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Image registration is a challenging task in building computer-based diagnostic 

systems. One type of image modality will not be able to provide all information needed for better 
diagnostic. Hence data from multiple sources/image modalities should be combined. In this work 
canonical correlation analysis (CCA) based image registration approach has been proposed. 
CCA provides the framework to integrate information from multiple sources. In this work, the 
information contained in both images is used for image registration task. T1-weighted, T2- 
weighted and FLAIR MRI images has Multimodal registration done on it. The algorithm provided 
better results when compared with mutual information based image registration approach. The 
work has been carried out using the 3D rigid registration of CT and MRI images. The work is 
carried out using the public datasets, and later performance is evaluated with the work carried 
out by Research scholars previously. 
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Abstract-

 

Image registration is a challenging task in building 
computer-based diagnostic systems. One type of image 
modality will

 

not be able to provide all information needed for 
better diagnostic. Hence data from multiple sources/image 
modalities should be combined. In this work canonical 
correlation analysis (CCA) based image registration approach 
has been proposed. CCA provides the framework to integrate 
information from multiple sources. In this work, the information 
contained in both images is used for image registration task. 
T1-weighted, T2-

 

weighted and FLAIR MRI images has 
Multimodal registration done on it. The algorithm provided 
better results when compared with mutual information based 
image registration approach. The work has been carried out 
using the 3D rigid registration of CT and MRI images. The work 
is carried out using the public datasets, and later performance 
is evaluated with the work carried out by Research scholars 
previously. Our algorithm performs better with mutual 
information based image registration. Medical image 
registration of multimodality images like MRI, MRI-CT, and 
MRI-CT-PET. In this paper for MRI-CT Medical Image 
Registration CT image is used as a fixed image and MRI 
image as moving image and later compared results with some 
benchmark algorithm presented in literature such as 
correlation coefficient, correlation ratio, and mutual information 
and normalized mutual information methods.
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I.

 

Introduction

 

he medical image registration process is used to 
estimate the deformation between the images while 
considering the domain specific Information into 

consideration. A closer look at the problem statement 
intuitively reveals two methods of solving it. The first 
method operates directly on two different images have 
intensity values called intensity based registration [1], 
continuously transforming the entire image to align it with 
the other. When desirable alignment is obtained for the 
respective transformation, the optical representation is 
considered to be registered. These methods are called 
area based methods [2, 3]. The second method relies on 
a few salient points which are most prominent in both the 
images. The goal here is to estimate the deformation 

based on the corresponding pairs of points/regions 
across the images. 

These are known as feature-based medical 
picture based on brain methods, have gained popularity 
over the area based methods These methods[4] are 
more robust to illumination changes, a partial overlap 
between the images, occlusion, alterations in 
background, and viewpoint. Area-based methods are still 
preferred over feature based techniques, despite these 
advantages in the medical domain due to two main 
factors: 
1) Its ability to handle local deformations, especially 

with the case of human organs.  
2) Its capability of Dealing with information from 

different imaging sources. 

 

Fig. 1:  Image Registration Process 

a) Transformation 
Transformation step is to determine the position 

of corresponding points in reference and sensed 
images, Medical Image Registration (MIR) is considered 
as a combination of translation, rotation, and scaling 
parameters. Image registration methods employ 
transformations such as rigid, affine and elastic (non-
rigid transformations [5]. The rigid transformation 
considers tx and ty translations along the x-axis and y-
axis, and a rotational angle θ for the registration process 
[6]. It assumes that the subject in the image maintains its 
shape and size [7]. Affine transformations offer a high 
degree of flexibility in accommodating linear distortions 
by allowing and shearing in addition to translation and 
rotation [8]. The non-rigid transformation provides more 
degree of freedom as compared to rigid and affine 
transformation. 

b) Optimization 
Optimization problem is formulated by a number 

of parameters used for transformation [9] to get the 
maximum value of similarity, for a given registration 

T

 
  

  
   

5

  
 

(
)

