
© 2018. Md. Shahadat Hossain. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Rework and Reuse Effects in Software Economy
By Md.Shahadat Hossain
Independent University Bangladesh

Keywords: software, rework, reuse, economy, quality,

time, cost, stakeholders.

GJCST-C Classification:

K.6.3

ReworkandReuseEffectsinSoftwareEconomy

 Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Type: Double Blind Peer Reviewed International Research Journal

Software & Data Engineering
Global Journal of Computer Science and Technology: C

Volume 1 Issue 4 Version 1.0 Year 2018

Publisher: Global Journals

8

Abstract- Software industry supposed to provide software product to their customers at a lower price
and right time. Unfortunately, it’s true that the industry can’t deliver the software at lower a price. Lots
of reasons are responsible for this high price of the Software. Such as high wages of stakeholders,
the size of software, testing costs, implementation cost and one of the most vital reasons is a rework
that increases the cost of software. In this research paper, I focused on rework and reuse, its cost &
effect on software economy. How to reduce the rework during the software development life cycle-
SDLC. This research found that a long part of the development duration used for rework. This
scenario is not only obtainable in a small software firm but also medium and enterprise software
companies. Rework issue is one of the big challenges of the software industry. This research
explained the problem in a financial point of view and provided needed suggestions to reduce the
rework & increase the reuse based on software engineering body of knowledge. The software
industry will be profitable if they can reduce the rework and upsurge the reuse of software.

Rework and Reuse Effects in Software Economy
Md.Shahadat Hossain

Keywords: software, rework, reuse, economy, quality,
time, cost, stakeholders.

I. Introduction

ework is an ongoing problem in the software
development process. Rework is

generally
considered to be potentially avoidable work that

is triggered to correct

problems or to tune an application
(Aaron G. Cass, 2003). Many software firms

are
confused to isolate the rework. They think we are
working to solve the

existing problem & it is part of our
maintenance, routine work. Now the point is

how to
differentiate the rework. Rework in software development
is the additional

effort of redoing a process or activity
that was incorrectly implemented in the first

instance or
due to changes in requirements from clients (Vimla Devi
Ramdoo1,

2015). Rework is defined as work measures
that have to be completed more than

once (Robin
McDonald, CCM, LEED G.A., 2013). Peter E.D. Love1

characterized rework as the “unnecessary process of
redoing a work activity that

was incorrectly carried out
the first time.” Another definition which emphasizes

the
essence of rework is “work that is made to conform to
the original

requirements by completion or correction at
least one extra time due to non conformance with
requirements”. The term rework is clearly defined here.
Now

the question is what is the source of rework? How
can we reduce the rework?

What is the cost of rework
and what is the effect of rework in the software

economy? This research paper not only answering these
questions but also explaining the benefit & values of
reuse. The term “Reuse” is used for developing the
software by using the existing software components.
These reusable components are projected assets. This
research recommends to software engineers for design
and develops software in such a manner so that a
software component can be reused in multiple software.
This research found that a few software firms are using
existing reusable components, but the number of reuse
is not satisfactory. Maximum components of the new
software are being developing from scratch. Because
the existing software components didn’t build for reuse.
Although some components of previous software were
developed for reuse, but all of those components are
impossible to reuse due to technology upgrade and
requirements changes. The ratio of reuse of already
available software components is very limited. It is one
of the barriers to the success of the software industry.

 This research was performed in a few software
companies on multiple projects. A single project is not
suitable for this type of research because let’s say the
first project is fresh it has no reusable component. The
first project will develop reusable components. Then in
the next project development, reusable components of
the first project can be reused. But at the first project,
the chance to rework can’t ignore. Software reuse is
accomplished by creating programs from previously
developed software modules (Robert W.Therriault,
1994). Reuse is expected to lead to reduced system
development time arid maintenance while increasing
reliability by using existing working modules (Robert
W.Therriault, 1994).

II. Purpose

The main purpose is to increase existing reuse
levels to at least one step upper level and reduce the
rework at least one step lower level. Development of
project assets for decreasing rework and increasing
reuse level of Software, Company. To meet this purpose
Software Company must identify.

1. What is their current rework level ?
2. What is their current reuse level ?

First of all, defines the current position of the
company where it exists now in rework and reuse level
criteria. It is the very important job for software firm and
complicated to define the level. A lot of the sensitive
issues involved with it. If Software Company can’t
measure the current level of rework and reuse, then it
can’t estimate target level.

R

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

35

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Author: Department of Software Engineering, School of Engineering
& Computer Science, Independent University Bangladesh (IUB).
e-mail: shahadat.se@gmail.com

Abstract- Software industry supposed to provide software
product to their customers at a lower price and right time.
Unfortunately, it’s true that the industry can’t deliver the
software at lower a price. Lots of reasons are responsible for
this high price of the Software. Such as high wages of
stakeholders, the size of software, testing costs,
implementation cost and one of the most vital reasons is a
rework that increases the cost of software. In this research
paper, I focused on rework and reuse, its cost & effect on
software economy. How to reduce the rework during the
software development life cycle-SDLC. This research found
that a long part of the development duration used for rework.
This scenario is not only obtainable in a small software firm but
also medium and enterprise software companies. Rework
issue is one of the big challenges of the software industry. This
research explained the problem in a financial point of view and
provided needed suggestions to reduce the rework & increase
the reuse based on software engineering body of knowledge.
The software industry will be profitable if they can reduce the
rework and upsurge the reuse of software.

