. 3: Fully connected layer 

Fig.4 shows the overview look of our proposed 
convolutional neural network. It is very much similar to 
the other image recognition architectures [1,2,3,4] but 
has changed in the number of filters, neurons and 
activation functions for better performance. We can 
divide our model into six sequences of layers. 
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Fig. 4: The architecture of our proposed CNN 

b) Explanation of the Model 
A simple convolutional network is a sequence of 

layers. The layer transforms one volume of activations to 
another through a differentiable function. We use three 
main types of layers to build network architecture. They 
are a convolutional layer, pooling layer, and fully 
connected layer. We will stack these layers to form six 
layers of network architecture. We will go into more 
details below. 

Fig.4 shows the architecture of our proposed 
CNN model. At first, we need some pre-processing on 
the images like resizing images, normalizing the pixel 
values, etc. After the necessary pre-processing, data is 
ready to be fed into the model. 

Layer-1 consists of the convolutional layer with 
ReLu (Rectified Linear Unit) activation function which is 
the first convolutional layer of our CNN architecture. This 
layer gets the pre-processed image as the input of size 
n*n=32*32. The convolutional filter size (f*f) is 5*5, 
padding (p) is 0(around all the sides of the image), 
stride (s) is 1, and the number of filters is 32. After this 
convolution operation, we get feature maps of size 
32@28*28 where 32 is the number of feature maps 
which is equal to the number of filters used, and 28 
comes from the formula ((n+2p-f)/s) +1= ((32+2*0-
5)/1) +1=28. Then the ReLu activation is done in each 
feature map. 

Layer-2 is the max pooling layer. This layer gets 
the input of size 32@28*28 from the previous layer. The 
pooling size is 2*2; padding is 0 and stride is 2. After 
this max pooling operation, we get feature maps of size 
32@14*14. Max pooling is done in each feature map 
independently, so we get same number feature maps as 
the previous layer, and 14 comes from the same formula 
((n+2p-f)/s) +1. This layer has no activation function. 

Layer-3 is the second convolutional layer with 
ReLu activation function. This layer gets the input of size 
32@14*14 from the previous layer. The filter size is 5*5; 
padding is 0, the stride is 1, and the number of filters is 
32. After this convolution operation, we get feature maps 
of size 32@10*10. Then ReLu activation is done in each 
feature map. 

 

 
Layer-5 is the third convolutional layer with ReLu 

activation function. This layer gets the input of size 
32@5*5 from the previous layer. The filter size is 4*4; 
padding is 0, the stride is 1, and the number of filters is 
64. After this convolution operation, we get feature maps 
of size 64@1*1. This layer acts as a fully connected 
layer and produces a one-dimensional vector of size 64 
by being flattened. 

Layer-6 is the last layer of the network. It is a 
fully connected layer. This layer will compute the class 
scores, resulting in a vector of size 10, where each of 
the ten numbers corresponds to a class score, such as 
among the ten categories of CIFAR-10 dataset. For final 
outputs, we use the softmax activation function.    

In this way, CNN transforms the original image 
layer by layer from the main pixel values to the final 
class scores. Note that some layers contain parameters, 
and others don’t. In particular, the convolution/fully 
connected layers perform transformations that are a 
function of not only the activations in the input volume 
but also of the parameters (the weights and biases of 
the neurons). On the other hand, the Relu/pooling layers 
will implement a fixed function. We train the parameters 
in the convolutional/fully connected layers with 
stochastic gradient descent. By this process, we will 
prepare the trained model which will be used to 
recognize the image present in the test data. Thus, we 
can classify the images as Class- airplanes, cars, birds, 
cats, deer, dogs, frogs, horses, ships, trucks. 