G
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
III

 I
ss
ue

 I
 V

er
sio

n 
I 

  
Y
e
a
r

2 
01

8

© 2018   Global Journals 

Author α: Research Scholar, JNTUK, Mallaredy Institute of Engineering 
& Technology, ECE Maisammaguda, Dhullapally, Telegana State.  
e-mail: c_hemasun65@yahoo.com
Author σ: Professor of ECE and principal in MVR College of    
Engineering & Tech.  Paritala, Krishna Dist., Andhra Pradesh. 
e-mail:  pvnaganjaneyulu@gmail.com 
Author ρ: Professor of ECE, JNTUK University college of Engineering
Kakinada, Andhra Pradesh. e-mail: Prasad_kodati@yahoo.com

I/P: Pre & Post
Contrast  MR Images

O/P: Visualization of
Contrast agent update

Transformation
Model Optimization Similarity Metric



process. The choice of the transformation is dependent 
on the type of application and its geometrical complexity 
(i.e., degrees of freedom). Although an exhaustive 
search guarantees an optimal solution, its computational 
expense is proportional to the size of the search space 
as well as the number of parameters used for 
transformation and, hence, becomes infeasible as they 
increase [10]. Therefore, these forms the motivation to 
explore refined search strategies or optimization 
methods which can help to find the maximum value for a 
given similarity measure. 

Optimization method should be reliable and be 
capable of finding the best possible transformation 
quickly [11]. Many optimization methods have been 
introduced and adopted for the registration process, by 
the transformation parameters, similarity measure, time 
restrictions and required accuracy of registration. 

c) Similarity Measure 
Similarity measure gives the ability to determine 

the level of global correspondence between two images. 
During the registration process, the parameters of a 
given transformation model are changed, based on the 
optimization technique until the similarity measure 
reaches a maximum value of alignment[12].Hence the 
choice of similarity measure along with optimization 
method plays a crucial role to a successful outcome of a 
registration process. 

II. IMAGE REGISTRATION ALGORITHM 

a) Medical Image Registration  

In Non-rigid registration consists of Non-rigid 
transformations can be broadly classified by physical 
models or basis function expansion. While linear 
elasticity (Moshfeghi,1991), viscous fluid flow [13] and 
optical flow [14] are examples of physical model-based 
transformations, radial basis functions [15], multi 
quadrics [16], thin-plate splines [17], B-spline [18], 
wavelets [19] and piecewise affine transforms [20] are 
some of basis function expansion transformations, 
involves finding the optimal geometric transformation 
that maximizes the correspondences across the images. 
Medical Image Registration consists of components 
such as Transformation Model, Similarity Metric and 
Optimization Techniques as shown in Fig 1.  An image 
registration algorithm defines an objective function 
based on the similarity measure and tries to maximize 
this objective function. In the proposed method, a new 
registration method has been explained using canonical 
correlation analysis (CCA).  

b) Canonical Correlation Analysis (CCA) 

Canonical Correlation Analysis (CCA) can be 
seen as the problem of finding the basis vectors for two 
set of variables such that correlation between 
projections of the variables on these basis vectors is 
mutually maximized. 

CCA seeks a pair of linear or nonlinear 
transforms one for each step of variables, such that 
when one set of variables, is transformed, the 
corresponding coordinates are maximally correlated. 
CCA used in image retrieval, image fusion [21] and 
object recognition problems [22] in computer vision. 

CCA finds the relationship between two multi-
dimensional datasets [21]. The basic formulation of 
CCA is as follows:  

For a given two multi-dimensional data sets of 
basis vectors or projection vectors wx, wy respectively, 
for two data sets that maximize the correlation between 
the random variables x=wx

T(xi-x) and y= wy
T(yi-y), 

𝜌𝜌 = 𝐸𝐸[𝑥𝑥 ,𝑦𝑦]
�𝐸𝐸[𝑥𝑥2]𝐸𝐸[𝑦𝑦2]

= 𝐸𝐸[𝑊𝑊𝑊𝑊� 𝑇𝑇𝑥𝑥𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊� ]

�𝐸𝐸� 𝑊𝑊𝑥𝑥𝑇𝑇𝑥𝑥𝑥𝑥𝑇𝑇𝑊𝑊𝑊𝑊�� �𝐸𝐸[𝑊𝑊𝑦𝑦𝑇𝑇�𝑦𝑦𝑦𝑦𝑇𝑇  𝑊𝑊𝑊𝑊�  ]
    (2.1) 

𝜌𝜌 = 𝑊𝑊𝑊𝑊� 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ]

�� 𝑊𝑊𝑊𝑊𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
      (2.2) 

Cxx and Cyy are the within- class covariance 
matrix and, Cxy is the cross -covariance matrix. Maximum 
correlation has been found as follows. 