Figure

1: Purpose

Measurement of effect for rework & reuse:

The effect of

rework and reuse is

measured by settings some
performance parameters. One parameter is
proportionally

related to another. Some parameters are

upward and some of them are downward.

Upward
parameters tend to the opposite with downward factors.
Such as, if reuse arises,

then time will fall, rework will fall,

the development cost will drop. If project time rises,

then

the project cost will increase. The ultimate goal is to
save the time, reduce cost and

increase the profit

margin. Here time and cost will sink parallel way with
sinking

rework. Profit will increase with the increase of

quality & reuse.

Figure

2:

Effect Measurement Parameters

The rework, cost & time are expense related

heads. The reuse, quality, productivity &

profit is income

associated heads. The opposite is happening when
downward

parameters grow up, and upward constraint

goes down. When a rework is arisen in any

part of a

project such as, in a specific module or, same is
happening in a small

component, then the

time of

development is raising instantly. As a result the cost of
 development rises. The price may be $1 to $1000,

depends on the project, its stage of

SDLC and on the

type of rework. Oppositely when there is no reuse, or

the

race

becomes very limited in a project, then its quality

may be having suffering, productivity

may collapse and

profit margins may plummet.
 Actually, every software company want to

 Reduce project time

 Reduce project cost
 Reduce rework

 Reduce customer dissatisfaction
 Increase reuse

 Increase quality
 Increase productivity

 Increase profit

If rework is decreased, then time will cut cost
will shrink finally the profit margin of the

company will

upturn. If the reuse is increased then, the time of
development will save,

the cost of perfection will

diminish ultimately the growth of revenue will upsurge.
The

major factor is R2. Reduce the Rework and increase

the reuse. That is the prime focus

of this research paper.

 Project Assets:

Project assets are the reusable
 component of a project of a company.

Project asset is

developing by the predefine process. A process has
multiple elements

such policy, procedure up to 10th

 elements based on manner. A procedure that has
 followed ten elements known as standard method and

the component that developed

with this ten elements is

the reusable component.
 1. Purpose or Output

 2. Performance Parameters
 3. Policies

 4. Procedures
 5. Standards

 6. Knowledge, Skills & Environment
 7. Tools & Techniques

 8. Measurements

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

 36

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

R
e u

se Increasing

R
e w

o rk

P
rofi t

T
im

e

C
ost

R
ew

or k

Q
ual i t y

P
rodu

c t i vit y

R
eu

se

9. Control
10. Improvement

For example a Bank account opening form, it is
projected assets of the Bank. The predefined format is
the standard of the Bank, the printed hard copy of
account opening form and pen are the tools. Bank

reuses the form information of customers that reduce
Bank staff rework and save Banking times. That directly
saves the cost of overtime work of the Bank. For the
purpose of finding out current rework and reuse level
first of all need to figure out five projects.

Following are a list of five projects:

Figure 3: List of five projects

a) Advantages of reuse of software components
Software reuse can cut software development

time and costs. The major advantages of software reuse
are to:

 Faster time to market
 Less effort
 Time-saving
 Increase software productivity.
 Utilize fewer resources
 Shorten software development time.
 Improve software system interoperability.
 Develop software with fewer people.
 Move personnel more easily from project to project.
 Reduce the systems development expenditures
 Reduce the software implementation and

maintenance costs.
 Produce more standardized software.
 Produce better quality software and provide a

powerful competitive Advantage.
 Leads to better quality software
 Reduce bugs

Reusable component development phase: In any
phases of the software Development life cycle-SDLC,
software engineers can develop reusable components.
For example requirements specification stage, coding
time, documentation segment design part, etc. Let say
in requirement specification period, the requirement
engineer detected that

a requirement is repeated over
several systems. So the engineer has to note

that this

portion of chucks corresponds to

the well-defined set of
necessities,

modules then the engineer can reasonably
expect to be able to reuse the requests

Module.
Similarly, in the coding level when a coder sees the
same code is needed to

write in multiple blocks, then
coder can create a function, or it may be others object

depends on the programming language that is used
and it can be used, or call at any

chunk of code where
necessary. The software engineer can reuse the design
of the

existing subsystem as the design of the new
subsystem, the test plan of the existing

subsystem as
the test plan of The new subsystem as well as others
subsystems.

Engineers can reuse existing the database
schema for new database schema and

create new
object as well as

Modify existing objects as per
necessity. Reusable

component development is not
Phase dependent. Software reusable component

can
develop in any phase of development life cycle.

Reusable components of a software:

Software reuse is
accomplished by creating programs from previously
developed Software modules. Many different aspects of
software can be reused. Some of the

constituents that
can be reused are as follows:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

37

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

Name of the project Stakeholders

P001
Hospital Management
Information Software

Health Care
Information System

Renown Hospital and
Diagnostic Laboratories

P002 Eye Care System Ophthalmic EMR

Renown Eye Hospital
and Institute

P003
Trade Marketing &
Distribution system

Manufacturing and
Distribution System Group of Company

 Web Based
Interactive ERP

Joint Venture Company

 Digital Health Card
System

GPRS Health
Tracking

Government Staff

Project
Code

Nature of the
project

Remarks

P005

P004 Pharmaceutical ERP

b)

Reuse percentage of software components

Several studies into reuse have shown that.