IV. Implementation 

To implement our CNN architecture, we will use 
MatConvNet. MatConvNet is an implementation of 
Convolutional Neural Networks (CNN) for MATLAB [23]. 
We built our model by using MatConvNet so that our 
model has greater simplicity and flexibility. It exposes 
the building blocks of CNN as easy-to-use MATLAB 
functions, providing routines for computing linear 
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Layer-4 is the average pooling layer. This layer 
gets the input of size 32@10*10 from the previous layer. 
The pooling size is 2*2; padding is 0 and stride is 2. 
After this max pooling operation, we get a feature map 
of size 32@5*5.



convolutions with filter banks, feature pooling and many 
more. In this manner, MatConvNet allows fast 
prototyping of new CNN architectures; at the same time, 
it supports efficient computation on CPU and GPU 
allowing to train complex models on large datasets such 
as ImageNet ILSVRC. 

Convolutional Neural Networks (CNN) is the 
current state-of-art architecture for the image 
classification task. As shown in Fig.4 our proposed 2-D 
Convolutional Neural Network (CNN) model is designed 
using MatConvNet backend for the well known CIFAR-
10 image recognition task. The whole workflow can be 
to preparing the data, building and compiling the model, 
training and evaluating the model and saving the model 
to disk for reuse. 

Preparing the data is the first step of our 
approach. Before we build the network, we need to set 
up our training and testing data, combine data, combine 
labels and reshape into the appropriate size. We save 
the dataset of normalized data (single precision and 
zero mean), labels, and miscellaneous (meta) 
information. 

Building and compiling the model is the second 
step. To create the CNN, we must initialize MatConvNets 
SimpleNN network and then define important 

initialization parameters for example batch size, number 
of epochs, learning rate, etc. 

The batch size determines the number of 
samples for the training phase of the CNN. The CNN will 
process all the training data, but only in increments of 
the specified batch size. We can use batch size for 
computational efficiency, and its value will be dependent 
on the user’s available hardware. An epoch is a 
successful forward pass and a backward pass through 
the network. It’s usually beneficial to set its value high 
and then to reduce it once if one is satisfied with the 
convergence at a particular state (chosen epoch) in the 
network. Learning rate is a very sensitive parameter that 
pushes the model towards convergence. Finding its 
best value will be an experimental process unless one 
invokes more powerful techniques such as batch 
normalization. In our experiment, we use batch size 60, 
several epochs 300 and learning rate 0.0001 for 
maximum accuracy. 

Now we can build our CNN by creating each 
layer individually as shown in fig 5. Afterward, we will 
invoke objective and error layers that will provide a 
graphical visualization of the training and validation 
convergence after completing each epoch. MatconvNet 
initializes the weights by using Gaussian distribution.  

 

Fig. 5: CNN layers in MatConvNet 

The third step is the training and evaluating the 
model. Training a CNN requires computing the 
derivative of the loss concerning the network 
parameters. We calculate the derivatives using an 
algorithm called back propagation which is a memory-
efficient implementation of the chain rule for derivatives. 
We built the model and performed a random gradient 
descent training according to the Stochastic Gradient 
Descent (SGD) training algorithm. We have used SGD 
training algorithm to adjust the weight of the connection 
between neurons so that the loss reaches a minimum 
value or stops after several epochs. We have used CPU 
training. It is important to note that GPU training will 
dramatically help training time for CNN. 

Lastly, we can begin the training of CNN by 
supplying the training data, the constructed model and 
the current batch of data. When training the CNN, only 
the data specified for training play a role in minimizing 

error in the CNN. We feed the training data through the 
network for the forward pass and backward pass. The 
validation data is just used to see how the CNN 
responds to new similar data. We do not use the 
validation data to train the network. Afterward, we save 
the trained CNN and prepare for the testing phase.   