ρ = argmax (Wx
T CxyYTWy )                 (2.3) 

s.t   Wx
T CxxWx=1 and   Wy

T CyyWy=1        (2.4) 

The Basic formulation of CCA has the following 
disadvantage. 
1. CCA finds the only linear relationship between two 

datasets. 
2. Difficult to extend more than two data sets. 

 These problems can be addressed using the 
following ways. 
1. A non-linear relationship between the data sets can 

be addressed using kernel extension of CCA [23]. 
Kernel CCA defines the non-linear mapping of two 
datasets φ: x   →   φ(x) and ψ: y → ψ(y) and 
performs the traditional CCA on transformed 
datasets.  

2. Neural network based CCA extracts the non-linear 
relationship between datasets. 

3. Locality preserving method based CCA also extracts 
a non-linear relationship between datasets.   

III. Algorithm for Image Registration 

Image Registration methods are trying to find 
the relationship between two images in intensity domain 
or feature domain. Regarding similarity measures this 
relationship is defined. Similarity measures can be 
classified in two categories (i) in all; similarity measure 
quantifies the spatial alignment between two images. 
Various intensity-based similarity measures such as sum 
of squared difference (SSD) [24], sum of absolute 
difference (SAD) [25], correlation coefficient (CC) [26], 
NCC [27] and ratio image uniformity (RIU) [28] have 
been proposed for mono modal registration process. 
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These measures do not perform well in all cases. While 
SSD [25] is highly sensitive to Gaussian noise, SAD is 
less responsive to outliers on the subject boundaries. 
CC, NCC and, RIU perform well in these conditions, but 
are highly sensitive to non -uniform illumination in the 
images and (ii) The Non-linear similarity measures such 
as mutual information or divergence measures, etc. 
Multimodal image registration, the images are captured 
through different sensors (CT or MRI) or different 
parameters (T1, T2 or FLAIR) so that the intensity 
relationships between images are highly non-linear. 

In this work, based on the structural 
representation of images an algorithm has been 
proposed. The dense set of descriptors which perform 
the intensity based registration replace the input images. 
The advantage of this method is that after new 
representation, one can use any simple similarity 
measure such as L2 norm or SSD [25] for multimodal 
image registration. 

1. Given two images find projection directions using 
Kernel CCA (Gaussian kernel used for projection). 

2. Project original images or features in lower 
dimension space using projection direction. 

3. Use L2 norm as a similarity measure. 
In this algorithm Gradient descent uses φ 

optimization function. 

IV. Methodology 

 Using two sets of experiments the work has 
been carried out and is detailed below 

1. First set of demonstrations on T1 and T2 MR Images 
for 3D rigid registration (RIRE dataset). Experiments 
are carried out with the specifications: 15mm 
translation and 10-degree rotation as a deviation 
from correct position with ten times with different 
affine parameter settings. Mutual information based 
method for rigid registration has been used to be 
compared against the experimental results. We 
show the absolute error for translation (in mm), 
rotation (in degree) and root mean square error 
(RMS) in Tab. 1. Consider 1 mm equal to 1 degree 
for the absolute error computation.  

CCA has been performed on for more than two 
modalities (T1, T2, and PD) also. Tab. 2 Shows results 
for Brain web dataset. Comparison purpose uses the MI-
based on pairwise registration framework. CCA based 
method performs better regarding accuracy (Tab1) (in 
translation and rotation) compared to MI-based method.  
CCA based method improves overall accuracy to 6.7% in 
pairwise registration and 13 % in Groupwise registration 
compared MI-based method.    

 

The Degree of freedom: 90 

The work has been carried out using two sets of 
experiments and are detailed below.