40% to

60% of the code is reusable from one application
to another.

60% of design and code are reusable in business
applications.

75% of program functions are common to more than
one program.

15% of the code found in most systems is unique and
new to an application.

15% to 85% rates of actual and potential reuse range
(Florinda Imeri, 2012).

Here the maximum number of reused

components is the user-defined function

program. It is
very easy, and friendly to reuse user-delineate function
and

procedure from one software to another software or
from one software module to

another module within the
same software. Such as current age calculation within

date of birth. If a programmer

creates a job that will
return current age year month

day passing the
parameter date of birth then it can be used for employee
age

calculation or same function can be reused for
patient age calculation or same

function can be reused
for customer age calculation. This is suitable for reuse in

any module within software as well as in other software.
This component will

reduce rework and save
development time. The next place, of the maximum

reused stage is the design part. Here design means
software architecture design,

database design, user
interface design, platform design, and security design,
etc.

The reusable design saves time and cost. Design
phase encourages increasing the

reusability.

c)

Reuse's Shortcomings

Software reuse is hindered by issues. All-time
reusable code is not a cure-all for

Programmers and
does not always provide significant benefits. Quite often

maintaining old programs or developing shell scripts for
reuse of old code is

overlooked. A brief discussion of

the important issues is as follows (Robert

W.Therriault,
1994).

 Inadequate documentation/training/awareness

 Startup and maintenance costs

 Inflexible design/will cost too much to modify

 Legal problems

 Domain irrelevance

 Technical Difficulty

 Complexity
 Team members conflicts

 Difficult to identify reusable component’s

 The technical factor that hinders software reuse is
poor conceptualization.

 Additional costs

associated with understanding,
modifying, certifying, and

maintaining the reusable
components.

d)

Examples of successful software reuse

There are many examples of successful
software reuse. Several success stories

were cited by
Charles Lillie at the Second Annual Reuse Education
and Training

Workshop. These include:

 312 projects in the aerospace industry, with
averages of

20% increase in productivity.

20% reduction in customer complaints,

25% reduced time to repair, and

25% reduction in time to produce the system.

 A Japanese industry study that noted

 15-50% increases in productivity.

 20-35% reduction in customer complaints,

 20% reduction in training costs, and

 10-50% reduction in time to produce the system.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

 38

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

 Plans Queries, reports
 Software requirement specifications Concepts and domain knowledge
 Source code Implementation & experiences
 Software architecture Objects and text
 Design and user interface Process
 User manuals Library
 Software documentation Artifacts
 Database Modules
 Algorithms Master setup data
 Test case Models
 Templates Themes
 Tools Function
 Procedure Package
 Plugins Dynamic action
 API Template

 A simulator system developed for the US Navy with
an increase of nearly 200% in the number of source
lines of code produced per hour.

 Tactical protocol software with a return on
investment of 400%.

 A NASA report lists reductions of 75% in overall
development effort and

cost. These are impressive
success stories. They clearly indicate that

software
reuse is a technique that can have a positive impact
on software

engineering practice in many
environments (Ronald J. Leach, 2011).

The above example is the reflection of reuse. It
is amazing. 20% to 25%

Productivity increase is not a
small deal. These examples will influence another

company for increase their reusability. Increasing the
reuse means reducing the

rework that reduces cost and
time. As a result profit margin will rise. That is the

ultimate goal of this research.

III. Original Work vs.

Rework

Software development works in a project
typically include the development of

new features,
changes to existing features, and fixing reported feature
defects. The

journey from start to finish for these tasks
may follow different paths described

regarding time
spent doing two types of work: original work and rework.
Original

work in this context is a metric which assesses
how much initial time/effort was

spent to
develop/change/fix/verify a feature. Rework is a metric
which assesses

how much repeat time/effort was spent
to complete a currently-open-and-active,

or a
previously-closed-and-reopened, feature/change/defect
(Segue Technologies,

2014). The time of initial
development work and the time of repeat work are

clearly identified. Summation of both is the result of total
work time.

Causes of rework:

Several avoidable and unavoidable reasons are
responsible for rework. Some

details can be minimized
by seriously focusing on related works. Unavoidable

causes that really impossible to ignore. Avoidable
reason means those rework

aims that can be easily
controlled by stakeholders. Following are some spirited

explanations.

Rework cost may fluctuate from organization to
organization. Above history of rework

cost is asking us
why we do allow rework, why we do not reduce rework
yet.

Risk level of rework: The risk level of rework differs over
risk to risk, project to

project. High-level risk of rework
can lead to project failure. Risk management techniques
would allow the project risk management team to
identify, classify &

prioritize the risk level, risky modules
or components. In reality, it is very

difficult to point out
the risk level of rework in a large system. Rework
become

obligatory for a specific issue until the problem
resolve. If the matter repeats

several times and
continuously works for the same

matter, it not only
waste time

& money but also Damage Company good
well. If the rework risk is too large for

a firm to be willing
to accept, the firm

can avoid the risk by changing
project

strategies and

tactics to choose a less risky
alternate or may decide not to do the

project at all. For
example, if a project has a tight schedule constraint and

includes state of the art technology.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

39

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

1. The reason for rework is infrequently the result of
individuals not doing their jobs well.

2. Improper planning
3. Poor communication
4. Inadequate testing
5. Unstructured programming
6. Poor logic and algorithm
7. Lack of domain knowledge
8. Insufficient time
9. Low-cost budget

10. One reason rework becomes necessary is that the
development, design and engineering teams lack
visibility into software requirements, which often
change throughout the development process.