During the training phase of the CNN, the 
simple network will produce three plots (Objective, 
Top1error, and Top5error) for each epoch. The top1 
error is the chance that class with the highest probability 
is the correct target. In other words, CNN guesses the 
target correctly. The top5error is the chance that the true 
target is one of the top five probabilities. The objective 
for the simple network should mirror the form of the top1 
and top5 error. In all the plots, we represent the training 
error and validation error by blue and orange 
respectively.
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Fig. 6: Objective, Top1error, and Top5error during training 

Finally, by using the testing data, we can 
evaluate our model. The following are an example of 
classification outputs from the simple network on the 
CIFAR-10 data. 

 
Fig. 7: Some correct recognized outputs 

 

Fig. 8: Some wrong recognized outputs 

We can determine the test cases that show 
failed classifications. The model can’t identify some 
images because of limitations in the input of standard 
data images. Moreover, missing pixels caused by image 
compression and image sharpness problems are also 
reasons for misclassification. 

The fourth and final step is to save the model in 
the disk for reuse. We store the trained model in a 
MATLAB file format. Hence the saved model can be 
reused later or easily ported to other environments too. 

V. Results and Discussion 

Among 10,118 test cases, our model 
misclassifies total of 661 images after three hundred 
epochs which correspond to 93.47% recognition rate 
shown in Table1. The results are pretty good for three 
hundred epochs and for such a simple model with CPU 
training and less training time (about 3 hours). 

 
Fig. 9: Error rate and accuracy of our model. 

Although there are some images which are 
difficult to identify, our model will be able to classify 
them correctly. For example, our model can recognize 
the following image and classify it as ‘deer’:  

   

 
Table 1:

 
Summary of the experiment

 

Batch size
 

No. of epochs
 

Testing accuracy
 

100
 

250
 

76.82%
 

70
 

300
 

82.28%
 

60
 

300
 

93.47%
 

 
Test accuracy 93.47% implies that the model is 

trained well for prediction. Training set size affects the 
accuracy increases as the number of data increases. 
The more data in the training set, the smaller the impact 
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Fig. 10: Correct recognition of the bad image



of training error and test error and ultimately the 
accuracy can be improved. 

VI. Conclusion and Future Work 

Here we demonstrate a model which can 
recognize and classify the image. Later it can be 
extended for object recognition, character recognition, 
and real-time object recognition. Image recognition is an 
important step to the vast field of artificial intelligence 
and computer vision. As seen from the results of the 
experiment, CNN proves to be far better than other 
classifiers. The results can be made more accurate by 
increasing the number of convolution layers and hidden 
neurons. People can recognize the object from blurry 
images by using our model. Image recognition is an 
excellent prototype problem for learning about neural 
networks, and it gives a great way to develop more 
advanced techniques of deep learning. In the future, we 
are planning to develop a real-time image recognition 
system. 

References Références Referencias 

1. Kuntal Kumar Pal, Sudeep K. S.(2016).” 

Preprocessing for Image Classification by 
Convolutional Neural Networks”, IEEE International 
Conference on Recent Trends in Electronics 
Information Communication Technology, May 20-
21, 2016, India. 

2. Hayder M. Albeahdili, Haider A. Alwzwazy, Naz E. 
Islam (2015).”Robust Convolutional Neural 
Networks for Image Recognition”, (IJACSA) 
International Journal of Advanced Computer 
Science and Applications, Vol. 6, No. 11, 2015. 

3. Jingkun Qin, Haihong E, Meina Song and Zhijun 
Ren(2018).”Image Retrieval Based on a Hybrid 
Model of Deep Convolutional Encoder”, 2018 the 
International Conference of Intelligent Robotic and 
Control Engineering. 

4. K Sumanth Reddy, Upasna Singh, Prakash K 
Uttam(2017).” Effect of Image Colourspace on 

Performance of Convolution Neural Networks”, 2017 
2nd IEEE International Conference on Recent 
Trends in Electronics Information & Communication 
Technology (RTEICT), May 19-20, 2017, India. 

5. Krizhevsky, Alex, Sutskever, Ilya, and Hinton, 
Geoffrey. ImageNet classification with deep  
convolutional neural networks. In Advances in 
Neural Information Processing Systems 25 
(NIPS’2012). 2012. 

6. Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan 
Boureau, Yann LeCun, ―Unsupervised Learning of 
Invariant Feature Hierarchies with Applications to 
Object Recognition‖ CVPR, 2007. 

7. Matthew D Zeiler and Rob Fergus. Stochastic 
pooling for regularization of deep convolutional 

neural networks. arXiv preprint arXiv:1301.3557, 
2013. 

8. Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, 
Aaron Courville, and Yoshua Bengio. Maxout 
networks. arXiv preprint arXiv:1302.4389, 2013. 

9. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, 
Ilya Sutskever, and Ruslan Salakhutdinov‖ Dropout: 
A Simple Way to Prevent Neural Networks from 
Overfitting‖ Journal of Machine Learning Research 
15 (2014) 1929-1958. 

10. Fabien Lauer, Ching Y. Suen, and G´erard Bloch 
―A trainable feature extractor for handwritten digit 
recognition‖ Journal Pattern Recognition 2007. 

11. Chen-Yu Lee, Saining Xie, Patrick Gallagher, 
Zhengyou Zhang, Zhuowen Tu, ― Deeply-
Supervised Nets ―NIPS 2014. 

12. M. Fischler and R. Elschlager, ―The representation 
and matching of pictorial structures,‖ IEEE 
Transactions on Computer, vol. 22, no. 1, 1973. 

13. Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio 
Ranzato and Yann LeCun ‖ What is the Best Multi-
Stage Architecture for Object Recognition?‖  
ICCV’09, IEEE, 2009. 

14. Kaiming, He and Xiangyu, Zhang and Shaoqing, 
Ren and Jian Sun ―Spatial pyramid pooling in 
deep convolutional networks for visual recognition‖ 
European Conference on Computer Vision, 2014. 

15. Ross Girshick, ―Fast R-CNN ―arXiv preprint 
arXiv:1504.08083, 2015 

16. X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for 
generic object detection. In ICCV, 2013. 8. 

17. Karen Simonyan and Andrew Zisserman ―VERY 
DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION‖ arXiv:1409.1556v5 
[cs.CV] 23 Dec 2014. 

18. C. Couprie, C. Farabet, L. Najman, and Y. LeCun. 
Indoor semantic segmentation using depth 
information. Internatinal Conference on Learning 
Representation, 2013. 2. 

19. R. Girshick, J. Donahue, T. Darrell, and J. Malik. 
Rich feature hierarchies for accurate object 
detection and semantic segmentation. CoRR, 
abs/1311.2524, 2013. 4. 

20. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. 
FeiFei. Imagenet: A large-scale hierarchical image 
database. In CVPR, 2009. 2. 

21. L. N. Clement Farabet, Camille Couprie and Y. 
LeCun. Learning hierarchical features for scene 
labeling. PAMI, 35(8), 2013. 1, 2. 

22. Honglak Lee, Roger Grosse, Rajesh Ranganath, 
and Andrew Y. Ng ―Convolutional Deep Belief 
Networks for Scalable Unsupervised Learning of 
Hierarchical Representations‖. 

23. “MatConvNet Convolutional Neural Networks for 
MATLAB” Andrea Vedaldi, Karel Lenc, Ankush 
Gupta. 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IX

 I
ss
ue

 I
I 
V
er
sio

n 
I 

18

Y
e
a
r

2 
01

9
(

)
D

© 2019   Global  Journals 

Classification of Image using Convolutional Neural Network (CNN)


	Classification of Image using Convolutional Neural Network (CNN)
	Author

	Keywords
	I. Introduction
	a) CIFAR-10 Database
	b) Convolutional Neural Networks

	II. Related Works
	III. Methodology
	a) The architecture of the Proposed Model
	b) Explanation of the Model

	IV. Implementation
	V. Results and Discussion
	VI. Conclusion and Future Work
	References Références Referencias