 

V. Results 

a) Figures and Tables 

Table 1: Errors in translation (in mm) and rotation (in 
degree) in T1 and T2 MR 

Method
 Translation 

x(mm) 
Translation 

y(mm)  
Rotation     

(Degrees) 
MI-based 3.1 2.0 4.2 

CCA 2.9 1.8 4.0 

                                   
Table 2:

 
Registration error (translation in mm and 

rotation in degree) in T1, T2, ,and FLAIR
 

 
 
 
 
 
 
 
 

Table 3:
 
Registration Error in D1

 

 

 

 

 

Moving image Static image

Registered Image_MI Registered image_CCA  

Fig.
 
2: (a) Moving image, (b) Static image, (c)  

Registered image_MI,  and (d)  Registered image_CCA
 

2.
 

The second set of experiments was carried out on 
collected data sets (FLAIR, T1 and T2 images). The 
datasets have been divided into two parts. (i) 
Datasets which contain large tumors regions (D1, 
three volumes) (ii) Datasets which do not include 
tumor lesion or very fewer tumor lesions (D2, three 
volumes) (Next section contains datasets 
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Data Set Method Error
(RMS)

T1-T2 MI
CCA 3.0

T1-FLAIR
MI

CCA
2.6

T2-FLAIR
MI

CCA 2.7

T1-T2-
FLAIR

MI
CCA 2.5

Method Error(mm)

MI-based 14.6

CCA 10.3



description). For the first part of datasets, we use 
the T1 and FLAIR images registration model 
compared with our algorithm with MI-based based 
method and results shown in Tab.3. 

For the error calculation, five manual points 
were marked on the MRI image. In the second set of 
images also the experiments in a similar environment 
and the same method are used for error calculation. 
Results have been shown in following Tab.4.   
                                         Table 4: Registration Error in D2

 
 
 
          
 
 
3. CT and MRI Image Registration The work has been 

carried out on CT and MRI brain images. CT images 
provide bone structure information and, MRI 
dispenses soft tissue information of brain. For 
accurate tumor diagnostic one needs CT and MRI 
information. In this work 3D, rigid registrations of CT 
and MRI images were performed. In this work CT 
image used as the fixed image and MRI image as 
moving image. On comparing results with some 
benchmark, algorithm presents in literature such as 
mutual information; normalize mutual information 
and correlation-based approaches. Fig.5 shows the 
results of CT and MRI image registration. 

 
 
 
 
 
 
 
 
 
 (a)Unregistered                             (b) Registered              

 Fig.
 
3: CT and MRI Registration

 Fig.(a)

 

shows the unmatched as unregistered 
image and Fig.(b) shows the matched image of CT and 
MRI registration method. 

 
Method Translatio

n x(mm)
 

Translatio
n y(mm )

 

Rotation 
(Degrees) 

Error 
(RMS) 

MI-
based

 

5.6
 

4.8
 

5.1
 

5.2
 

NMI
 

5.3
 

4.6
 

4.8
 

4.9
 Correlation

- based

 

5.1
 

4.5
 

4.4
 

4.7
 

Entropy-
based

 

4.9

 

4.3

 

4.1

 

4.4

 

 

  

  

CCA(pro
posed)

 

4.8

 

4.1

 

3.9

 

4.2

 

Table 5: Image Registration Algorithms Comparisons

 

VI.

 

Conclusion

 

In this work new algorithm, CCA has been 
proposed for image registration. In multimodal 
framework, due to different acquisition parameters, the 
relation between datasets not follows the linear 
relationship. In this algorithm, the kernel version of 
canonical correlation analysis was used because the 
basic formulation of CCA gives the only linear 
relationship between datasets. The results are shown in 
Table I, Table II, Table III, Table IV and Table V on two 
different data sets (i) RIRE data sets have shown in 
Table II and (ii) Our collected data sets shown in Table 
III, Table IV and Table V.

 

Two sets of experiments have been performed 
on the RIRE datasets (T1, T2, and PD images). (i) Pair 
wise registration and (ii) Group-wise registration. From 
table I, Table II, it is evident that group-wise registration 
performs well compared to pairwise registration 
because group-wise registration consists of extra 
information (due to other modalities) which helps 
registration. The advantage of using CCA based method 
is one can easily extend this framework for more than 
two modalities.
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