11. Poor requirements management can have a
significant effect throughout the process and on the

business itself. In fact requirements, defects
account for 70 to 85 percent of rework costs. This is
a very high cost.

12. Software errors found late in the development
process can cost organizations up to 200 times
more than if they were detected during the
requirements analysis phase.

13. Late detection of bugs. That happens when teams
don’t pay enough attention to quality early in the
development lifecycle error detection should not be
left until the testing stage. According to the
Carnegie Mellon Software Engineering Institute,
“Data indicate that 60-80% of the cost of software
development is in rework (IBM, 2009).”

14. The cost of rework can approach or exceed 50% of
total project cost.

15. Rework cost rises dramatically the longer the delay
relative to the life cycle, between the occurrence of a
problem and its remediation. For example, for a
problem that occurs in requirements analysis, the
cost of repair may rise by one to two orders of
magnitude depending on how late in the life cycle it
is caught (Aaron G. Cass, 2017).

16. One incident where the cost of software rework was
actually calculated. A bank totaled the cost of
automated re-testing at $1 million to $1.5 million per
month. This number doesn’t even include the cost
of manual testing, design time, meetings, coding, or
unit testing (David McAllister, 2017).

Rework and reuse data of above projects: Data for this
research were collected from small, medium and
enterprise software firms. There are maximum local
software development firms of Bangladesh & a few

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

40

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

international firms. This paper does not mention the
firm’s name, project & client’s name in respect of the
privacy policy. Software firms provided valuable data
about their current and past projects. Many firms
willingly told me that they had rework concerns but, they
will try to overcome the disputes and they also agreed
with me to develop reusable software components for
their future projects.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

41

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

Earl
y V

iew

Table 1: Rework and reuse data of above projects

Figure

4:

Rework and reuse summary of projects

Current rework & reuse level:

Activity-based cost
analysis helps to identify the

current rework and reuse
level. To figure out the percentage of present rework and

reuse

position, we used following formula for that
calculation.

Current rework and reuse level of projects:

Table 5: Current rework and reuse level of projects

 Cost analysis for rework of the project P001:

 Our enlisted P001 project will come in at a 60 percent
rework rate:

 Rework Cost = 0.60 * Project Dev Cost

Managing Software Requirements indicate that about
half of all software defects are due

to missing or bad

 requirements, but

the cost of finding and fixing
requirement defects is

higher than that for other kinds of

defects. In fact, they indicate that 70 to 85 percent of the
rework cost is due to requirements defects. For our
example, we could use 75

percent (or use own

measurement):

Rework Cost of Requirements Defects = 0.75 * Rework
 Cost

Requirements defects range is higher. If the
defect detects at an early stage then, the

cost is lower

but at production stage cost may be 100 or 1000 times
higher. Following

are the ratio of bug fixing in four stage.

 To fix a problem at the requirements stage costs

 is 1.
 To fix a problem at the development stage costs

 is 10.
 To fix a problem at the testing stage costs is 100

 To fix a problem at the production stage costs is
1000(Shahadat, 2018).

 We estimate that the combined total objects of
screens plus reports will be 300.

Multiply by four person

 weeks to get

twelve hundred person-weeks as

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

42

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

0

20

40

60

80

P001 P002 P003 P004 P005

Rework Level

Reuse Level

 Number of functionalities that needs rework (defect found)
Rework Level = --- X 100
 Total number of components in an application

 Number of functionalities that reused from projects assets
Reuse Level = --X 100
 Total number of components in an application

Project Code Average
Rework

Average
Reuse

Current
Rework Level

Current
Reuse Level

P001 0.6 0.2 60 % 20 %

P002 0.1355 0.73 13.55 % 73 %

P003 0.5241 0.2244 52.41 % 22.44 %

P004 0.4715 0.3235 47.15 %

P005 0.4465 0.3155 44. 65 % 31.55 %

32.35 %

development effort. We now expect to have 1200
hundred defects at system test or user acceptance test.
Estimate that half of those, fifty, will be due to
requirements problems.

Now estimate rework cost at 60% of the initial
development cost. Average wages paid $1,000 per
person-week ($48,000 per year salary).

So the initial development cost will be 1200 PW
* $1000 = $12,00,000.

Rework cost will add 60 percent to that:

Rework costs = 0.60 * $1200, 000= $720,000

Software development cost = initial development cost
+ rework cost
Total development cost = $12,00,000 + $7,20,000
Total development cost = $19,20,000
Next, you estimate the amount of rework that will be due
to the requirements errors: 0.75 * $19,20,000=
$14,40,000

Finally, you divide this rework cost by the
number of requirements defects to determine the cost
per requirement defect: $2,400 = $14,40,000/600
(1200/2 requirements defects).

Here one project P001 cost analysis has been
described. Note that this is not total project cost or even

your total development cost, it does not include project
Management, QA time, analyst time, and so on. It only
covers pure development effort and rework cost of a
week. Cost analysis of the rest of the project is the
same. Following table showing the calculation of cost of
rework for above five projects.

Table -6 shows how the cost of rework is
changing. Project P001 reworks percentage increased
to 65%, simultaneously rewrite cost enlarged to
$7,80,000 & total development cost increased to
$1,980,000. Alternatively, if the rework fall to 55%, then
rework cost fall to $6, 60,000, and total development
cost falls to $1,860,000. This is just one variable effect
on software economy. To complete this task quickly, if
include another person then time will reduce to 5.6 days,
but the development cost will increase to $3,200,000.
Again, if remove one person to reduce the cost, then
some cost will reduce, and the development cost will be
$1,920,000, but time will increase to 9.33 days. Here
total objects, number of man & salary are variable. Cost
of development is varying with rising and falling off any
of this variable values. Software companies want to
reduce the rework.

 Now if the

project P001 comes up with 20%
reuse, then it’s time will save 20% and the

cost will save
$240,000, and total development cost will be $960,000.
The massive

amount of cost is kept for reuse. I have

successful records of cost & time saving by

reusing one
project objects to multiple projects and made a
handsome profit. Here

if comparison table 6 to table 7,
the variation of development cost will be realized.

Figure-7 shows the effect of reuse in the software
economy. Here the percentage of

reuse, total screen,
number of men, salary

are variables. Changes in this
variable’s value

might change the cost of development.

For example, if P001 reuse, increase to 25% than

its
rate, reduce from $240,000 to $300,000 save for reuse is
$60,000. Dramatically cost

is falling by the rising of
reuse. So Software companies must try to increase their

reuse

level.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

43

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

Figure 6: Cost of rework

Figure 7: Cost save for reuse
Rework and reuse effects in software economy

are opposite of each other’s. If rework rises, then
development cost rise, if rework fall, then development
cost falls. Oppositely if reuse rises, then development

and reuse directly hit to cost. Rework rise cost rise,
reuse rise cost fall. Target to upswing reuse & decrease
rework. Bellow figure -8 shows that initial development
cost exceed due to rework cost.

Figure

8:

Cost of rework

In figure-9 we see total development cost
exceed initial development cost for rework

Cost. Total

development cost becomes lower than the initial
development cost for reuse. Development cost is falling
and rising magically with increasing and decreasing of

Rework and reuse charge. This figure shows

that total

development cost is bellow of

initial development cost

for reuse. Those projects have more reused its total

Development cost is lower than the initial budget. Those
projects have high rework its

total development cost is

higher

than the original development charge. All project

total

development cost

become higher than the opening

development cost due to rework cost.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

44

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

Project
Code

Reuse
%

Total
Screen

No
of
Man

Man
Week

Salary
Weekly

Initial
Development

Cost

Cost Save
for Reuse

Total Cost

P001 20 300 4 1200 $1,000 $1,200,000 $240,000 $960,000

P002 73 400 4 1600 $1,000 $1,600,000 $1,168,000 $432,000

P003 22.44 200 3 600 $1,000 $600,000 $134,640 $465,360

P004 32.35 100 5 500 $1,000 $500,000 $161,750 $338,250

P005 31.55 500 5 2500 $1,000 $2,500,000 $788,750 $1,711,250

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Ini.Dev. Cost Rework Cost Total Cost Per Defect Cost

P001
P002

P003
P004

P005

cost fall, if reuse fall development cost rise. Both rework

Figure 9: Rework cost and Reuse cost effect

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

45

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Initial Development
Cost

Cost with Rework Cost with Reuse

P001
P002
P003
P004
P005

Figure 10: Up and down of a project cost for rework and reuse effect

How much cost saves from reuse of software: It is a
vigorous question of the Software industry. The software
company expects to save some cost by reuse. Because
they are reusing some portion of a system and not
developing the particular component from scratch. The

amount of cost saving depends on the number of
reusable components they used. There are several
reasons for this discrepancy. The amount saved
depends upon many factors. The most important factors
are the following (Ronald J. Leach, 2011):

0

500000

1000000

1500000

2000000

2500000

P001 1200000 720000 1920000 240000 960000

Initial
Development Cost

Rework Cost
Rework +

Development Cost
Cost Save by

Reuse
Net Development

Cost

Variation of cost: A project having 60% rework rate and
20% reuse rate frequently up and down of its
development cost. Although the project development
cost rise to the top than the initial development costs
due to rework cost but it fluctuates with reuse effects.
When the costs of development arises in this situation

reuse is the best solution to reduce the cost. Figure-10
is explaining the combination effect of rework and reuse
of a particular Project. Reuse is very effective, to
reducing the development cost instantly, to the below
than the initial development cost. Reuse avoids the vast
amount of cost.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

46

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

 The life cycle model used in the software
development process.

 The development history of the software system of
which the artifact is a substantial portion.

 The cost of beginning a policy of software reuse.
 The cost of creating and maintaining a reuse library

of software artifacts.
 The percentage of the system that is made using

existing software artifacts.
 The ratio of change in each software artifact that is

being reused.

 Different levels of an organization have different
goals for the reuse programs.

Figure-11 shows a project cost saving scenario
from the reuse of previous software components, the
extra cost paid for the rework and the difference
between the original development budget & the net
price of the development. How much cost will save from
the reuse, will define by the management policy and
planning.

Figure 11: Cost saving from reuse of software

Initial Cost Rework Cost
Reuse Cost Net Cost

Time & cost effect: Time and cost is correlated with each
other. Both are leading parameters of the project.
Following example is more than enough to understand
the time, and the cost effect on a project. An 8.7
kilometres Moghbazar-Mouchak flyover project was
taken up in January 2011 and was supposed to be
completed by December 2015. But, the authorities
concerned went for a one-and-a-half-year time
extension until mid-2017 with the construction still in
progress. The construction cost of the flyover has
increased to almost 72 percent as the construction
agency was unable to complete the work in time and
extended the project tenure several times. The
authorities extended the deadline for completion three
times, responding to the request from the builder. The
construction costs has jumped to Taka 1327.4 crore
from the original estimation of Taka 772 crore (Rick
Haque, 2017).

Investment for reuse: Reuse is the robust components of
the development process. First and foremost, we must
recognize that reuse has the same cost and risk
Characteristics as any financial investment (BH Barens,
1991). To get the benefit from software reuse, it is
expected that the company should invest in the

development of reusable software components. ROI of
reusability depends on the efficient investment of
reusable components. There are additional costs
associated with understanding, Modifying, certifying,
and maintaining it (Ronald J. Leach, 2011). It is clear
that price is involved in the development of reusable
software components as well as cost is involved in the
uses of existing reusable software components. Barry
Boehm explained the cost calculation as followed (Barry
Boehm, 1997):

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

47

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

Investment for the development of reusable software component is calculated by the above formula.

Investment of reuse of already developed existing reusable software component calculated by the above formula.

ROI of reuse: Return on investment for reuse is a widely
used measure to compare the effectiveness of reusable
components development investments. It is commonly
used to justify software projects. The plain ROI

calculation is to divide the net return from an investment
by the cost of the investment and express this as a
percentage. ROI, while a simple and extremely popular
metric, it may be easily modified for different situations.

There is another term called ROR (rate of
return), Rate of profit. The return is also known as money
gained or lost on investment, profit or loss, gain or loss,
net income or loss. The cost of investment is also known
as investment, capital, principal, costs. A project is more
likely to proceed if its ROI is higher because higher the
better. For example, a 200% ROI over five years
indicates a return of double the project Investment, over
a five year period. Financially, it makes sense to choose
projects with the highest ROI first, then those with lower
ROI’s. While there are exceptions, if a project has a
negative ROI, it is questionable if it should be authorized
to proceed.

Let’s say a project P001 developed a reusable
component in six month durations. P001 invested
$6,000 for this reusable software component
development. Later this reusable component was used
in five projects. This reuse saved $24,000 development
cost that is the return from reuse for the first year. So the
ROI is

ROI = ($24,000 - $6,000)/$6,000 * 100
ROI = 300% for the first year

2nd years to 5th years the project will get return
$30,000 per year if there is no exceptional investment
require for this reusable component. The return will
come four Times i.e.400% higher than investment
continuously for the next four years. The ROI for the next
four years will be ROI = 400%*4 =1,600%. A Net ROI of
five years projects is 1,600% + 300%=1,900%. It is a

successful investment for the development of reusable
components and the successful reuse benefit. Here we
see the return of reusable components is four times
higher than the investment. The return increases 300%
to 1900% within five years of project duration. That
makes sense to decide for investment for reusable
software components.

Reuse effect on software product line: It is essential to
define the product line for produce new product by
reusing an existing software product. Software product
line architecture recycles standing product for
productivity, quality, and profitability. Software product
line practice carefully elicits, specify, analyze, and
manage software requirements. This approach based
on the systematic creation and reuse of existing assets
in support of new product development (Emilio Insfran,
2014).

RCWR: Relative Cost of Writing for Reuse

 The cost of developing reusable asset
RCWR =
 The cost of developing single-use asset

RCR: Relative Cost of Reuse

 The Cost to reuse asset
 RCR =
 The cost to develop the asset from scratch

The ROI formula is:

 Return from reuse - Cost of Investment
ROI % = X 100
 Cost of Investment

The Apple iOS is the best example of software
reuse. When the original iPhone launched, the OS was
called "iPhone OS", and it kept that name for four years,
only changing to iOS with the release of iOS 4 in June of
2010. iOS is the name of the operating system that runs
the iPhone, iPod touch, and iPad. It's the core software
that comes loaded on all devices to allow them to run
and support other apps. One year after the iPhone
became a bigger hit than almost anyone projected,
Apple released iOS 2.2.1. It was released on January 27,
2009 (then called iPhone OS 2.0) to coincide with the
release of the iPhone 3G. The 1st generation iPad was

Microsoft is an unusual company for the sheer
number of product lines. Microsoft has

revolutionary
reuse records since its

start on November 10, 1983, to
till now.

Microsoft's bread and butter are Windows, the
OS is doing quite well. Microsoft

revealed that it had
sold 400 million copies of its latest version, Windows 7.
Microsoft's

big sales pitch with Windows 10 is that it's
one platform, with one consistent experience

and one
app store to get software from. There are seven different
versions of Windows

10. Anyone who knows anything
about Microsoft is aware of how essential its Office

franchise is to the company. In every product, Microsoft
reused the existing product,

added new features and
released a new product in the same product line.

Life cycle affected by rework & reuse: Software
development life cycle different

model are affected by

rework & reuse. Such as

waterfall model, spiral model,
rapid

prototyping model, agile model, etc. The cost
saving from reuse can be started earlier in

the life cycle
model and can be realized at any phase (design phase,
coding phase, test

phase,

etc.) of life cycle subsequent
to the point at which the system is reused. When

programmers took any component from the reusable
library and used it as is without

any change, then the
element need not be tested because it was tested as a
module

earlier. Programmers only need to perform unit
testing and integration testing in which

the reusable
component is engaged.

No additional test cases, test
plans or

documentation need to write for this reusable
component. At any segment of the life

cycle if a bug is
generated, or a scope

for rework is produced, and it
inherits to next part

then its cost become several times
higher than the earlier chapter. Early detection and

prevention are cost-effective. If a scope of rework is
formed in requirement

specification phase, but it
realized later in testing stage than the rework cost
become

higher than the requirement specification
phase. The cost of rework varies from one

phase to
another phase of the software development life cycle.

Cost-benefit analysis of software reuse & rework:

Rework
is cost heads. Although rework has no financial benefit,
but this research found a potential benefit of rework.

Reworks help to find out the undiscovered bug, logical
and exceptional issues. At some

point of view, rework is
re-check, re-testing of

an existing system during next
work. If

an effort is done

twice the result of the second
labor is better than the result of first

work. During the
rework, some additional

modification and the necessity
to include new

features may grow. The existing issues
are cleaning by the Rework. Rework has some

positive
benefit. Rework cost is high, the cost vary from project
to project. Reuse is revenue heads that save
development time investment cost and improve quality.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

 48

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

released in June 17, 2009, and version 3.2 of the
software came with it. It added features including copy
and paste, Spotlight search, MMS support in the
Messages app, and the ability to record videos using
the Camera app. Many aspects of the modern iOS
began to take shape in iOS 4. Features that are now
widely used debuted in various updates to this version,
including FaceTime, multitasking, iBook’s, organizing
apps into folders, Personal Hotspot, AirPlay, and
AirPrint. Another important change introduced with iOS 4
was the name "iOS" itself. iOS 4 It was released on July
25, 2011. iOS 5 was released on May 7, 2012 with
wirelessness, and cloud computing features. A
Controversy was one of the dominant themes of iOS 6
was released on Feb. 21, 2014. Like iOS 6, iOS 7 was
met with substantial resistance upon its release on June
30, 2014. Unlike iOS 6, though, the cause of
unhappiness among iOS 7 users wasn't that things
didn't work. Rather, it was because things had changed.
After the firing of Scott Forstall, iOS development was
overseen by Jony Ive, Apple's head of design, who had
previously only worked on hardware. In this version of
the iOS, Ive ushered in a major overhaul of the user
interface, designed to make it more modern. More
consistent and stable operation returned to the iOS in
version 8.0 was released on August. 13, 2015. iOS 9
was released on August. 25, 2016 with major
improvements were delivered in speed and
responsiveness, stability, and performance on older
devices. iOS 10 was released on July 19, 2017. iOS 11
was released on May 29, 2018, contains lots of
improvements for the iPhone, but its major focus is
turning the iPad Pro series models into legitimate laptop
replacements for some users.

Apple was continuously updating iOS and
releasing one after one product by reusing the previous
iOS. Apple becomes world's first trillion-dollar public
company as on Thursday 2nd August, 2018. Apple Is
Worth $1,000,000,000,000. Two decades ago, it was
almost Bankrupt.

Figure- 12 is showing total cost and benefit of all project.
Here particular cost heads didn’t mention. Project to
project the values of profit and loss may be varying.
Some project may have a standard amount of turnover
for remarkable reuse. Alternatively, project must count
loss for oversize rework. Software reuse does not come
free. We anticipate that developing reusable software on
AAS will cost twice as much as developing nonreusable
software. This alone could have deterred the AAS
management from implementing a reuse program
(Johan Margono, 1992).

Figure

12:

Cost Benefit Analysis of reuse and rework

Anomaly Metrics Model for Software Rework Reduction:

Majority of the reported

anomalies belong to this
category of real faults in the software or documentation

delivered together with the software. Reproducible
anomaly is an observed failure

during testing that

cannot be reproduced by the developer that is assigned
to fix it.

Getting many such failures might be due to the

existence of many intermittent faults in

the product. This

indicates a robustness

problem that probably requires

improvements to

the product architecture. Insufficient
debugging environments are other common reasons for
not being able to reproduce the failures. Anomalies
occur when the

requirements documentation is vague or

incomplete. For example, when a test engineer,

and a

developer interpret a requirement differently, the tester is
likely to submit an

abnormality report. In these cases,

the inconsistency report is defined as an opinion for

function report which might also result in a correction.
When an organization reports

many anomalies of this

type, it indicates that the requirements are not pure
enough.

(Lars-Ola Damm, 2008). According to Ola

Damm above statement, it is important to

cure all types

of anomalies of every stage of SDLC whenever the
anomalies introduce.

It will reduce the rework otherwise

in later stage rework

will be increased and the rate

of

rework will also increase. The best way of anomalies &
bug’s rework reduction is

killed it before born.

Prevention is better than a cure:

This popular saying
most definitely holds true when

it comes to bugs or

security issues identified within the SDLC. During the
development process, it is more cost-effective and
efficient to fix bugs in the early stages rather than

later

ones. The fee increases exponentially as the software
moves forward in the SDLC.

This research focuses on

prevention the cure because prevention reduces rework
that

save time & cost of software development.

IV. Results

Bug fixing and rework are not the same things,
but both are cost heads. Rework cost

exceeds the

project budget. Reuses saves both time and cost. This
paper is influencing

to reduce rework and increase

reuse of software components to ensure the successive

economic growth of Software Company. The prime goal
of this project is to develop

process assets that will be

used to reduce rework & increase reuse levels of the
software

company. Here I didn’t find any benefit for

which Software Company can neglect to develop
reusable components. This research found that rework

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

49

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Rework and Reuse Effects in Software Economy

Cost Benefit Analysis of Reuse and Rework

Costs

 P001 720,000.00
 P002 216,800.00
 P003 314,460.00
 P004 235,750.00
 P005 1,116,250.00

 Total Cost: 2,603,260.00

Benefits

 P001 240,000.00
 P002 1,168,000.00
 P003 134,640.00
 P004 161,750.00
 P005 788,750.00

 Total Benefit: 2,493,140.00

 Cost Benefit Profit/ Loss

Total: 2,603,260.00
==========

2,493,140.00
==========

(110,120.00)
===========

is harmful to the software economy. This research
suggesting for early detection and prevention of bugs
which is more cost-effective than testing
& implementation phase.

V. Conclusion

This research found that economic growth of
software companies falling for rework. All sizes of firms
have more or less the rework problem. It is now one of
the enormous challenges of the software industry.
Rework is the barrier to the continuous achievement of
financial improvement. This research focused on reuse
to reduce the financial losses. The R2 is influential
elements that move the economy. This paper is
significant for modern software companies for high
quality software development, as industries of all types
utilize software applications to varying degrees.
Unfortunately for startups, small businesses, and even
multimillion dollar companies, tightening costs and
rising competition mean a desperate scramble to find
areas in which to slash expenses. Reduce your software
development costs without sacrificing the quality of your
product by following this paper cost saving strategy of
reducing rework and increasing reuse.

Acknowledgements

I was inspired for this research by my professor
of Independent University Bangladesh. I am grateful to
my department for their cooperation. I would like to
express my thanks to all software firms for their help. My
wife Mrs Hosneara Shahadat and my Mother encourage
me cooperated with me to perform the research.

References Références Referencias

1. Aaron G. Cass, Formalizing Rework in Software
Processes (2003). Department of Computer
Science, University of Massachusetts.

2. Vimla Devi Ramdoo,

Strategies to Reduce Rework in

Software Development on an

Organization in
Mauritius (2015). Department of Computer

Science

and Engineering, University of Mauritius.

3. Robin McDonald,

CCM, LEED G.A., Root Causes &

Consequential Cost of Rework (2013). Insurance

North America Construction.

4. Robert W.Therriault Industry Versus DOD:

A
Comparative Study of Software

Reuse(1994).

5. Segue Technologies Use Test

Track Metrics to
Measure and Manage Software

Project Rework

(2014).
6. Ronald J. Leach Software Reuse Methods, Models,

and Costs (2011).

7. Florinda Imeri an Analytical View on the Software
Reuse (2012).

8. IBM Reducing rework through effective
requirements management

(2009).

9. Aaron G. Cass Formalizing Rework in Software
Processes (2017).

10. David McAllister Software Waste and the Cost of
Rework (2017).

11. Shahadat Challenges of software quality assurance
and testing (2018). Department of Software
Engineering, School of Engineering & Computer
Science, Independent University Bangladesh.

12. BH Barnes Making reuse cost effective (1991).
13. Johan Margono Software reuse economics: cost-

benefit analysis on a large-scale ADA project
(1992).

14. Lars-Ola Damm A Model for Software Rework
Reduction through a Combination of Anomaly
Metrics (2008).

15. Barry Boehm Software Reuse Economics (1997).
16. John Managing Software Deliverables (2004): A

Software Development Management Methodology
Managing John W. Rittinghouse. ISBN: 1-55558-
313-X.

17. Jones A short history of the cost per defect metric
(2012). 2-2. Capers Jones, President, Capers Jones
& Associates LLC.

18. Rex, Investing in software testing: the cost of
software quality (2000). Rex Black is President and
Principal Consultant of RBCS, Inc. R. Black,
Managing the Testing Process, Second Edition.
Wiley, New York, 2002.

19. Ricardo, Testability of dependency injection (2007)
University of Amsterdam Faculty of science, master
research software engineering.

20. Ross, The secrets to high customer satisfaction
(2013).

21. Sommerville, Requirements engineering challenges,
Ian Sommerville (2013).

22. Linda Westfall Software risk management (2001).
23. Rick Haque Builder gets time extension, cost shoots

up 72pc (2017).
24. Emilio Insfran Requirements engineering in software

product line engineering (2014).

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
V
 V

er
sio

n
I

50

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Rework and Reuse Effects in Software Economy

	Rework and Reuse Effects in Software Economy
	Author
	Keywords
	I. Introduction
	II. Purpose
	a) Advantages of reuse of software components
	b)Reuse percentage of software components
	c)Reuse's Shortcomings
	d)Examples of successful software reuse

	III. Original Work vs.Rework
	IV. Results
	V. Conclusion
	Acknowledgement
	References Références Referencias

